Holomorphic linearization of commuting germs of holomorphic maps

Jasmin Raissy

Dipartimento di Matematica e Applicazioni Università degli Studi di Milano Bicocca

AMS 2010 Fall Eastern Sectional Meeting Special Session on Several Complex Variables
Syracuse, October 2-3, 2010

Linearization Problem

Given $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, p\right)$ a germ of biholomorphism, $f(p)=p, \exists^{?} \varphi$ local holomorphic change of coordinates, s.t.

$$
\varphi^{-1} \circ f \circ \varphi=\text { linear part } \wedge \text { of } f ?
$$

Linearization Problem

Given $f:\left(\mathbb{C}^{n}, p\right) \rightarrow\left(\mathbb{C}^{n}, p\right)$ a germ of biholomorphism, $f(p)=p, \exists^{?} \varphi$ local holomorphic change of coordinates, s.t.

$$
\varphi^{-1} \circ f \circ \varphi=\text { linear part } \wedge \text { of } f ?
$$

Classical Idea: first look for a solution of

$$
f \circ \varphi=\varphi \circ \wedge
$$

in the setting of formal power series, and then check whether φ is convergent.

Linearization Problem

Given $f:\left(\mathbb{C}^{n}, O\right) \rightarrow\left(\mathbb{C}^{n}, O\right)$ a germ of biholomorphism, $f(O)=O$, with linear part in Jordan normal form

$$
\Lambda=\left(\begin{array}{cccc}
\lambda_{1} & & & \\
\varepsilon_{1} & \lambda_{2} & & \\
& \ddots & \ddots & \\
& & \varepsilon_{n-1} & \lambda_{n}
\end{array}\right) \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}^{*}, \quad \varepsilon_{j} \neq 0 \Rightarrow \lambda_{j}=\lambda_{j+1},
$$

$\exists^{?} \varphi$ local holomorphic change of coordinates, s.t. $d \varphi_{O}=I d$ and

$$
\varphi^{-1} \circ f \circ \varphi=\Lambda ?
$$

Linearization Problem

Dimension 1

- $|\lambda| \neq 1$: f is always holomorphically linearizable

Linearization Problem

Dimension 1

- $|\lambda| \neq 1: f$ is always holomorphically linearizable
- $\lambda=e^{2 \pi i p / q}: f$ is holomorphically linearizable $\Longleftrightarrow f^{q} \equiv \mathrm{Id}$

Linearization Problem

Dimension 1

- $|\lambda| \neq 1$: f is always holomorphically linearizable
- $\lambda=e^{2 \pi i p / q}: f$ is holomorphically linearizable $\Longleftrightarrow f^{q} \equiv \mathrm{Id}$
- $\lambda=e^{2 \pi i \theta}, \theta \in \mathbb{R} \backslash \mathbb{Q}$: f is always formally linearizable

Linearization Problem

Dimension 1

- $|\lambda| \neq 1$: f is always holomorphically linearizable
- $\lambda=e^{2 \pi i p / q}: f$ is holomorphically linearizable $\Longleftrightarrow f^{q} \equiv \mathrm{Id}$
- $\lambda=e^{2 \pi i \theta}, \theta \in \mathbb{R} \backslash \mathbb{Q}$: f is always formally linearizable
- Brjuno condition for $\lambda \Rightarrow f$ is holormorphically linearizable

Linearization Problem

Dimension 1

- $|\lambda| \neq 1$: f is always holomorphically linearizable
- $\lambda=e^{2 \pi i p / q}: f$ is holomorphically linearizable $\Longleftrightarrow f^{q} \equiv \mathrm{Id}$
- $\lambda=e^{2 \pi i \theta}, \theta \in \mathbb{R} \backslash \mathbb{Q}: f$ is always formally linearizable
- Brjuno condition for $\lambda \Rightarrow f$ is holormorphically linearizable
- Yoccoz: Brjuno condition for $\lambda \Longleftrightarrow$ the quadratic polynomial $\lambda z+z^{2}$ is holormorphically linearizable (and moreover $\lambda z+z^{2}$ hol. lin. $\Rightarrow f(z)=\lambda z+\cdots$ hol. lin)

Linearization Problem

Dimension $n \geq 2$

Formal Obstruction

A resonant multi-index for $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q|=\sum_{h=1}^{n} q_{h} \geq 2$, s.t.

$$
\Lambda^{Q}-\lambda_{j}=0
$$

where $\wedge^{Q}:=\lambda_{1}^{q_{1}} \cdots \lambda_{n}^{q_{n}}$.
$\operatorname{Res}_{j}(\Lambda):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, \Lambda^{Q}-\lambda_{j}=0\right\}$.

Linearization Problem

Dimension $n \geq 2$

Formal Obstruction

A resonant multi-index for $\lambda \in\left(\mathbb{C}^{*}\right)^{n}$, rel. to $j \in\{1, \ldots, n\}$ is $Q \in \mathbb{N}^{n}$, with $|Q|=\sum_{h=1}^{n} q_{h} \geq 2$, s.t.

$$
\Lambda^{Q}-\lambda_{j}=0
$$

```
where \(\Lambda^{Q}:=\lambda_{1}^{q_{1}} \cdots \lambda_{n}^{q_{n}}\).
\(\operatorname{Res}_{j}(\Lambda):=\left\{Q \in \mathbb{N}^{n}| | Q \mid \geq 2, \Lambda^{Q}-\lambda_{j}=0\right\}\).
```

But there are formal, and holomorphic, linearization results also in presence of resonances

Theorem (Rüssmann 2002, R. 2010)
f formally linearizable + Brjuno reduced condition $\Rightarrow f$ holomorphically linearizable

Simultaneous Linearization

Simultaneous Linearization Problem

Given $h \geq 2$ germs of biholomorphisms f_{1}, \ldots, f_{h} of \mathbb{C}^{n} at the same fixed point $\exists^{?} \varphi$ a local holomorphic change of coordinates conjugating f_{k} to its linear part for each $k=1, \ldots, h$?

Simultaneous Linearization

Dimension 1
Arnol'd: asked about the smoothness of a simultaneous linearization of such a system,

Simultaneous Linearization

Dimension 1

Arnol'd: asked about the smoothness of a simultaneous linearization of such a system, and this was brilliantly answered by Herman (1979), and extended by Yoccoz (1984).

Simultaneous Linearization

Dimension 1
Arnol'd: asked about the smoothness of a simultaneous linearization of such a system, and this was brilliantly answered by Herman (1979), and extended by Yoccoz (1984).
Moser, 1990: raised the problem of smooth linearization of commuting circle diffeomorphisms in connection with the holonomy group of certain foliations of codimension 1; with the rapidly convergent Nash-Moser iteration scheme, he proved that if the rotation numbers of the diffeomorphisms satisfy a simultaneous Diophantine condition and if the diffeomorphisms are in some C^{∞}-neighborhood of the corresponding rotations, then they are C^{∞}-conjugated to rotations.

Simultaneous Linearization

Dimension 1
Arnol'd: asked about the smoothness of a simultaneous linearization of such a system, and this was brilliantly answered by Herman (1979), and extended by Yoccoz (1984).
Moser, 1990: raised the problem of smooth linearization of commuting circle diffeomorphisms in connection with the holonomy group of certain foliations of codimension 1; with the rapidly convergent Nash-Moser iteration scheme, he proved that if the rotation numbers of the diffeomorphisms satisfy a simultaneous Diophantine condition and if the diffeomorphisms are in some C^{∞}-neighborhood of the corresponding rotations, then they are C^{∞}-conjugated to rotations. Pérez-Marco, 1997: commuting systems of analytic or smooth circle diffeomorphisms are deeply related to commuting systems of germs of holomorphic functions.

Simultaneous Linearization

Dimension 1
Arnol'd: asked about the smoothness of a simultaneous linearization of such a system, and this was brilliantly answered by Herman (1979), and extended by Yoccoz (1984).
Moser, 1990: raised the problem of smooth linearization of commuting circle diffeomorphisms in connection with the holonomy group of certain foliations of codimension 1; with the rapidly convergent Nash-Moser iteration scheme, he proved that if the rotation numbers of the diffeomorphisms satisfy a simultaneous Diophantine condition and if the diffeomorphisms are in some C^{∞}-neighborhood of the corresponding rotations, then they are C^{∞}-conjugated to rotations. Pérez-Marco, 1997: commuting systems of analytic or smooth circle diffeomorphisms are deeply related to commuting systems of germs of holomorphic functions.
Fayad and Khanin, 2009: a finite number of commuting smooth circle diffeomorphisms with simultaneously Diophantine rotation numbers are smoothly conjugated to rotations.

Simultaneous Linearization

Dimension $n \geq 2$

Gramchev and Yoshino, 1999: simultaneous holomorphic linearization for pairwise commuting germs without simultaneous resonances, with diagonalizable linear parts, and under a simultaneous Diophantine condition (further studied by Yoshino, 2004) and a few more technical assumptions.

Simultaneous Linearization

Dimension $n \geq 2$

Gramchev and Yoshino, 1999: simultaneous holomorphic linearization for pairwise commuting germs without simultaneous resonances, with diagonalizable linear parts, and under a simultaneous Diophantine condition (further studied by Yoshino, 2004) and a few more technical assumptions.
-, 2009: $h \geq 2$ germs f_{1}, \ldots, f_{h} of biholomorphisms of \mathbb{C}^{n}, fixing the origin, s.t. the linear part of f_{1} is diagonalizable and f_{1} commutes with f_{k} for any $k=2, \ldots, h$, under certain arithmetic conditions on the eigenvalues of the linear part of f_{1} and some restrictions on their resonances, are simultaneously holomorphically linearizable if and only if there exists a particular complex manifold invariant under f_{1}, \ldots, f_{h}.

Three natural questions

Q1: shape of simultaneous linearization
Is it possible to say anything on the shape a (formal) simultaneous linearization can have?

Three natural questions

Q1: shape of simultaneous linearization
Is it possible to say anything on the shape a (formal) simultaneous linearization can have?

Q2: conditions on the eigenvalues

Are there any conditions on the eigenvalues of the linear parts of $h \geq 2$ germs of simultaneously formally linearizable biholomorphisms ensuring simultaneous holomorphic linearizability?

Three natural questions

Q1: shape of simultaneous linearization
Is it possible to say anything on the shape a (formal) simultaneous linearization can have?

Q2: conditions on the eigenvalues
Are there any conditions on the eigenvalues of the linear parts of $h \geq 2$ germs of simultaneously formally linearizable biholomorphisms ensuring simultaneous holomorphic linearizability?

Q3: generalization of Moser's question

Under which conditions on the eigenvalues of the linear parts of $h \geq 2$ pairwise commuting germs of biholomorphisms can one assert the existence of a simultaneous holomorphic linearization of the given germs? In particular, is there a Brjuno-type condition sufficient for convergence?

Q1: shape of simultaneous linearization

Proposition (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts. f_{1}, \ldots, f_{h} simultaneously formally linearizable $\Longrightarrow \exists!\varphi$ formal simultaneous linearization s.t. $\varphi_{Q, j}=0 \forall Q, j: Q \in \cap_{k=1}^{h} \operatorname{Res}_{j}\left(\Lambda_{k}\right)$.

Q1: shape of simultaneous linearization

Definition

$M_{1}, \ldots, M_{h}, h \geq 2$ complex $n \times n$ matrices are almost simultaneously Jordanizable, if \exists a linear change of coordinates A s.t.
$A^{-1} M_{1} A, \ldots, A^{-1} M_{h} A$ are almost in simultaneous Jordan normal form, i.e., for $k=1, \ldots, h$ we have

$$
A^{-1} M_{k} A=\left(\begin{array}{cccc}
\lambda_{k, 1} & & & \tag{1}\\
\varepsilon_{k, 1} & \lambda_{k, 2} & & \\
& \ddots & \ddots & \\
& & \varepsilon_{k, n-1} & \lambda_{k, n}
\end{array}\right), \quad \varepsilon_{k, j} \neq 0 \Rightarrow \lambda_{k, j}=\lambda_{k, j+1} .
$$

M_{1}, \ldots, M_{h} are simultaneously Jordanizable if \exists a linear change of coordinates A s.t. we have (1) with $\varepsilon_{k, j} \in\{0, \varepsilon\}$.

Q1: shape of simultaneous linearization

Proposition (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts. f_{1}, \ldots, f_{h} simultaneously formally linearizable $\Longrightarrow \exists!\varphi$ formal simultaneous linearization s.t. $\varphi_{Q, j}=0 \forall Q, j: Q \in \cap_{k=1}^{h} \operatorname{Res}_{j}\left(\Lambda_{k}\right)$.

Condition ensuring formal simultaneous linearizability:

Q1: shape of simultaneous linearization

Proposition (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts. f_{1}, \ldots, f_{h} simultaneously formally linearizable $\Longrightarrow \exists!\varphi$ formal simultaneous linearization s.t. $\varphi_{Q, j}=0 \forall Q, j: Q \in \cap_{k=1}^{h} \operatorname{Res}_{j}\left(\Lambda_{k}\right)$.

Condition ensuring formal simultaneous linearizability:

Q1: shape of simultaneous linearization

Proposition (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts.
f_{1}, \ldots, f_{h} simultaneously formally linearizable $\Longrightarrow \exists!\varphi$ formal simultaneous linearization s.t. $\varphi_{Q, j}=0 \forall Q, j: Q \in \cap_{k=1}^{h} \operatorname{Res}_{j}\left(\Lambda_{k}\right)$.

Condition ensuring formal simultaneous linearizability:
Theorem (-, 2010)
Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts. If $f_{p} \circ f_{q}=f_{q} \circ f_{p} \forall p, q \Longrightarrow f_{1}, \ldots, f_{h}$ simultaneously formally linearizable.

Q1: shape of simultaneous linearization

Condition ensuring formal simultaneous linearizability:
Theorem (-, 2010)
Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$, with almost simultaneously Jordanizable linear parts. If $f_{p} \circ f_{q}=f_{q} \circ f_{p} \forall p, q \Longrightarrow f_{1}, \ldots, f_{h}$ simultaneously formally linearizable.

The hypothesis on the pairwise commutation is indeed necessary: If Λ_{1} and Λ_{2} are two commuting matrices almost in simultaneous Jordan n.f. s.t. $\operatorname{Res}\left(\Lambda_{1}\right) \neq \emptyset$ and $\operatorname{Res}\left(\Lambda_{2}\right) \neq \emptyset$, but $\operatorname{Res}\left(\Lambda_{1}\right) \cap \operatorname{Res}\left(\Lambda_{2}\right)=\emptyset$, the unique formal transformation tangent to the identity and commuting with both Λ_{1} and Λ_{2} is the identity, so any non-linear germ f_{3} with linear part in Jordan normal form and commuting with Λ_{1} (i.e., containing only Λ_{1}-resonant terms) but not with Λ_{2} cannot be simultaneously linearizable with Λ_{1} and Λ_{2}.

Q2: conditions on the eigenvalues

Theorem (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ simultaneously formally linearizable germs of biholomorphism of $\left(\mathbb{C}^{n}, O\right)$ s.t. their linear parts $\Lambda_{1}, \ldots, \Lambda_{h}$ are simultaneously diagonalizable. If f_{1}, \ldots, f_{h} satisfy the simultaneous Brjuno condition, then $f_{1}, \ldots f_{h}$ are holomorphically simultaneously linearizable.

Q2: conditions on the eigenvalues

Definition

$\Lambda_{1}=\left(\lambda_{1,1}, \ldots, \lambda_{1, n}\right), \ldots, \Lambda_{h}=\left(\lambda_{h, 1}, \ldots, \lambda_{h, n}\right), h \geq 2 n$-tuples of complex, not nec. distinct, non-zero numbers, satisfy the simultaneous Brjuno condition if

$$
\sum_{\nu \geq 0} \frac{1}{2^{\nu}} \log \frac{1}{\omega_{\Lambda_{1}, \ldots, \Lambda_{h}}\left(2^{\nu+1}\right)}<+\infty,
$$

where $\forall m \geq 2$
with

$$
\varepsilon_{Q}=\max _{1 \leq k \leq h} \min _{\substack{1 \leq j \leq n \\ Q \notin \cap_{k=1}^{h} \cap j=1 \\ j=1 \\ \operatorname{Res}\left(\Lambda_{k}\right)}}\left|\Lambda_{k}^{Q}-\lambda_{k, j}\right| .
$$

If $\Lambda_{1}, \ldots, \Lambda_{h}$ are the sets of eigenvalues of the linear parts of f_{1}, \ldots, f_{h}, we say that f_{1}, \ldots, f_{h} satisfy the simultaneous Brjuno condition.

Q2: conditions on the eigenvalues

Theorem (-, 2010)

Let f_{1}, \ldots, f_{h} be $h \geq 2$ simultaneously formally linearizable germs of biholomorphism of $\left(\mathbb{C}^{n}, O\right)$ s.t. their linear parts $\Lambda_{1}, \ldots, \Lambda_{h}$ are simultaneously diagonalizable. If f_{1}, \ldots, f_{h} satisfy the simultaneous Brjuno condition, then $f_{1}, \ldots f_{h}$ are holomorphically simultaneously linearizable.

Q3: generalization of Moser's question

Using the previous result we can give a positive answer to Q3.

Q3: generalization of Moser's question

Using the previous result we can give a positive answer to Q3.
Theorem (-, 2010)
Let f_{1}, \ldots, f_{h} be $h \geq 2$ formally linearizable germs of biholomorphisms of $\left(\mathbb{C}^{n}, O\right)$ with simultaneously diagonalizable linear parts, and satisfying the simultaneous Brjuno condition. Then f_{1}, \ldots, f_{h} are sim. hol. linearizable \Longleftrightarrow they all commute pairwise.

Remark

If $\Lambda_{1}, \ldots, \Lambda_{h}$ do not satisfy the sim. Brjuno cond., then each of them does not satisfy the reduced Brjuno cond., i.e.,

$$
\begin{gathered}
\sum_{\nu \geq 0} \frac{1}{2^{\nu}} \log \frac{1}{\omega_{\Lambda_{k}}\left(2^{\nu+1}\right)}=+\infty, \quad k=1, \ldots, h, \\
\omega_{\Lambda_{k}}(m):=\min _{\substack{2 \leq 1,0 \leq m \\
1 \\
1} \leq n}^{Q \notin \operatorname{Res} j\left(\Lambda_{k}\right)}
\end{gathered}\left|\Lambda_{k}^{Q}-\lambda_{k, j}\right| . .
$$

Remark

If $\Lambda_{1}, \ldots, \Lambda_{h}$ do not satisfy the sim. Brjuno cond., then each of them does not satisfy the reduced Brjuno cond., i.e.,

$$
\begin{gathered}
\sum_{\nu \geq 0} \frac{1}{2^{\nu}} \log \frac{1}{\omega_{\Lambda_{k}}\left(2^{\nu+1}\right)}=+\infty, \quad k=1, \ldots, h, \\
\omega_{\Lambda_{k}}(m):=\min _{\substack{2 \leq \backslash|\leq| \leq m \\
\leq i \leq i \leq n \\
Q \& \operatorname{Resj}_{j}\left(\Lambda_{k}\right)}}\left|\Lambda_{k}^{Q}-\lambda_{k, j}\right| .
\end{gathered}
$$

In particular, if $\Lambda_{1}, \ldots, \Lambda_{h}$ are simultaneously Cremer, i.e.,

$$
\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \frac{1}{\omega_{\Lambda_{1}, \ldots, \Lambda_{h}}(m)}=+\infty
$$

and hence they do not satisfy the sim. Brjuno cond., then at least one of them has to be Cremer, i.e.,

$$
\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \frac{1}{\omega_{\Lambda_{k}}(m)}=+\infty
$$

and the other ones do not satisfy the reduced Brjuno condition.

Remark

If $\Lambda_{1}, \ldots, \Lambda_{h}$ do not satisfy the sim. Brjuno cond., then each of them does not satisfy the reduced Brjuno cond., i.e.,

$$
\begin{gathered}
\sum_{\nu \geq 0} \frac{1}{2^{\nu}} \log \frac{1}{\omega_{\Lambda_{k}}\left(2^{\nu+1}\right)}=+\infty, \quad k=1, \ldots, h, \\
\omega_{\Lambda_{k}}(m):=\min _{\substack{2 \leq 10 \leq \leq m \\
1 \\
1} \leq n}^{Q \notin \operatorname{Ress}_{j}\left(\Lambda_{k}\right)}
\end{gathered}\left|\Lambda_{k}^{Q}-\lambda_{k, j}\right| . .
$$

Furthermore (following Moser and Yoshino) it is possible to find $\Lambda_{1}, \ldots, \Lambda_{h}$ satisfying the simultaneous Brjuno condition, with Λ_{k} not satisfying the reduced Brjuno condition for any $k=1, \ldots, h$.

Thanks!

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

- $h \geq 2$ diagonalizable matrices are sim. diagonalizable \Longleftrightarrow they commute pairwise

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

- $h \geq 2$ diagonalizable matrices are sim. diagonalizable \Longleftrightarrow they commute pairwise
- if $h \geq 2$ matrices commute pairwise \Rightarrow they are simultaneously triangularizable

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

- $h \geq 2$ diagonalizable matrices are sim. diagonalizable \Longleftrightarrow they commute pairwise
- if $h \geq 2$ matrices commute pairwise \Rightarrow they are simultaneously triangularizable (but the converse is clearly false).

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

- $h \geq 2$ diagonalizable matrices are sim. diagonalizable \Longleftrightarrow they commute pairwise
- if $h \geq 2$ matrices commute pairwise \Rightarrow they are simultaneously triangularizable (but the converse is clearly false).
- if two matrices commute then this does not imply that they admit an almost simultaneous Jordan normal form,

Almost simultaneous Jordanizability

Deciding when two $n \times n$ complex matrices are almost simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable.

- $h \geq 2$ diagonalizable matrices are sim. diagonalizable \Longleftrightarrow they commute pairwise
- if $h \geq 2$ matrices commute pairwise \Rightarrow they are simultaneously triangularizable (but the converse is clearly false).
- if two matrices commute then this does not imply that they admit an almost simultaneous Jordan normal form, and it is not true in general that two matrices almost in simultaneous Jordan normal form commute

Examples

The two matrices

$$
\Lambda=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
\varepsilon & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \quad M=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\delta & \mu & 0 \\
\beta & 0 & \mu
\end{array}\right) \quad \lambda, \varepsilon, \mu, \delta, \beta \in \mathbb{C}^{*}
$$

commute, but they are not almost simultaneously Jordanizable. In fact $\forall A$ s.t. $A M A^{-1}$ is almost in sim. Jordan n.f. with \wedge we have

$$
\begin{gathered}
A M=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\zeta & \mu & 0 \\
0 & 0 & \mu
\end{array}\right) A \quad\left(M \neq \mu I_{3} \Rightarrow \zeta \neq 0\right) \\
\Rightarrow A=\left(\begin{array}{ccc}
\frac{\beta}{\zeta} f+\frac{\delta}{\zeta} \boldsymbol{e} & 0 & 0 \\
d & e & f \\
g & h & -\frac{\delta}{\beta} h
\end{array}\right) \text { and } \operatorname{det} A \neq 0 \Longleftrightarrow \beta f+\delta e \neq 0, h \neq 0 .
\end{gathered}
$$

Examples

The two matrices

$$
\Lambda=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
\varepsilon & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \quad M=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\delta & \mu & 0 \\
\beta & 0 & \mu
\end{array}\right) \quad \lambda, \varepsilon, \mu, \delta, \beta \in \mathbb{C}^{*}
$$

commute, but they are not almost simultaneously Jordanizable. In fact $\forall A$ s.t. $A M A^{-1}$ is almost in sim. Jordan n.f. with \wedge we have

$$
\begin{gathered}
A M=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\zeta & \mu & 0 \\
0 & 0 & \mu
\end{array}\right) A \quad\left(M \neq \mu I_{3} \Rightarrow \zeta \neq 0\right) \\
\Rightarrow A=\left(\begin{array}{ccc}
\frac{\beta}{\zeta} f+\frac{\delta}{\zeta} e & 0 & 0 \\
d & e & f \\
g & h & -\frac{\delta}{\beta} h
\end{array}\right) \text { and } \operatorname{det} A \neq 0 \Longleftrightarrow \beta f+\delta e \neq 0, h \neq 0 . \\
A \Lambda=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
\xi & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) A \Longrightarrow h=0 \Longrightarrow \Lambda, M \text { not almost sim Jordanizable }
\end{gathered}
$$

Examples

The two matrices

$$
\widetilde{\Lambda}=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
\varepsilon & \lambda & 0 \\
0 & \varepsilon & \lambda
\end{array}\right) \quad \widetilde{M}=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\delta & \mu & 0 \\
0 & 0 & \eta
\end{array}\right) \quad \lambda, \varepsilon, \mu, \delta, \eta \in \mathbb{C}^{*}
$$

are almost in simultaneous Jordan normal form,

Examples

The two matrices

$$
\widetilde{\Lambda}=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
\varepsilon & \lambda & 0 \\
0 & \varepsilon & \lambda
\end{array}\right) \quad \widetilde{M}=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
\delta & \mu & 0 \\
0 & 0 & \eta
\end{array}\right) \quad \lambda, \varepsilon, \mu, \delta, \eta \in \mathbb{C}^{*}
$$

are almost in simultaneous Jordan normal form, but they do not commute.

