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Abstract. Let f1, . . . , fh be h ≥ 2 germs of biholomorphisms of Cn fixing the
origin. We investigate the shape a (formal) simultaneous linearization of the given
germs can have, and we prove that if f1, . . . , fh commute and their linear parts are al-
most simultaneously Jordanizable then they are simultaneously formally linearizable.
We next introduce a simultaneous Brjuno-type condition and prove that, in case the
linear terms of the germs are diagonalizable, if the germs commute and our Brjuno-
type condition holds, then they are holomorphically simultaneously linerizable. This
answers to a multi-dimensional version of a problem raised by Moser.

1. Introduction

One of the main questions in the study of local holomorphic dynamics (see [A1], [A2], [Bra],
or [R3] Chapter 1, for general surveys on this topic) is when a germ of biholomorphism f , fixing
the origin, is holomorphically linearizable, i.e., when there exists a local holomorphic change of
coordinates such that f is conjugated to its linear part Λ.

A way to solve such a problem is to first look for a formal transformation ϕ solving

f ◦ ϕ = ϕ ◦ Λ,

i.e., to ask when f is formally linearizable, and then to check whether ϕ is convergent. Moreover,
since up to linear changes of the coordinates we can always assume Λ to be in Jordan normal
form, i.e.,

Λ =


λ1

ε1 λ2

. . .
. . .

εn−1 λn

 ,

where the eigenvalues λ1, . . . , λn ∈ C∗ are not necessarily distinct, and εj can be non-zero only
if λj+1 = λj , we can reduce ourselves to study such germs, and to search for ϕ tangent to the
identity, that is, with linear part equal to the identity.

The answer to this question depends on the set of eigenvalues of the linear part of f ,
usually called its spectrum. In fact, if we denote by Λ = (λ1, . . . , λn) ∈ (C∗)n the set of
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the eigenvalues, then it may happen that there exists a multi-index Q = (q1, . . . , qn) ∈ Nn,
with |Q| :=

∑n
j=1 qj ≥ 2, such that

ΛQ − λj := λq11 · · ·λqnn − λj = 0 (1)

for some 1 ≤ j ≤ n; a relation of this kind is called a (multiplicative) resonance of f relative to
the j-th coordinate, Q is called a resonant multi-index relative to the j-th coordinate, and we
put

Resj(Λ) := {Q ∈ Nn | |Q| ≥ 2,ΛQ = λj}. (2)

The elements of Res(Λ) :=
⋃n
j=1 Resj(Λ) are simply called resonant multi-indices. A resonant

monomial is a monomial zQ := zq11 · · · zqnn in the j-th coordinate with Q ∈ Resj(Λ).

Resonances are the formal obstruction to linearization. Anyway there are formal, and
holomorphic, linearization results also in presence of resonances, see for example [R1] and [R3],
and references therein.

One generalization of the previous question is to ask when h ≥ 2 germs of biholomor-
phisms f1, . . . , fh of Cn at the same fixed point, which we may place at the origin, are simulta-
neously holomorphically linearizable, i.e., there exists a local holomorphic change of coordinates
conjugating fk to its linear part for each k = 1, . . . , h.

In dimension 1, this problem has been thoroughly studied, also for commuting systems of
analytic or smooth circle diffeomorphisms, that are indeed deeply related to commuting systems
of germs of holomorphic functions, as explained in [P]. The question about the smoothness of
a simultaneous linearization of such a system, raised by Arnold, was brilliantly answered by
Herman [H], and extended by Yoccoz [Y1] (see also [Y3]). In [M], Moser raised the problem
of smooth linearization of commuting circle diffeomorphisms in connection with the holonomy
group of certain foliations of codimension 1, and, using the rapidly convergent Nash-Moser
iteration scheme, he proved that if the rotation numbers of the diffeomorphisms satisfy a si-
multaneous Diophantine condition and if the diffeomorphisms are in some C∞-neighborhood of
the corresponding rotations (the neighborhood being imposed by the constants appearing in the
arithmetic condition, as usual in perturbative KAM theorems) then they are C∞-linearizable,
that is, C∞-conjugated to rotations. We refer to [FK] and references therein for a clear expo-
sition of the one-dimensional problem and for the best results, up to now, in such a context.
Furthermore, the problem for commuting germs of holomorphic functions in dimension one has
been studied by DeLatte [D], and more recently by Biswas [Bi], under Brjuno-type conditions
generalizing Moser’s simultaneous Diophantine condition.

In dimension n ≥ 2 much less is know in the formal and holomorphic settings. Gramchev
and Yoshino [GY] have proved a simultaneous holomorphic linearization result for pairwise com-
muting germs without simultaneous resonances, with diagonalizable linear parts, and under a
simultaneous Diophantine condition (further studied by Yoshino in [Yo]) and a few more tech-
nical assumptions. In [DG], DeLatte and Gramchev investigated on holomorphic linearization
of germs with linear parts having Jordan blocks, leaving as an open problem the study of si-
multaneous formal and holomorphic linearization of commuting germs with non-diagonalizable
linear parts. Recently it has been proved in [R2] that h ≥ 2 germs f1, . . . , fh of biholomor-
phisms of Cn, fixing the origin, so that the linear part of f1 is diagonalizable and f1 commutes
with fk for any k = 2, . . . , h, under certain arithmetic conditions on the eigenvalues of the
linear part of f1 and some restrictions on their resonances, are simultaneously holomorphically
linearizable if and only if there exists a particular complex manifold invariant under f1, . . . , fh.
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Therefore, there are at least three natural questions arising in this setting:

(Q1) Is it possible to say anything on the shape a (formal) simultaneous linearization
can have?

(Q2) Are there any conditions on the eigenvalues of the linear parts of h ≥ 2 germs
of simultaneously formally linearizable biholomorphisms ensuring simultaneous
holomorphic linearizability?

(Q3) Under which conditions on the eigenvalues of the linear parts of h ≥ 2 pairwise
commuting germs of biholomorphisms can one assert the existence of a simul-
taneous holomorphic linearization of the given germs? In particular, is there a
Brjuno-type condition sufficient for convergence?

Note that the third question is a natural generalization to dimension n ≥ 2 of the question
raised by Moser [M] in the one-dimensional case (see also the introduction of [FK]).

In this paper we shall give complete answers to these three questions without making any
assumption on the resonances. Before stating our answer to the first question, we need the
following definition.

Definition 1.1. Let M1, . . . ,Mh be h ≥ 2 complex n×n matrices. We say that M1, . . . ,Mh are
almost simultaneously Jordanizable, it there exists a linear change of coordinates A such that
A−1M1A, . . . , A

−1MhA are almost in simultaneous Jordan normal form, i.e., for k = 1, . . . , h
we have

A−1MkA =


λk,1
εk,1 λk,2

. . .
. . .

εk,n−1 λk,n

 , εk,j 6= 0 =⇒ λk,j = λk,j+1. (3)

We say that M1, . . . ,Mh are simultaneously Jordanizable if there exists a linear change of
coordinates A such that we have (3) with εk,j ∈ {0, ε}.

It should be remarked that two commuting matrices are not necessarily almost simulta-
neously Jordanizable, and that two almost simultaneously Jordanizable matrices do not nec-
essarily commute; see section 2 for details. However, the almost simultaneously Jordanizable
hypothesis still is less restrictive than the simultaneously diagonalizable assumption usual in
this context.

The following result gives an answer to (Q1).

Theorem 1.1. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin and with almost simultaneously Jordanizable linear parts. If f1, . . . , fh are
simultaneously formally linearizable, then they are simultaneously formally linearizable via a
linearization ϕ such that ϕQ,j = 0 for each Q and j so that Q ∈ ∩hk=1Resj(Λk), and such a
linearization is unique.

We also have a condition ensuring formal simultaneous linearizability.

Theorem 1.2. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin and with almost simultaneously Jordanizable linear parts. If f1, . . . , fh all
commute pairwise, then they are simultaneously formally linearizable.

To state our result on simultaneous holomorphic linearizability we need to introduce the
following Brjuno-type condition.
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Definition 1.2. Let n ≥ 2 and let Λ1 = (λ1,1, . . . , λ1,n), . . . ,Λh = (λh,1, . . . , λh,n) be h ≥ 2
n-tuples of complex, not necessarily distinct, non-zero numbers. We say that Λ1, . . . ,Λh sat-
isfy the simultaneous Brjuno condition if there exists a strictly increasing sequence of inte-
gers {pν}ν≥0 with p0 = 1 such that

∑
ν≥0

1

pν
log

1

ωΛ1,...,Λh(pν+1)
< +∞,

where for any m ≥ 2 we set

ωΛ1,...,Λh(m) = min
2≤|Q|≤m

Q 6∈∩h
k=1
∩n
j=1

Resj(Λk)

εQ,

with
εQ = min

1≤j≤n
max

1≤k≤h
|ΛQk − λk,j |.

If Λ1, . . . ,Λh are the sets of eigenvalues of the linear parts of f1, . . . , fh, we shall say that
f1, . . . , fh satisfy the simultaneous Brjuno condition.

Our holomorphic linearization result answering (Q2) is then the following.

Theorem 1.3. Let f1, . . . , fh be h ≥ 2 simultaneously formally linearizable germs of biholo-
morphism of Cn fixing the origin and such that their linear parts Λ1, . . . ,Λh are simultaneously
diagonalizable. If f1, . . . , fh satisfy the simultaneous Brjuno condition, then f1, . . . fh are holo-
morphically simultaneously linearizable.

Using Theorem 1.3 we are also able to give a positive answer to the generalization (Q3) of
Moser’s question.

Theorem 1.4. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin, with simultaneously diagonalizable linear parts, and satisfying the simultane-
ous Brjuno condition. Then f1, . . . , fh are simultaneously holomorphically linearizable if and
only if they all commute pairwise.

The structure of the paper is as follows. In the next section we shall discuss properties of
simultaneously formally linearizable germs, and we shall give a proof of Theorem 1.1, Theo-
rem 1.2 and other formal results that we can obtain. In section 3 we shall prove Theorem 1.3
and Theorem 1.4 using majorant series. In the appendix we shall discuss the equivalence
between various Brjuno-type series.

Acknowledgments. I would like to thank the members of the Dipartimento di Matematica e
Applicazioni of the Università degli Studi di Milano Bicocca for their warm and nice welcome.

2. Simultaneously formally linearizable germs

In this section, we shall deal with formal simultaneous linearization. We shall first investi-
gate the properties one can expect from a simultaneous formal linearization, and then we shall
provide conditions for simultaneous formal linearizability in presence of resonances.

Definition 2.1. Let Λ ∈ (C∗)n and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ Nn,
with |Q| ≥ 2, gives a resonance relation for Λ relative to the j-th coordinate if

ΛQ := λq11 · · ·λqnn = λj
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and we put, as in (2), Resj(Λ) = {Q ∈ Nn | |Q| ≥ 2, λQ = λj}. The elements of Resj(Λ) are
simply called resonant multi-indices with respect to j.

If Λ is a complex n×n invertible matrix in Jordan normal form, then, with a slight abuse
of notation, we shall denote by Resj(Λ) the resonant multi-indices of the eigenvalues of Λ.

Let us start with the following useful result.

Lemma 2.1. Let f be a germ of biholomorphism of Cn fixing the origin, and let Λ be an
invertible n × n complex matrix in Jordan normal form, commuting with f . Then the linear
part of f commutes with Λ and f contains only monomials that are resonant with respect to
the eigenvalues of Λ.

Proof. We can write f in coordinates, as f(z) = Mz + f̂(z) = Mz +
∑
|Q|≥2 fQz

Q. If f
commutes with Λ then, comparing terms of the same degree, it is clear that M has to commute
with Λ.

If Λ is diagonal, it is obvious that f commutes with Λ if and only if f contains Λ-resonant
terms only.

Let us now assume that Λ contains at least a non-trivial Jordan block, that is

Λ =


λ1

ε1 λ2

. . .
. . .

εn−1 λn

 , εj ∈ {0, ε}, εj 6= 0 =⇒ λj = λj+1,

with at least one non-zero εj .
Up to reordering, we may assume ε1 6= 0. For each component j ∈ {1, . . . , n}, we have

(Λf̂(z))j = λj f̂j(z) + εj−1f̂j−1(z),

where we set ε−1 = 0, and

(f̂(Λz))j =
∑
|Q|≥2

fQ,j(Λz)
Q

=
∑
|Q|≥2

fQ,jλ
QzQ

n∏
k=2

(
1 + εk−1

zk−1

λkzk

)qk

=
∑
|Q|≥2

fQ,jλ
QzQ

∑
0≤k2≤q2

...
0≤kn≤qn

(
q2

k2

)
· · ·
(
qn
kn

)
εk2

1 · · · ε
kn
n−1

λk2
2 · · ·λ

kn
n

zk2
1 zk3−k2

2 · · · zkn−kn−1

n−1 z−knn ,

where we are using the convention 00 = 1. Note that zP = zQ · zk2
1 zk3−k2

2 · · · zkn−kn−1

n−1 z−knn is
a monomial with the same degree as zQ, i.e., |P | = |Q|, but subsequent in the lexicographic
order, i.e., P > Q. Moreover, if Q is a resonant multi-index relative to j, i.e., λQ = λj , then
also P is. In fact, for each Jordan block of order `, we have λi` = · · · = λi`+`, so

λ
qi`
i`
· · ·λqi`+`i`+`

= λ
qi`+ki`+1

i`
λ
qi`+1+ki`+2−ki`+1

i`+1 · · ·λqi`+`−ki`+`i`+`
.

Now we prove that for each j ∈ {1, . . . , n} the j-th component of f̂ contains only Λ-resonant
monomials. For the first component we have

λ1f̂1(z) =
∑
|Q|≥2

fQ,1λ
QzQ

∑
0≤k2≤q2

...
0≤kn≤qn

(
q2

k2

)
· · ·
(
qn
kn

)
εk2

1 · · · ε
kn
n−1

λk2
2 · · ·λ

kn
n

zk2
1 zk3−k2

2 · · · zkn−kn−1

n−1 z−knn . (4)
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Let Q̃ be the first, with respect to the lexicographic order, non resonant multi-index so that

f
Q̃,1
6= 0 and let us compare the coefficients of zQ̃ in both sides of (4). In the left-hand side we

just have λ1fQ̃,1; in the right-hand side we only have λQ̃f
Q̃,1

, because other contributes could

come only by previous multi-indices, but, as observed above, they all give resonances because
we are assuming Q̃ to be the first non resonant multi-index. Hence we have

(λQ̃ − λ1)f
Q̃,1

= 0,

yielding, since λQ̃ 6= λ1, f
Q̃,1

= 0, and contradicting the hypothesis. Now we turn to the second

component, and since we are assuming ε1 6= 0, we have λ2 = λ1, so we have

λ1f̂2(z)+εf̂1(z)=
∑
|Q|≥2

fQ,2λ
QzQ

∑
0≤k2≤q2

...
0≤kn≤qn

(
q2

k2

)
· · ·
(
qn
kn

)
εk2

1 · · · ε
kn
n−1

λk2
2 · · ·λ

kn
n

zk2
1 zk3−k2

2 · · · zkn−kn−1

n−1 z−knn . (5)

Let Q̃ be the first, with respect to the lexicographic order, non resonant multi-index so that

f
Q̃,2
6= 0 and let us compare the coefficients of zQ̃ in both sides of (5). In the left-hand side

we just have λ1fQ̃,2 because we proved above that f̂1 contains only resonant monomials; in

the right-hand side we again have only λQ̃f
Q̃,2

, because other contributes could come only by

previous multi-indices, but, as observed above, they all give resonances since Q̃ is the first non
resonant multi-index. Then we repeat the same argument used above and we prove that also
f̂2 contains only resonant monomials. Now we can use the same arguments for the remaining
components, and we get the assertion.

Remark 2.2. Notice that in the previous result we did not make any hypotheses on the diag-
onalizability or not of the linear part M of the germ f , because we just wanted to understand
what information we can deduce on f assuming its commutation with a matrix in Jordan
normal form.

Remark 2.3. Note that Lemma 2.1 does not hold if Λ is just triangular. For example, if we
take

Λ =

 λ2λ3 0 0
0 λ2 0

λ3(1− λ2) λ3 − λ2 λ3


with λ2, λ3 ∈ C \ {0, 1} and λ2 6= λ3, and A is any complex 3 × 3 matrix commuting with Λ
(for example Λ itself), then Λ commutes with the germ

f(z) = Az + (z2(z1 + z2 + z3), 0,−z2(z1 + z2 + z3)) ,

and f clearly contains monomials non resonant with respect to the eigenvalues of Λ.

In the following we shall need the notion of almost simultaneously Jordanizable defined in
the introduction in Definition 1.1, that we recall here.

Definition 2.2. Let M1, . . . ,Mh be h ≥ 2 complex n×n matrices. We say that M1, . . . ,Mh are
almost simultaneously Jordanizable, it there exists a linear change of coordinates A such that
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A−1M1A, . . . , A
−1MhA are almost in simultaneous Jordan normal form, i.e., for k = 1, . . . , h

we have

A−1MkA =


λk,1
εk,1 λk,2

. . .
. . .

εk,n−1 λk,n

 , εk,j 6= 0 =⇒ λk,j = λk,j+1. (6)

We say that M1, . . . ,Mh are simultaneously Jordanizable if there exists a linear change of
coordinates A such that we have (6) with εk,j ∈ {0, ε}.
Remark 2.4. Note that the problem of deciding when two n×n complex matrices are almost
simultaneously Jordanizable is not as easy as when the two matrices are diagonalizable. Indeed,
whereas h ≥ 2 diagonalizable matrices are simultaneously diagonalizable if and only if they
commute pairwise, and if h ≥ 2 matrices commute pairwise then they are simultaneously
triangularizable (but the converse is clearly false), if two matrices commute then this does
not imply that they admit an almost simultaneous Jordan normal form, and it is not true in
general that two matrices almost in simultaneous Jordan normal form commute. For example
the following two matrices

Λ =

λ 0 0
ε λ 0
0 0 λ

 M =

µ 0 0
δ µ 0
β 0 µ

 λ, ε, µ, δ, β ∈ C∗

commute, but in general it is not possible to almost simultaneously Jordanize them. In fact all
the matrices A such that M is almost in simultaneous Jordan normal form with Λ have to be
invertible solutions of the following equation

AM =

µ 0 0
ζ µ 0
0 0 µ

A

(and ζ has to be non-zero because M 6= µI3); hence A is of the form

A =

 β
ζ f + δ

ζ e 0 0
d e f
g h − δ

βh

 ,

which is invertible if and only if βf + δe 6= 0 and h 6= 0. But

AΛ =

λ 0 0
ξ λ 0
0 0 λ

A

yields h = 0, implying that Λ and M are not almost simultaneously Jordanizable (and so they
are also not simultaneously Jordanizable).

On the other side, the following two matrices

Λ̃ =

λ 0 0
ε λ 0
0 ε λ

 M̃ =

µ 0 0
δ µ 0
0 0 η

 λ, ε, µ, δ, η ∈ C∗
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are almost in simultaneous Jordan normal form but they do not commute.

In studying the convergence of a formal linearization of a germ of biholomorphism, and
hence also in the case of simultaneous formal linearizations, it is useful to be able to use formal
linearizations of the special kind we are now going to introduce.

Definition 2.3. Let f be a germ of bihomolomorphism of Cn fixing the origin and with linear
part Λ in Jordan normal form. A tangent to the identity (formal) linearization ϕ of f is said
non resonant if for each resonant multi-index relative to the j-th coordinate, Q ∈ Resj(Λ), the
coefficient ϕQ,j of zQ in the power series expansion of the j-th coordinate of ϕ vanishes, i.e.,
ϕQ,j = 0.

Definition 2.4. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin and with linear parts Λ1, . . . ,Λh almost in simultaneous Jordan normal form. A
tangent to the identity (formal) simultaneous linearization ϕ of f1, . . . , fh is said non resonant if
for each simultaneous resonant multi-index relative to the j-th coordinate, Q ∈ ∩hk=1Resj(Λk),
the coefficient ϕQ,j of zQ in the power series expansion of the j-th coordinate of ϕ vanishes,
i.e., ϕQ,j = 0.

Let us now investigate the shape a formal simultaneous linearization can have. It can
be proven, see [Rü] and [R4], that a formally linearizable germ of biholomorphism is formally
linearizable via a non resonant formal linearization, and such a linearization is unique. The
same is true also for simultaneously formally linearizable germs, but with a slightly different
proof, as shown in the next result, stated in the introduction as Theorem 1.1.

Theorem 2.5. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin and with almost simultaneously Jordanizable linear parts. If f1, . . . , fh are
simultaneously formally linearizable, then they are simultaneously formally linearizable via a
non resonant linearization ϕ, and such a linearization is unique.

Proof. We may assume, up to linear changes of the coordinates, that the linear parts Λ1, . . . ,Λh
of f1, . . . , fh are almost in simultaneous Jordan normal form, i.e.,

Λk =


λk,1
εk,1 λk,2

. . .
. . .

εk,n−1 λk,n

 , εk,j 6= 0 =⇒ λk,j = λk,j+1,

for k = 1, . . . , h.

We know that there exists a formal change of coordinates ϕ tangent to the identity and
such that ϕ−1 ◦ fk ◦ ϕ = Λk for all k = 1, . . . , h. If ϕQ,j = 0 for each Q and j so that
Q ∈ ∩hk=1Resj(Λk), then we are done and we only have to show that such a linearization is
unique.

If there is at least one multi-index Q ∈ ∩hk=1Resj(Λk) with j ∈ {1, . . . , n} and such that
ϕQ,j 6= 0, then we can construct another formal simultaneous linearization ψ which is non-
resonant. Since we can write fk = ϕ ◦ Λk ◦ ϕ−1 for each k = 1, . . . , h, ψ has to satisfy

ϕ−1 ◦ ψ ◦ Λk = Λk ◦ ϕ−1 ◦ ψ,

i.e., we need to construct ψ not containing monomials simultaneously resonant for Λ1, . . . ,Λh
and such that (by Lemma 2.1) ϕ−1 ◦ ψ contains only monomials simultaneously resonant for
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Λ1, . . . ,Λh. Writing

ϕ−1
j (z) = zj

1 +
∑
Q∈Nj

Λ
Q
k

=1,k=1,...,h

ϕ̃Q,jz
Q +

∑
Q∈Nj

Λ
Q
k
6=1, for some k=1,...,h

ϕ̃Q,jz
Q

 , j = 1, . . . , n,

where
Nj := {Q ∈ Zn | |Q| ≥ 1, qj ≥ −1, qh ≥ 0 for all h 6= j},

we want to find ψ of the form

ψj(z) = zj

1 +
∑
Q∈Nj

Λ
Q
k
6=1, for some k=1,...,h

ψQ,jz
Q

 , j = 1, . . . , n,

such that

(ϕ−1 ◦ ψ)j(z) = zj

1 +
∑
Q∈Nj

Λ
Q
k

=1,k=1,...,h

gQ,jz
Q

 , j = 1, . . . , n.

Using the same argument of the proof of Poincaré-Dulac Theorem (see [Ar] pp. 192–193 or [R3]

pp. 40–41), in the j-th coordinate of ϕ−1 ◦ ψ, the coefficient of zQ with Q so that ΛQk 6= 1 for
at least one k is equal to

ψQ,j + Polynomial(ϕ−1,previous ψP,l),

where the polynomial in the previous formula is “universal” in the sense that it depends only
on the fact that we are composing two power series and it does not depend on the coefficients
of ϕ−1 and on the previous ψP,l, that are in fact just arguments of this universal polynomial.
Hence it suffices to put

ψQ,j = −Polynomial(ϕ−1,previous ψP,l).

Note that for the first non-resonant multi-indices, due to degree considerations, we just have
to put ψQ,j = −ϕ̃Q,j .

We proved that there exists a formal non-resonant tangent to the identity simultaneous lin-
earization ϕ of the given germs, containing only monomials that are not simultaneous resonant
for the eigenvalues of Λ1, . . . ,Λh. Let us assume by contradiction that there exists another such
a linearization ψ and ψ 6≡ ϕ. Writing ϕ(z) = z +

∑
|Q|≥2 ϕQz

Q and ψ(z) = z +
∑
|Q|≥2 ψQz

Q,

let Q̃ be the first multi-index, with respect to the lexicographic order, so that ϕ
Q̃
6= ψ

Q̃
and let

` ∈ {1, . . . , n} be the minimal index such that ϕ
Q̃,`
6= ψ

Q̃,`
. Since for each Q ∈ ∩hk=1Res`(Λk)

we know that ϕQ,` = ψQ,` = 0, there is at least one germ fk such that ΛQ̃k 6= λk,`. We know,
again by the proof of Poincaré-Dulac Theorem, that(

ΛQ̃k − λk,`
)
ϕ
Q̃,`

= Polynomial(fk,previous ϕP,j),
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and, similarly, (
ΛQ̃k − λk,`

)
ψ
Q̃,`

= Polynomial(fk,previous ψP,j),

where, again, the polynomial in the previous formulas is “universal”, because again it depends
only on the fact that we are composing power series and it does not depend on the coefficients of
fk and on the previous ϕP,j or ψP,j , that are in fact just arguments of this universal polynomial.

Hence, since we are assuming that ϕP,j = ψP,j for all the multi-indices P < Q̃ and, for P = Q̃,
for all j < `, we have that

Polynomial(fk,previous ϕP,j) = Polynomial(fk,previous ψP,j)

implying that ϕ
Q̃,`

= ψ
Q̃,`

, and contradicting the hypothesis.

Remark 2.6. The universal polynomials we dealt with in the last proof can be interpreted
and computed using the mould formalism introduced by Écalle (see [É]), and in this sense the
latter proof is a mouldian proof.

As announced in the introduction as Theorem 1.2, we shall now give a condition ensuring
formal simultaneous linearizability.

Theorem 2.7. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of
Cn fixing the origin and with almost simultaneously Jordanizable linear parts. If f1, . . . , fh
all commute pairwise, i.e., fp ◦ fq = fq ◦ fp for any p and q in {1, . . . , h}, then they are
simultaneously formally linearizable.

Proof. We may assume without loss of generality that the linear parts Λ1, . . . ,Λh of the germs
are all almost in simultaneous Jordan normal form. Since f1 is formally linearizable, it is
possibly to linearize it with a non-resonant formal linearization ϕ1 (see [Rü] and [R4]). Then,

thanks to the commutation hypothesis, by Lemma 2.1, f̃2 = ϕ−1
1 ◦f2◦ϕ1, . . . , f̃h = ϕ−1

1 ◦fh◦ϕ1

contain only Λ1-resonant terms. Now we claim that it is possible to find a formal change of
coordinates ϕ2 fixing the origin, tangent to the identity, containing only Λ1-resonant terms that
are not Λ2-resonant, and conjugating f̃2 to a germ g2 with same linear part and in Poincaré-
Dulac normal form. In fact, we have to solve(

Λ2 + f̃
Res(Λ1)
2

)
◦
(
I + ϕ

Res(Λ1)
2

)
=
(
I + ϕ

Res(Λ1)
2

)
◦
(

Λ2 + g
Res(Λ1)∩Res(Λ2)
2

)
,

where f̃Res(Λ1) contains only monomial resonant with respect to the eigenvalues of Λ1, and so
on, that is

Λ2ϕ
Res(Λ1)
2 + f̃

Res(Λ1)
2 ◦

(
I + ϕ

Res(Λ1)
2

)
= g

Res(Λ1)∩Res(Λ2)
2 + ϕ

Res(Λ1)
2 ◦

(
Λ2 + g

Res(Λ1)∩Res(Λ2)
2

)
,

which is solvable by the usual Poincaré-Dulac procedure and setting ϕ
Res(Λ1)
2,Q,j = 0 whenever

ΛQ2 = λ2,j . But since f2 is formally linearizable, the linear form is its unique Poincaré-Dulac
normal form (see [R4] Theorem 2.3), so g2 ≡ Λ2. Hence, since the given germs commute
pairwise, ϕ−1

2 ◦ ϕ−1
1 ◦ f3 ◦ ϕ1 ◦ ϕ2, . . . , ϕ

−1
2 ◦ ϕ−1

1 ◦ fh ◦ ϕ1 ◦ ϕ2 contain only monomials that
are simultaneously Λ1 and Λ2 resonant, and we can iterate the procedure finding a formal
linearization ϕ3 of ϕ−1

2 ◦ ϕ−1
1 ◦ f3 ◦ ϕ1 ◦ ϕ2 containing only monomials that are Λ1 and Λ2

resonant but not Λ3-resonant. We can then iteratively perform the same procedure getting
ϕ4, . . . , ϕh formal transformations such that ϕ1 ◦ · · · ◦ϕh is a simultaneous formal linearization
of f1, . . . , fh.
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Remark 2.8. The simultaneous formal linearization obtained in the last proof is non-resonant.
Moreover, we can perform the same procedure with a different permutation of the indices, i.e.,
starting with fσ(1) and then continuing with fσ(2) and so on, where σ is any permutation of
{1, . . . , n}, and, by Theorem 2.5, we always get the same linearization.

Remark 2.9. The hypothesis on the pairwise commutation is indeed necessary. In fact, if
Λ1 and Λ2 are two commuting matrices almost in simultaneous Jordan normal form such that
Res(Λ1) 6= ∅ and Res(Λ2) 6= ∅, but Res(Λ1)∩Res(Λ2) = ∅, the unique formal transformation
tangent to the identity and commuting with both Λ1 and Λ2 is the identity, so any non-linear
germ f3 with linear part in Jordan normal form and commuting with Λ1 (that is, containing
only Λ1-resonant terms) but not with Λ2 cannot be simultaneously linearizable with Λ1 and
Λ2.

Note that, in the proofs of the previous results, we needed to assume the almost simultane-
ous Jordanizability of the linear parts of the given germs, and indeed we cannot perform those
proofs just assuming that those linear parts are just simultaneously triangularizable, because,
as already remarked, Lemma 2.1 does not hold for general triangular matrices. Anyway, this
is more than what was usually known in the previous literature, where in general linearization
results are proved only for germs with diagonalizable linear part. Moreover, in the particular
case of diagonalizable linear parts, recalling that h ≥ 2 diagonalizable commuting complex
n× n matrices are simultaneously diagonalizable, we have the following equivalence.

Proposition 2.10. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of
Cn fixing the origin and with simultaneously diagonalizable linear parts. Then f1, . . . , fh are
simultaneously formally linearizable if and only if they all commute pairwise.

Proof. If f1, . . . , fh are simultaneously formally linearizable, since their linear parts are simul-
taneously diagonalizable, then they all commute and we are done.

The converse follows from Theorem 2.7.

Remark 2.11. Note that having simultaneously diagonalizable linear parts is equivalent
to having diagonalizable pairwise commuting linear parts, but being simultaneously formally
linearizable does not imply that the linear parts are pairwise commuting, even when the linear
parts are diagonalizable.

It is possible to find cases of formal simultaneous linearization even without assuming that
the linear parts are almost simultaneously Jordanizable or that the germs commute pairwise,
as shown in the following results. However, in those cases one has to assume other conditions,
for example on the nature of resonances. We refer to [R2] and [R3] for the definitions of only
level s resonances and simultaneous osculating manifold.

Proposition 2.12. Let f1, . . . , fh be h ≥ 2 germs of biholomorphism of Cn fixing the origin.
Assume that the spectrum of the linear part of f1 has only level s resonances and that f1

commutes with fk for k = 2, . . . , h. Then f1, . . . , fh are simultaneously formally linearizable if
and only if there exists a germ of formal complex manifold M at O of codimension s, invariant
under fh for each h = 1, . . . ,m, which is a simultaneous osculating manifold for f1, . . . , fm and
such that f1|M , . . . , fm|M are simultaneously formally linearizable.

Proof. It is clear from the proof of Theorem 2.5 of [R2] that it is possible to perform it in the
formal category, where to formally linearize f1, under these hypotheses, it suffices to have the
only level s hypothesis.

Proposition 2.13. Let f1, . . . , fh be h ≥ 2 germs of biholomorphisms of Cn fixing the origin
and such that the eigenvalues of the linear part of f1 have no resonances. If f1 commutes with
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fk for k = 2, . . . , h, then f1, . . . , fh are simultaneously formally linearizable via a unique formal
linearization.

Proof. Up to linear conjugacy, we may assume that the linear part Λ1 of f1 is in Jordan
normal form. Since the eigenvalues of Λ1 are non-resonant, f1 is formally linearizable via a
unique linearization ϕ with no constant term and with identity linear part. Then, by Lemma
2.1, thanks to the commutation hypothesis, ϕ−1 ◦ fk ◦ ϕ contains only monomials that are
resonant with respect to the eigenvalues of Λ1, and we get the assertion.

In particular, if the eigenvalues of the linear part of all fk have no resonances, the unique
formal linearization ϕk of fk is indeed the unique simultaneous formal linearization of the germs
f1, . . . , fh.

Another example of the results we can obtain using this kind of arguments is the following.

Corollary 2.14. Let f1, . . . , fh be h ≥ 2 germs of biholomorphisms of Cn fixing the origin
and such that the linear parts Λ1 and Λ2 of f1 and f2 are almost simultaneously Jordanizable
and have no common resonances (i.e., Resj(Λ1) ∩Resj(Λ2) = ∅ for j = 1, . . . , n). If f1 and f2

commute with fk for k = 1, . . . , h, then f1, . . . , fh are simultaneously formally linearizable.

3. Convergence under the simultaneous Brjuno condition

In this section we shall prove a holomorphic simultaneous linearization result in presence of
resonances. Note that, even if in the previous section we proved formal simultaneous lineariza-
tion results just assuming almost simultaneous Jordanizability of the linear parts, to prove
convergence in “generic cases” we need to assume simultaneous diagonalizability of the linear
parts because of Yoccoz’s counter example (see [Y2] pp. 83–85) to holomorphic linearization
in case of linear part in (non diagonal) Jordan form.

We shall now recall the arithmetical Brjuno-type condition, stated in the introduction in
Definition 1.2, that we shall need to prove our holomorphic linearization result.

Definition 3.1. Let n ≥ 2 and let Λ1 = (λ1,1, . . . , λ1,n), . . . ,Λh = (λh,1, . . . , λh,n) be h ≥ 2
n-tuples of complex, not necessarily distinct, non-zero numbers. For any m ≥ 2 we set

ωΛ1,...,Λh(m) = min
2≤|Q|≤m

Q 6∈∩h
k=1
∩n
j=1

Resj(Λk)

εQ,

with
εQ = min

1≤j≤n
max

1≤k≤h
|ΛQk − λk,j |.

Note that, since Q 6∈ ∩hk=1∩nj=1Resj(Λk), we have εQ always non-zero, and hence also ω(m)
is always non-zero. If Λ1, . . . ,Λh are the sets of eigenvalues of the linear parts of f1, . . . , fh, we
shall write ωf1,...,fh(m) for ωΛ1,...,Λh(m).

Definition 3.2. Let n ≥ 2 and let Λ1 = (λ1,1, . . . , λ1,n), . . . ,Λh = (λh,1, . . . , λh,n) be h ≥ 2
n-tuples of complex, not necessarily distinct, non-zero numbers. We say that Λ1, . . . ,Λh sat-
isfy the simultaneous Brjuno condition if there exists a strictly increasing sequence of inte-
gers {pν}ν≥0 with p0 = 1 such that

∑
ν≥0

1

pν
log

1

ωΛ1,...,Λh(pν+1)
< +∞. (7)
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If Λ1, . . . ,Λh are the sets of eigenvalues of the linear parts of f1, . . . , fh, we shall say that
f1, . . . , fh satisfy the simultaneous Brjuno condition.

Recall that (7) is equivalent to∑
ν≥0

1

2ν
log

1

ωΛ1,...,Λh(2ν+1)
< +∞,

and a proof of this equivalence can be found in [Brj] and [R3].

We shall give in the appendix other conditions equivalent to the simultaneous Brjuno
condition.

Remark 3.1. Note that if Λ1, . . . ,Λh do not satisfy the simultaneous Brjuno condition, then
each of them does not satisfy the reduced Brjuno condition, i.e.,∑

ν≥0

1

2ν
log

1

ωΛk(2ν+1)
= +∞,

for k = 1, . . . , h, where
ωΛk(m) := min

2≤|Q|≤m
1≤j≤n

Q 6∈Resj(Λk)

|ΛQk − λk,j |.

In particular, if Λ1, . . . ,Λh are simultaneously Cremer, i.e.,

lim sup
m→+∞

1

m
log

1

ωΛ1,...,Λh(m)
= +∞,

and hence they do not satisfy the simultaneous Brjuno condition, then at least one of them
has to be Cremer, i.e.,

lim sup
m→+∞

1

m
log

1

ωΛk(m)
= +∞, (8)

and the other ones do not satisfy the reduced Brjuno condition.

Furthermore it is possible to find Λ1, . . . ,Λh satisfying the simultaneous Brjuno condition,
with Λk not satisfying the reduced Brjuno condition for any k = 1, . . . , h, as shown in the next
result, descending from Theorem 5.1 of [Yo] and Theorem 2.1 of [M].

Proposition 3.2. Let h > n ≥ 2. Then there exists a set of h-tuples of linearly independent
vectors Λ1, . . . ,Λh ∈ (C∗)n, with the density of continuum, satisfying the simultaneous Brjuno

condition, whereas for any p1, . . . , ph ∈ Z \ {0} the vector
∑h
k=1 pkΛk does not satisfy the

reduced Brjuno condition.

Proof. The result descends easily from the proof of Theorem 5.1 of [Yo]. In fact, since

min
1≤j≤n

Q 6∈∩h
k=1

Resj(Λk)

h∑
k=1

|ΛQk − λk,j | =
h∑
k=1

min
1≤j≤n

Q 6∈∩h
k=1

Resj(Λk)

|ΛQk − λk,j | ≤ h · min
1≤j≤n

Q 6∈∩h
k=1

Resj(Λk)

max
1≤k≤h

|ΛQk − λk,j |,

it is clear that the simultaneous Diophantine condition introduced by Yoshino in Section 5 of
[Yo] implies our simultaneous Brjuno condition.

Hence we can use exactly the same construction of Yoshino in the proof of Theorem 5.1
of [Yo] observing that, since the set of Cremer points, i.e., of the numbers θ ∈ R satisfying

lim sup
m→+∞

1

m
log

1

min2≤k≤m |e2πikθ − 1|
= +∞,

is residual, i.e., countable intersection of open dense sets, we can perform the same argument
substituting, at the end of the proof of Theorem 5.1 of [Yo], Liouville with Cremer, and we are
done.
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Remark 3.3. Other possible definitions for a simultaneous Brjuno condition could had been
given using the following functions:

ωΛ1,...,Λh(m) := min
2≤|Q|≤m

Q 6∈∩h
k=1
∩n
j=1

Resj(Λk)

max
1≤k≤h

min
1≤j≤n

|ΛQk − λk,j |,

or
ω̃Λ1,...,Λh(m) := max

1≤k≤h
min

2≤|Q|≤m
Q6∈∩h

k=1
∩n
j=1

Resj(Λk)

min
1≤j≤n

|ΛQk − λk,j |,

and asking for ∑
ν≥0

1

2ν
logωΛ1,...,Λh(2ν+1) < +∞,

or ∑
ν≥0

1

2ν
log ω̃Λ1,...,Λh(2ν+1) < +∞.

However, this definitions are clearly more restrictive than the one we chose, since we have:

ω̃Λ1,...,Λh(m) ≤ ωΛ1,...,Λh(m) ≤ ωΛ1,...,Λh(m),

and hence∑
ν≥0

1

2ν
log

1

ωΛ1,...,Λh(2ν+1)
≤
∑
ν≥0

1

2ν
log

1

ωΛ1,...,Λh(2ν+1)
≤
∑
ν≥0

1

2ν
log

1

ω̃Λ1,...,Λh(2ν+1)
,

but the inequalities are generically strict.

Now we can state and prove our holomorphic simultaneous linearization result, Theorem
1.3, whose proof will be an adaptation to our case of the existing methods introduced by Brjuno
[Brj], and Siegel [S1, S2] (see also Pöschel [Pö]). We recall here the statement of Theorem 1.3.

Theorem 3.4. Let f1, . . . , fh be h ≥ 2 simultaneously formally linearizable germs of biholo-
morphism of Cn fixing the origin and such that their linear parts Λ1, . . . ,Λh are simultaneously
diagonalizable. If f1, . . . , fh satisfy the simultaneous Brjuno condition, then f1, . . . fh are holo-
morphically simultaneously linearizable.

Proof. Without loss of generality we may assume that Λ1, . . .Λh are diagonal, that is

Λk = Diag(λk,1, . . . , λk,n).

Since each fk is holomorphic in a neighbourhood of the origin, there exists a positive

number ρ such that ‖f (k)
L ‖ ≤ ρ|L| for |L| ≥ 2. The functional equation

fk ◦ ϕ = ϕ ◦ Λk,

remains valid under the linear change of coordinates fk(z) 7→ σfk(z/σ), ϕ(w) 7→ σϕ(w/σ)
with σ = max{1, ρ2}. Therefore we may assume that

∀|L| ≥ 2 ‖f (k)
L ‖ ≤ 1,

for k = 1, . . . , h.
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Thanks to Theorem 2.5, we may assume that ϕQ,j = 0 for all Q ∈ ∩hk=1Resj(Λk), hence
for any multi-index Q ∈ Nn \ ∩hk=1 ∩nj=1 Resj(Λk) with |Q| ≥ 2 we have

‖ϕQ‖ ≤ ε−1
Q

∑
Q1+···+Qν=Q

ν≥2

‖ϕQ1
‖ · · · ‖ϕQν‖, (9)

where εQ = min1≤j≤n max1≤k≤h |ΛQk − λk,j |.
Now, the proof follows closely the proof of the main Theorem in [Pö]. For the benefit of

the reader, we shall report it here.

Following Pöschel [Pö], we inductively define:
αm =

∑
m1+···+mν=m

ν≥2

αm1 · · ·αmν , for m ≥ 2

α1 = 1,

and  δQ = ε−1
Q max

Q1+···+Qν=Q

ν≥2

δQ1
· · · δQν , for Q ∈ Nn \ ∩hk=1 ∩nj=1 Resj(Λk) with |Q| ≥ 2,

δE = 1, for any E ∈ Nn with |E| = 1.

Then, by induction, we have
‖ϕQ‖ ≤ α|Q|δQ,

for every Q ∈ Nn \ ∩hk=1 ∩nj=1 Resj(Λk) with |Q| ≥ 2. Therefore, to establish

sup
Q

1

|Q|
log ‖ϕQ‖ < +∞, (10)

it suffices to prove analogous estimates for αm and δQ.

It is easy to estimate αm, and we refer to [Pö] (see also [R4]) for a detailed proof of

sup
m

1

m
logαm < +∞.

To estimate δQ we have to take care of small divisors. First of all, for each multi-
index Q 6∈ ∩hk=1 ∩nj=1 Resj(Λk) with |Q| ≥ 2 we can associate to δQ a decomposition of the
form

δQ = ε−1
L0
ε−1
L1
· · · ε−1

Lp
, (11)

where L0 = Q, |Q| > |L1| ≥ · · · ≥ |Lp| ≥ 2 and La 6∈ ∩hk=1 ∩nj=1 Resj(Λk) for all a = 1, . . . , p
and p ≥ 1. In fact, we choose a decomposition Q = Q1 + · · ·+Qν such that the maximum in
the expression of δQ is achieved; obviously, Qa does not belong to ∩hk=1 ∩nj=1 Resj(Λk) for all

a = 1, . . . , ν. We can then express δQ in terms of ε−1
Qj

and δQ′
j

with |Q′j | < |Qj |. Carrying on

this process, we eventually arrive at a decomposition of the form (11). Furthermore, for each
multi-index Q 6∈ ∩hk=1 ∩nj=1 Resj(Λk) with |Q| ≥ 2, we can choose an index kQ and an index iQ
so that

εQ = |ΛQkQ − λkQ,iQ |.
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For m ≥ 2 and 1 ≤ j ≤ n, we can define

N j
m(Q)

to be the number of factors ε−1
L in the expression (11) of δQ, satisfying

εL < θ ωf1,...,fh(m), and iL = j,

where ωf1,...,fh(m) is defined as

ωf1,...,fh(m) = min
2≤|Q|≤m

Q 6∈∩h
k=1
∩n
j=1

Resj(Λk)

εQ,

and θ is the positive real number satisfying

4θ = min
1≤p≤n
1≤k≤h

|λk,p| ≤ 1.

The last inequality can always be satisfied by replacing fk by f−1
k if necessary. Moreover we

also have ωf1,...,fh(m) ≤ 2. Notice that ωf1,...,fh(m) is non-increasing with respect to m and
under our assumptions ωf1,...,fh(m) tends to zero as m goes to infinity.

The following is the key estimate, and it descends from Brjuno.

Lemma 3.5. For m ≥ 2, 1 ≤ j ≤ n, and Q 6∈ ∩hk=1 ∩nj=1 Resj(Λk), we have

N j
m(Q) ≤


0, if |Q| ≤ m,

2|Q|
m
− 1, if |Q| > m.

The proof of Lemma 3.5 can be obtained adapting the proof of Brjuno’s lemma contained
in the addendum of [Pö], and we report it here for the sake of completeness.

Proof. The proof is done by induction on |Q|. Since we fix m and j throughout the proof, we
shall write N instead of N j

m.
For |Q| ≤ m,

εQ ≥ ωf1,...,fh(|Q|) ≥ ωf1,...,fh(m) > θ ωf1,...,fh(m),

hence N(Q) = 0.
Assume now that |Q| > m. Then 2|Q|/m− 1 ≥ 1. Write

δQ = ε−1
Q δQ1 · · · δQν ,

with

Q = Q1 + · · ·+Qν , ν ≥ 2, and |Q| > |Q1| ≥ · · · ≥ |Qν |;

notice that Q − Q1 does not belong to ∩hk=1 ∩nj=1 Resj(Λk), otherwise the others Qh’s would

be in ∩hk=1 ∩nj=1 Resj(Λk).
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In this decomposition, only |Q1| can be greater than M := max(|Q| − m,m). If this is the
case, we can decompose δQ1 in the same way, and repeating this step at most m− 1 times, we
obtain the decomposition (where P1 = Q1)

δQ = ε−1
Q ε−1

P1
· · · ε−1

Pµ
δL1 · · · δLν ,

where µ ≥ 1, ν ≥ 2 and
Q > P1 > · · · > Qµ,

L1 + · · ·+ Lν = Q,

|Pµ| > M ≥ |L1| ≥ · · · ≥ |Lν |.
Here, Q > L means, as in [Pö], that Q − L ∈ Nn is not identically zero. The crucial point
is that at most one of the εK ’s can contribute to N(Q), which is the content of the following
lemma descending from Siegel.

Lemma 3.6. If Q > L, the multi-indices Q, L and Q−L are not in ∩hk=1 ∩nj=1 Resj(Λk), and

εQ < θ ωf1,...,fh(m), εL < θ ωf1,...,fh(m), iQ = iL,

then |Q− L| ≥ m.

The proof of Lemma 3.6 can be obtained adapting the proof of Siegel’s lemma contained
in the addendum of [Pö], and we report it here for the sake of completeness.

Proof. Thanks to the definition, for all k ∈ {1, . . . , h} we have

|ΛQk − λk,iQ | ≤ |Λ
Q
kQ
− λkQ,iQ | and |ΛLk − λk,iL | ≤ |ΛLkL − λkL,iL |;

moreover, since we are supposing εL < θ ωf1,...,fh(m), we have

|ΛLk | > |λk,iL | − θ ωf1,...,fh(m)

≥ 4θ − 2θ = 2θ.

It follows that
2θ ωf1,...,fh(m) > εQ + εL

≥ |ΛQk − λk,iQ |+ |Λ
L
k − λk,iL |

≥ |ΛQk − ΛLk |

≥ |ΛLk | |Λ
Q−L
k − 1|

≥ 2θ ωf1,...,fh(|Q− L|+ 1),

and therefore ωf1,...,fh(|Q − L| + 1) < ωf1,...,fh(m), which implies |Q − L| ≥ m by the mono-
tonicity of ωf1,...,fh .

Thanks to the previous result, it follows from the decomposition of δQ that

N(Q) ≤ 1 +N(L1) + · · ·+N(Lν).

Choose 0 ≤ ρ ≤ ν such that |Lρ| > m ≥ |Lρ+1|. By the induction hypothesis, all terms with
|L| ≤ m vanish, and we obtain

N(Q) ≤ 1 +N(L1) + · · ·+N(Lρ)

≤ 1 + 2
|L1 + · · ·+ Lρ|

m
− ρ

≤


1, ρ = 0

2 |Q|−mm , ρ = 1

2
|L1+···+Lρ|

m − 1, ρ ≥ 2,

≤ 2
|Q|
m
− 1,
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concluding the proof.

Since the f1, . . . , fh satisfy the simultaneous Brjuno condition, there exists a strictly in-
creasing sequence {pν}ν≥0 of integers with p0 = 1, and such that∑

ν≥0

1

pν
log

1

ωf1,...,fh(pν+1)
< +∞. (12)

We have to estimate

1

|Q|
log δQ =

p∑
j=0

1

|Q|
log ε−1

Lj
, Q 6∈ ∩hk=1 ∩nj=1 Resj(Λk).

By Lemma 3.5,

card
{

0 ≤ j ≤ p : θ ωf1,...,fh(pν+1) ≤ εLj < θ ωf1,...,fh(pν)
}
≤ 2n|Q|

pν

for ν ≥ 1. It is also easy to see from the definition of δQ that the number of factors ε−1
Lj

is

bounded by 2|Q|−1, and so the previous inequality holds also for ν = 0 when the upper bound
is dropped. Therefore,

1

|Q|
log δQ ≤ 2n

∑
ν≥0

1

pν
log

1

θ ωf1,...,fh(pν+1)

= 2n

∑
ν≥0

1

pν
log

1

ωf1,...,fh(pν+1)
+ log

1

θ

∑
ν≥0

1

pν

 .

(13)

Since ωf1,...,fh(m) tends to zero monotonically as m goes to infinity, we can choose some m
such that 1 > ωf1,...,fh(m) for all m > m, and we obtain∑

ν≥ν0

1

pν
≤ 1

log(1/ωf1,...,fh(m))

∑
ν≥ν0

1

pν
log

1

ωf1,...,fh(pν+1)
,

where ν0 verifies the inequalities pν0−1 ≤ m < pν0
. Thus both series in parentheses in (13)

converge thanks to (12). Therefore

sup
Q

1

|Q|
log δQ < +∞

and this concludes the proof.

Combining Proposition 2.10 and Theorem 3.4 we obtain the following equivalence, pre-
sented as Theorem 1.4 in the introduction.

Theorem 3.7. Let f1, . . . , fh be h ≥ 2 formally linearizable germs of biholomorphisms of Cn
fixing the origin, with simultaneously diagonalizable linear parts, and satisfying the simultane-
ous Brjuno condition. Then f1, . . . , fh are simultaneously holomorphically linearizable if and
only if they all commute pairwise.

Proof. If f1, . . . , fh are simultaneously holomorphically linearizable, since their linear parts are
simultaneously diagonalizable, then they all commute and we are done.

On the other hand, if f1, . . . , fh commute pairwise then they are simultaneously formally
linearizable, by Proposition 2.10, hence the assertion follows from Theorem 3.4.
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We can also deduce the following result.

Corollary 3.8. Let f1, . . . , fh be h ≥ 2 germs of biholomorphism of Cn fixing the origin
and such that the linear part of f1 is diagonalizable, and its eigenvalues have no resonances.
If the linear parts of f1, . . . , fh are simultaneously diagonalizable, f1 commutes with fk for
k = 2, . . . , h and f1, . . . , fh satisfy the simultaneous Brjuno condition, then f1, . . . , fh are
holomorphically simultaneously linearizable.

Proof. It follows from Proposition 2.13 that f1, . . . , fh are simultaneously formally linearizable,
and then the assertion follows from Theorem 3.4.

We also obtain the following generalization of Theorem 2.5 of [R1], to which we refer for
the definitions of only level s resonances and simultaneous osculating manifold.

Proposition 3.9. Let f1, . . . , fh be h ≥ 2 germs of biholomorphism of Cn fixing the origin with
simultaneously diagonalizable linear parts, and satisfying the simultaneous Brjuno condition.
Assume that the spectrum of the linear part of f1 has only level s resonances and that f1 com-
mutes with fk for k = 2, . . . , h. Then f1, . . . , fh are simultaneously holomorphically linearizable
if and only if there exists a germ of complex manifold M at O of codimension s, invariant un-
der fh for each h = 1, . . . ,m, which is a simultaneous osculating manifold for f1, . . . , fm and
such that f1|M , . . . , fm|M are simultaneously holomorphically linearizable.

Proof. Proposition 2.12 implies that f1, . . . , fh are simultaneously formally linearizable, hence
they are in the hypotheses of Theorem 3.4 and this concludes the proof.

Remark 3.10. It is possible to prove a simultaneous holomorphic linearization result using
the same functional technique of Rüssmann [Rü], yielding the following statement.

Given f1, . . . , fh, h ≥ 2 pairwise commuting germs of biholomorphism of Cn fixing the origin
and such that their linear parts Λ1, . . . ,Λh are non-resonant and diagonalizable, if

∑
ν≥0

1

2ν
log

1

ω̃Λ1,...,Λh(2ν+1)
< +∞, (14)

where
ω̃Λ1,...,Λh(m) = max

1≤k≤h
min

2≤|Q|≤m
1≤j≤n

|ΛQk − λk,j |,

then f1, . . . fh are holomorphically simultaneously linearizable.

In fact, by the commutation hypothesis, Λ1, . . . ,Λh are simultaneously diagonalizable, so
we may assume them to be diagonal. Moreover, since Λ1, . . . ,Λh are non-resonant, each fh
admits a unique formal linearization which is their unique formal simultaneous linearization ϕ,
thanks to the commutation hypothesis.

We can then perform the argument of Section 6 of [Rü] for each fk, getting estimates for the

convergence of ϕ substituting his function Ω with the function ωΛk(m) := min 2≤|Q|≤m
1≤j≤n

|ΛQk −λk,j |
for each k = 1, . . . , h, and we get the assertion because we can estimate the convergence of ϕ
using the maximum of these ωΛ1

(m), . . . , ωΛh(m), that is using (14).
Note that in this case we use one of the generalizations to a simultaneous Brjuno condition

we introduced in Remark 3.3, which is, as we remarked, stronger than the simultaneous Brjuno
condition we introduced. Moreover, to use Theorem 2.1 of [Rü] we have to assume Λ1, . . . ,Λh
to be non-resonant to have a unique formal linearization, and to be able to apply Rüssmann’s
procedure to each germ separately, which is, again, a bit stronger condition than just asking for
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our germs to be simultaneously formally linearizable. However, at least in principle, it should
be possible to prove Theorem 3.4 with functional arguments.

Appendix: Equivalence of various Brjuno-type series

In this appendix we prove the equivalence of three Brjuno-type condition/series. In fact
in the literature studying of the linearization problem one can find at least the following three
series:

B(ω) =
∑
ν≥0

1

2ν
log

1

ω(2ν+1)
,

R(ω) =
∑
k≥1

1

k2
log

1

ω(k)
,

and

Γ(ω) =
∑
k≥1

1

k(k + 1)
log

1

ω(k)
,

where ω:N→ R is a non-increasing monotone function, usually containing the information on
the small divisors one has to estimate. The first one was introduced by Brjuno in [Brj] while
the other two can be found for example in [D], [Rü] and [GM].

Rüssmann proved that, in dimension 1, the convergence of R(ω) is equivalent to the
convergence of B(ω) (see Lemma 8.2 of [Rü]), and he also proved the following result.

Lemma 4.1. (Rüssmann, 2002 [Rü]) Let Ω:N → (0,+∞) be a monotone non decreasing
function, and let {sν} be defined by sν := 2q+ν , with q ∈ N. Then∑

ν≥0

1

sν
log Ω(sν+1) ≤

∑
k≥2q+1

1

k2
log Ω(k).

We proved (see Lemma 4.2 of [R4]) that in fact if R(ω) < +∞ then also B(ω) < +∞. In
fact, we can prove the following equivalence.

Theorem 4.2. Let ω:N → (0, 1) be a non-increasing monotone function and consider the
following series

B(ω) =
∑
ν≥0

1

2ν
log

1

ω(2ν+1)
, R(ω) =

∑
k≥1

1

k2
log

1

ω(k)
, and Γ(ω) =

∑
k≥1

1

k(k + 1)
log

1

ω(k)
.

Then we have the following inequalities:

Γ(ω) ≤ R(ω) ≤ 2 Γ(ω), (15)

and

Γ(ω) ≤ 1

2
B(ω) ≤ 2 Γ(ω)− log

1

ω(1)
. (16)

Proof. The first inequalities are immediate to recover, because for any k ≥ 1 we have

1

k(k + 1)
≤ 1

k2
≤ 2

k(k + 1)
.
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To prove (16), recall that
b−1∑
k=a

1

k(k + 1)
=

1

a
− 1

b
.

Then, for the first inequality in (16) we have that

1

ω(2ν)
≤ · · · ≤ 1

ω(2ν+1 − 1)
≤ 1

ω(2ν+1)
,

hence

Γ(ω) =
∑
ν≥0

2ν+1−1∑
k=2ν

1

k(k + 1)
log

1

ω(k)

≤
∑
ν≥0

log
1

ω(2ν+1)

2ν+1−1∑
k=2ν

1

k(k + 1)

=
1

2
B(ω).

For the other inequality, we use

1

ω(2ν+1)
≤ · · · ≤ 1

ω(2ν+2 − 1)
≤ 1

ω(2ν+2)
;

hence

1

2
B(ω) = 2

∑
ν≥0

log
1

ω(2ν+1)

2ν+2−1∑
k=2ν+1

1

k(k + 1)

≤ 2
∑
ν≥0

2ν+2−1∑
k=2ν+1

1

k(k + 1)
log

1

ω(k)

= 2 Γ(ω)− log
1

ω(1)
,

and we are done.

As a corollary we obtain the following equivalence.

Corollary 4.3. With the above definitions, we have

B(ω) < +∞ ⇐⇒ Γ(ω) < +∞ ⇐⇒ R(ω) < +∞.

In particular, the simultaneous Brjuno condition, or any Brjuno condition, can be ex-
pressed through the convergence of any of the three series B, R, and Γ.
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[É] Écalle, J.: Singularités non abordables par la géométrie, Ann. Inst. Fourier (Greno-
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