UNIVERSITE PAUL SABATIER 2014–2015

Analyse Complexe - L2 Spécial

Devoir Maison: a rendre le 21 avril 2015

Exercice I

Soit $f: U \to \mathbb{C}$ une fonction holomorphe dans un voisinage U de l'origine telle que f(0) = 0 et $f(z) = z + f(z^2)$ pour tout $z \in U$. On note avec $f(z) = \sum_{n=0}^{\infty} a_n z^n$ le développement en série entière (centrée en 0) de f dans U.

- 1. Démontrer que $a_{2m+1} = 0$ pour tout $m \ge 1$.
- 2. Démontrer que $f(z) = \sum_{n=0}^{\infty} z^{2^n}$.

Exercice II

Soient $U \subset \mathbb{C}$ un ouvert contenant $\overline{D(0,1)}$ et $f:U \to \mathbb{C}$ une fonction holomorphe sur U. Pour $t \in [0,2\pi]$ on pose $\gamma(t)=e^{it}$.

1. Calculer les intégrales :

$$I_1 = \int_{\gamma} \left(2 + z + \frac{1}{z} \right) \frac{f(z)}{z} dz, \quad I_2 = \int_{\gamma} \left(2 - z - \frac{1}{z} \right) \frac{f(z)}{z} dz.$$

2. En déduire la valeur de :

$$\frac{2}{\pi} \int_0^{2\pi} f(e^{it}) \cos^2\left(\frac{t}{2}\right) dt, \quad \frac{2}{\pi} \int_0^{2\pi} f(e^{it}) \sin^2\left(\frac{t}{2}\right) dt.$$

Exercice III

Soient $U \subset \mathbb{C}$ un ouvert contenant $\overline{D(0,1)}$ et $f:U \to \mathbb{C}$ une fonction holomorphe sur U. On suppose que f(0)=1 et que |f(z)|>1 si |z|=1. Montrer que f possède au moins un zéro dans D(0,1).

Exercice IV

Soient f et g deux fonctions holomorphes sur \mathbb{C} telles que pour tout $z_0 \in \mathbb{C}$

$$f(z_0) = g(z_0) \int_{\gamma} \frac{f(z)}{z - z_0} dz,$$

où γ est le cercle de centre z_0 et rayon 1 parcouru une seule fois dans le sens trigonométrique. Montrer qu'alors f ou g est constante.