TOEPLITZ OPERATORS AND SKEW CARLESON MEASURES FOR
WEIGHTED BERGMAN SPACES ON STRONGLY PSEUDOCONVEX DOMAINS

MARCO ABATE}, SAMUELE MONGODI, AND JASMIN RAISSY*

ABSTRACT. In this paper we study mapping properties of Toeplitz-like operators on weighted Berg-
man spaces of bounded strongly pseudconvex domains in C™. In particular we prove that a Toeplitz
operator built using as kernel a weighted Bergman kernel of weight 8 and integrating against a
measure p maps continuously (when j is large enough) a weighted Bergman space AR} (D) into
a weighted Bergman space A52 (D) if and only if p is a (A, ~)-skew Carleson measure, where A =

1 _ 1 -1 ar a2 i izes results ;
1+ T s and vy = 5 (B+ o s ) This theorem generalizes results obtained by Pau and Zhao

on the unit ball, and extends and makes more precise results obtained by Abate, Raissy and Saracco
on a smaller class of Toeplitz operators on bounded strongly pseudoconvex domains.

1. INTRODUCTION

Carleson measures are a powerful tool and an interesting object to study, introduced by Carleson
[6] in his celebrated solution of the corona problem. Let A be a (usually) Banach space of holomorphic
functions on a domain D C C™; given p > 0, a finite positive Borel measure g on D is a Carleson
measure for A and p if there is a continuous inclusion A < LP(u), that is, if there exists a constant
C > 0 such that

Vie A /D|f\f’dusc||f||i.

We shall also say that u is a vanishing Carleson measure for A and p if the inclusion A — LP(u) is
compact.

In this paper we are interested in Carleson measures for weighted Bergman spaces Ag(D), that
is spaces of holomorphic functions on a domain D € C™ which are p-integrable with respect to the
measure 6°v, where v is the Lebesgue measure, § is the Euclidean distance from the boundary of D
and 3 € R; we shall denote by AP(D) the (unweighted) Bergman space A5(D).

Carleson measures for (possibly weighted) Bergman spaces have been studied by several authors,
including Hastings [13], Oleinik and Pavlov |26], Oleinik |25] and Luecking [24] for the unit disk A C C;
Cima and Wogen [§], Duren and Weir [11], Zhu [31] and Kaptanoglu [18] for the unit ball B™ C C™;
Zhu [30] for bounded symmetric domains; Cima and Mercer [7], Abate and Saracco [3], Abate, Raissy
and Saracco [4], Hu, Lv and Zhu [16] and Abate and Raissy [5] for strongly pseudoconvex domains.

One of the reasons of the interest for Carleson measures is that they can be characterized in several
different ways, even without any reference to function spaces. A particularly important characteriza-
tion relies on the intrinsic Kobayashi geometry of the domain D @ C". Given zy € D and r € (0, 1),
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let Bp(z,r) denote the Kobayashi ball of D with center z and radius 3 log if: If i is a finite positive

Borel measure on D, for any r € (0,1) and § € R we can compare the p-measure and the Lebesgue
measure of the Kobayashi balls by using the functions

() = ,u(BD(z,r))
;U’T,G( ) - Z/(BD(Z,’I“))Q

It turns out that the behavior of ji, ¢ can be used to decide whether p is Carleson for a given weighted
Bergman space. Indeed we have the following statement:

Theorem 1.1 (Abate-Raissy-Saracco [4], Hu-Lv-Zhu [16]). Let D € C™ be a bounded strongly pseu-
doconvex smooth domain and p a finite positive Borel measure on D. Choose 0 < p, ¢ < 400 and
a > —1, and denote by 6: D — R the Euclidean distance from the boundary of D. Then:
(i) if p < gq, then p is a Carleson measure for AR (D) and q if and only if [LT,q/pﬁf’lq/p € L>(D)
for some (and hence any) r € (0,1);
(ii) if p > q, then u is a Carleson measure for AP(D) and q if and only if i, 16~ P € Lﬁ(D)
for some (and hence any) r € (0,1).

In view of this theorem it is natural to say that a measure p is a (A, a)-skew Carleson measure if
A>1and fi, 207 € L®(D), orif A < 1 and j1,,107%* € Lﬁ(D). When A =1 (i.e., p = ¢q) we shall
say that u is a a-Carleson measure.

Other characterizations can be given in terms of r-lattices and of the Berezin transform of the
measure 1 (see Section 2 of this paper for details); but here we are interested in a different kind of
characterization, an application of Carleson measures to mapping properties of Toeplitz operators.

Roughly speaking, a Toeplitz operator is the composition of a projection and a multiplication.
More precisely, if X is a Banach algebra, Y C X a Banach subspace, P: X — Y a linear projection
and f € X, then the Toeplitz operator Ty of symbol f is given by Tr(g) = P(fg).

In complex analysis, the most important projection is the Bergman projection B, which is the
orthogonal projection of the space L?(D) onto the (unweighted) Bergman space A?(D), where D € C"
is a bounded domain. The Bergman projection is an integral operator of the form

W@:LK@MWWMM,

where K: D x D — C is the Bergman kernel of D. It turns out that the Bergman projection can be
extended to LP(D) for all p > 0 and maps LP(D) into AP(D). Cuckovi¢ and McNeal [9] suggested
to study the mapping properties of Toeplitz operators, associated to the Bergman projection, of the
form

Jwﬂd=AK@wﬁWWWWwWM

in particular they were interested in determining for which values of 8 € R the operator Tss would map
a Bergman space AP(D) into a Bergman space A?(D). In the paper [4] we realized that to properly
address Cuckovié and McNeal’s questions it is useful to consider the larger class of Toeplitz operators
associated to measures. If y is a finite positive Borel measure on D then the Toeplitz operator of
symbol p is given by

Tf(2) = [ K(w)fw) du(w):
D
clearly, the Toeplitz operator Tss considered by Cuckovié and McNeal is the Topelitz operator of

symbol the measure 6°v. Toeplitz operators with a measure as symbol have been studied, for instance,
by Kaptanoglu |18] on the unit ball of C™, by Li [21] and Li and Lueckling [22] in strongly pseudoconvex
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domains, and by Schuster and Varolin [29] in the setting of weighted Bargmann-Fock spaces on C";
they already noticed relationships between their mapping properties and Carleson properties of .

In [4] we performed a detailed study of how Carleson properties of p were related to mapping
properties of T},, proving results like the following:

Theorem 1.2 (Abate-Raissy-Saracco [4]). Let D € C™ be a bounded strongly pseudoconver smooth
domain, pu a finite positive Borel measure on D and take 1 < p < q < 400. Then the following
assertions are equivalent:

(i) T,,: AP(D) — AY(D) continuously;

(i) pisa (1 + 1% — %,O) -skew Carleson measure.

In proving this theorem we realized that the natural setting to study the mapping properties of
Toeplitz operators of this kind is given by weighted Bergman spaces, and we obtained several results
showing that if T}, maps a weighted Bergman space into another weighted Bergman space then p is
(A, a)-skew Carleson for suitable A and «, and conversely that if  is (A, o)-skew Carleson then T}, maps
a suitable weighted Bergman space into another suitable weighted Bergman space. Unfortunately, we
got only a few clean “if and only if” statements; moreover, we were mainly interested in mapping
spaces AP (D) in spaces AqB(D) with ¢ > p, and we did not discuss the case p > q.

This paper is devoted to prove instead a neat and general “if and only if” statement, following ideas
introduced by Pau and Zhao [27] in the unit ball. To do so we proceed by further enlarging the class
of Toeplitz operators we are considering. Given 8 > —1, the orthogonal projection Pg: L?(6%v) —
A% (D) is still represented by an integral operator of the form

Psf(z) = /D Kg(z7w)f(w)6(w)ﬂ dv(w) ,

where the weighted Bergman kernel Kg: D x D — C has properties similar to those of the usual
Bergman kernel (see Section 2). The Toeplitz operator THB of symbol p and exponent [ is given by

T25G) = [ Kol w)fw) dutw)
Then the main result of this paper is the following:

Theorem 1.3. Let D € C" be a bounded strongly pseudoconvex smooth domain. Let 0 < p1, pa < 400
and —1 < ay, ag < +00. Suppose that B € R satisfies

1+a;
4+ 7

1
n+1+ﬁ>nmax{1,}
Pj Pj

j
for j =1, 2. Put

and, if A # 0, put
1 (65} (6]
Y= X (5 +— - ) .
n b2
Then, for any finite positive Borel measure p on D, the following statements are equivalent:

(i) T[f: ABL(D) — AP2 (D) continuously;
(ii) the measure p is a (A, 7y)-skew Carleson measure.
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In particular, Theorem [I.2]is now obtained as a consequence of Theorem [I.3] by taking oy = ap =
B=0and 1 <p; <ps < —+o0.

The paper is structured as follows. In Section 2 we collect a number of preliminary results, on the
Kobayashi geometry of strongly pseudoconvex domains, on the weighted Bergman kernels, and on the
known characterizations of skew Carleson measures. Section 3 is devoted to the proof of Theorem
while in Section 4 we prove a version of Theorem for vanishing skew Carleson measures, showing
that (under the same hypotheses on the parameters) T : A% (D) — A2 (D) is compact if and only
if the measure p is a vanishing (A, y)-skew Carleson measure.

2. PRELIMINARY RESULTS

In this section we collect definitions and preliminary results that we shall use in the rest of the
paper.

From now on, D € C™ will be a bounded strongly pseudoconvex domain in C” with smooth C*°
boundary. Furthermore, we shall use the following notations:

e 0: D — R will denote the Euclidean distance from the boundary of D, that is §(z) = d(z,9D);

e given two non-negative functions f, g: D — R* we shall write f < g to say that there is
C > 0 such that f(z) < Cg(z) for all z € D (the constant C' is independent of z € D, but it
might depend on other parameters, such as r, 6, etc.);

e given two strictly positive functions f, g: D — R* we shall write f ~ g if f < g and g < f,
that is if there is C' > 0 such that C~!g(z) < f(z) < Cg(z) for all z € D;

e v will be the Lebesgue measure;

e O(D) will denote the space of holomorphic functions on D, endowed with the topology of
uniform convergence on compact subsets;

e given 0 < p < 400, the Bergman space AP(D) is the (Banach if p > 1) space L?(D) N O(D),
endowed with the LP-norm;

e more generally, if 4 is a positive finite Borel measure on D and 0 < p < 400 we shall denote
by LP(u) the set of complex-valued p-measurable functions f: D — C such that

1/

o= | [ 1P auta)] " < oo

e if a > —1 we shall write v, = §*v, we shall denote by A2 (D) the weighted Bergman space
AP (D) = LP(6*v)NO(D) ,

and we shall write || - ||,,o instead of || - ||p.600;
e K: D x D — C will be the Bergman kernel of D, and for each zyg € D we shall denote by
k.,: D — C the normalized Bergman kernel defined by
K(z,z0) K(z, 20)
kzo (Z) = = K )
K(z0,20) K (5 20)l2
e given r € (0,1) and zy € D, we shall denote by Bp(zo,r) the Kobayashi ball of center zy and

: 1 147
radius 3 log 1.

We refer to, e.g., |1L[2L|17L]19], for definitions, basic properties and applications to geometric function
theory of the Kobayashi distance; and to [14}15]/20L/28] for definitions and basic properties of the
Bergman kernel.

Let us now recall a few results we shall need on the Kobayashi geometry of strongly pseudoconvex
domains.



TOEPLITZ OPERATORS AND SKEW CARLESON MEASURES FOR WEIGHTED BERGMAN SPACES 5

Lemma 2.1 ([3, Lemma 2.2]). Let D € C™ be a bounded strongly pseudoconver domain. Then there
is C' > 0 such that
1—r C
< <
e 0(20) < 0(2) < T

for allr € (0,1), 20 € D and z € Bp(zo,7).

4(20)

Lemma 2.2. Let D @ C™ be a bounded strongly pseudoconvex domain, f € R and r € (0,1). Then
vs(Bp(-,r)) ~ 6" P
where the constant depends on r.

Proof. For 8 = 0 the result can be found in |21} Corollary 7] and [3, Lemma 2.1]. If 5 # 0 Lemma
yields

vg(Bp(20,7)) = / ( )5(z)ﬂ dv(z) = 6(20)’v(Bp(z0,7))
BD Z0,T
and we are done. O

We shall also need the existence of suitable coverings by Kobayashi balls. Recall that for a bounded
domain D € C", given r > 0, a r-lattice in D is a sequence {ar} C D such that D = J, Bp(a,r)
and there exists m > 0 such that any point in D belongs to at most m balls of the form Bp(ax, R),
where R = 2(1 +7).

The existence of r-lattices in bounded strongly pseudoconvex domains is ensured by the following
result:

Lemma 2.3 (3| Lemma 2.5]). Let D € C" be a bounded strongly pseudoconvex domain. Then for
every r € (0,1) there exists an r-lattice in D.

We shall use a submean estimate for nonnegative plurisubharmonic functions on Kobayashi balls:

Lemma 2.4 ([3, Corollaries 2.7 and 2.8]). Let D @ C™ be a bounded strongly pseudoconver domain.
Given 1 € (0,1), set R= (1 +71) € (0,1). Then there exists a constant K, > 0 depending on r such
that

K,
V2 €D X(20) < 7/ xdv
I/(BD(ZO,r)) Bp(zo0,r)

and

K
Vzo € D Vz € Bp(zo,r) x(2) < 7r/ xa
V(BD(ZOar)) Bp(z0,R)

for every nonnegative plurisubharmonic function x: D — RT.

Now we collect a few results on the weighted Bergman kernels. Given § > —1, the weighted
Bergman projection is the orthogonal projection Pg: L?(vg) — A% (D), where vg = §%v. Tt is known
(see, e.g., [12]), that there exists a function Kg: D x D — C such that

Paf(2) = [ Kalew)f(w)s(w)*dv(u)
D
for all f € L?(vg). Moreover, Kg(z,w) is holomorphic in z, we have Kz(w, z) = Kg(z,w) and

f(z)z/DKg(z,w)f(w)é(w)BdV(w)



6 MARCO ABATE, SAMUELE MONGODI, AND JASMIN RAISSY

for all f € A3(D). The function Kp is called the weighted Bergman kernel of D. For a € D, the
normalized weighted Bergman kernel of D is

Kg(z,a) .
V Kﬁ(aa a)

When 8 = 0 we recover the usual Bergman kernel, and we shall write K, respectively k,, instead
of Ky, respectively kg q.

We shall need a few estimates on the behaviour of the weighted Bergman kernel. They are analogous
to the classical estimates for the Bergman kernel and follow from the results obtained by Englis [12]
on the asymptotic behaviour of the weighted Bergman kernel. The first one is the following.

kg.a(2) =

Lemma 2.5. Let D € C™ be a bounded strongly pseudoconver domain and let 8 > —1. Then
1K5(, 20) 2,8 = v/ Kp(20, 20) & 0(20) """ FHHA2 0 and  ||kp )2 = 1
for all zy € D.

Proof. The first equality, and hence the result for kg ., is well-known, as well as the whole statement
for 8 =0 (see, e.g., [14]).

If 8 # 0, then thanks to the results in [12], the weighted Bergman kernel is smooth outside the
boundary diagonal; so, in particular, if zy € D’ € D the norm || K3(+, 29)||p,s is bounded by a constant
depending only on D’, p and .

Therefore, we only have to estimate the boundary behaviour. Let ¢ € D and let U be a neigh-
bourhood of ¢ with coordinates (2', z,) = (21, ..., z,) centered in g such that

DNU={(z,2,) €U : Re(zn) > ¢(z)}

where —1) is strongly plurisubharmonic with Vi) # 0. Set r(z) = Re(z,) — ¥(2’). We consider an
almost-sesquianalitic extension of r(z) on U x U, i.e., a function, which we denote again by r, such
that:

e r(z,w) =r(w,2),

e the first derivatives of r with respect to z and w vanish at infinite order along z = w,

o r(z,2) =r(2).
It easily follows from these properties that

0 0
Biij(O) = 372]7"(070) )

and similarly for the other derivatives. Therefore we have
n—1 ]
|2 (2, w) = 7(2) = r(w)] = e1lzn = wal + Y Gz — wyl® + O(||z = w|]*).
j=1
Moreover |2r(z, w)—r(z)—r(w)] is positive outside z = w, and so ¢; > 0. Therefore in a neighbourhood
of (O, 0) we have that

n—1
r(z,w)| & | 7(2) +r(w) + |20 = wal + Y |25 — wy?
j=1
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The results in [12] imply that Kz (z,w) is asymptotic to ¢(z, w)r(z,w) "~177 for a suitable function
¢ € C®(D x D). Therefore on U we have

1 —n—1-p
n—
|Kp(z,w)| & | r(2) +7(w) + |20 — wa| + Y |25 — wy]?
j=1
Thus, following the same proof as in the classical case, we obtain the assertion. (I

A similar estimate, but with uniform constants on Kobayashi balls, is the following.

Lemma 2.6. Let D € C™ be a bounded strongly pseudoconvex domain and let B > —1. Then for
every r € (0,1) there exist ¢, > 0 and 6, > 0 such that if zo € D satisfies 6(zy) < 0, then

Cr
W < |Ks(z,20)] < W

and

c 1
— T <l|ks. 2 -
§(z0) AR = kg2 (2)7 < r0(z0) 15

for all z € Bp(zo,7).

Proof. If § = 0 then this is proven in |21, Theorem 12] and [3| Lemma 3.2 and Corollary 3.3]. If
B # 0, then thanks to the results in [12], we have that

—(n+1+p)

n—1
(1) Kp(z,20) = c(z,20) | 7(2) +7(20) + |20 = 200] + D |25 = 20,4

j=1
in suitable local coordinates around a point of the boundary diagonal, i.e., if d(zo,9D), d(z,0D) and
Iz — z0|| are small enough. By the completeness of the Kobayashi metric, there exists d, > 0 such

that every z € Bp(zo,r) satisfies such condition if 0(29) < é,. The assertion then follows by arguing
as in [21, Theorem 12] or as in [3, Lemma 3.2 and Corollary 3.3]. d

Remark 2.1. Note that in the previous lemma the estimates from above hold even when §(z9) > 6,
possibly with a different constant ¢,. Indeed, when §(zg) > 4, and z € Bp(zg,r) by Lemma there
is &, > 0 such that 6(z) > 4,; as a consequence we can find M, > 0 such that |Kp(z,20)| < M, as
soon as d(zp) > 0, and z € Bp(zg,r), and the assertion follows from the fact that D is a bounded
domain.

A very useful integral estimate generalizing the analogous ones for the unweighted Bergman kernel
(see |21} Corollary 11, Theorem 13] and [4, Theorem 2.7]) is the following:

Theorem 2.7. Let D € C™ be a bounded strongly pseudoconvex domain, zo € D and «, § > —1.
Then for 0 <p < +oo and a — B < (n+ B+ 1)(p— 1) we have

/ |K5(C, 20)|P6(C)%dv(C) = 6(zp) A (ntA+DE-1)
D

In particular,

1K (-, 20) [lpra < 8(20) 7~ 41H8)

Proof. If B = 0 then this is proven in [21, Corollary 11, Theorem 13] and [4, Theorem 2.7]. If 8 # 0,
then it suffices to use and follow the same proof as in the unweighted case. O
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Finally, the normalized Bergman kernel can be used to build functions belonging to suitable
weighted Bergman spaces:

Lemma 2.8. Let D € C" be a bounded strongly pseudoconver domain, and > —1. Given 0 < p <
+oo and —1 <a<min{(n+p+1)p—np—1,(n+ L+ 1)p—n—1}, set
n+1+p3 nt+lta
2 P '
For each a € D set fo, = §(a)"kgo. Let {ar} be an r-lattice and ¢ = {cy} € P, and put

f = chfak .
k=0

Then f € AZ(D) with |[fllp.o = llc[lp-

Proof. If = 0 then this is a consequence of [16, Lemma 2.6]. If 5 # 0, then it suffices to use the
estimates given by Theorem [2.7] and follow the same proof as in the unweighted case. O

We also need to recall a few definitions and results about Carleson measures.

Definition 2.9. Let 0 < p, ¢ < +o0 and o > —1. A (p,q; a)-skew Carleson measure is a finite
positive Borel measure p such that

/ £ du(z) < 1f]
D

for all f € AP (D). In other words, p is (p, g; «)-skew Carleson if AP (D) < L7(u) continuously. In this
case we shall denote by ||ft]|p,q:a the operator norm of the inclusion A% (D) < L7(u). Furthermore, a
(p, q; a)-skew Carleson measure is vanishing if

tim_ [ 15207 du(z) = 0

j—+oo

q
p,x

for any bounded sequence {f;};en C AP(D) converging to 0 uniformly on any compact subset of D.
For p > 1, p is a vanishing (p, ¢; «)-skew Carleson if and only if AP (D) < L%(u) compactly (see, e.g.,
|4, Lemma 4.5]).

Remark 2.2. When p = ¢ we recover the usual (non-skew) notion of Carleson measure for A2 (D).

Definition 2.10. Let 6 € R, and let p be a finite positive Borel measure on D. Given r € (0,1), let
firg: D — R be defined by

_ w(Bp(z1))
/1'7“79(2) - 9
U(BD (z, r))

we shall write fi, for fi, 1.
We say that u is a geometric 0-Carleson measure if fi,9 € L>(D) for all r € (0,1), that is if for
every r > 0 we have

1(Bo(z 1) < v(Bp(zr))

for all z € D, where the constant depends only on 7.
Furthermore, we shall say that p is a geometric vanishing 6-Carleson measure if

g ral2) =0

for all r € (0,1).
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Notice that Lemma [2.2] yields
(2) firg ~ 6~ (DO,

In [4] we proved (among other things) that, if p > 1, a measure y is (p, p; @)-skew Carleson if and
only if it is geometric #-Carleson, where § = 1+ -%5. Hu, Lv and Zhu in [16] have given a similar
geometric characterization of (p, ¢; a)-skew Carleson measures for all values of p and ¢; to recall their
results we need another definition.

Definition 2.11. Let u be a finite positive Borel measure on D, and s > 0. The Berezin transform
of level s of p is the function B¥u: D — RT U {400} given by

Bou(z) = /D e () dpa(0)

The geometric characterization of (p, ¢; a)-skew Carleson measures is different according to whether
p < qor p>q. We first recall the characterization for the case p < q.

Theorem 2.12 (|16, Theorem 3.1], [5, Theorem 2.15]). Let D € C™ be a bounded strongly pseudo-
conver domain. Let 0 < p < q < +o00 and oo > —1; set 6 =1+ WL_H Then the following assertions
are equivalent:

(i) pis a (p,q; o)-skew Carleson measure;
(ii) p is a geometric %G-Carleson measure;
(iii) there exists ro € (0,1) such that fi,, a9 € L>(D);
(iv) for some (and hence any) r € (0,1) we have ,&r,g(;_a% € L*(D);
(v) for some (and hence any) r € (0,1) and some (and hence any) r-lattice {ay} in D we have

Vk e N M(BD(ak,r)) jz/(BD(ak,r))%e :
(vi) for some (and hence all) s > 01 we have
By < s+ (0E-35) ,
Moreover we have
3) Wl = I 20lloe = i, 5% oo = 6008 By,

The geometric characterization of (p,q; a)-skew Carleson measures when p > ¢ has a slightly
different flavor.

Theorem 2.13 ([16, Theorem 3.3], |5, Theorem 2.16]). Let D € C™ be a bounded strongly pseudo-
conver domain. Let 0 < g < p < +00 and o > —1; put 6 = 1+ %_H Then the following assertions
are equivalent:

(i) u is a (p,q; a)-skew Carleson measure;
(ii) w is a vanishing (p, q, a)-skew Carleson measure;
(iii) fr0~%% € L7-a(D) for some (and hence any) r € (0,1);
(iv) for some (and hence any) r € (0,1) and for some (and hence any) r-lattice {ay} in D we have
~ P
{ir0a(ar)} € £v=3;

(v) for some (and hence all) s > 01 + 7 (1 - %) we have

5= D055+ Bs ;e L7 (D) ;
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Moreover we have

|5_(n+1)(9%_%+¥)35

~ —al ~
(1) Il = 6™ |_e ~ iy (@) 2 ~ | ll e .

We also have a geometric characterization of vanishing (p, ¢; a)-skew Carleson measures when p < ¢:

Theorem 2.14 (|16, Theorem 3.1], [4, Theorem 4.10]). Let D @ C™ be a bounded strongly pseudo-
convex domain. Let 0 < p < q < 400 and o > —1; set =1+ n%_l Then the following assertions
are equivalent:

(i) w is a vanishing (p, q; a)-skew Carleson measure;
(ii) p s a geometric vanishing %Q—Carleson measure;
(iii) there exists ro € (0,1) such that lim f,., 24(2) = 0;
z—0D 2
(iv

(v

for some (and hence any) r € (0,1) we have h%lp ﬂhg(z)é(z)_o‘% =0;
z— P

—_ — — —

for some (and hence any) r € (0,1) and some (and hence any) r-lattice {ar} in D we have

«

ST

kzgrfoo MTO’%H(ak) - kEI+noo Nr’%(ak)é(ak) =0 ’

(vi) for some (and hence all) s > 9% we have

: (n+1)(§791) s —
ZgrélDé(z) 27"/ B%u(z) =0.

A consequence of these theorems is that the property of being (p, ¢; a)-skew Carleson actually
depends only on the quotient ¢/p and on . We shall then introduce the following definition:

Definition 2.15. Take A, o € R. A finite positive Borel measure p on D is a (A, a)-skew Carleson
measure if
— A>1and fi,\0~%* € L>=(D) for some (and hence any) r € (0,1), and we shall put ||u|xo =
17ir, 787 oo3 or,
1
— A< 1and 1,07 € LT=x(D) for some (and hence any) r € (0,1), and we shall put ||u|[x o =
H/lr(s_a)\”ﬁ~
Notice that by [16, Lemma 2.3] different r’s yield equivalent norms.
Furthermore we say that p is vanishing (A, a)-skew Carleson measure if
- A>1and lirgD fir A (2)0(2) 7% = 0 for some (and hence any) r € (0,1); or,
z—
— A< 1and pisa (A a)-skew Carleson measure.

So a measure is (vanishing) (p, ¢; a)-skew Carleson if and only if it is (vanishing) (¢/p, a)-skew Car-
leson. Notice that the definition of (0, a)-skew Carleson does not depend on a.

This definition has the following easy (but useful) consequence.

Lemma 2.16 ([5, Lemma 2.18]). Let D @ C™ be a bounded strongly pseudoconver domain, A > 0
and o > —1. Let p be a (A a)-skew Carleson measure, and 8 > —Aa +1). Then pg = 6°u is a
(A a+ g)—skew Carleson measure with ||pgl| atd B el -

We end this section by recalling the main result in [5], which gives a characterisation of (A, ~)-
skew Carleson measures on bounded strongly pseudoconvex domain through products of functions in
weighted Bergman spaces.
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Theorem 2.17 (|5, Theorem 1.1]). Let D € C™ be a bounded strongly pseudoconvex domain, and

let pu be a positive finite Borel measure on D. Fiz an integer k > 1, and let 0 < p;,q; < +oo and
—1 < a; < 400 be given for j=1,...,k. Set

k k
_ 4; 1 anJ
Jj=1 J=1
Then 1 is a (N, y)-skew Carleson measure if and only if there exists C > 0 such that
k k
) [ s ant) < TLI I
D1 =1

for any f; € A% (D).

3. TOEPLITS OPERATORS AND SKEW CARLESON MEASURES ON WEIGHTED BERGMAN SPACES

This section is devoted to the proof of our main Theorem [I.3] We shall need the following prelim-
inary result:

Lemma 3.1. Let D € C" be a bounded strongly pseudoconvexr domain. Let 1 < p < 400, —1 <

a, o/ < 400 and put

Oé/

o
ﬁ = -+ VAR
p p
where p' the conjugate exponent of p. Then the functional

(r)s = [ FEaGs()

is a duality pairing between AP (D) and Ap,(D), where vg = 6°v.

Proof. The continuous dual of A? (D) is A” , with the usual pairing

/f R dva(2) .

o = [ £ = [ HEREE () = (f.98°)

is a duality pairing between AP (D) and AZ,( ) as soon as h = g6~ € AP (D), i.e., as soon as

[ 198 v () < +oc
D

Therefore

which is true because the choice of 8 yields (8 — a)p’ + a = «'. O
Now we can prove Theorem

Theorem 3.2. Let D € C" be a bounded strongly pseudoconvex domain. Let 0 < pi1, pa < 400 and
—1 < ag, as < +00. Suppose that 5 € R satisfies

1
(6) n+1+5>nmax{1,}+
p

J

1+ a;
Dj
forj=1,2. Put
1 1

A=1+4+—— —
b1 b2
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and, if A # 0, put

Then for any positive Borel measure p on D the following statements are equivalent:
(1) Tf: APV (D) — AP2 (D) continuously;
(ii) w is a (A,7)-skew Carleson measure.

Moreover, one has

1T N azs (D) az2 (o) = llellns -

Proof. The proof is divided into several cases.

(i)=-(ii) We consider two cases: A > 1 and A < 1.

Case 1. Assume A > 1. Let a € D and consider f, = Kg(-,a). By @ with j = 1, we get
(n+1+ B)p1 > n+ 1+ ay, which is equivalent to ay — 8 < (n+ 8+ 1)(p1 — 1), so, by Theorem [2.7]
for a € D we have that

@ IKs(-a) |2 . = 6(a)Hiter—(nd1+8)m

P1,001 — )

in particular, f, € A! (D). We can then apply the Toeplitz operator to f, and consider the value of
the resulting function for z = a:

T8 fo(a) / Kofa,w)fulw)dp(w) = [ [K(a.u)Pdu(w)
®)
w(Bo(a,r))
> /B o sl Pat) = R

as soon as a is close enough to 9D, where, in the last inequality, we used Lemma
Moreover, by Lemma [2.4]

1/p2
T fula) = [|T fa(@)?2] /7 < |T5fa(C)p2dV(C)1

1
V(BD(G,T))I/pz [/BD(a,r)
(9) §(a)—a2/p2 1/p2
D T} £u(OF23(C)d c]
= 6(a)” "+1+a2)/p2||Tﬁfa||pz,a2 =T N6(@) =D oy

where we used Lemma 2.2] and Lemma 211
Combining (7)), (8) and (9) we conclude that

w(Bp(a,r)) = ||T5||5(a)(n+1+,3)+(n+1+a1)/Pl—(n+1+a2)/p2 _ ||T5H6(a)(n+1+7)>\

(10) (n+147)A/(n+1)
~ ||Tf||l/(BD(a,r)) K .

This means that p is a geometric A ( 11)—Carleson measure, which, by Theorem [2.12} is equivalent

to p being a (A, y)-skew Carleson measure. Moreover,

lillxy < N7 -

Case 2. Assume A\ < 1, that is po < p;. In this case, we can adapt the proof of [5, Proposition 3.4]
and we report here the complete proof for the sake of completeness.



TOEPLITZ OPERATORS AND SKEW CARLESON MEASURES FOR WEIGHTED BERGMAN SPACES 13

Let {ax} be an r-lattice in D, and {ri} a sequence of Rademacher functions (see [10, Appendix
Al). Set
n+1+8 n+l+ag
2 D1
and, for every a € D, put f, = 6(a)"kg,q. Then Lemma implies that

7

fr= Z kT (t) far
k=0

belongs to APL (D) for all ¢ = {cp} € 71, and || fillp;,ar = llcllp;-
Since, by assumption, Tf is bounded from A5} to AL2 we have

o0
T8 iz o, = /D S ke (BT fan (2)
k=0

< NP5 0 = W07 2

P1,001 —

P2

vy, (%)

Integrating both sides on [0, 1] with respect to ¢t and using Khinchine’s inequality (see, e.g., [24]) we
obtain

00 p2/2
/D (Z |Ck|2|Tffak(Z)|2> vy (2) 2 ||T3 P2 [|c]|b? .
k=0

Set By, = Bp(ag,r). We consider two cases: ps > 2 and 0 < ps < 2.
If p; > 2, using the fact that ||al|,, /2 < [|a||; for every a € /! we get

Sl [ D dv(2)
k=0 By,

k

e p2/2
= /D (Z |Ck2|71?fak(z)|2ka(z)> Ay (2)

k=0

) P2/2
S/}J(;_OlckQIT,ff%(z)F) v, (2) -

If instead 0 < p2 < 2, using Holder’s inequality, we obtain

S Jexl / T8 for (2)P* ey (2)
k=0 Bi

p2

2

S/ <Z|0k|2|Tffak(Z)|2> (ZXB;J@) dva, (2)
D \k=0 k=0

[e’e) P2/2
j~/D <Z|Ck|2|T5fak(2)|2> dva,(z)

k=0
where we used the fact that each z € D belongs to no more than m of the By.
Summing up, for any ps > 0 we have

oo
ZICkI”Q/B T} far ()72 dvay (2) < |72 c|lp -
k=0 k
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Now Lemmas [2.2] 2-1] and [2:4] yield
T fu ()7 < (ag)~ 1402 /B (T fa ()% v, (2) .
k
and so we have

o0
D lelP20(ar) T fa, () P2 < 1T |72 ]2 -
k=0

On the other hand, using Lemmas 2.5 and [2.6] we obtain

TP fo (ar) = 6(ar)” /D K (ak, w)kp () dps(1)
/ K 5 (ax, ) ? dp(w)
D

n+l+aq 2
n [ K s (ar, w)|” du(w)
BD(ak ’I’)

14— n+1ra1 'u(BD(ak, )) . (BD(ak:a ))
5(ag)2(n+1+6) 6(ak)n+1+ﬁ+m '

= 6(ar)™t

> 5(ak)n+1+,3—

= d(ax)

Putting all together we get

k=0

e’} p2
P2 M(BD(ak’T)) Tﬂ P2
Z|Ck| W = TP el

since
n+l4+a; n+1l4+ay

D1 P2

n+1+p8+
Now, set d = {dj}, where

=n+1+7)A.

1(Bp(ak,))
Sap)mF TN

Then by duality we get {d}?} € ¢P1/(P1=P2) wyith 142 Hlpy /(o1 —pa) = ||TB||?’2 because p1/(p1 — p2) is
the conjugate exponent of p;/ps > 1. This means that d € 12/ (P1=p2) — p1/(1=2) with

Il o <1771

dp =

and the assertion then follows from Theoremm (notice that the proof in [16] that {fi, xo(ar)} € (>

implies 1,6~ € Lli*( D), where 6 = 1+ 7=, holds also for A <0).

(ii)=-(i) We consider three cases: ps > 1, po =1 and 0 < py < 1.
Case 1. If p; > 1, let p, > 1 be the conjugate exponent of ps, and choose o), € R so that

ay ol
(11) B=—+-2.
b2 V%)

An easy computation shows that af, = as + (8 — a2)ph, and then of > —1 follows from @ for j = 2.
Take f € AR} (D) and h € APQ, (D). Then

(1105 = [ T [ e fw)dutuwydvs (2

(12)
= [ [ Katw s pwidntw) = [ G fw)dutu)
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Therefore, as p is (A, y)-skew Carleson, by Theorem [2.17, we have
(T7F. 1)) = Nl 1F 1o, 1Pl
because, by our hypotheses,

1 1 1 !
A= —+— and ’y-(al—i—a?).
P11 Ph AP P

As this holds for every h € A”; /2,2 (D), that is, by Lemma for every continuous functional on A?2 (D),
we conclude that

1T Fllpace = lillxalFllpr.a
that is Tf is bounded from AL} (D) to AB2 (D) and ||Tf|| = [luellaqy-

Case 2. If po = 1, that is A = p%’ condition @ for j = 2 implies § — ap > 0. Take f € AP (D).
Then

172l ap < / / K52, w)] | ()| () vy (2)

= [ 1l [ (e wls(e)Pdva(z) dutw) = [ | w)le) P dun)

by Theorem
1

Now, as p is (), )-skew Carleson, Lemma [2.16 implies that 628 is <,a1>—skew Carleson,
b1

with |62 21l /py.an A l1tllx,5. Theorems [2.12 and [2.13| then implies that §°2=%p is (py, 1; oy )-skew
Carleson, and so we obtain

1T flltae = il llfllpaq s
as desired.

Case 3. If 0 < p2 < 1, thanks to Lemma we can find a r-lattice {ar} and m € N such that for
every z € D there exist at most m values of k such that z € Bp(ay, R), where R = (14 r). Put
By, = Bp(ag,r) and By, = Bp(ag, R).

By Lemmas 2.2] 2-1] and 2:4] for w € By, we have

)P = g [ 1HOP e, (O

and
P2 1 2
Kool % s [ 1K QP ).

Therefore, integrating on By, we get

[ 1wl w)ldu(w)

By

Since ps < 1, summing over k we get

A 2 pB )" tdy, g 2dy,
I GF *Z% B (L 1H0ran, @) [ 1Kot 0P, 0
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Integrating in z over D with respect to v,, we obtain

P2

(13) T8 flzz o, _Z st ([ 1fOPwa©)"

thanks to Lemma Lemma [2.1] u and Theorem [2.7] -, that we can apply because of @ for j = 2.
Now, if A > 1 we have that
1 (Br) =2 [lplland(a) "N

and so yields

||Tﬁf||p2,a2_|u||"az(/ |mdum<<>) <l I,

On the other hand, if A < 1 (that is p1/ps > 1), by Holder inequality we have

P2

B D2 P1
Z S nfw ( /B If(C)I’“de(C))

: (,i <5(a15<("%)£1%> (Z/B Q)P dvg, (g))pi )

Now, the proof of the implication (b)=(c) in [16, Lemma 2.5] applied with s = —y\ and p =

p1p2/(p1 — p2) yields
{M(Bk)} eI
(ag)HHEVA [ o)

and
By
H{W} g~ I
k E>1||pp1-p>
So
||Tﬁf||p2 Q2 —< ||lu’|| ||f||p1,a1 )
and we are done in this case too. O

4. COMPACT TOEPLITZ OPERATORS AND VANISHING SKEW CARLESON MEASURES

In this section we shall prove a version of Theorem [3.2] concerning compact Toeplitz operators and
vanishing skew-Carleson measures. The only interesting case is A > 1, because for A < 1 (that is
p2 < p1) all (A, y)-skew Carleson measures are vanishing (T heorem and all continuous operators
from AP! (D) to A2 (D) are compact (see, e.g., |23, Proposition 2.c.3]).

To deal with the case A > 1 we shall need the following version of Theorem whose proof is
analogous to the proof of |27, Theorem 4.1]:

Theorem 4.1. Let D € C" be a bounded strongly pseudoconvexr domain, and let p be a positive finite
Borel measure on D. Fiz an integer k > 1, and let 0 < p;, g; < +00 and —1 < aj < +00 be given for

j=1,... k. Set
L 1 &g
A= = and == 14
;py’ )\; p;

Assume that A > 1. Then the following statements are equivalent:

(1) p is a vanishing (A, ~y)-skew Carleson measure.
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(ii) For any sequence { f1¢}¢ in the unit ball of AL (D) converging to 0 uniformly on compact sets
in D we have

lim F(¢) =0,

l— 00

where

1fillpy.op <1, 5 =2,.. K

k
FO =sw s [ 150 TG dute)

(iii) For any k sequences {fi¢},...,{fre} in the unit balls of A% (D),...,Ab (D), respectively,
which are all convergent to 0 uniformly on compact sets in D, we have

im [ 711" - fnl2) " d(z) =0

l— 00

Proof. Assume (i) is satisfied, that is u is a vanishing (A, y)-skew Carleson measure. Let {f1 ¢}sen be
a sequence in the unit ball of AB} (D) which converges to 0 uniformly on compact subsets of D, and
for j = 2,...,k let f; be an arbitrary function in the unit ball of Aﬁjj (D). Given r > 0, let us set
D, ={z€ D|é(z) <r}. Then u, = p|p, is a (A, y)-skew Carleson measure, and

lim ||| = 0

because p is vanishing. Fix € > 0. Then if r > 0 is small enough Theorem yields

(14) /Dfl,e(Z)lqllfz(Z)lqz'“Ifk(Z)Iq’“du(Z) = /D\fl,e(Z)lmlfz(Z)lq“'\fk(Z)Ideur(Z) se.

On the other hand, thanks to the uniform convergence of f; , to 0 on compact subsets of D, we can
find M € N such that for any ¢ > M we have |f1 ()| < ¢ for all z € D\ D,. Therefore applying
again Theorem [2.17] we have

FLePLREN™ - D dp(2) < 2 1F()7 1 ulz) du)

D\D,

(15)
—e[ WP IRE @l dutz) <<
D
These last two estimates together imply (ii).

It is evident that (ii) implies (iii). To prove that (iii) implies (i) we follow the same construction
as in the proof of Theorem Choose 01, ...,0; € N* such that

"y
o > 1,1 J
P;jO; max{ +n+1}

forall j=1,...,k, and

k
quaj > Ay,
=1

and set
_(n+1lo; n+l+4aq
For any a € D and j =1, ..., k, consider

fia(2) = 0(a)" ka(2)"7 .
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Then, since a; < (n+ 1)(pjo; — 1) by the choice of o; we know (Theorem a, 51
for all j =1,...,k; moreover it is easy to see that
li a =
Jim 1 fj.a(2)] =0

uniformly on any compact subset of D. Therefore (iii) yields

k
(16) A /D U Fa(2)|% da(2) =
Now, we have

/Hma I duz) = [ [ka(2)[ B 7607 ),

and

k
q;0; n+1
Z%TJ (n+1) Z{j . }: 2 quaj—(nﬁ—l))w
— pj

— j=1
Therefore, settmg s = Zj ojq; > N, (16 . becomes

lim_§(a) "D (572) / lka(2)l* du(z) = lim 6(a)" VG2 B p(a) = 0,
a—0D D a—0D

where B®p is the Berezin transform of level s of p, and so p is a vanishing (A,~y)-skew Carleson
measure thanks to Theorem 2.14] O

We can now prove the following result:

Theorem 4.2. Let D @ C" be a bounded strongly pseudoconvexr domain. Let 0 < p; < ps < +00 and
—1 < a1, as < +oo. Suppose that B € R satisfies

1 1 ;
(17) n+1+ﬂ>nmax{l,}++a]
pj pj
forj=1,2. Put
1 1
A=1+———
b1 P2

and

1 o (6%}
STy
b1 P2
Then for any positive Borel measure p on D the following statements are equivalent:
(i) TP : AL (D) — AP (D) compactly;
(ii) p s a vanishing (X, 7)-skew Carleson measure.
Proof. Assume that (i) holds. Since Tf is compact, it maps every bounded sequence in AP! (D)

converging uniformly to 0 on compact subsets of D to a sequence strongly converging to 0 in A%2 (D).
We consider a sequence {a;} € D such that . lim d(ag) =0 and we set
—+o00

r(2) = 6(ag) OO (2 ay)

Thanks to Theorem we have that
||fk‘ p1,00p — =1.
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Moreover, for any L € D there exists a constant C; > 0 such that |K3| is bounded from above by C
on L x D. Therefore for every z € L we have that

| fi(2)] < Cla(ak)nJrHﬂ*("*lJral)/pl
and so, since since our hypotheses give us that (n + 1+ ) — (n+ 14 «a1)/p1 > 0, we get

hm Sup|fk( )‘ < lim 015(ak)n+l+ﬁ*(”+l+a1)/m =0.
—+00 zc L k——+o00

Hence the compactness of Tf implies
(18) i 1T i, =0

Now, the same computations as in the proof of the implication (i)==(ii) of Theorem [3.2]yield

p(Bp(ag,r))
§(ag) (A F(nt1tan)/p

< T7 fr(ax)

and
TP fi(ar) = 8(ar) =" FHre/e2 | T8 £, o,

Therefore (B )
wu(Bp(ag,r 3
5(@]6)7(”"‘1"'7))‘ = HTH fk||p27a2 )
which, together with and Theorem [2.14] implies that g is a vanishing (A,7)-skew Carleson
measure.

Conversely, assume that p is a vanishing (), v)-skew Carleson measure with A > 1, and let {g }ren
be a bounded sequence in A?! (D) converging uniformly to 0 on compact subsets of D. We want
to prove that the bounded sequence {ngk}keN C AP2 (D) converges strongly to 0 in AR2 (D). We
consider two cases: po > 1 and 0 < pp < 1.

If p, > 1 then, as in the proof of Theorem thanks to Lemma denoting by p} the conjugate
exponent of py and o the number defined in ((11)), using (1 we have

T ullnes s [ TEadsl < swp [ H)l)ldn)

17l a < 12l a'

and Theorem [4.1] yields that the last integral converges to 0 as k tends to +oo.
If 0 < py < 1, for any r-lattice {a;} we consider the associated balls {B; = Bp(a;,r)} and
{Bj = Bp(a;, R)}, where R = (1 +r)/2, as usual. Using we obtain that

o0

p2/p1
(19) ||T’89k||pg,a2 Z m (/E gk(C)|p1dVa1(C)> .

Let € > 0. Since pu is a vanishlng (A, v)-skew Carleson measure by Theorem there exists jo > 0
such that
1(B;)
3,

for all j > jo. Choose do > 0 such that B; C L = {z € D | §(2) > 8o} € D for all j < j;. We can
then split the sum in the right-hand-side of into two parts. For the first part we have

<e

P2

P2 P1 % Jo /’L V B )ﬁ
o (
E: 3(a (n+1+'y))\p2 /Ev lgx(O)[Frdva, (€) | = (s%p |gk|p1> E : (n+1+’y))\p2
J
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and clearly the right-hand-side converges to 0 as k tends to +oc.
On the other hand we have

s e (] 3 g
) (O, ©)) <& / 196() P dvn (O)
j=jor1 d(ay) i \ Jp, j=jot1 \’Bi

< | gyllPz . < P

because the sequence {gx} is norm-bounded. Therefore klim ||T£ 9k|lps,an = 0, and this concludes
— 400

the proof. O

(1]
2]

(3]
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