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Abstract In this short note we give an updated account of the recent results on Fatou com-
ponents for polynomial skew-products in complex dimension two in a neighbourhood of an
invariant fiber, dividing our discussion according to the different possible kinds of invariant
fibers.
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1 Introduction

Consider the discrete holomorphic dynamical system given by a complex manifold X and
the iteration of a holomorphic endomorphim F : X → X . In the investigation of the global
behaviour of such a system it is natural to introduce the Fatou set of F , that is the largest open
set F (F) where the family of iterates {Fn}n∈N of F is normal. A connected component of
the Fatou set is called a Fatou component.

In complex dimension one, Fatou components of rational maps of degree at least 2 on the
Riemann sphere are well understood. In fact, from one hand, Fatou conjectured the following
classification for invariant Fatou components, which was partially proven by Fatou himself
and completed by several authors (Julia, Leau, Siegel, Herman, Yoccoz...).

Theorem 1 (Fatou’s Classification of invariant Fatou components) Let f : P1(C) →
P1(C) be a rational map of degree d ≥ 2 on the Riemann sphere. Let Ω be an invariant
Fatou component of f . Then Ω is either:
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(i) the basin of an attracting fixed point p, i.e. | f ′(p)|< 1,
(ii) the parabolic basin of a parabolic fixed point p, i.e. | f ′(p)| is a root of unity, and in

this case f ′(p) = 1,
(iii) a rotation domain, that can be a Siegel disk of an elliptic fixed point p, i.e. f ′(p)= e2πiθ

with θ ∈ R\Q, or a Herman ring.

We recall that a connected open set U is called:

– a basin of an attracting fixed point p if it contains a fixed point p such that | f ′(p)| < 1
and the sequence of iterates { f n} converges uniformly to p on every compact subset of
U ;

– a parabolic basin if there is a fixed point p ∈ ∂U with | f (p)| = 1, and the sequence of
iterates { f n} converges uniformly to p on every compact subset of U ;

– a Siegel disk if it is simply connected, and there exists a holomorphic isomorphism
h : U → D such that h◦ f ◦h−1(z) = e2πiθ z, with θ ∈ R\Q;

– a Herman ring if it is doubly connected, and there exists a radius r > 0 and a holomor-
phic isomorphism h : U → Ar := {z ∈C | r < |z|< 1}, such that h◦ f ◦h−1(z) = e2πiθ z,
with θ ∈ R\Q.

On the other hand, Sullivan proved his celebrated non-wandering domains theorem.

Theorem 2 (Sullivan [30]) Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2. Then
every Fatou component of f is (pre-)periodic.

Therefore, up to considering iterates of f we can describe all its Fatou components. The
proof of Sullivan’s non-wandering Theorem strongly relies on the Ahlfors-Bers mesurable
mapping Theorem for quasi-conformal functions. Such a result is strongly one-dimensional
and does not have an analogue in higher dimension, making impossible to mimic Sullivan’s
proof there. Moreover, in complex dimension two, the understanding of Fatou components is
far less complete. A considerable progress in the classification of periodic Fatou components
has been achieved thanks to Bedford and Smillie [2] [3] [4], Fornæss and Sibony [13],
Lyubich and Peters [21] and Ueda [31].

The question of the existence of wandering (i.e., not pre-periodic) Fatou components
in higher dimension was put forward by several authors since the 1990’s (see e.g. [15]).
Higher dimensional transcendental mappings with wandering domains can be constructed
from one-dimensional examples by taking direct products. An example of a transcendental
biholomorphism of C2 with a wandering Fatou component oscillating to infinity was con-
structed by Fornæss and Sibony in [14]. Nonetheless, until recently very little was known
about the existence of wandering Fatou components for holomorphic endomorphisms of
P2(C) or for polynomial endomorphisms of C2.

A first natural class of maps to consider are direct product polynomial endomorphisms
of C2, that is maps F : C2→ C2 of the form

F(z,w) = ( f (z),g(w)),

where f and g are complex polynomials in one variable. This allows us to recover the gen-
eralizations of one-dimensional dynamical behaviours in dimension two, but without giving
us a complete understanding of all possible behaviours of polynomial endomorphisms in
C2, as direct products are very particular cases.

A more interesting class to consider is given by polynomial skew-products in C2, namely
polynomial maps F : C2→ C2 of the form

F(z,w) = ( f (z,w),g(w)), (1)
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where g is a complex polynomial in one variable and f is a complex polynomial in two
variables. Since they preserve the fibration {w = const.}, skew-products allow us to build on
one-dimensional dynamics and to get a first flavor of the richness of the higher dimension
setting we are working in. This idea has been used by several authors to construct maps with
particular dynamical properties. Dujardin, for example, used in [11] specific skew-products
to construct a non-laminar Green current. Boc-Thaler, Fornæss and Peters constructed in
[6] a map having a Fatou component with a punctured limit set. Last but not least, as we
shall recall in section 3, skew-products are one of the key ingredients in the construction
obtained very recently by Astorg, Buff, Dujardin, Peters and the author [1] of holomorphic
endomorphisms of P2(C) having a wandering Fatou component.

The investigation of the holomorphic dynamics of polynomial skew-products was started
by Heinemann [16] and then continued by Jonsson [18]. The topology of Fatou components
of skew-products has been studied by Roeder in [26].

Given a Fatou component Ω of a polynomial skew-product F in C2, its projection on the
second coordinate Ω2 = π2(Ω) is a Fatou components for g and hence thanks to Sullivan’s
non-wandering Theorem 2, up to considering an iterate of F , it has to fall into one of the
three cases given by Theorem 1, and moreover, since we are considering polynomials, Her-
man rings cannot occur. Therefore, since fixed points for g correspond to invariant fibers for
F , up to considering an iterate of F , we can restrict ourselves to study what happens in neigh-
bourhoods of invariant fibers of the form {w = c}. One-dimensional theory also describes
the dynamics on the invariant fiber, which is given by the action of the one-dimensional
polynomial f (c,z) := fc(z), and hence the Fatou components of fc will be again all pre-
periodic and, up to consider an iterate, we can assume that they are either attracting basins,
or parabolic basins or Siegel disks. This structure leads us to two immediate questions.

– Question 1. Do all Fatou components of fc bulge to two-dimensional Fatou components
of F?

– Question 2. Is it possible to have wandering Fatou components for F in a neighbourhood
of an invariant fiber?

In the following we shall call an invariant fiber {w = c} attracting, parabolic or elliptic
according to whether c is an attracting, parabolic or elliptic fixed point for g. A bulging Fatou
component will be a Fatou component Ω of F such that Ω ∩{w = c} is a one-dimensional
Fatou component of fc on the invariant fiber {w = c}. With a slight abuse of terminology we
shall say that a Fatou component Ωc of fc on the invariant fiber {w = c} is bulging if there
exists a bulging Fatou component Ω of F so that Ωc = Ω ∩{w = c}.

The purpose of this note is to provide an updated account of the results related to these
questions. We shall divide our discussion according to the different possible kinds of invari-
ant fibers.

2 Attracting invariant fiber

Let us consider a polynomial skew-product F : C2→ C2 of degree d ≥ 2

F(z,w) = ( f (z,w),g(w)),

with an attracting invariant fiber. We can assume without loss of generality that the invariant
fiber is {w = 0}. Therefore we have g(0) = 0 and |g′(0)| < 1. In this case it is a well-
known one-dimensional result (see for exemple [9] or [22]) that there exists an attracting
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basin, containing the origin, of points whose iterates converge to the origin. The rate of
convergence to the fixed point depends on whether g′(0) = 0, in which case the fixed point
is called superattracting, or g′(0) 6= 0, in which case the fixed point is called attracting or
geometrically attracting.

2.1 Superattracting case

This setting was studied by Lilov in [20] who was able to answer both questions stated in
the introduction. He first proved the following result giving a positive answer to Question 1.

Theorem 3 (Lilov [20]) Let F : C2 → C2 be a polynomial skew-product of the form (1)
of degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F. Then all one-
dimensional Fatou components of fc bulge to Fatou components of F.

Idea of the proof. We can assume c = 0 without loss of generality. Thanks to Theorem 1
and Theorem 2, all Fatou components of the restriction f0(z) = f (z,0) of f (z,w) to the
invariant fiber are (pre-)periodic and are either attracting basins, or parabolic basins or Siegel
domains. The strategy of the proof is to prove separately for each of these cases that the
corresponding component is contained in a two-dimensional Fatou component of F . The
bulging of one-dimensional Fatou components of attracting periodic points of f0(z) is well-
known and follows for instance from the results of Rosay and Rudin [27]. For the remaining
cases, by [20, Theorem 3.17] there exists a strong stable manifold through all point in the
one-dimensional Fatou components of parabolic or elliptic periodic points of f0(z), and so
the corresponding bulging Fatou components simply consist of the union of such manifolds.

Then Lilov proved the following result implying the non-existence of wandering Fatou
components in a neighbourhood of a superattracting invariant fiber.

Theorem 4 (Lilov [20]) Let F : C2 → C2 be a polynomial skew-product of the form (1)
of degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F and let B be the
immediate basin of the superattracting fixed point c. Let w0 ∈ B and let Dw0 be a one-
dimensional open disk lying in the fiber over w0 (C×{w0}). Then the forward orbit of D
must intersect one of the bulging Fatou components of fc.

The proof relies on the repeated use of [20, Lemma 3.2.4] to the orbit of a disk lying
in a fiber over a point in the attracting basin, in order to obtain estimates from below for
the radii of the images. Thanks to [20, Proposition 3.2.8], by studying the geometry of the
bulging Fatou components, it is also possible to obtain an upper bound on the largest possible
disk lying in a fiber over a point in the attracting basin that can lie in the complement of a
bulging Fatou component, depending on the distance to the invariant fiber. The conclusion
then follows combining these two estimates.

All bulging Fatou components are (pre-)periodic, therefore all Fatou components for F
in a neighbourhood of a superattracting invariant fiber are (pre-)periodic, and then the non-
existence of wandering Fatou components in a neighbourhood of a superattracting invariant
fiber follows immediately.

Corollary 1 (Lilov [20]) Let F : C2 → C2 be a polynomial skew-product of the form (1)
of degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F and let B be the
immediate basin of the superattracting fixed point c. Then there are no wandering Fatou
components in B×C.
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2.2 Geometrically attracting case

The geometrically attracting case was first partially addressed by Lilov in [20] even if not
stated explicitly. In fact, the proof of Theorem 3 can be readily adjusted to this case obtaining
the following statement answering Question 1.

Theorem 5 (Lilov [20]) Let F : C2→ C2 be a polynomial skew-product of the form (1) of
degree d ≥ 2. Let {w = c} be an attracting invariant fiber for F, that is |g′(c)|< 1. Then all
one-dimensional Fatou components of fc bulge to Fatou components of F.

On the other hand, the proof of Theorem 4 cannot be generalized to this setting, which
is indeed more complicated than the superattracting case. In fact, Theorem 4 does not hold
in general, as showed by Peters and Vivas with the following result.

Theorem 6 (Peters-Vivas, [25]) Let F : C2→C2 be a polynomial skew-product of the form

F(z,w) = (p(z)+q(w),λw), (2)

with 0 < |λ |< 1 and p and q complex polynomials. Then there exists a triple (λ , p,q) and a
holomorphic disk D⊂ {w = w0} whose forward orbit accumulates at a point (z0,0), where
z0 is a repelling fixed point in the Julia set of f0.

As a consequence, the forward orbits of D cannot intersect the bulging Fatou compo-
nents of f0. The family {F |nD}n∈N is normal on the disks D, and so these are Fatou disks.
However such disks are completely contained in the Julia set of F , which is the complement
in C2 of the Fatou (see [25, Theorem 6.1]).

The geometrically attracting case have been further investigated by Peters and Smit in
[24]. They focused their investigation on polynomial skew-products such that the action on
the invariant attracting fiber is subhyperbolic, that is the polynomial does not have parabolic
periodic points and all critical points lying on the Julia set are pre-periodic. They proved the
following result.

Proposition 1 (Peters-Smit, [24]) Let F : C2 → C2 be a polynomial skew-product of the
form (1). Assume that the origin is an attracting, not superattracting, fixed point for g with
corresponding basin Bg, and the polynomial f0(z) := f (z,0) is subhyperbolic. Then there
exists a set E ⊂ C of full mesure, such that for every w0 ∈ E the forward orbit of every disk
in the fiber {w = w0} must intersect a bulging Fatou component of f0.

Idea of the proof. Notice that it suffices to prove the proposition in a neighbourhood of the
attracting fiber {w = 0}. Therefore, up to considering a smaller neighbourhood, we can
assume without loss of generality that g(w) = λw, and

f (z,w) = a0(w)+a1(w)z+ · · ·+ad(w)zd

where a0(w), . . . ,ad(w) are holomorphic functions in w. The subhyperbolicity of the poly-
nomial f0 implies that its Fatou set is the union of finitely many attracting basins, and the
orbits of the critical points contained in the Fatou set converge to one of these attracting
cycles. The proof can be divided into 5 main steps.
Step 1. Fix R > 0 large enough so that for all z such that |z|> R we have | f0(z)|> 2|z| and
set

W0 = {|z|> R}∪
⋃

y∈Att( f0)

Wy
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where Att( f0) is the set of all attracting periodic points of f0, and for each y∈Att( f0) the set
Wy is an open neighbourhood of the orbit of y such that f0(Wy)⊂Wy. Fix a neighbourhood
U of the post-critical set of f0. Then by [24, Proposition 15], there exists a set E ⊂ C of
full mesure in a neighbourhood of the origin such that for all w0 ∈ E there exists a constant
C =C(w0,U) such that for all n ∈ N we have

Card
{

z :
∂Fn

1
∂ z

(z,w0) = 0 and Fn
1 (z,w0) 6∈W0×U

}
≤C
√

n, (3)

where Fn
1 is the first component of the n-th iterate of F .

Step 2. Assume by contradiction that a fiber {w=w0}, with w0 ∈E, contains a disk D whose
forward orbit avoids the bulging Fatou components of f0. Then the restriction of Fn to D is
bounded and hence a normal family. Therefore, up to shrinking D there exists a subsequence
Fn j such that Fn j |D converges, uniformly on compact subsets of D, to a point ζ in the Julia
set of f0. Moreover, there exists ε > 0 so that Fn(D)∩ (W0×D(0,ε)) is empty for all n ∈N.

Step 3. Each critical point x contained in the Julia set is eventually mapped into a repelling
periodic point, and up to considering an iterate of F we may assume that it is eventually
mapped into a repelling fixed point with multiplier µ , with |µ|> 1. The main tool to control
the orbits of the critical points of F is obtained using a linearization map of the unstable
manifold of the repelling fixed point, given by a map Φ : C→ C satisfying Φ(µt) = f k

0 ◦
Φ(t) for some k ∈N. Thanks to [24, Proposition 10], there exist C̃ > 1 and 0 < γ < 1 so that

Area(Fn(D))≤ C̃γ
n. (4)

Step 4. We may assume that ζ does not lie in the post-critical set, and we may choose U
and r > 0 such that D(ζ ,r)∩ (U ∪W0) = /0. Let j1 ∈ N be such that F

n j
1 (D) ⊆ D(ζ , r

2 )
for all j ≥ j1, and consider O j the connected component of (Fn j )−1(D(ζ ,r)×{λ n j w0})
containing D. Then D ⊆ O j ⊆ D(0,R)×{w0}, and we can study the proper holomorphic
function F

n j
1 : O j → D(ζ ,r). Thanks to (3), such a map has at most d j = C√n j critical

points.

Step 5. It is possible (see [24, Proposition 28]) to find a uniform constant C1 > 0 so that if
f : D→ D is a proper holomorphic function of degree d, the set R ⊂ D has Poincaré area
equal to A, and d ·A1/2d < 8, then the Poincaré area of f−1(R) is at most C1d3A1/d . Then,
setting R j = F

n j
1 (D) and denoting by A j its Poincaré area AreaD(ζ ,r)(R j) with respect to

D(ζ ,r), for j ≥ j1, we have R j ⊆ D(ζ ,r), and we can estimate A j applying (4). Therefore

there exists j2 ≥ j1 such that d jA
1/2d j
j < 1/8 for all j ≥ j2. This implies

AreaD(0,R)(D)≤ AreaO j (D)≤C2d3
j A

1/d j
j ≤Mn3/2

j γ
n3/2

j

where M > 0. The contradiction follows from the fact that the last expression will converge
to zero as j increases towards infinity.

Thanks to the fact that in particular E is dense, Peters and Smit are able to give a negative
answer to Question 2 when the action on the invariant fiber is subhyperbolic. They also
obtain as a corollary that the only Fatou components of F are the bulging ones, since the
topological degree of F equals the one of f0, implying that the only Fatou components that
can be mapped onto the bulging Fatou components of f0 are exactly those bulging Fatou
components.



Polynomial skew-products in dimension 2: Bulging and Wandering Fatou Components 7

Theorem 7 (Peters-Smit, [24]) Let F : C2→C2 be a polynomial skew-product of the form
(1). Assume that the origin is an attracting fixed point for g with corresponding basin Bg, and
the polynomial f0(z) := f (z,0) is subhyperbolic. Then F has no wandering Fatou component
over Bg.

3 Parabolic invariant fiber

A first contribution to the investigation of this case is due to Vivas, who proved a parametriza-
tion result [32, Theorem 3.1] for the unstable manifolds for special parabolic skew-product
of C2. Vivas used this parametrization as the main tool to prove the analogue of Theorem 7
for special parabolic skew-product. However, also this construction does not allow to con-
struct a wandering Fatou component in a neighbourhood of the parabolic invariant fiber.

The existence of polynomial skew-products of C2, extending to holomorphic endomor-
phisms of P2(C), having a wandering Fatou component has been proved in [1] by Astorg,
Buff, Dujardin, Peters and the author. The idea of using parabolic implosion techniques on
polynomial skew products was suggested by Lyubich. The main strategy is to combine slow
convergence to an invariant parabolic fiber and parabolic transition in the fiber direction, to
produce orbits shadowing those of the so-called Lavaurs map.

Theorem 8 (Astorg-Buff-Dujardin-Peters-R. [1]) There exists a holomorphic endomor-
phism F : P2(C)→ P2(C), induced by a polynomial skew-product mapping F : C2 → C2,
having a wandering Fatou component. More precisely, let f : C→ C and g : C→ C be
polynomials of the form

f (z) = z+ z2 +O(z3) and g(w) = w−w2 +O(w3). (5)

If the Lavaurs map L f : B f → C has an attracting fixed point, then the skew-product
F : : C2→ C2 defined by

F(z,w) :=
(

f (z)+
π2

4
w,g(w)

)
(6)

has a wandering Fatou component.

The orbits in these wandering Fatou components are bounded and the approach used
in the proof is essentially local. Notice that if f and g have the same degree, F extends
to a holomorphic endomorphism of P2(C). Moreover we can obtain examples in arbitrary
dimension k ≥ 2 by simply considering products mappings of the form (F,Q), where Q has
a fixed Fatou component.

To give the definition of Lavaurs map and the main ideas of the proof, we have to recall
some facts on parabolic dynamics (more details can be found in [1, Appendix A]). Let f be
a polynomial of the form

f (z) = z+ z2 +az3 +O(z4) for some a ∈ C.

and denote by

B f :=
{

z ∈ C ; f n(z)
6=−→

n→+∞
0
}
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the parabolic basin of 0. It is a well-known one-dimensional result the existence of an at-
tracting Fatou coordinate ϕ f : B f → C conjugating f to the translation T1 by 1:

ϕ f ◦ f = T1 ◦ϕ f .

The Fatou coordinate can be normalized by requiring that

ϕ f (z) =−
1
z
− (1−a) log

(
−1

z

)
+o(1) as Re

(
−1

z

)
→+∞,

where the branch of log used in this normalization, as well as in the next one, is the one
defined in C\R− which vanishes at 1. There also exists a repelling Fatou parameterization
ψ f : C→ C satisfying

ψ f ◦T1 = f ◦ψ f ,

which may be normalized by requiring that

− 1
ψ f (Z)

= Z +(1−a) log(−Z)+o(1) as Re(Z)→−∞.

The Lavaurs map L f is then defined by

L f := ψ f ◦ϕ f : B f → C,

This kind of functions appear in considering high iterates of small perturbations of f : this
phenomenon is known as parabolic implosion, and plays a key role in our construction. A
first introduction to this topic can be found in [10], and we also refer to [28] for a very
detailed presentation. (Semi-)parabolic implosion was recently studied for dissipative poly-
nomial automorphisms of C2 by Bedford, Smillie and Ueda in [5] (see also [12]).

The strategy of the proof of Theorem 8 is the following. Consider Bg the parabolic
basin of 0 under iteration of g. For all w ∈Bg, the orbit gm(w) converges to 0 like 1/m. One
of the key points is to choose (z0,w0) ∈B f ×Bg so that the first coordinate of Fm(z0,w0)
returns infinitely many times close to the attracting fixed point of L f . The proof is designed
so that the return times are the integers n2 for n≥ n0. Therefore, we need to analyze the orbit
segment between n2 and (n+1)2, which is of length 2n+1.

For large n, the first coordinate of F along this orbit segment is approximately

f (z)+ ε
2 with

π

ε
= 2n.

Lavaurs Theorem from parabolic implosion states that if π

ε
= 2n, then for large n, the (2n)th

iterate of f (z)+ ε2 is approximately equal to L f (z) on B f .
Our setting is different since in our case ε keeps decreasing along the orbit. Indeed on

the first coordinate we are taking the composition of 2n+1 transformations of the form

f (z)+ ε
2
k with

π

εk
' 2n+

k
n

and 1≤ k ≤ 2n+1.

The key step in the proof of Theorem 8 consists in a detailed analysis of this non-autonomous
situation, proving that the decay of εk is counterbalanced by taking exactly one additional
iterate of F . The precise statement is the following.
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Proposition 2 (Astorg-Buff-Dujardin-Peters-R. [1]) As n→+∞, the sequence of maps

C2 3 (z,w) 7→ F2n+1(z,gn2
(w)
)
∈ C2

converges locally uniformly in B f ×Bg to the map

B f ×Bg 3 (z,w) 7→
(
L f (z),0

)
∈ C×{0}.

With this proposition in hand, the proof of the Theorem 8 is easily completed. In fact,
let ξ be an attracting fixed point of L f and let (z0,w0) be a point in B f ×Bg chosen so that
Fn2

0(z0,w0) is close to (ξ ,0) for some large n0. Then F(n0+1)2
(z0,w0) gets closer to (ξ ,0)

and we can repeat the process to obtain that the sequence
(
Fn2

(z0,w0)
)

n≥0 converges to
(ξ ,0). This argument holds on an open set of initial conditions, therefore these points be-
long to a Fatou component Ω . For any integer j≥ 0, the sequence of maps {Fn2+ j}n∈N con-
verges locally uniformly to F j(ξ ,0) = ( f j(ξ ),0) on Ω . Therefore the sequence {Fn2}n∈N
converges locally uniformly to ( f j(ξ ),0) on F j(Ω). If i, j are nonnegative integers such
that F i(Ω) = F j(Ω), then f i(ξ ) = f j(ξ ), and so i = j because ξ cannot be pre-periodic
under iteration of f , since it belongs to the parabolic basin B f . This proves that Ω is not
(pre-)periodic under iteration of F , and so it is a wandering Fatou component for F .

We end this section recalling some explicit examples satisfying the assumption of The-
orem 8.

Example 1 ([1, Proposition B]) Let f : C→C be the cubic polynomial f (z) = z+ z2 +az3,
and g be as in (5). If r > 0 is sufficiently small and a ∈ D(1− r,r), then the polynomial
skew-product F defined in (6) admits a wandering Fatou component.

It is also interesting to search for real polynomial mappings with wandering Fatou do-
mains intersecting R2. We also have such examples.

Example 2 ([1, Proposition C]) Let f : C→ C be the degree 4 polynomial defined by

f (z) := z+ z2 +bz4 with b ∈ R.

There exist parameters b∈ (−8/27,0) such that for g as in (5), the polynomial skew-product
F defined in (6) has a wandering Fatou component intersecting R2.

4 Elliptic invariant fiber

In a joint project with Peters, we investigated the case of invariant fibers at the center of
a Siegel disk. In [23] we prove that all attracting and parabolic Fatou components of a
polynomial skew-product with an elliptic invariant fiber with Brjuno rotation number bulge.
This allows us to prove that if the rotation number of the elliptic invariant fiber is Brjuno and
all critical points of the polynomial acting on the invariant fiber lie in basins of attracting or
parabolic cycles, then there are no wandering Fatou components in a neighbourhood of the
invariant fiber.

Describing the general situation seems to be more complicated as there might be reso-
nance phenomena. For example, an invariant fiber at the center of a Siegel disk was used in
[6] to construct a non-recurrent Fatou component with limit set isomorphic to a punctured
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disk, and in their construction the invariant fiber also contains a Siegel disk, but with op-
posite rotation number. Moreover, it might happen that Fatou components on the invariant
fiber do not bulge. For example, we can consider the skew-product

F(z,w) = (λ z(1+azw),λ−1w),

with a ∈C∗, λ = e2πiθ and θ ∈R\Q. We have F(z,0) = (λ z,0), but the Siegel disk around
the origin in {w = 0} is not bulging, and in fact it follows from [7] and [8] that there exists
a Fatou component of parabolic type having on its boundary the origin of C2, which is fixed
by F .
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