Torus actions in the normalization problem

Jasmin Raissy

Dipartimento di Matematica "L. Tonelli"
Università di Pisa

KAWA 1, Workshop
Albi, January 29-31, 2010

Normalization Problem

Setting

Given $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, p\right)$ a germ of biholomorphism fixing p, we are interested in the dynamics of f in a neighbourhood of p.

Normalization Problem

Setting

Given $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, p\right)$ a germ of biholomorphism fixing p, we are interested in the dynamics of f in a neighbourhood of p.
i.e., for any q "sufficiently close" to p, we want to study the asymptotical behavior of $\left\{f^{k}(q)\right\}_{k \geq 1}$, where $f^{k}=f \circ \cdots \circ f$.

Normalization Problem

Setting

Let $f:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$ be germ of biholomorphism fixing O.

Normalization Problem

Setting

Let $f:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$ be germ of biholomorphism fixing O. Locally, using multi-index notation,

$$
f(z)=\Lambda z+\sum_{\substack{Q \in \mathbb{N}^{n} \\|Q| \geq 2}} f_{Q} z^{Q},
$$

where

$$
z^{Q}:=z_{1}^{q_{1}} \cdots z_{n}^{q_{n}}, \quad f_{Q} \in \mathbb{C}^{n}, \quad|Q|:=\sum_{j=1}^{n} q_{j}
$$

Normalization Problem

Setting

Let $f:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$ be germ of biholomorphism fixing O.
Locally, using multi-index notation,

$$
f(z)=\Lambda z+\sum_{\substack{Q \in \mathbb{N}^{n} \\|Q| \geq 2}} f_{Q} z^{Q},
$$

where

$$
z^{Q}:=z_{1}^{q_{1}} \cdots z_{n}^{q_{n}}, \quad f_{Q} \in \mathbb{C}^{n}, \quad|Q|:=\sum_{j=1}^{n} q_{j}
$$

with Λ in Jordan normal form, i.e.,

$$
\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)+N
$$

$N=$ nilpotent matrix and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}^{*}$ not necessarily distinct.

Normalization Problem

Setting

Let $f:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$ be germ of biholomorphism fixing O.
Locally, using multi-index notation,

$$
f(z)=\Lambda z+\sum_{\substack{Q \in \mathbb{N}^{n} \\|Q| \geq 2}} f_{Q} z^{Q},
$$

where

$$
z^{Q}:=z_{1}^{q_{1}} \cdots z_{n}^{q_{n}}, \quad f_{Q} \in \mathbb{C}^{n}, \quad|Q|:=\sum_{j=1}^{n} q_{j}
$$

with Λ in Jordan normal form, i.e.,

$$
\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)+N
$$

$N=$ nilpotent matrix and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}^{*}$ not necessarily distinct.
Want to know whether $\exists \varphi:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$, local holomorphic change of coordinates, $d \varphi_{O}=I d$, s.t. $\varphi^{-1} \circ f \circ \varphi$ has a simple form.

Normalization Problem

Linearization

Linearization problem

simple = linear

Normalization Problem

Linearization

Linearization problem
simple = linear

Idea: first to search for a formal solution of

$$
\begin{equation*}
f \circ \varphi=\varphi \circ \Lambda \tag{1}
\end{equation*}
$$

and then to study the convergence of φ.

Normalization Problem

Linearization

Linearization problem

simple = linear

Idea: first to search for a formal solution of

$$
\begin{equation*}
f \circ \varphi=\varphi \circ \Lambda \tag{1}
\end{equation*}
$$

and then to study the convergence of φ. We have to recursively solve, for each coordinate j,

- $\varphi_{j}(z)=z_{j}+\sum_{|Q| \geq 2} \varphi_{Q, j} z^{Q}$.
- $\lambda^{Q}:=\lambda_{1}^{q_{1}} \cdots \lambda_{n}^{q_{n}}$

Normalization Problem

Linearization

Linearization problem

simple = linear

Idea: first to search for a formal solution of

$$
\begin{equation*}
f \circ \varphi=\varphi \circ \wedge \tag{1}
\end{equation*}
$$

and then to study the convergence of φ. We have to recursively solve, for each coordinate j,

- $\varphi_{j}(z)=z_{j}+\sum_{|Q| \geq 2} \varphi_{Q, j} z^{Q}$.
- $\lambda^{Q}:=\lambda_{1}^{q_{1}} \cdots \lambda_{n}^{q_{n}}$
$\left(\lambda^{Q}-\lambda_{j}\right) \varphi_{Q, j}=\operatorname{Polynomial}\left(f_{P, j}, \varphi_{R, k}\right.$, with $\left.P \leq Q, R<Q\right)$
- lexicographic order on \mathbb{N}^{n}

Normalization Problem

Resonances

Definition

A resonant multi-index for $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q| \geq 2$, s.t.

$$
\begin{equation*}
\lambda^{Q}-\lambda_{j}=0 . \tag{3}
\end{equation*}
$$

$\operatorname{Res}_{j}(\lambda):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, \lambda^{Q}-\lambda_{j}=0\right\}$.

Normalization Problem

Resonances

Definition

A resonant multi-index for $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q| \geq 2$, s.t.

$$
\begin{equation*}
\lambda^{Q}-\lambda_{j}=0 . \tag{3}
\end{equation*}
$$

$\operatorname{Res}_{j}(\lambda):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, \lambda^{Q}-\lambda_{j}=0\right\}$.
Resonances $=$ obstruction to formal linearization.

Normalization Problem

Poincaré-Dulac normal forms

Theorem (Poincaré-Dulac, 1904)
$\forall f$ as above $\exists \widehat{\varphi}$ formal change of coord., $d \widehat{\varphi}_{O}=I d$, s.t.
$\widehat{\varphi}^{-1} \circ f \circ \widehat{\varphi}=g \in \mathbb{C} \llbracket z_{1}, \ldots, z_{n} \rrbracket^{n}$ where $g(O)=O, d g_{O}=d f_{O}$ and g has only resonant monomials,

$$
g_{j}(z)=\lambda_{j} z_{j}+\varepsilon_{j} z_{j+1}+\sum_{\substack{|Q| \geq 2 \\ \lambda Q=\lambda_{j}}} g_{Q, j} z^{Q} .
$$

Moreover, the resonant terms of $\widehat{\varphi}$ can be arbitrarily chosen, and that choice determines uniquely $g^{\text {res }}$ and the remaining terms of $\widehat{\varphi}$.

A germ of the form $\Lambda+g^{\text {res }}$, with $g^{\text {res }}$ containing only resonant monomials is said in Poincaré-Dulac normal form.

Normalization Problem

Normalization Problem

Given $f, \exists^{?} \varphi:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$, holomorphic change of coordinates, $d \varphi_{O}=I d$, s.t.
$\varphi^{-1} \circ f \circ \varphi$ is in Poincaré-Dulac normal form?

Normalization Problem

Normalization Problem

Given $f, \exists^{?} \varphi:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$, holomorphic change of coordinates, $d \varphi_{O}=\mathrm{Id}$, s.t.

$$
\varphi^{-1} \circ f \circ \varphi \text { is in Poincaré-Dulac normal form? }
$$

Problem

Not uniqueness of the formal change of coordinates $\hat{\varphi}$ given by Poincaré-Dulac theorem, and not having explicit expression for $g^{\text {res }}$, make very difficult to give estimates for the convergence of $\widehat{\varphi}$.

Torus Actions

Torus Actions

The same problem can be stated for germs of holomorphic vector field near a singular point.

Torus Actions

The same problem can be stated for germs of holomorphic vector field near a singular point.
In 2002, N.T. Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ of holomorphic vector field is the same as to find (and linearize) a suitable torus action which preserves the vector field.

Torus Actions

The same problem can be stated for germs of holomorphic vector field near a singular point.
In 2002, N.T. Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ of holomorphic vector field is the same as to find (and linearize) a suitable torus action which preserves the vector field.

Idea

We look for symmetries in the normalization problem and how to exploit them

Torus Actions

Germs commuting with a torus action

Theorem (-, 2009)

f commutes with a holom. effective \mathbb{T}^{r}-action on ($\left.\mathbb{C}^{n}, O\right), 1 \leq r \leq n$, with weight matrix $\Theta \in M_{n \times r}(\mathbb{Z})$
$\exists \varphi$ local holom. change of coord. s.t. $\varphi^{-1} \circ f \circ \varphi$ contains only Θ-resonant monomials.

Torus Actions

Germs commuting with a torus action

Theorem (-, 2009)

f commutes with a holom. effective \mathbb{T}^{r}-action on ($\left.\mathbb{C}^{n}, O\right), 1 \leq r \leq n$, with weight matrix $\Theta \in M_{n \times r}(\mathbb{Z})$

I
$\exists \varphi$ local holom. change of coord. s.t. $\varphi^{-1} \circ f \circ \varphi$ contains only Θ-resonant monomials.
f commutes with A : $\mathbb{T}^{r} \times\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right), A(x, O)=O$, means

$$
f(A(x, z))=A(x, f(z)) .
$$

Torus Actions

Germs commuting with a torus action

Theorem (-, 2009)

f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), 1 \leq r \leq n$, with weight matrix $\Theta \in M_{n \times r}(\mathbb{Z})$

I
$\exists \varphi$ local holom. change of coord. s.t. $\varphi^{-1} \circ f \circ \varphi$ contains only Θ-resonant monomials.
f commutes with $A: \mathbb{T}^{r} \times\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right), A(x, O)=O$, means

$$
f(A(x, z))=A(x, f(z)) .
$$

$A^{\text {lin }}$ is semi-simple and $\operatorname{Sp}\left(A^{\operatorname{lin}}(x, \cdot)\right)=\left\{\exp \left(2 \pi i \sum_{k=1}^{r} x_{k} \theta_{j}^{k}\right)\right\}_{j=1, \ldots, n}$ where $\Theta=\left(\theta_{j}^{k}\right) \in M_{n \times r}(\mathbb{Z})$ is the weight matrix of A.

Torus Actions

Germs commuting with a torus action

Theorem (-, 2009)

f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), 1 \leq r \leq n$, with weight matrix $\Theta \in M_{n \times r}(\mathbb{Z})$

I
$\exists \varphi$ local holom. change of coord. s.t. $\varphi^{-1} \circ f \circ \varphi$ contains only Θ-resonant monomials.
f commutes with $A: \mathbb{T}^{r} \times\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right), A(x, O)=O$, means

$$
f(A(x, z))=A(x, f(z)) .
$$

$A^{\text {lin }}$ is semi-simple and $\operatorname{Sp}\left(A^{\operatorname{lin}}(x, \cdot)\right)=\left\{\exp \left(2 \pi i \sum_{k=1}^{r} x_{k} \theta_{j}^{k}\right)\right\}_{j=1, \ldots, n}$ where $\Theta=\left(\theta_{j}^{k}\right) \in M_{n \times r}(\mathbb{Z})$ is the weight matrix of A.
$z^{Q} e_{j}$, with $|Q| \geq 1$, is Θ-resonant if

$$
\left\langle Q, \theta^{k}\right\rangle:=\sum_{h=1}^{n} q_{n} \theta_{h}^{k}=\theta_{j}^{k} \quad \forall k=1, \ldots, r .
$$

Torus Actions

Definition

An additive resonant multi-index for $\theta \in \mathbb{C}^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q| \geq 2$, s.t.

$$
\begin{equation*}
\langle Q, \theta\rangle=\theta_{j} \tag{4}
\end{equation*}
$$

$$
\operatorname{Res}_{j}^{+}(\theta):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2,\langle Q, \theta\rangle=\theta_{j}\right\}
$$

Torus Actions

Definition

An additive resonant multi-index for $\theta \in \mathbb{C}^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q| \geq 2$, s.t.

$$
\begin{equation*}
\langle Q, \theta\rangle=\theta_{j} \tag{4}
\end{equation*}
$$

$$
\operatorname{Res}_{j}^{+}(\theta):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2,\langle Q, \theta\rangle=\theta_{j}\right\}
$$

$$
\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, Q \Theta \text {-resonant rel. to } j\right\}=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\theta^{k}\right)
$$

Torus Actions

Definition

An additive resonant multi-index for $\theta \in \mathbb{C}^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q| \geq 2$, s.t.

$$
\begin{equation*}
\langle Q, \theta\rangle=\theta_{j} . \tag{4}
\end{equation*}
$$

$\operatorname{Res}_{j}^{+}(\theta):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2,\langle Q, \theta\rangle=\theta_{j}\right\}$.

$$
\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, Q \Theta \text {-resonant rel. to } j\right\}=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\theta^{k}\right)
$$

Corollary (-, 2009)
f is holomorphically linearizable

it commutes with a \mathbb{T}^{r}-action, $1 \leq r \leq n$, with Θ having no resonances of degree $|Q| \geq 2$.

Strategy

Torus Actions

Holomorphic Normalization

Strategy

Torus Actions

Holomorphic Normalization

$$
\lambda_{1}, \ldots, \lambda_{n}
$$

Strategy

Torus Actions

Holomorphic Normalization

$$
\begin{gathered}
\lambda_{1}, \ldots, \lambda_{n} \\
\operatorname{Res}_{j}(\lambda)
\end{gathered}
$$

Toric Degree

Definition

The toric degree of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the $\min r \in \mathbb{N}$ s.t. $\exists \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}^{*}$ and $\exists \theta^{(1)}, \ldots, \theta^{(r)} \in \mathbb{Z}^{n}$ s.t.

$$
[\varphi]=\left[\sum_{k=1}^{r} \alpha_{k} \theta^{(k)}\right] \in(\mathbb{C} / \mathbb{Z})^{n}
$$

where $[\varphi]$ is the unique in $(\mathbb{C} / \mathbb{Z})^{n}$ s.t. $\lambda=e^{2 \pi i[\varphi]}$. $\theta^{(1)}, \ldots, \theta^{(r)}$ are a r-tuple of toric vectors associated to λ, with toric coefficients $\alpha_{1}, \ldots, \alpha_{r}$.

Toric Degree

Definition

The toric degree of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the $\min r \in \mathbb{N}$ s.t. $\exists \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}^{*}$ and $\exists \theta^{(1)}, \ldots, \theta^{(r)} \in \mathbb{Z}^{n}$ s.t.

$$
[\varphi]=\left[\sum_{k=1}^{r} \alpha_{k} \theta^{(k)}\right] \in(\mathbb{C} / \mathbb{Z})^{n}
$$

where $[\varphi]$ is the unique in $(\mathbb{C} / \mathbb{Z})^{n}$ s.t. $\lambda=e^{2 \pi i[\varphi]}$. $\theta^{(1)}, \ldots, \theta^{(r)}$ are a r-tuple of toric vectors associated to λ, with toric coefficients $\alpha_{1}, \ldots, \alpha_{r}$.

Since $[\varphi]=\left[\sum_{j=1}^{n} \varphi_{j} e_{j}\right]$, the toric degree is well-defined and $1 \leq r \leq n$.

Toric Degree

Definition

The toric degree of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the $\min r \in \mathbb{N}$ s.t. $\exists \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}^{*}$ and $\exists \theta^{(1)}, \ldots, \theta^{(r)} \in \mathbb{Z}^{n}$ s.t.

$$
[\varphi]=\left[\sum_{k=1}^{r} \alpha_{k} \theta^{(k)}\right] \in(\mathbb{C} / \mathbb{Z})^{n},
$$

where $[\varphi]$ is the unique in $(\mathbb{C} / \mathbb{Z})^{n}$ s.t. $\lambda=e^{2 \pi i[\varphi]}$. $\theta^{(1)}, \ldots, \theta^{(r)}$ are a r-tuple of toric vectors associated to λ, with toric coefficients $\alpha_{1}, \ldots, \alpha_{r}$.

Since $[\varphi]=\left[\sum_{j=1}^{n} \varphi_{j} e_{j}\right]$, the toric degree is well-defined and $1 \leq r \leq n$.

- $\alpha_{1}, \ldots, \alpha_{r}$ are \mathbb{Z}-independent,

Toric Degree

Definition

The toric degree of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the $\min r \in \mathbb{N}$ s.t. $\exists \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}^{*}$ and $\exists \theta^{(1)}, \ldots, \theta^{(r)} \in \mathbb{Z}^{n}$ s.t.

$$
[\varphi]=\left[\sum_{k=1}^{r} \alpha_{k} \theta^{(k)}\right] \in(\mathbb{C} / \mathbb{Z})^{n},
$$

where $[\varphi]$ is the unique in $(\mathbb{C} / \mathbb{Z})^{n}$ s.t. $\lambda=e^{2 \pi i[\varphi]}$. $\theta^{(1)}, \ldots, \theta^{(r)}$ are a r-tuple of toric vectors associated to λ, with toric coefficients $\alpha_{1}, \ldots, \alpha_{r}$.

Since $[\varphi]=\left[\sum_{j=1}^{n} \varphi_{j} e_{j}\right]$, the toric degree is well-defined and $1 \leq r \leq n$.

- $\alpha_{1}, \ldots, \alpha_{r}$ are \mathbb{Z}-independent,
- $\theta^{(1)}, \ldots, \theta^{(r)}$ are \mathbb{Q}-linearly independent.

Main Result

Theorem (-, 2009)

Take f as above. Then, in all but one case, f is holomorphically normalizable

॥
f commutes with a holom. effective torus action on $\left(\mathbb{C}^{n}, O\right)$ of dim depending on tordeg (λ) with columns of Θ related to toric vectors associated to λ.

First distinction

Proposition (-, 2009)

\exists toric r-tuple assoc. to λ with coeff. \mathbb{Z}-independent with 1
I
\forall toric r-tuple assoc. to λ the coeff. are \mathbb{Z}-independent with 1.

First distinction

Proposition (-, 2009)

\exists toric r-tuple assoc. to λ with coeff. \mathbb{Z}-independent with 1
I
\forall toric r-tuple assoc. to λ the coeff. are \mathbb{Z}-independent with 1.

- Torsion-free case: $1, \alpha_{1}, \ldots, \alpha_{r} \mathbb{Z}$-independent

First distinction

Proposition (-, 2009)

\exists toric r-tuple assoc. to λ with coeff. \mathbb{Z}-independent with 1
॥
\forall toric r-tuple assoc. to λ the coeff. are \mathbb{Z}-independent with 1.

- Torsion-free case: $1, \alpha_{1}, \ldots, \alpha_{r} \mathbb{Z}$-independent
- Torsion case: $1, \alpha_{1}, \ldots, \alpha_{r} \mathbb{Z}$-dependent

First distinction

Proposition (-, 2009)

\exists toric r-tuple assoc. to λ with coeff. \mathbb{Z}-independent with 1
§
\forall toric r-tuple assoc. to λ the coeff. are \mathbb{Z}-independent with 1.

- Torsion-free case: $1, \alpha_{1}, \ldots, \alpha_{r} \mathbb{Z}$-independent
- Torsion case: $1, \alpha_{1}, \ldots, \alpha_{r} \mathbb{Z}$-dependent

In the torsion case we can always consider reduced toric r-tuples, i.e., $\eta^{(1)}, \ldots, \eta^{(r)}$ with coeff. $\beta_{1}, \ldots, \beta_{r}$ s.t. $\beta_{1}=1 / m$ with $m \in \mathbb{N} \backslash\{0,1\}$ and $m, \eta_{1}^{(1)}, \ldots, \eta_{n}^{(1)}$ coprime; $\eta^{(2)}, \ldots, \eta^{(r)}$ are called reduced torsion-free toric vectors assoc. to λ.

Torsion-free Case

Main Theorem in the torsion-free case
$\forall r$-tuple of toric vectors $\theta^{(1)}, \ldots, \theta^{(r)}$ associated to λ

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\theta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

Torsion-free Case

Main Theorem in the torsion-free case
$\forall r$-tuple of toric vectors $\theta^{(1)}, \ldots, \theta^{(r)}$ associated to λ

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\theta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

and

$$
\lambda_{j}=\lambda_{h} \Longrightarrow \theta_{j}^{(k)}=\theta_{h}^{(k)} \forall k=1, \ldots, r .
$$

Torsion-free Case

Main Theorem in the torsion-free case
$\forall r$-tuple of toric vectors $\theta^{(1)}, \ldots, \theta^{(r)}$ associated to λ

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\theta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

and

$$
\lambda_{j}=\lambda_{h} \Longrightarrow \theta_{j}^{(k)}=\theta_{h}^{(k)} \forall k=1, \ldots, r .
$$

Main Theorem

f in the torsion-free case is holomorphically normalizable ॥
f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are a r-tuple of toric vectors associated to λ.

Torsion Case

\forall reduced toric r-tuple $\eta^{(1)}, \ldots, \eta^{(r)}$ associated to λ

$$
\begin{equation*}
\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \supseteq \operatorname{Res}_{j}(\lambda) \supseteq \bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) . \tag{5}
\end{equation*}
$$

Torsion Case

\forall reduced toric r-tuple $\eta^{(1)}, \ldots, \eta^{(r)}$ associated to λ

$$
\begin{equation*}
\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \supseteq \operatorname{Res}_{j}(\lambda) \supseteq \bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) . \tag{5}
\end{equation*}
$$

We have the following sub-cases:

- Impure torsion case: for a reduced toric r-tuple $(\Rightarrow \forall)$

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

Torsion Case

\forall reduced toric r-tuple $\eta^{(1)}, \ldots, \eta^{(r)}$ associated to λ

$$
\begin{equation*}
\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \supseteq \operatorname{Res}_{j}(\lambda) \supseteq \bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) . \tag{5}
\end{equation*}
$$

We have the following sub-cases:

- Impure torsion case: for a reduced toric r-tuple $(\Rightarrow \forall)$

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

- Pure torsion case: the first inclusion is always strict, and

Torsion Case

\forall reduced toric r-tuple $\eta^{(1)}, \ldots, \eta^{(r)}$ associated to λ

$$
\begin{equation*}
\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \supseteq \operatorname{Res}_{j}(\lambda) \supseteq \bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) . \tag{5}
\end{equation*}
$$

We have the following sub-cases:

- Impure torsion case: for a reduced toric r-tuple $(\Rightarrow \forall)$

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

- Pure torsion case: the first inclusion is always strict, and either
- λ can be simplified: \exists a reduced toric r-tuple, said simple, s.t. $\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \forall j$,

Torsion Case

\forall reduced toric r-tuple $\eta^{(1)}, \ldots, \eta^{(r)}$ associated to λ

$$
\begin{equation*}
\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \supseteq \operatorname{Res}_{j}(\lambda) \supseteq \bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \tag{5}
\end{equation*}
$$

We have the following sub-cases:

- Impure torsion case: for a reduced toric r-tuple $(\Rightarrow \forall)$

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=2}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \quad \forall j=1, \ldots, n
$$

- Pure torsion case: the first inclusion is always strict, and either
- λ can be simplified: \exists a reduced toric r-tuple, said simple, s.t. $\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{r} \operatorname{Res}_{j}^{+}\left(\eta^{(k)}\right) \forall j$, or
- λ cannot be simplified: \forall reduced toric r-tuple, $\exists j$ s.t. the inclusions in (5) are strict.

Impure Torsion Case

Main Theorem in the impure torsion case

Main Theorem

f in the impure torsion case is holomorphically normalizable
॥
f commutes with a holom. effective \mathbb{T}^{r-1}-action on $\left(\mathbb{C}^{n}, O\right)$, $r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are reduced torsion-free toric vectors associated to λ.

Pure Torsion Case

λ can be simplified

Main Theorem

f in the pure torsion case s.t. λ can be simplified is holomorphically normalizable

$$
\Uparrow
$$

Pure Torsion Case

λ can be simplified

Main Theorem

f in the pure torsion case s.t. λ can be simplified is holomorphically normalizable

$$
\mathbb{1}
$$

- $\quad d f_{O}$ diagonalizable: f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are a reduced simple r-tuple of toric vectors associated to λ;

Pure Torsion Case

λ can be simplified

Main Theorem

f in the pure torsion case s.t. λ can be simplified is holomorphically normalizable

\|

- $d f_{O}$ diagonalizable: f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are a reduced simple r-tuple of toric vectors associated to λ;
- dfo not diagonalizable: if $\lambda_{j}=\lambda_{h} \Rightarrow \eta_{j}^{(k)}=\eta_{h}^{(k)} \forall k=1, \ldots, r$, then same statement as above.

Pure Torsion Case

λ cannot be simplified

Proposition (-, 2009)

f in the pure torsion case s.t. λ cannot be simplified. If f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are reduced toric vectors associated to λ, then f is holomorphically normalizable.

Pure Torsion Case

λ cannot be simplified

Proposition (-, 2009)

f in the pure torsion case s.t. λ cannot be simplified. If f commutes with a holom. effective \mathbb{T}^{r}-action on ($\left.\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are reduced toric vectors associated to λ, then f is holomorphically normalizable.

Proposition (-, 2009)

f in the pure torsion case s.t. λ cannot be simplified. If f is holomorphically normalizable, then f commutes with a holom. effective \mathbb{T}^{r-1}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}(\lambda)$, with columns of Θ that are reduced torsion-free toric vectors associated to λ.

Remark: Torsion

Écalle, in 1992, introduced the following notion of torsion.

Definition

The torsion of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the natural integer τ such that

$$
\frac{1}{\tau} \mathbb{Z}=\mathbb{Q} \cap\left(\mathbb{Z} \bigoplus_{1 \leq i \leq n}\left(\frac{\log \left(\lambda_{j}\right)}{2 \pi i} \mathbb{Z}\right)\right)
$$

Remark: Torsion

Écalle, in 1992, introduced the following notion of torsion.
Definition
The torsion of $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$ is the natural integer τ such that

$$
\frac{1}{\tau} \mathbb{Z}=\mathbb{Q} \cap\left(\mathbb{Z} \bigoplus_{1 \leq j \leq n}\left(\frac{\log \left(\lambda_{j}\right)}{2 \pi i} \mathbb{Z}\right)\right)
$$

Lemma (-, 2009)

$$
\lambda \in\left(\mathbb{C}^{*}\right)^{n} \text { is torsion-free } \Longleftrightarrow \text { its torsion is } 1
$$

Remarks

- algorithmic way to compute resonances

Remarks

- algorithmic way to compute resonances
- examples for each case

Remarks

- algorithmic way to compute resonances
- examples for each case \Longrightarrow consistent classification

Remarks

- algorithmic way to compute resonances
- examples for each case \Longrightarrow consistent classification
- torsion is not enough to measure the difference between germs of holomorphic vector fields and germs of biholomorphisms

Remarks

- algorithmic way to compute resonances
- examples for each case \Longrightarrow consistent classification
- torsion is not enough to measure the difference between germs of holomorphic vector fields and germs of biholomorphisms
- example of techniques to construct torus actions

Construction of Torus Action

Theorem (-, 2009)

Let f be as above and commute with a set of integrable holomorphic vector fields $X_{1}, \ldots, X_{m}, 1 \leq m \leq n$. Then f commutes with a holom. effective \mathbb{T}^{r}-action on $\left(\mathbb{C}^{n}, O\right), r=\operatorname{tordeg}\left(X_{1}\right)$, with columns of the weight matrix that are ar-tuple of toric vectors associated to X_{1}.

Where, if $1 \leq m \leq n, f$ commute with a set of integrable holomorphic vector fields if $\exists X_{1}, \ldots, X_{m}$ s.t.

$$
d f\left(X_{j}\right)=X_{j} \circ f
$$

$\forall j=1, \ldots, m$ that are integrable, i.e.,

- X_{1}, \ldots, X_{m} germs of holom. v.f. of $\left(\mathbb{C}^{n}, O\right), X_{j}(O)=0$, $\operatorname{order}\left(X_{j}\right)=1,\left[X_{j}, X_{k}\right]=0 \forall j, k$, and $X_{1} \wedge \cdots \wedge X_{m} \equiv \equiv$;
- $\exists g_{1}, \ldots, g_{n-m}$ germs of holom. functions of $\left(\mathbb{C}^{n}, O\right)$ s.t. $X_{j}\left(g_{k}\right)=0$ $\forall j, k$, and $d g_{1} \wedge \cdots \wedge d g_{n-m} \neq 0$.

Construction of Torus Action

Toric degree of a vector field

Writing $X=\sum_{j=1}^{n} \varphi_{j} z_{j} \frac{\partial}{\partial z_{j}}+\cdots$, the toric degree of X is the $\min r \in \mathbb{N}$ s.t. $\exists \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C}^{*}$ and $\exists \theta^{(1)}, \ldots, \theta^{(r)} \in \mathbb{Z}^{n}$ s.t.

$$
\varphi=\sum_{k=1}^{r} \alpha_{k} \theta^{(k)}
$$

Thanks

Examples

Example (Torsion-free case)

Example (Torsion case)

$$
\left[\sqrt{2}\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)+2 i\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right] \in(\mathbb{C} / \mathbb{Z})^{3}\left[\left[\frac{1}{7}\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)+2 i\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right] \in(\mathbb{C} / \mathbb{Z})^{3}\right.
$$

Example (Impure torsion case)

$$
\left[\frac{1}{3}\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)+\sqrt{2}\left(\begin{array}{c}
-12 \\
0 \\
0 \\
1
\end{array}\right)+\sqrt{3}\left(\begin{array}{l}
0 \\
5 \\
2 \\
0
\end{array}\right)\right] \in(\mathbb{C} / \mathbb{Z})^{4}
$$

has toric degree 3.

Example (Impure torsion case)

$\operatorname{Res}_{1}^{+}\left(\eta^{(2)}\right)=\left\{\left(q_{1}, q_{2}, q_{3}, 12\left(q_{1}-1\right)\right) \in \mathbb{N}^{4} \mid 13 q_{1}+q_{2}+q_{3} \geq 14\right\}$
$\operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right)=\left\{\left(q_{1}, q_{2}, q_{3}, 12 q_{1}\right) \in \mathbb{N}^{4} \mid 13 q_{1}+q_{2}+q_{3} \geq 2\right\}$
$\operatorname{Res}_{3}^{+}\left(\eta^{(2)}\right)=\operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right)$
$\operatorname{Res}_{4}^{+}\left(\eta^{(2)}\right)=\left\{\left(q_{1}, q_{2}, q_{3}, 12 q_{1}+1\right) \in \mathbb{N}^{4} \mid 13 q_{1}+q_{2}+q_{3} \geq 1\right\}$, and
$\operatorname{Res}_{1}^{+}\left(\eta^{(3)}\right)=\left\{\left(q_{1}, 0,0, q_{4}\right) \in \mathbb{N}^{4} \mid q_{1}+q_{4} \geq 2\right\}$
$\operatorname{Res}_{2}^{+}\left(\eta^{(3)}\right)=\left\{\left(q_{1}, 1,0, q_{4}\right) \in \mathbb{N}^{4} \mid q_{1}+q_{4} \geq 1\right\}$
$\operatorname{Res}_{3}^{+}\left(\eta^{(3)}\right)=\left\{\left(q_{1}, 0,1, q_{4}\right) \in \mathbb{N}^{4} \mid q_{1}+q_{4} \geq 1\right\}$
$\operatorname{Res}_{4}^{+}\left(\eta^{(3)}\right)=\operatorname{Res}_{1}^{+}\left(\eta^{(3)}\right)$.

$$
\forall P=(p, 0,0,12 p) \text { with } p \geq 1 \quad\left\langle P, \eta^{(1)}\right\rangle=12 p \in 3 \mathbb{Z} .
$$

Then it is easy to verify that for $j=1, \ldots, 4$

$$
\operatorname{Res}_{j}([\varphi])=\operatorname{Res}_{j}^{+}\left(\eta^{(2)}\right) \cap \operatorname{Res}_{j}^{+}\left(\eta^{(3)}\right) .
$$

Examples

Example (Pure torsion case that can be simplified)

$$
[\varphi]=\left[\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+\sqrt{2}\left(\begin{array}{l}
1 \\
6 \\
0 \\
0
\end{array}\right)+\sqrt{3}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
5
\end{array}\right)\right] \in(\mathbb{C} / \mathbb{Z})^{4},
$$

has toric degree 3. We have $\operatorname{Res}_{j}^{+}\left(\eta^{(1)}\right)=\emptyset$, for $j=1, \ldots, 4$, and it is not difficult to verify that

$$
\begin{gathered}
\operatorname{Res}_{2}(\lambda)=\left\{(0,1,5 q, q) \mid q \in \mathbb{N}^{*}\right\} \neq \emptyset \\
\operatorname{Res}_{j}(\lambda)=\operatorname{Res}_{j}^{+}\left(\eta^{(2)}\right) \cap \operatorname{Res}_{j}^{+}\left(\eta^{(3)}\right) j=1,3,4 .
\end{gathered}
$$

Examples

Example (Pure torsion case that can be simplified)

 However, we can write$$
[\varphi]=\left[\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
-5
\end{array}\right)+\sqrt{2}\left(\begin{array}{l}
1 \\
6 \\
0 \\
0
\end{array}\right)+\sqrt{3}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
5
\end{array}\right)\right],
$$

and it is not difficult to verify that, in this representation, we have, for $j=1, \ldots, 4$

$$
\operatorname{Res}_{j}(\lambda)=\bigcap_{k=1}^{3} \operatorname{Res}_{j}^{+}\left(\xi^{(k)}\right) .
$$

Examples

Example (Pure torsion case that cannot be simplified)

$$
\left[\frac{1}{7}\binom{1}{3}+\sqrt{2}\binom{1}{-6}\right] \in(\mathbb{C} / \mathbb{Z})^{2}
$$

has toric degree 2 and torsion 7 . We have

$$
\begin{gathered}
\operatorname{Res}_{1}^{+}\left(\eta^{(2)}\right)=\{(6 h+1, h) \mid h \geq 1\}, \quad \operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right)=\{(6 h, h+1) \mid h \geq 1\}, \\
\operatorname{Res}_{1}^{+}\left(\eta^{(1)}\right) \cap \operatorname{Res}_{1}^{+}\left(\eta^{(2)}\right)=\operatorname{Res}_{2}^{+}\left(\eta^{(1)}\right) \cap \operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right)=\emptyset
\end{gathered}
$$

then
$\operatorname{Res}_{1}^{+}\left(\eta^{(2)}\right) \supset \operatorname{Res}_{1}(\lambda)=\{(42 h+1,7 h) \mid h \geq 1\} \supset \operatorname{Res}_{1}^{+}\left(\eta^{(1)}\right) \cap \operatorname{Res}_{1}^{+}\left(\eta^{(2)}\right)$ $\operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right) \supset \operatorname{Res}_{2}(\lambda)=\{(42 h, 7 h+1) \mid h \geq 1\} \supset \operatorname{Res}_{2}^{+}\left(\eta^{(1)}\right) \cap \operatorname{Res}_{2}^{+}\left(\eta^{(2)}\right)$.
Furthermore, it is easy to check that λ cannot be simplified.

