Brjuno conditions for linearization
in presence of resonances

Jasmin Raissy

Abstract. We present a new proof, under a slightly different (and more natural)
arithmetic hypothesis, and using direct computations via power series expansions,
of a holomorphic linearization result in presence of resonances originally proved
by Riissmann.

1 Introduction

We consider a germ of biholomorphism f of C" at a fixed point p, which,
up to translation, we may place at the origin O. One of the main questions
in the study of local holomorphic dynamics (see [1,2,4], or [11, Chap-
ter 1], for general surveys on this topic) is when f is holomorphically
linearizable, i.e., when there exists a local holomorphic change of coor-
dinates such that f is conjugated to its linear part A.

A way to solve such a problem is to first look for a formal transforma-
tion ¢ solving

fop=poA,

i.e., to ask when f is formally linearizable, and then to check whether
@ is convergent. Moreover, since up to linear changes of the coordinates
we can always assume A to be in Jordan normal form, i.e.,

Al
& Ay
En An
where the eigenvalues Ay, ..., A, € C* are not necessarily distincts, and

gj € {0, &} can be non-zero only if A;_; = A;, we can reduce ourselves
to study such germs, and to search for ¢ tangent to the identity, that is,
with linear part equal to the identity.
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The answer to this question depends on the set of eigenvalues of d f,

usually called the spectrum of d fo. In fact, if we denote by Ay, ..., &, €
C* the eigenvalues of d fp, then it may happen that there exists a multi-
index Q = (q1, ..., q,) € N*, with |Q| > 2, such that

A —ai=Al o a — A =0 (1.1

for some 1 < j < n; a relation of this kind is called a (multiplicative)
resonance of f relative to the j-th coordinate, Q is called a resonant
multi-index relative to the j-th coordinate, and we put

Res;(A) :={Q e N" | |Q] > 2,02 = ;).

The elements of Res(X) := U;le Res; (1) are simply called resonant

multi-indices. A resonant monomial is a monomial z¢ := z{'--.z!" in
the j-th coordinate with Q € Res;(}).

Resonances are the formal obstruction to linearization. Indeed, we
have the following classical result:

Theorem 1.1 (Poincaré, 1893 [7]; Dulac, 1904 [6]). Let f be a germ of
biholomorphism of C" fixing the origin O with linear part in Jordan nor-
mal form. Then there exists a formal transformation ¢ of C", without con-
stant term and tangent to the identity, conjugating f to a formal power
series g € Cllzy, ..., z,I" without constant term, with same linear part
and containing only resonant monomials. Moreover, the resonant part of
the formal change of coordinates ¢ can be chosen arbitrarily, but once
this is done, ¢ and g are uniquely determined. In particular, if the spec-
trum of d fo has no resonances, f is formally linearizable and the formal
linearization is unique.

A formal transformation g of C", without constant term, and with lin-

ear part in Jordan normal form with eigenvalues Ay, ..., %, € C*, is
called in Poincaré-Dulac normal form if it contains only resonant mono-
mials with respect to Aq, ..., A,.

If f is a germ of biholomorphism of C" fixing the origin, a series
g in Poincaré-Dulac normal form formally conjugated to f is called a
Poincaré-Dulac (formal) normal form of f.

The problem with Poincaré-Dulac normal forms is that, usually, they
are not unique. In particular, one may wonder whether it could be possi-
ble to have such a normal form including finitely many resonant monomi-
als only. This is indeed the case (see, e.g., Reich [12]) when d f belongs
to the so-called Poincaré domain, that is when d fy is invertible and O is
either attracting, i.e., all the eigenvalues of d fy have modulus less than 1,
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or repelling, i.e., all the eigenvalues of d fp have modulus greater than 1
(when d fy is still invertible but does not belong to the Poincaré domain,
we shall say that it belongs to the Siegel domain).

Even without resonances, the holomorphic linearization is not guaran-
teed. The best positive result is essentially due to Brjuno [5]. To describe
such a result, let us introduce the following definitions:

Definition 1.2. For A, ..., A, € Cand m > 2 set

wiy.ay(m) = min A2 — ;). (1.2)
2<(Ql=m
1<j<n
If Ay,..., A, are the eigenvalues of dfp, we shall write w;(m) for

It is clear that ws(m) # O for all m > 2 if and only if there are no
resonances. It is also not difficult to prove that if f belongs to the Siegel
domain then

lim ws(m) =0,

m——+00

which is the reason why, even without resonances, the formal lineariza-
tion might be divergent.

Definition 1.3. Let n > 2 and let Ay, ..., A, € C* be not necessarily
distinct. We say that A satisfies the Brjuno condition if there exists a
strictly increasing sequence of integers {p,},.o with pg = 1 such that

1 1
Y —log——— <o (1.3)

<
P O, (Do)

Brjuno’s argument for vector fields, when adapted to the case of germs
of biholomorphisms, yields the following result (see [8]).

Theorem 1.4 (Brjuno, 1971 [5]). Let f be a germ of biholomorphism
of C" fixing the origin, such that d fo is diagonalizable. Assume more-
over that the spectrum of d fo has no resonances and satisfies the Brjuno
condition. Then f is holomorphically linearizable.

In the resonant case, one can still find formally linearizable germs, (see
for example [9] and [10]), so two natural questions arise.

(Q1) How many Poincaré-Dulac formal normal forms does a formally
linearizable germ have?

(Q2) Is it possible to find arithmetic conditions on the eigenvalues of the
spectrum of d fo ensuring holomorphic linearizability of formally
linearizable germs?
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Riissmann gave answers to both questions in [13], an I.H.E.S. preprint
which is no longer available, and that was finally published in [14]. The
answer to the first question is the following (the statement is slightly dif-
ferent from the original one presented in [14] but perfectly equivalent):

Theorem 1.5 (Riissmann, 2002 [14]). Let f be a germ of biholomor-
phism of C" fixing the origin. If f is formally linearizable, then the linear
form is its unique Poincaré-Dulac normal form.

To answer to the second question, Riissmann introduced the following
condition, that we shall call Riissmann condition.

Definition 1.6. Let n > 2 and let Ay, ..., A, € C* be not necessarily
distinct. We say that A = (Ay, ..., A,) satisfies the Riissmann condition
if there exists a function 2: N — R such that:

(1) k<Qk) <Qk+1)forallk e N;
(il) Yioy o logQ(k) < +o0, and
1

(i) [A2 — A;] > aqop forall j = 1,...n and for each multi-index

0 € N with |Q] > 2 not giving a resonance relative to j.
Riissmann proved the following generalization of Brjuno’s Theorem 1.4
(the statement is slightly different from the original one presented in [14]
but perfectly equivalent).

Theorem 1.7 (Riissmann, 2002 [14]). Let f be a germ of biholomor-
phism of C" fixing the origin and such that d fo is diagonalizable. If f
is formally linearizable and the spectrum of d fo satisfies the Riissmann
condition, then f is holomorphically linearizable.

We refer to [14] for the original proof and we limit ourselves to briefly
recall here the main ideas. To prove these results, Riissmann first studies
the process of Poincaré-Dulac formal normalization using a functional
iterative approach, without assuming anything on the diagonalizability
of d fp. With this functional technique he proves Theorem 1.5; then he
constructs a formal iteration process converging to a zero of the operator
F(p) := fop —¢@o A (where A is the linear part of f), and, assuming
A diagonal, he gives estimates for each iteration step, proving that, un-
der what we called the Riissmann condition, the process converges to a
holomorphic linearization.

In this paper, we shall first present a direct proof of Theorem 1.5 using
power series expansions. Then we shall give a direct proof, using ex-
plicit computations with power series expansions and then proving con-
vergence via majorant series, of an analogue of Theorem 1.7 under the
following slightly different assumption, which is the natural generaliza-
tion to the resonant case of the condition introduced by Brjuno.
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Definition 1.8. Let n > 2 and let Ay,..., A, € C* be not necessarily
distinct. For m > 2 set

@y, (m) = min  min [ — Ajls
2<|Q)|<m 1<j=n

Q¢Res; (1)

where Res (1) is the set of multi-indices Q € N", with |Q| > 2, giving a
resonance relation for A = (A, ..., A,) relativeto 1 < j < n, i.e., py -
A; = 0.If Ay, ..., A, are the eigenvalues of d fo, we shall write c~of (m)

Definition 1.9. Let n > 2 and let A = (A1, ..., 1,) € (C*)". We say
that A satisfies the reduced Brjuno condition if there exists a strictly in-
creasing sequence of integers {p, },.o with pg = 1 such that

Zilog% 0.

<
v=0 Pv Why,.cihn (pv+1)
We shall then prove:

Theorem 1.10. Let f be a germ of biholomorphism of C" fixing the ori-
gin and such that d fo is diagonalizable. If f is formally linearizable
and the spectrum of d fo satisfies the reduced Brjuno condition, then f
is holomorphically linearizable.

We shall also show that Riissmann condition implies the reduced Br-
juno condition and so our result implies Theorem 1.7. The converse is
known to be true in dimension 1, as proved by Riissmann in [14], but is
not known in higher dimension.

The structure of this paper is as follows. In the next section we shall
discuss properties of formally linearizable germs, and we shall give our
direct proof of Theorem 1.5. In Section 3 we shall prove Theorem 1.10
using majorant series. In the last section we shall discuss relations be-
tween Riissmann condition and the reduced Brjuno condition.

ACKNOWLEDGEMENTS. I would like to thank Marco Abate for helpful
comments on a draft of this work.

2 Formally linearizable germs

In general, a germ f can have several Poincaré-Dulac formal normal
forms; however, we can say something on the shape of the formal conju-
gations between them. We have in fact the following result.
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Proposition 2.1. Let [ and g be two germs of biholomorphism of C"
fixing the origin, with the same linear part A and in Poincaré-Dulac
normal form. If there exists a formal transformation ¢ of C", with no
constant term and tangent to the identity, conjugating f and g, then ¢

contains only monomials that are resonant with respect to the eigenvalues
of A.

Proof. Since f and g are in Poincaré-Dulac normal form, A is in Jordan
normal form. Let Aq, ..., A, be the eigenvalues of A. We shall prove that
a formal solution ¢ = I + ¢ of

fop=g¢pog (2.1)

contains only monomials that are resonant with respect to Ay, ..., A,.
Using the standard multi-index notation, for each j € {1, ..., n} we can
write

fi@=Ajzj+¢€jzj—1 + ij;es(z) =Ajzj+¢€jzj-1+27; Z fQ,jZQ,

QGN]'
12=1
gi(@)=XAjzj+ejzj—1+ ng;-es(z) =Ajzjt+ejzi-1+2; Z gQ,./ZQ,
QEN]'
12=1
and
9j(2) =z, <1+¢§CS(Z)+ @; res(Z)) =z;+ ij 90,22+ 2, Z 90.;2°,
Q€N; Q€eN;
r2=1 r2#£1
where

Nj:={QeZ"||Q1=1,q9; = —1,q, = Oforall h # j},

and ¢; € {0, 1} can be non-zero only if A; = A;_;. With these notations,
the left-hand side of the j-th coordinate of (2.1) becomes

(fop);(2)
=2jp; () +ei0; 1D +9;(D) Y fo ] | ex@*

Q€N; k=1
=l 2.2)
=12, (14 (@) +9] @) +e;zj-1 (1+¢7, () +077 (2) '

+2; (149 @497 @)Y fo 22 [(1+er @ +e] ™ @)™
Q€eN; k=1
29=1;
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while the j-th coordinate of the right-hand side of (2.1) becomes

(pog);(2)
=g;@)+¢;(2)) %o, ,]_[gk<z>qk +8;(2)) 9o, ,Hgk(z)%
Q€N; k= Q€N; k=
20=1 AQ;él
=Ajzjtejzj-1+2;85 (@)
a (2.3)
+(hjzj+ezj- 1+z,gres(z)Z¢Q,ZQH<)»k+sk—+gres(z)>
QeN
1@=1
L3
+(hjzj+ezj- 1+z,gres(z)Zgogszl_[<)»k+8k—+gr“( ))
Q€N;
19 #£1

Furthermore, notice that if P and Q are two multi-indices such that A” =
A€ =1, then we have A*"*#C = 1 for every «, 8 € Z.

We want to prove that ¢y ; = 0 for each multi-index Q € N; such
thatNAQ # 1. Let us assume by contradiction that this is not true, and
let Q be the first (with respect to the lexicographic order) multi-index in

= U?Zl N; so that A2 £ 1 and ¢5.; # 0. Let j be the minimal
in {1, ..., n} such that é € Nj, and let us compute the coefficient of the
monomial z2+¢ in (2.2) and (2.3). In (2.2) we only have Ajgo@,j because,
since f — A is of second order and resonant, other contributions could
come only from coefficients ¢p x with |P| < [Q] and AP #£ 1, but there
are no such coefficients thanks to the minimality of Q and j. In (2.3) we
can argue analogously, but we have also to take care of the monomials
divisible by 8,}; (zk—1/z0)"z", with AP = 1; in this last case, if &, # 0,
we obtain a multi-index P — hey + heg_y, and again AP ~hetha-t = ]
because Ay = Ar_;. Then in (2.3) we only have AQ+‘1(p~ Hence, we
have ~

(ACF = pgg =0,

yielding

5. =0
because 1.2 # 1 and A; # 0, and contradicting the hypothesis. O
Remark 2.2. It is clear from the proof that Proposition 2.1 holds also in

the formal category, i.e., for f, g € Collz1, ..., z,]| formal power series
without constant terms in Poincaré-Dulac normal form.
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We can now give a direct proof of Theorem 1.5, i.e., that when a germ
is formally linearizable, then the linear form is its unique Poincaré-Dulac
normal form.

Theorem 2.3. Let f be a germ of biholomorphism of C" fixing the ori-
gin. If f is formally linearizable, then the linear form is its unique
Poincaré-Dulac normal form.

Proof. Let A be the linear part of f. Up to linear conjugacy, we may
assume that A is in Jordan normal form. If the eigenvalues A4, ..., A, of
A have no resonances, then there is nothing to prove. Let us then assume
that we have resonances, and let us assume by contradiction that there
is another Poincaré-Dulac formal normal form g # A associated to f.
Since f is formally linearizable and it is formally conjugated to g, also g
is formally linearizable. Thanks to Proposition 2.1, any formal lineariza-
tion Y of g tangent to the identity contains only monomials resonant with
respectto Ay, ..., A,; hence, writing g = A + g™ and v = I + ", the
conjugacy equation g o ¢ = ¥ o A becomes

A+ AY™ 4+ o (I +9™) = (A+g™) o (I + ™)
= +¢™) oA
=A+Y™oA
= A+ AY™,

because ™ o A = Ay"™*. Hence there must be

g%oy =0,

and composing on the right with v ~! we get g™ = 0. O

Remark 2.4. As a consequence of the previous result, we get that any
formal normalization given by the Poincaré-Dulac procedure applied to a
formally linerizable germ f is indeed a formal linearization of the germ.
In particular, we have uniqueness of the Poincaré-Dulac normal form
(which is linear and hence holomorphic), but not of the formal lineariza-
tions. Hence a formally linearizable germ f is formally linearizable via
a formal transformation ¢ = 1d +¢ containing only non-resonant mono-
mials. In fact, thanks to the standard proof of Poincaré-Dulac Theorem
(see [11, Theorem 1.3.25]), we can consider the formal normalization
obtained with the Poincaré-Dulac procedure and imposing ¢ ; = 0 for
all Q and j such that A9 = 1;; and this formal transformation ¢, by
Theorem 2.3, conjugates f to its linear part.
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3 Convergence under the reduced Brjuno condition

Now we have all the ingredients needed to prove Theorem 1.10.

Theorem 3.1. Let f be a germ of biholomorphism of C" fixing the origin
and such that d fo is diagonalizable. If f is formally linearizable and
the spectrum of dfo satisfies the reduced Brjuno condition, then f is
holomorphically linearizable.

Proof. Up to linear changes of the coordinates, we may assume that the
linear part A of f is diagonal, i.e., A = Diag(ry, ..., A,). From the
conjugacy equation

fop=g¢oA, 3.1

writing f(z) = Az + Y 2, frzh, and p(w) = w + 3,512, Pow?,
where f; and ¢p belong to C", we have that coefficients of ¢ have to
verify

L
Y Aopow? =) fi (Z wa’”> : (32)

10]1=2 IL1=2 M|=1

where
Ap =121, — A.

The matrices Ay are not invertible only when Q € U?:l Res; (1), but,
thanks Remark 2.4, we can set ¢ ; = O for all QO € Res;(1); hence we
just have to consider Q ¢ ﬂ;le Res; (1), and, to prove the convergence
of the formal conjugation ¢ in a neighbourhood of the origin, it suffices
to show that |

sup — log ||¢gll < oo, 3.3)

o 10|

for |Q| > 2and Q ¢ ﬂ;f:lResj()\).

Since f is holomorphic in a neighbourhood of the origin, there ex-
ists a positive number p such that | f;|| < p!*! for |[L| > 2. The
functional equation (3.1) remains valid under the linear change of co-
ordinates f(z) — of(z/0), p(w) — op(w/o) with o = max{1, p?}.
Therefore we may assume that

VILIZ2  fell =1

It follows from (3.2) that for any multi-index Q € N" \ ﬂ;zl Res;(4)
with |Q| > 2 we have

looll <eg' > ol llog, I, (3.4)
Qi+ 40v=0
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where
€o = min |)\Q—)»j|.

I<j<n

Q¢Res; (%)

We can define, inductively, for m > 2

Ay = E Uy = Oy s

my+--+my=j
v>2

and

for Q € N"\ ﬂjleesj(k) with |Q| > 2, with oy = 1 and 6 = 1,
where E is any integer vector with |E| = 1. Then, by induction, we have
that

looll < o060,

for every Q € N" \ ﬂ';zl Res; (1) with |Q] > 2. Therefore, to establish
(3.3) it suffices to prove analogous estimates for o, and §o.
It is easy to estimate o, Leta = ), |, t™. We have

a—t= Zamt’” = Z (Zahz‘h> = 101206.

m=>2 m=>2 \h>1

This equation has a unique holomorphic solution vanishing at zero

t+1 8t
o=—\1-/1——],
4 (1+1)?

defined for |¢| small enough. Hence,
sup — log o, < 00,
m m

as we want.

To estimate §, we have to take care of small divisors. First of all, for
each multi-index Q ¢ ﬂ;’:  Res; (1) with |Q] > 2 we can associate to 6o
a decomposition of the form

So=¢p 6 e, (3.5)

where Lo = Q, Q| > |[Li| > --- > |L,| >2and L; ¢ ﬂ;zl Res;(A)
forall j =1,..., pand p > 1. In fact, we choose a decomposition Q =
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Qi1+ -+ Q, such that the maximum in the expression of 8¢ is achieved;
obviously, Q; does not belong to ﬂ'}zl Res;(A) forall j =1,...,v. We
can then express 8¢ in terms of eé; and SQ; with |Q’j| < |Q|. Carrying
on this process, we eventually arrive at a decomposition of the form (3.5).
Furthermore, for each multi-index Q ¢ ﬂ;zl Res; (1) with |Q] > 2, we
can choose an index i so that

8Q = |)\.Q — )\’iQ|‘

The rest of the proof follows closely in [9, proof of Theorem 5.1]. For
the benefit of the reader, we report it here.
Form > 2and 1 < j < n, we can define

N;,(Q)
to be the number of factors 821 in the expression (3.5) of §, satisfying
e < QcT)f(m), and i;, = j,

where @ (m) is defined in Definition 1.8, and in this notation can be
expressed as
wr(m) = min €0,
f( ) 2<|0|=m ¢
Q¢ﬁ7=1ReSj(k)

and 6 is the positive real number satisfying

40 = min |h,] < 1.

1<h<n

The last inequality can always be satisfied by replacing f by £~ if nec-
essary. Moreover we also have @ (m) < 2.

Notice that @ (m) is non-increasing with respect to m and under our
assumptions @ ;(m) tends to zero as m goes to infinity. The following is
the key estimate.

Lemma3.2. Form >21<j<nand Q ¢ ﬂjzl Res; (1), we have

0, if 10l <m,
NI (0) <
e )
m

Proof. The proof is done by induction on |Q]. Since we fix m and j
throughout the proof, we write N instead of Nj,.
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For [Q| < m,

gg > 0r(10]) = &p(m) > 0 &y(m),
hence N(Q) = 0.
Assume now that |Q| > m. Then 2|Q|/m — 1 > 1. Write
(SstélaQ,"'an, 0=01+--+0,, v=>2,

with |Q| > |Qi] = --- > |Q,[; note that Q — Q; does not belong
to (j_, Res; (%), otherwise the other Q)’s would be in [j_, Res;(%).
We have to consider the following different cases.

Case 1: e9 > 6 & (m) and iy arbitrary, or g < @ w(m) andip # j.
Then
N(Q)=N(Q) +---+N(Q)),
and applying the induction hypotheses to each term we get N(Q) <
QlQl/m) = 1.
Case2: 9 <O ws(m)andip = j. Then

N(Q)=1+N(Q1)+---+N(Q.),

and there are three different subcases.
Case 2.1: |Q¢| < m. Then

NQ)=1< M—1
m

as we want.

Case 2.2: |Q1| > |0Q>| > m. Then there is v/ such that 2 < v/ < v
and |Q,| > m > |Qy41], and we have

201, _20l

N(Q)=1+N(Q1) + - +N(Qv)<l+_ - L

m

Case2.3: 10| > m > |Q»|. Then
N(Q) =1+ N(Q),

and there are again three different subcases.
Case2.3.1:ip, # j. Then N(Q) = 0 and we are done.
Case2.3.2: |Qi| < |Q|l —mandip, = j. Then

Ql-m 2ol
m m

N(Q)=1+2

Case 2.3.3: |Qi| > |Q| —m and ip, = j. The crucial remark is
that sa gives no contribute to N(Q1), as shown in the next lemma.
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Lemma 3.3. If O > Q; with respect to the lexicographic order, Q, Q
and Q — Qi arenotin()j_; Res;(1), ig = ig, = j and

gg <Owsm) and &g, <0 &;(m),

then |Q — Q1| = |Q| = Q1] = m.

Proof. Before we proceed with the proof, notice that the equality |Q —

01| =10] — 10| is obvious since Q > Q.
Since we are supposing e, = [A2! — A;| < 6 @;(m), we have

KO > 2] — 0@, (m) > 46 — 260 = 26.

Let us suppose by contradiction |Q — Q| = |Q| — |Q1| < m. By
assumption, it follows that
20 5f(m) > €ep + &g,
= A2 — A + A9 — A
> (18 =22
> [Aerperer -1
>200,;(10 - Qil+1)

which is impossible. O
Using Lemma 3.3, Case 1 applies to §, and we have
N(Q)=1+N(Q1)+---+N(Qy,),

where [Q] > [Q1] > Q1| = --- = 0y, |and Q) = Q1 +--- + O, .
We can do the analysis of Case 2 again for this decomposition, and we
finish unless we run into Case 2.3.2 again. However, this loop cannot
happen more than m + 1 times and we have to finally run into a different
case. This completes the induction and the proof of Lemma 3.2. ]

Since the spectrum of d fy satisfies the reduced Brjuno condition, there
exists a strictly increasing sequence {p,},>o of integers with pp = 1 and

such that
1 1
D - log

_— < (3.6)
V>0 Pv C‘)f(pv+1)

‘We have to estimate

1 oL -
——logdp = Z — logSLj], Q¢ mResj()»).
. j=1
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By Lemma 3.2,

card {0<j<p:0@s(pr1)<eL, <0 (p)} <N, (Q)+--- N} (Q)
_ 210l
Pv

for v > 1. Itis also easy to see from the definition of §¢ that the number
of factors ezjl is bounded by 2| Q| — 1. In particular,

2n| Q1

Po

card{0 < j < p:0@s(p1) <er,} <2nQ| =
Then,

—logS <2n logi
o] ¢ Xgp 0@ (Pus1)

1 1 1 1 ©7
=2n (Z—logA,i +log—Z—).

=P 0Of(puy) 0 = pv

Since @ (m) tends to zero monotonically as m goes to infinity, we can
choose some 772 such that 1 > w ¢ (m) for all m > m, and we get

Zl 1 leg~1

S opv T log(1/@r(m) & pv  @p(pott)’

where v verifies the inequalities p,,—; < m < p,,. Thus both series in
parentheses in (3.7) converge thanks to (3.6). Therefore

sup — logdy < o0
0 IQI ¢

and this concludes the proof. U

When there are no resonances, we obtain Brjuno’s Theorem 1.4.

Remark 3.4. If the reduced Brjuno condition is not satisfied, then there
are formally linearizable germs that are not holomorphically linearizable.
A first example is the following: let us consider the following germ of
biholomorphism f of (C2, 0):

fi(z, w) = Az + 2%,

fZ(Zs w) =w, (38)
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with A = ¢*% 9 € R\ Q, not a Brjuno number. We are in presence
of resonances because Res; (A, 1) = {P e N> | P = (1, p), p > 1} and
Res,(A, 1) = (P e N> | P = (0, p), p = 2}. Itis easy to prove that
f is formally linearizable, but not holomorphically linearizable, because
otherwise the holomorphic function Az + z> would be holomorphically
linearizable contradicting Yoccoz’s result [15].

A more general example is the following:

Example 3.5. Letn > 2,andlet),...,A; € C*,be 1 < s < n complex
non-resonant numbers such that
1 1
limsup — log ——— = +o0. 3.9
m——+oo M Wh,..., Ax(m)

Then it is possible to find (see e.g. [11, Theorem 1.5.1]) a germ f of
biholomorphism of C* fixing the origin, with d fo = Diag(Aq, ..., Ay),
formally linearizable (since there are no resonances) but not holomor-
phically linearizable. It is also possible to find w1, ..., u, € C*, with
r = n — s, such that the n-tuple A = (A, ..., Ag, 1, ..., 1) € (C*)"
has only level s resonances (see [9], where this definition was first intro-
duced, for details), i.e., for 1 < j < s we have

Resj(k)={PeN”‘|P|22, pi=38;forl=1,...,s, and uy**" - uP =1},
where §; is the Kroenecker’s delta, and for s + 1 < h < n we have
Res;, (M ={PeN"||P|>2, py=---=p,=0, pu{""" -+ ul"=p_}.
Then any germ of biholomorphism F of C" fixing the origin of the form
Fi(z,w) = f;(2) forj=1,...,s,
Fh(z,w)zuh_swh_s—i-l?h(z,w) forh=s+1,...,n,
with _
ord,(Fp) > 1,

forh =s+1,...,n, where (z, w) = (z1,..., 25, Wy, ... w,) are local
coordinates of C" at the origin, is formally linearizable (see [9, Theorem
4.1]),but A = (A, ..., Ag, U1, ..., i) does not satisfy the reduced Br-
juno condition (because of (3.9)) and F is not holomorphically lineariz-
able. In fact, if F' were holomorphically linearizable via a linearization
®, tangent to the identity, then Fo® = ®oDiag(ry, ..., Ay, 1, ..., Ly).
Hence, foreach 1 < j < s, we would have

(Fo®)(z,w) =4,;9,(z, w) + f1(P1(z, w), ..., Py(z, w))

= (CD ODiag()\h v 7)"85 M1y ey /’LV))j(Z’ w)
= cDj()"lZI’ L] 7)\'sZ5, lel, ceey Mrwr),
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yielding
(F o q))](zﬂ 0) = q)j()\'lzla ] )\'stvoy e 70),

and thus the holomorphic germ ¢ of C* fixing the origin defined by
¢j(z) = ®j(z,0) for j = 1,...,s, would coincide with the unique for-
mal linearization of f, that would then be convergent contradicting the
hypotheses.

4 Riissmann condition vs. reduced Brjuno condition

Riissmann proves that, in dimension 1, his condition is equivalent to Br-
juno condition (see [14, Lemma 8.2]), and he also proves the following
result.

Lemma 4.1 (Riissmann, 2002 [14]). Let 2: N — (0, +00) be a mono-
tone non decreasing function, and let {s,} be defined by s, := 297", with
q € N. Then

1 1
> —log Q(su11) < > 5 log (k).

v>0 "V k>24+1

We have the following relation between the Riissmann and the reduced
Brjuno condition.

Lemma 4.2. Letn > 2 and let A = (A1, ..., ;) € (C*". If & satisfies
Riissmann condition, then it also satisfies the reduced Brjuno condition.

Proof. The function @, _;, (m) defined in Definition 1.8 satisfies
By ()™ < @5, (m+ D7

forallm € N, and
IAC — il =@y, 5, (0D

for each j = 1,...,n and each multi-index Q € N with |Q| > 2 not
giving a resonance relative to j. Furthermore, by its definition, it is clear
that any other function 2: N — R such that k < Q(k) < Q(k + 1) for

all k € N, and satistying, forany j = 1, ...n,
1

A0 —hjl = o

QoD

for each multi-index Q € N with |Q| > 2 not giving a resonance relative
to j, is such that

—— < Q(m)
Why,..hy (m)
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for all m € N. Hence

1 1 1
> Lig= 3 Ligagu
=0 P Wiy, (Pog1) v=0 Pv

for any strictly increasing sequence of integers {p,},.o with pg = 1.
Since A satisfies Riissmann condition, thanks to Lemma 4.1, there exists
a function €2 as above such that

1
> —log Q(sus1) < +oo,

>0 Sv
with {s,} be defined by s, := 297", with ¢ € N, and we are done. O

We do not know whether the Riissmann condition is equivalent to the
reduced Brjuno condition in the multi-dimensional case. As we said,
Riissmann is able to prove that this is true in dimension one, but to do so
he strongly uses the one-dimensional characterization of these conditions
via continued fraction.

Added in proofs. In: J. RAISSY, Holomorphic linearization of com-
muting germs of holomorphic maps, arXiv:1005.3434v1, it is proved that
the Riissmann condition and the reduced Brjuno condition are indeed
equivalent.
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