Chapitre 7

Intégrales multiples

On commence dans ce chapitre a parler d’intégration pour une fonction de plusieurs va-
riables. Les intégrales multiples sont I'objet principal de ce chapitre. On évoquera également
les intégrales a paramétre (que le sous-groupe des matheux verra plus en détail par ailleurs).

Considérons par exemple une fonction de deux variables, définie et continue sur le rec-
tangle [a, b] X [c,d]. Pour tout x € [c,d] I'application ¢ — f(¢,z) est une fonction d’une seule
variable, continue et donc intégrable sur le segment [a, b]. Pour tout « € [¢,d] on peut donc
considérer la quantité

b
o) = [ fit.a)at

Dans cette intégrale, x est considéré comme une constante (vous étes maintenant habitués a
ce petit jeu). Mais vous n’étes pas dupes, vous vous doutez bien qu’on a maintenant envie
d’étudier la fonction = — ¢(z). Est-elle continue ? Ce n’est pas clair, mais on verra que c’est
effectivement le cas. Les choses se compliquent un peu si on remplace le segment [a, b] par un
intervalle quelconque de R. Bien sir il n’est déja plus si clair que 'intégrale définissant ¢(x)
a bien un sens pour tout x, et il est ensuite un peu plus subtile de s’assurer que la fonction
¢ obtenue est bien continue.

Une fois qu’on aura assuré la continuité de la fonction ¢, on pourra se demander a quelle
condition sur f l'intégrale ¢ est dérivable, de classe C*, etc. Une idée?

On observe que comme la continuité et la dérivabilité sont des propriétés locales, on n’aura
pas trop de difficulté a remplacer le segment [c,d] par un intervalle quelconque de R. Pour
toutes ces questions les deux variables ¢ et = jouent vraiment des roles trés différents. ¢ est
une variable d’intégration, = est plutét vu comme un paramétre.

Une autre question, pour laquelle ¢ et x ont des roles plus symétriques, est de chercher
a intégrer ¢. En effet, si ¢ est continue sur le segment [c, d], elle est intégrable sur ce méme
segment. On peut donc considérer la quantité

I:/qub(x)da::/cd (/{ff(t,x)dt) dz.

Evidemment, on aurait pu commencer par intégrer la fonction x ~— f(¢,z) sur [c,d] pour
chaque t € [a,b] fixé, puis intégrer la quantité obtenue par rapport a ¢t. Autrement dit on

aurait pu considérer
b d
I:/ </ flt,x) dx) dt.

Les intégrales I et I sont-elles égales? Que représentent-elles ? Peut-on intégrer sur autre
chose qu’un rectangle ? Réponses (partielles) dans les quelques pages qui suivent. . .
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7.1 Intégrales & paramétres

On donne (trés) rapidement les résultats principaux concernant les intégrales a parameétre.
On énonce également le théoréme de convergence dominée pour une suite d’intégrales (plutot
que pour une intégrale dépendant d’un paramétre x continu).

Les hypothéses utilisées ici peuvent étre affaiblies. En outre, on intégre ici par rapport
& une variable réelle ¢t et on obtient une fonction d’une variable réelle x. En partant d’une
fonction f & p + n variables on pourrait également (aprés avoir vu les intégrales multiples)
intégrer par rapport & p variables t1,...,t, et obtenir une fonction de n variables x1, ..., ;.
Néanmoins il est complétement raisonnable, au moins dans un premier temps, de se contenter
des énoncés présentés ici.

7.1.1 Théoréme de convergence dominée

Théoréme 7.1. Soit I un intervalle de R. On considére une suite (fn),cy de fonctions
continues sur I. On suppose que la suite (f,), oy converge simplement® vers une fonction f
et qu’il existe une fonction g intégrable sur I telle que

VneNVtel, |fu(t) <g(t).

Alors f est intégrable sur I et on a

/fn(t) dt —— | f(t)dt.
I n—oo I

A\Attention, le fait de pouvoir passer a la limite sous l'intégrale n’a rien d’évident, il
n’est d’ailleurs pas difficile de trouver des contre-exemples dés qu’on retire 'hypothése de
domination.

7.1.2 Cas d’une intégrale sur un segment

Soient a,b € R avec a < b et J un intervalle non vide de R. On considére une fonction f
de [a,b] x J dans R. On cherche a étudier Papplication ¢ définie sur J par

b
qb(x):/ f(t,x)dt.

Proposition 7.2. On suppose que f est continue sur [a,b] x J. Alors ¢ est définie et continue
sur J.

Proposition 7.3. On suppose que J est un intervalle ouvert. On suppose que f est continue
sur [a,b] x J et admet une dérivée partielle %, elle-méme continue sur [a,b] x J. Alors
Papplication ¢ précédente est bien définie sur J, elle est de classe C' et
b
0
Veed ¢(x)= a—f(t,x) dt.
x

a

Les démonstrations de ces deux propositions, ainsi que des deux théorémes ci-dessous,
sont dans [Liret-Martinais, Analyse 2°™° année].

7.1.3 Cas d’une intégrale généralisée

Soient a € R, b € [a, +oo[U{+0o0}, J un intervalle de R et f une fonction de [a, b[xJ dans
R. On s’intéresse, lorsqu’elle est bien définie, a la fonction ¢ définie sur J par

6(x) = / F(t, ) dt.

1. Cela signifie que fr(t) tend vers f(¢t) quand n tend vers +oo pour tout ¢ € I.
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Théoréme 7.4 (Théoréme de continuité sous l'intégrale). On suppose que f est continue
sur [a,b[xJ et qu’il existe une fonction g continue de [a,b| dans R telle que

(i) Vt € [a,b[,Va € J, | f(t z)] < g(t).
(i) L’intégrale f; g(t) dt est convergente.

Alors lapplication ¢ est bien définie et continue sur J.

Théoréme 7.5 (Théoréme de dérivation sous l'intégrale). On suppose que lintervalle J est
ouvert. On suppose que f est continue sur [a,b[xJ et que lintégrale généralisée f: f(t)dt est

convergente pour tout x € J. On suppose que la dérivée partielle % est définie et continue
sur [a,b[xJ. Enfin on suppose qu’il existe une fonction g continue de [a,b] dans R telle que

(i) Vt € a,bl, Vo € J, |3 (t, )| < g(0),

(i) Uintégrale généralisée f; g(t) dt est convergente.
Alors pour tout x € J lintégrale fab %(t,x) dt est absolument convergente. En outre la fonc-
tion ¢ est définie et de classe C' sur J, et

b
Ve e, ¢f(x) :/ %(t,x) dt.

Ezemple 7.6. Pour x € R on pose :

+oo 5
o(x) :/ e~ ' cos(tx) dt.
0

Alors @ est bien définie et de classe C! sur R. En outre pour tout z € R on a

p(x) = e T p(0).
Démonstration. e Pour t € Ry et z € R on note
F(t,z) = e " cos(tz).
La fonction f est de classe C! sur R, x R et

VteR,,VzeR, |f(ta)<e = 0O (e7).

t——+oo

Or lintégrale f0+°° e~tdt est convergente, donc f0+oo f(t,x) dt est absolument convergente
pour tout x € R. Ainsi ¢ est bien définie sur R.
o PourteRyetxzcRona

of
%(L l’)

= ’ftsin(tx)eft2 <te

Or 'application ¢ — te=t" est continue sur R, et pour tout A > 0 on a
A A
1 1 1 1
/ te ¥ dt=|—ce | = eV g —— 2,
0 2" ], 2 2 Asrtoo 2

donc l'intégrale f0+oo te=t" dt est convergente. D’aprés le théoréme de dérivation sous l'inté-
grale, ¢ est donc de classe C! sur R et

+oo 5
Vz eR, ¢'(x)= —/ te™"" sin(tx) dt.
0
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Soit A > 0. En faisant une intégration par parties on a
A

A 2 1 _p 1[4 e
/ —te”" sin(tz) dt = {2et sin(tx)} — f/ e "z cos(tz) dt
0 0

0 2

1 A
= 5e_Az sin(Ax) — %/0 et cos(tx) dt . —ggo(x).

Cela prouve que

et donc que

O

Remarque. Pour avoir la dérivabilité de ¢ sur J, il suffit de montrer la dérivabilité en tout
point de J. En pratique il suffit donc de vérifier 'hypothése de domination localement (en
x) autour de chaque point xg € J.

7.2 Construction de l'intégrale de Riemann sur R"

On s’intéresse maintenant a l'intégrale d’une fonction de plusieurs variables. Il s’agira
ici de l'intégrale de Riemann. On rappelle que l'intégrale de Riemann d’une fonction sur un
segment de R est définie de la fagon suivante :

e l'intégrale de la fonction indicatrice d’un intervalle est définie de fagon évidente,

e par linéarité, on définit 'intégrale d’une fonction en escalier (ou étagée),

e et enfin, lorsque c’est possible (dans un sens particulier, et dans ce cas on parle de fonction
Riemann intégrable), on approche la fonction étudiée par des fonctions en escalier, puis
on définit I'intégrale comme la limite des intégrales de ces fonctions en escalier,

e on montre ensuite qu’en particulier les fonctions continues, ou au moins continues par
morceaux, sont toujours Riemann intégrables sur un segment.

L’intégrale de Riemann d’une fonction de plusieurs variables se construit de fagon ana-
logue, méme s’il y a un certain nombre de subtilités supplémentaires. On ne donnera ici que
les étapes de la construction, sans s’attarder sur les démonstrations (pour plus de détail,
consulter par exemple le paragraphe IV.3 [Ramis-Warusfel, Tout-en-un pour la licence, ni-
veau L2]. La raison est que vous verrez en L3 une autre facon de définir I'intégrale d’une
fonction, a savoir I'intégrale de Lebesgue. Cet autre point de vue sera bien plus efficace pour
obtenir les résultats d’intégration théoriques.

Par contre, tant qu’il s’agit de calculer les intégrales de fonctions simples sur des domaines
simples (en des sens & préciser), cela revient au méme de définir 'intégrale d’une fagon ou
d’une autre. Ainsi il est pertinant de s’entrainer & calculer concrétement des intégrales méme
avant de connaitre l'intégrale de Lebesgue. C’est 'objectif de ce chapitre.

Ainsi je vous conseille de lire ce paragraphe, mais vous pouvez sans trop de scrupules le
passer et vous concentrer sur les suivants, qui constituent le véritable objectif de ce chapitre.

Comme en dimension 1, on commence par définir 'intégrale dans le cas trivial. L’intégrale
de la fonction constante égale & « sur le pavé
P(ay,by;...5an,bn) = [a1,b1] X -+« X [an, by]
est définie comme étant égale &

a=aVol(P)=a || (b; —aj).
/P(al,b1;-~;ambn) H ’ !

Jj=1
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On définit ensuite par linéarité 'intégrale d’une fonction f définie sur un pavé P et telle
qu’il existe un nombre fini de pavés P, ..., Py tels que P est égal a 'union de ces pavés, ils
sont d’intérieurs disjoints (cela signifie que si on oublie les bords il n’y a pas d’intersection)
et f est constante sur chacun de 'intérieur de ces pavés (on ne se préoccupe pas de la valeur
sur les bords des pavés, de méme qu’une intégrale en dimension 1 ne dépend pas de la valeur
en un point donné).

On se donne maintenant une fonction f sur un pavé P. Si on se donne des sous-pavés
Py, ..., P, d'intérieurs disjoints et tels que P = U?:l Py, ainsi que des points z; € Py, ...,
x), € Pg. On sait alors donner un sens a I'intégrale de la fonction qui vaut f(x;) sur 'intérieur
du pavé P; pour tout j € [1,k] :

I(Py,ay,..., Peyx) =Y f(x;) Vol(P)).

Jj=1

On dit alors que f est intégrable sur P si cette quantité tend vers un réel I quand les longeurs
des cotés des sous-pavés tendent toutes vers 0 (le nombre de sous-pavés tend lui vers +00),
indépendamment du choix de ces sous-pavés. On dit alors que cette valeur I est 'intégrale
de f sur le pavé P. On vérifie ensuite qu’en particulier les fonctions continues sur P sont
intégrables.

Ce qui précéde permet de définir I'intégrabilité et I'intégrale sur un pavé. Par linéarité on
peut étendre sans difficulté la définition & une union finie de pavés. Mais on aimerait pouvoir
intégrer des fonctions sur des domaines qui ne sont pas des unions de pavés, par exemple
un simple disque de R2. On se donne donc une fonction continue (on pourrait chercher a
considérer des fonctions plus générales, mais cela ne nous intéressera pas ici) sur un domaine
ouvert et borné U de R™. On peut alors trouver une suite (Pj)j en de pavés inclus dans U,
d’intérieurs deux & deux disjoints, et tel que tout & € U appartient & P; pour au moins un
j € N. Pour tout j € N on note I; I'intégrale de f sur le pavé P;. On dit alors que f est
intégrable sur U si la série

oo
D1
j=1

est absolument convergente et dans ce cas on appelle intégrale de f sur ¢/ la somme de cette
série. Pour que cela ait un sens il faut que cette limite soit indépendante du choix de la suite
(Pj) jen ce qui est effectivement le cas.

De méme qu’on utilise rarement les sommes de Riemann pour calculer l'intégrale d’une
fonction continue sur un segment de R, la construction qu’on vient d’esquisser ne permet
pas de calculer concrétement des intégrales de fonctions sur des domaines de R™. C’est le
théoréme de Fubini 7.9, qui permet de ramener le calcul d’une intégrale de R™ au calcul de
n intégrales unidimensionnelles, que ’on utilisera en pratique.

S’il n’est pas primordial & ce stade de retenir en détail la construction de l'intégrale de
Riemann sur R™, il sera par contre indispensable de bien savoir utiliser ce théoréme pour
savoir calculer concrétement des intégrales « simples ».

7.3 Intégrale d’une fonction continue sur un domaine simple

7.3.1 Intégration sur un domaine de R?

On arrive maintenant au cceur de ce chapitre, ou on cherche & calculer des intégrales de
fonctions « simples » sur des domaines « simples » de R?. On commence par définir le type
de domaines sur lesquels on va intégrer.
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Définition 7.7. Une partie A de R? est dite élémentaire s’il existe a,b,c,d € R avec a < b
et ¢ < d, et des fonctions 1, w2 continues sur [a,b] et 11,12 continues sur [c, d] telles que
v1(z) < pa(z) pour tout = € [a,b], ¥1(y) < 2(y) pour tout y € [¢,d] et

2(15)}

A={(z,y) eR?*|a< ¢
< Va(y)} -

= {(z,y) eR?|c
Dans ce cas 'intérieur de A est

A= ER?|a<z<bpi(r) <y<paz)}

{(z,y)
{(z,y) eR?[e<y < di(y) <z <a(y)}.

Exemples 7.8. o Le pavé [a,b] x [c,d] avec a < b et ¢ < d est une partie élémentaire de R
e Le disque unité

D= {(z,y) e R?*|2” +y* < 1}

peut s’écrire

ou encore

D:{(x,y)GRz\ —1<y<l,—vV1—-y?<z< lny}.

Théoréme 7.9 (Fubini). Soient A une partie élémentaire de R* et f une fonction continue
sur A. Avec les notations de la définition précédente, on a

| Hedeay= [ b < / (()) f(x,y>dy> o= | ' ( /w w(()) f(x,y>dx> dy.

Remarque 7.10. e Le théoréme précédent peut étre lu de deux fagons différentes. Si vous avez
bien compris la construction de I'intégrale d’une fonction continue sur un domaine A de R2,
le théoréme dit que cette intégrale est en fait égale a ce qu’on obtient en intégrant d’abord
par rapport & une variable puis par rapport a ’autre, comme présenté en introduction, et
indépendamment de 'ordre d’intégration. Si vous avez esquivé le paragraphe précédent,
le théoréme dit que les deux derniéres intégrales de 1’égalité sont égales, et on prend leur
valeur commune comme définition de I'intégrale de f sur A. Dans tous les cas ce théoréme
est admis.

e On écrit parfois [[, f(z,y)dz dy pour insister sur le fait que c’est une intégrale qui porte
sur deux variables. On peut faire de méme pour les intégrales portant sur trois variables,
mais en général on abandonne cette convention au-dela. . .

Evemples 7.11. On cherche & calculer 'intégrale de la fonction (z,y) — xy? sur le pavé
P=10,1] x [1,2]. On a

1 2 1 1
8z = Tz 7
2 2
xy da;dy:/ (/ Ty dy)dx:/ (—)dm:/da?:
/p o \J1 o \3 3 o 3 6

mais aussi
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y
Ezemple 7.12. On note p2(x) =

T={(x,y) €[0.1° |y <z}

On a alors
//Tx2y3dxdy/ol</0 ydy)d:p/ 7dz,74. \ T .
$1(x) =0

Définition 7.13. On appelle partie simple de R? un ensemble S qui s’écrit comme union
finie de parties élémentaires Aq, ..., A, d’intérieurs deux & deux disjoints :

Vije[ln], i#j = AinA;=0.

Si f est une fonction continue sur .S, on définit alors
n
f= f

Ezemple 7.14. La couronne {(m, y) ER?|1 < a2 +y2 < 2} est une partie simple de R?.

Définition 7.15. Soit A une partie élémentaire de R%. Alors on appelle aire de A la quantité

// 1dx dy.
A

Exemple 7.16. On  considére le triangle T =
{(z.y) €[0,1?[z+y <1}. Ona

Aire(T):/Ol(/ol_mldy> dsc:/ol(l—w)dm:; T

\qzbl(x) =0

pa(r)=1—x

Exemple 7.17. On considére le disque D de centre 0 et de rayon 1. Alors on a

1 Vi—a? 1 z
Aire(D) = / (/ 1 dy) dx = 2/ V1—a2de = 2/ 1 — sin?(#) cos(0) df
T r=—1

r=—1 —V1—x2

M)

™

- 2/2 cos(0) do = / (1+ cos(26)) d = 7.

3 3
Définition 7.18. Soit A une partie simple de R2. Alors on appelle centre de gravité de A le
point de coordonnées

(ra, ya) = A1re (// zdx dy, // ydxdy)

Ezemple 7.19. Le centre de gravité du disque D de centre (zg,yo) et de rayon R et le point
(20,90). En effet on a

a+R b+ a+R
// :cdxdy—/ / xdydxz/ 22/ R? — (x — a)? dx
R2 (z— a)2 a

—R

:/ 2z\/ R? — x2dx—|—/ 2a+/ R? — 22 dx = a Aire(D).
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La deuxiéme coordonnées s’obtient de fagon analogue.

7.3.2 Intégration en dimensions supérieures

On définit exactement comme dans R? les domaines élémentaires et simples de R?, puis

Iintégrale
/// f(x,yvz)dwdydz:/f(x,yvz)dwdydz
1% 1%

d’une fonction continue sur un tel domaine, en écrivant cette intégrale comme une intégrale
en x d’une intégrale en y d’une intégrale en z. On dans un ordre différent.

Définition 7.20. Soit V une partie simple de R3. Alors on appelle volume de V la quantité

J[[ vy

On définit le centre de gravité d’une partie simple de R? de facon analogue & la dimension 2.

Ezemple 7.21. On considére le simplexe T3 = {(z,y,2) € [0,1*|z+y+2<1}. Ona

\/<)1(:F3):/01 (/OH (/Ol_x_yldz) dy) dm:/o1 (/Ol_x(l—x—y)dy> dz
:/01((1_95)_;5(1—95)—(1_2“’”)2) dx:é.

Ici on aurait pu gagner une étape de calcul en observant que pour tout x € [0, 1] on sait

calculer
11—z l—-xz—y
[ )
0 0

qui est laire du triangle Th(z) = {(y,2) € [0,1 — z]? |y + 2 <1 — z} C’est-a-dire (1;I)2. On
a alors

1 11— )2
Vol(Tg):/O Aire(Tg(x))dx:/O %d:ﬂ:é.

Ezemple 7.22. On considére la boule unité B = {(m, y,2) ER3 |22 +y? 4+ 22 < 1}. Pour tout

z € [~1,1] on considére le disque D(z) = {(z,y) € R?|2? +y? <1 — 2%}. On a alors

1 371 4

7T(1—22)d2’=77|:1—2:| i
1

Vol(B) = / i_lAire(D(Z))dZZ / 3

—1

Bien siir, toutes ces définitions se généralisent en fait & des domaines de R™. Le théoréme
de Fubini rameéne le calcul d’une intégrale sur un domaine de R™ au calcul de n intégrales
successives sur des intervalles de R. On parlera encore de volume en dimension n > 4.

7.4 Changement de variables

On énonce maintenant le théoréme de changement de variables, qui sera également trés
utile pour calculer des intégrales multiples :

Théoréme 7.23 (Théoréme de changement de variables). Soient U et V deuz ouverts bornés
de R™ et ¢ : U — V un difféomorphisme de classe Ct. Alors pour toute fonction f:V — RP
continue et intégrable on a

f(y) dy = / F(6(x)) |det Jac é(z)] d.
oU) u
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A nouveau, on ne va pas donner de démonstration détaillée pour ce résultat. On com-
mence par donner des exemples élémentaires, qui servent en fait & démontrer le théoréme. On
donnera ensuite les idées pour la démonstration (pour une démonstration compléte, voir par
exemple le paragraphe IV.3.4 de [Ramis-Warusfel, L2]), puis on introduira les changements
de variables usuels (coordonnées polaires, cylindriques et sphériques).

Ezemples 7.24 (Exemples de base). On considére un ouvert élémentaire A comme a la défi-
nition 7.7. On commence par tester la formule de changement de variable sur des cas simples
otu elle peut étre obtenue « a la main ».

e Pour (z9,y0) € R? on note

] R = R
@ow0) “\ (z,9) = (z+z0,y+y0)

T(zo,y0) réalise un C'-diffeomorphisme de R? dans R? (sa réciproque est T(_,, _,) et donc
de tout ouvert simple sur son image. En outre pour tout (z,y) € R? on a

10
Ja‘c T(.’,K(),yo) (xa y) = <O 1) Y
et donc
|det Jac Tz, )| = 1
La formule de changement de variable donne alors
[ oy ) dody = | f(a.y) de dy,
A T(zOvUO)(A)
ce qui s’écrit encore
p2(x) b+zo p2(z—z0)+yo
/ / +xo,y+yo)dydx=/ / f(z,y) dy da.
w1 () r=a+zo J y=p1(T—T0)+yo

Cette formule s’obtient en fait facilement en faisant deux changements de variables successifs
dans des intégrales simples.
e Pour )\ € R on note

T .. R? = R?
P22 (my) = (2 Agy)

T1 2. réalise un C'-difféomorphisme de R? dans R? (sa réciproque est Ty 2 —») et donc de
tout ouvert simple sur son image. En outre pour tout (x,y) € R? on a

1 A
JaCTl,Q,)\(xay) = (0 1) B

et donc
|det Jac T3 25| = 1.

La formule de changement de variable donne dans ce cas :

d y)+Ay
/ / 3:—|—)\y,y)dxdy=/ / f(z,y) dz dy.
y=c Jz=11(y) =11 (y)+Ay

A nouveau, il est facile de vérifier directement que cette formule est bien valable.

e On note maintenant
P { R2 - R2?
P2 (@y) - (o)
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Py 5 réalise un C'-difféeomorphisme de R? dans R? (sa réciproque est P o) et donc de tout
ouvert simple sur son image. En outre pour tout (z,y) € R? on a

0 1
JaCPI,Q(x7y) = (1 0) 9

et donc
|det Jac Py o] = 1.

Que donne la formule de changement de variable dans ce cas?
e Pour a # 0 on note finalement

D1a5

)

{ R2 —  R2
(x,y) = (az,y)

Dy, réalise un C'-difféomorphisme de R? dans R? (sa réciproque est D, ,-1) et donc de tout
ouvert simple sur son image. En outre pour tout (z,y) € R? on a

|det D1 o] = |o] .

La formule de changement de variable nous dit alors que si on dilate le probléme par un
coefficient |a| dans une direction, on muliplie les aires par «, ce qu'on aurait encore pu
vérifier directement.

On rappelle que le déterminant permet de mesurer des volumes. Des aires en dimension
2. En effet pour u et v dans R? la valeur absolue du déterminant det(u,v) est P'aire du
parallélogramme engendré par u et v. Ainsi le facteur |det Jac ¢(x)| mesure le fait que le
diffeomorphisme ¢ a tendance a dilater ou contracter les aires au voisinage de .

Idées de démonstration pour le théoréme de changement de variables. ® On commence par
remarquer que si le résultat est vrai pour les difféeomorphismes f et g, alors il est vrai pour
f o g (sous réserve que cette composition ait un sens).

e On a vu que le théoréme est vrai si ¢ est une transvection, une permutation ou une
dilatation. Or tout isomorphisme de R? s’écrit comme composition finie de tels isomorphismes
élémentaires (voir le cours d’algébre linéaire, cela peut se montrer en utilisant ’algorithme
du pivot de Gauss). Ainsi on obtient le théoréme dans le cas ou ¢ est un isomorphisme.

e On découpe le domaine en un grand nombre de domaine de plus en plus petits. A la
limite, pour chaque petit domaine D et pour n’importe quel xg € D on peut approcher f
par f(zo) sur D et ¢(D) par Jac ¢(D — xo) + ¢(zg), obtenu a partir de D en appliquant une
transition, un isomorphisme, puis & nouveau une proposition. L

Exemple 7.25. Soient a,b > 0. On considére I’ellipse

2 2
5:{(m,y)€R2|22+2;2<1}.

L’application ¢ définie par

o(z,y) = (ax, by)

réalise un C'-difféomorphisme du disque unité ouvert D dans £. On a alors
Aire(é’):/ 1dacdy:/ 1 x |Jace(X,Y)| dX dY = abr.
@(D) D T

On peut dire qu'on a effectué le changement de variable (z,y) = ¢(X,Y), avec dzdy =
\Jac p(X,Y)| dX dY = abdX dY.
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7.5 Exemples importants de changements de variables

On introduit maintenant des changements de variables particuliérement utiles. En fonc-
tion des symétries du probléme étudié, ces changements de variables peuvent permettre de
considérablement simplifier '’expression des intégrales a calculer.

7.5.1 Coordonnées polaires

Proposition 7.26. L’application

. { R:x]—mn[ — R\ (R_ x{0})
' (r,0) —  (rcos(#),rsin(6))

est un C*-difféomorphisme. En outre pour tout (r,0) € Ri x| — 7,7 on a
det Jac ®(r,0) = r.

Démonstration. On vérifie « facilement » que ® est une bijection. D’apreés le théoréme de
Iinversion locale, il reste & vérifier que sa matrice jacobienne est partout inversible. Or pour
tout (r,0) € R x] —m,m[on a

cos(f) —rsin(0)

det Jac ®(r, 0) = sin(6)  rcos(6) =r#0.

O

Ce changement de variable est agréable quand la frontiére du domaine d’intégration s’ex-
prime plus facilement comme courbe paramétrée en polaire et/ou que la fonction & intégrer
présente une symétrie radiale :

Proposition 7.27. Soit A une partie élémentaire de R? tel qu’il existe une fonction p : R —
R*  continue, 2w périodique, et vérifiant

A ={(rcosb,rsin(9),0 € R,0 <r < p(h)}

Alors pour toute fonction f continue sur A on a

Tf 0)
/Af(x,y)dxdy:/_ﬂ/opg f(rcos(0),rsin(f)) rdrdf

Démonstration. Si on note

Aj_rx = {(rcos,rsin(0)),0 €] — m,7[,0 <r < p(0)}

alors on a2

/ f(z,y) de dy = / f(e,y) de dy
A A

—7,7[
® réalise alors un C'-diffeomorphisme de {(r,0) € Ry x| —m,«[|r < p(6)}, il ne reste plus
qu’a appliquer le théoréme de changement de variables. O
Ezemple 7.28. L’aire du disque de rayon R peut étre obtenue par le calcul suivant :

T R T 7‘2 R
Aire(Dpg) = / / 1rdrdf = / [2] df = nR?.
—7m JO - 0

On pourra également utiliser une variante de cette derniére proposition ot # ne couvre
qu’une partie de U'intervalle | — 7, 7.

2. on ne détaille pas ce point, on peut par exemple décomposer A en A[_ o) U A[o,x]- A[—x,0] et A[o,x]
sont des domaines simples, et on utilise le fait qu’on ne change pas la valeur d’une intégrale en enlevant des
parties du bord
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7.5.2 Coordonnées cylindriques

Dans R?, les coordonnées cylindriques sont utiles lorsque le probléme étudié présente une
symétrie autour d'un axe.

Proposition 7.29. Soit V une partie simple de R3 tel qu’il existe a,b € R avec a < b et une

fonction p : R x [a,b] — R% continue, 27 périodique par rapport a la premiére variable, et
vérifiant

V ={(rcosf,rsin(),z),0 € R,z € [a,b],0 < r < p(b,2)}

Alors pour toute fonction f continue sur V on a

b 7 p(0,2)
/f(gmy,z) dmdydz:/ / / f(rcos(0),rsin(d), z) r drdf dz
14 a J—mJO

Démonstration. Pour z € [a,b] on note T'(z) = V N (R? x {z}). Alors on a
T(z) = {(rcos(8),rsin(d),z),0 e R,0< r < p(0,2)}.

Puisque

b
|tz dedyas = | f(w,y,2) dudy | dz,
\%4 a T(z)

il suffit de passer en coordonnées polaires sur chaque tranche 7'(z). O

7.5.3 Coordonnées sphériques

Les coordonnées sphériques sont adaptées aux problémes qui présentent une symétrie
autour du centre du repére.

Proposition 7.30. L’application
Rix]—malx]-%,2[ — R\ (R_x {0} xR)
r cos(f) cos(p)
(r,0,¢) — rsin(f) cos(p)
rsin(p)
est un C'-difféomorphisme. En outre pour tout (r,0,¢) € R%x] —m,w[x] — 2, Z[ on a
det Jac ®(r,0) = r? cos(p).

Démonstration. On vérifie le calcul du jacobien. Pour (7,6, ¢) € R} x] -, ﬂ'[x} — 5.5 [ on a

cos(0) cos(p) —rsin(f) cos(p) —rcos(f)sin(p)
det Jac ®(r, 0) = |sin(f) cos(p)  rcos(f)cos(yp)  —rsin(f)sin(p)

sin(yp) 0 7 cos(p)
= r?(sin(p) x cos(y) sin(y) + cos(p) x cos*(¢))
=12 cos(p) # 0. O

Exemple 7.31. On retrouve facilement le volume de la boule de rayon R :

% T R 3
Vol(Bgr) = / / / 2 cos(ip) dr df dp = Akt .
-5 J-mJO

3
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7.6 Exercices

7.6.1 Intégrales & paramétre

. . L 400
Ezercice 1. Montrer que U'intégrale I, = ||/ 5z +t2

la convergence de la suite (I,,)

dt converge pour tout n € N. Etudier
neN’

Ezercice 2. On définit deux fonctions f,g: R — R par les formules

r +2 1 67(t2+1)x2
= “Udt t = ——dt.
fa) = [ e o o) = [

1. Montrer que g est dérivable.
2. Montrer que la fonction h(x) = g(x) + f2(x) est constante.

3. En déduire que f0+oo e dt = /7/2.

FExercice 3. Pour x > 0, on définit

oo —(P+ 1)z
= dt-
¥(z) /0 211

1. Montrer que v est continue sur [0, +00].

2. Montrer que % est de classe C! sur |0, +ool.
3. Calculer ¥(0) et la limite limgc_)_s_Oo ().

4. Montrer que 9 (z
5. Montrer que fo )dx = —2( e~ ds)2.
6. En déduire que fo e du = \g

7.6.2 Intégrales multiples
Exercice 4. Calculer / f(x,y) dx dy dans les cas suivants :

L f(z,y) =< et D=[-1,1] x [1,2],
2. f(x,y) = sin(z +y) et D [0, %] x [0, 5],
3. f(z,y) = \/#W =[3,7] x [-2,2].

Ezercice 5. On note D = {(x,y) € R?|x >0,y > 0, z +y < 1}. Calculer

Ilz// 1dx dy, 12:// (2 +y?) dx dy, -73:// wy(x +y) de dy.
D D b

FEzxercice 6. Calculer / f(z,y) dz dy dans les cas suivants :
D

L fry)=z+y, D={(x,y) eR*[1>22>0, 2> <y<a},

2. flx,y) =gy, D={(z,y) eR?[3>a>1,y>2 x+y <5},

3. f(z,y) =cos(zy), D={(z,y) eR*|2>2>1,0<zy<2},

4 floy) ==, D={(x,y) €R?[y>0,2—y+130,z+2y—4<0},
5. f(z,y) =y, D={(z,y) eR*|z >0,y >0, zy+z+y<1}.

Exercice 7. Calculer les aires des domaines suivants :

={(z,y) eR?| -1 <2<, 22 <y<4—123},

DQ ={(z,y) eR?|0< z <7, —sinzr <y <sinz},
={(r,y) eER?|y >0, 2 —y+1>0,y<—2?+2x+1}.

Ezercice 8. Soit D = {(z,y) € R? |z € [0,1],y € [0,1],2%+y? > 1}. Calculer //D 1—|-x$72y+7ﬂ dz dy.
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Exercice 9. On considére le domaine
D={(z,y,2) eR*|x>0,y>0,2>0,2+y+2z<1}

Y
Pour z, € R, on définit le plan P,, = {(x,y,2) € R® |z = z,}.
1. Pour quelles valeurs de z, l'intersection P, , N D est-elle non-vide ?
2. Soit z, € R tel que P,, N D est non-vide. Calculer [[, ., zdxdy.

3. Calculer [[[, xdxdydz.

Exercice 10. En passant aux coordonnées polaires, calculer I'aire du domaine
1
D_{(x,y)€R2|2<x2+y2<36ty>0}
(et veérifier qu’on obtient bien le résultat attendu).

Exercice 11. Calculer / / / f(x,y, 2) dxdydz dans les cas suivants :
D

1. f(z,y,2) =cosz,  D={(x,y,2) ER*|2® +y° +2° <1},
_ =z _ 31 ,.2 2
2. flz,y,2) = T D ={(z,y,2) e R®|2* +y* <4,0< 2z <2}
Ezercice 12. Soient a,b,c € R . Calculer le volume de 'ellipsoide d’équation
2?2 2
an + be + 672 < 1.

Ezercice 13. On considére le domaine D = {(z,y) € R? |22 + y? — 2z < 0}. Calculer

/ Va2 +y?dx dy.
D

Ezercice 14. Soient a,b € R’. On considére le domaine

2 2
_ 2
D—{(x,y)eRx>0,y>0,az bzél}.

Calculer

/D(2sc3 —y)dz dy.

Exercice 15. Calculer I'intégrale de la fonction f : (z,) — (y? — 22)*¥ (22 + y?) sur le
domaine D = {(z,y) e R? |0 <z <y,a <zy <b,y> — x> <1}, ou b > a > 0. On pourra
effectuer le changement de variables u = zy, v = y? — z2.

Exercice 16. 1.Pour R > 0, calculer
I = / e ) dg dy,
B(0,R)

ou B(0, R) désigne la boule euclidienne de centre 0 et de rayon R. Montrer que Ir admet
une limite que l'on explicitera quand R tend vers +oc.
2. En déduire la valeur de l'intégrale
/ e da.
R

Ezercice 17. Calculer [, % dx dy, ot D est I'ensemble des points de [0,1]? qui ne
sont pas dans le disque de centre (0,0) et de rayon 1.

Ezxercice 18. Soit a > 0 et B la boule euclidienne unité de R3. Calculer

1
drxdydz.
/B Va2 +y2 + (2 —a)?
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