UNIVERSITE PAUL SABATIER 2012–2013

Analyse Complexe - L2 Spécial

CONTRÔLE CONTINU DU 5 MARS 2013, DURÉE 2 H

Exercice I

- 1. Déterminer le rayon de convergence de la série entière $\sum_{n>0} 2^n z^n$.
- 2. Déterminer le rayon de convergence de la série entière $\sum_{n\geq 0} \frac{(n!)^3}{(3n)!} z^n$.
- 3. Soit $\sum_{n\geq 1} a_n z^n$ un série entière de rayon de convergence r>0. Déterminer le rayon de convergence r' de la série $\sum_{n\geq 1} n^2 a_n z^n$.

Exercice II

En quels points la fonction $z\mapsto z^2$ est-elle définie et dérivable au sens complexe ? Même question pour $z\mapsto \frac{1}{z^2}$.

Exercice III

Le plan complexe \mathbb{C} est identifié à \mathbb{R}^2 par z = x + iy.

- 1. Trouver toutes les fonctions holomorphes $f: \mathbb{C}^* \to \mathbb{C}$ telles que $\operatorname{Re}(f(z)) = \frac{x}{x^2 + y^2}$.
- 2. Trouver toutes les fonctions holomorphes $g:\mathbb{C}\to\mathbb{C}$ telles que $\mathrm{Re}\,(g(z))=x^2-y^2.$

Dans les deux cas on cherchera à obtenir une expression simple en fonction de la variable complexe z.

Exercice IV

Calculer l'intégrale $\int_{\gamma} \overline{z} \, dz$, où γ est le chemin joignant le point (1,1) au point (2,4) le long de la parabole d'équation $y=x^2$, c'est-à-dire γ : $[1,2] \to \mathbb{C}$ avec $\gamma(t)=t+it^2$.

Exercice optionnel

Soit $\Omega \subset \mathbb{C}$ un domaine (ouvert connexe) et soit $f:\Omega \to \mathbb{C}$ une fonction holomorphe dans Ω . Montrer que :

f est constante \iff Re(f(z)) est constante \iff Im(f(z)) est constante.