
ON k-INVARIANTS FOR (∞, n)-CATEGORIES

YONATAN HARPAZ, JOOST NUITEN, AND MATAN PRASMA

Abstract. Every (∞, n)-category can be approximated by its tower of homotopy (m,n)-
categories. In this paper, we prove that the successive stages of this tower are classified by

k-invariants, analogously to the classical Postnikov system for spaces. Our proof relies on
an abstract analysis of Postnikov-type systems equipped with k-invariants, and also yields a
construction of k-invariants for algebras over ∞-operads and enriched ∞-categories.
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1. Introduction

The weak homotopy type of a topological space can be conveniently studied using its Postnikov
tower

X // . . . // τ≤aX // τ≤a−1X // . . . // τ≤0X = π0(X).

The Postnikov tower allows one (theoretically) to reconstruct X from algebraic and cohomological
data. Indeed, the lowest stages of this tower encode the path components of X and its
fundamental groupoid. For the higher stages, the passage from τ≤a−1X to τ≤aX is completely
determined by a cohomology class

ka ∈ Ha+1
(
τ≤a−1X,πa(X)

)
.

Indeed, given a map f : Y −→ τ≤a−1X, there exists a lift

(1.1)

τ≤aX

��
Y

;;

f
// τ≤a−1X

if and only if the cohomology class f∗ka vanishes on Y . In this case, the i-th homotopy group of
the space of lifts (1.11.1) can be identified (noncanonically) with the (a− i)-th cohomology group
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of Y with coefficients in f∗πa(X). Here it should be noted that the homotopy groups πa(X)
typically form a local system of abelian groups.

The purpose of this paper is to describe an analogue of the Postnikov tower for (∞, n)-
categories. More precisely, every (∞, n)-category C admits a tower of homotopy (m,n)-categories
[Lur09bLur09b, Section 3.5] (see Section 66)

C // . . . // ho(m,n) C // ho(m−1,n) C // . . . // ho(n,n) C.

Our main result asserts that there are again cohomology classes which control the passage from
the homotopy (m,n)-category to the homotopy (m+ 1, n)-category:

Theorem 1.1 (informal). For each a ≥ 2, the extension ho(n+a,n) C −→ ho(n+a−1,n) C is
classified by a k-invariant

ka ∈ Ha+1
(
ho(n+a−1,n) C, πa(C)

)
,

where πa(C) is a local system of abelian groups on the (∞, n)-category ho(n+1,n) C.

In the case of (∞, 1)-categories, these k-invariants have also been constructed explicitly in
terms of simplicial categories by Dwyer–Kan–Smith [DKS86DKS86]. For n > 1, the above result is
stated (without proof) and used by Lurie in [Lur09bLur09b]. In [HNP19aHNP19a], we have used this result
as part of an obstruction-theoretic proof of the fact that adjunctions in (∞, 2)-categories are
uniquely determined at the level of the homotopy 2-category (cf. also [RV16RV16]).

To make Theorem 1.11.1 more precise, let us recall that for any local system of abelian groups A
on a space X, there exist Eilenberg–Maclane spaces K(A, a) −→ τ≤1X, defined in the homotopy
category ho(S/τ≤1X) by the following universal property: for every map f : Y −→ τ≤1X, there
is a natural bijection

Ha(Y, f∗A) ∼= π0 Map/τ≤1(X)

(
Y,K(A, a)

)
.

In fact, the Eilenberg–Maclane spaces K(A, a) are related by equivalences

K(A, a)
∼−→ Ω/τ≤1XK(A, a+ 1)

where Ω/τ≤1XK(A, a+ 1) computes the fiberwise loop space of K(A, a+ 1) over τ≤1X (at the

basepoints given by the canonical section classifying the zero cohomology class). In other words,
these Eilenberg–Maclane spaces can be organized into a parametrized spectrum HA over τ≤1X
such that K(A, a) ≃ Ω∞

(
ΣaHA

)
[MS06MS06]. From an ∞-categorical perspective, this parametrized

spectrum can also be described more precisely as follows [ABG+14ABG+14]: the local system A

determines a functor of ∞-categories HA : τ≤1X −→ Ab −→ Sp sending each x ∈ τ≤1X to the
Eilenberg–Maclane spectrum of the abelian group Ax. By the Grothendieck construction, such
an ∞-functor to spectra can equivalently be viewed as a spectrum object in spaces over τ≤1X.

In these terms, the k-invariants can be interpreted as maps that fit into commuting squares
for a ≥ 2

τ≤aX

��

// τ≤1X

0

��
τ≤a−1X

ka

// Ω∞
(
Σa+1Hπa(X)

)
.

Here the right vertical map classifies the zero cohomology class. In fact, this square is homotopy
Cartesian, which implies that the space of sections (1.11.1) is homotopy equivalent to the space of
null-homotopies of f∗ka.

Our more precise version of Theorem 1.11.1 is then the following:
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Theorem 1.2 (Theorem 6.36.3). For any (∞, n)-category C and a ≥ 2, there is a parametrized
spectrum object Hπa(C) internal to (∞, n)-categories, whose base object is ho(n+1,n) C, so that
there is a pullback square of (∞, n)-categories

(1.2)

ho(n+a,n) C

��

// ho(n+1,n) C

0

��
ho(n+a−1,n) C

ka

// Ω∞
(
Σa+1Hπa(C)

)
.

Furthermore, we prove that the parametrized spectrum Hπa(C) can indeed be thought of as
an Eilenberg–Maclane spectrum: it is contained in the heart of a certain t-structure on the ∞-
category of parametrized spectrum objects over ho(n+1,n) C (Corollary 6.176.17). This heart consists
of local systems of abelian groups on the (∞, n)-category ho(n+1,n) C, as defined (somewhat
informally) by Lurie in [Lur09bLur09b] (see Definition 6.136.13 and Remark 6.156.15).

To prove Theorem 1.21.2, the main idea will be to proceed by induction on the categorical
dimension n. More precisely, the structure of the Postnikov tower, together with its k-invariants,
can be axiomatized in terms of ‘Postnikov structures’. We prove that a (functorial) Postnikov
structure on a symmetric monoidal∞-category V that is compatible with the tensor product gives
rise to a Postnikov structure on the ∞-category Cat(V) of V-enriched ∞-categories (Theorem
5.185.18). Furthermore, the resulting Postnikov structure on Cat(V) respects the natural symmetric
monoidal structure on Cat(V) inherited from V. This can be used to proceed inductively.

More generally, this argument can also be used to provide k-invariants for Postnikov towers of
algebras over ∞-operads (see Proposition 4.144.14 and Example 4.244.24). These k-invariants typically
take values in certain André-Quillen cohomology groups, and have also been considered (in
specific cases) by Goerss–Hopkins [GH00GH00], Basterra–Mandell [BM05BM05] and Lurie [Lur17Lur17].

Outline. Let us now give an outline of this paper: in Section 22, we recall the definition of the
tangent bundle of an∞-category and the related theory of ‘square zero extensions’. Furthermore,
we discuss the ‘square zero’ monoidal structure on the tangent bundle of a symmetric monoidal
presentable ∞-category V, which is useful to describe tangent bundles to categories of algebras.
This square zero monoidal structure is particularly simple when V is already stable; we discuss
this case in a bit more detail in Section 33.

In Section 44, we give an abstract axiomatization of towers of square zero extensions, which
we call Postnikov structures, as well as multiplicative refinements thereof. In particular, we
show how multiplicative Postnikov structures induce (multiplicative) Postnikov structures for
algebras over ∞-operads. As the basis of our inductive proof, we show that the Postnikov tower
of spaces is part of a multiplicative (functorial) Postnikov structure. Section 55 contains our main
result, Theorem 5.185.18: we show that multiplicative Postnikov structures induce multiplicative
Postnikov structures at the level of enriched ∞-categories.

In Section 66, we apply this result inductively to prove that the homotopy (m,n)-categories of
an (∞, n)-category are part of a multiplicative Postnikov structure (Theorem 6.36.3); in particular,
this provides the required pullback squares (1.21.2). Finally, we discuss how the tangent bundle
of (∞, n)-categories carries a (family of) t-structures, whose heart consists of the category of
local systems of abelian groups on (∞, n)-categories (Definition 6.136.13). The parametrized spectra
Hπa(C) appearing in (1.21.2) then appear as the Eilenberg–Maclane spectra associated to such
local systems.
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Conventions. We will make use of the language of ∞-categories, i.e. quasicategories, and
∞-operads, following the standard references [Lur09Lur09, Lur17Lur17]; we will not distinguish between
an ordinary category and its nerve. Furthermore, we will refer to symmetric monoidal ∞-
categories as SM ∞-categories. Recall that SM ∞-categories and (lax) SM functors form
(full) subcategories of the ∞-category of ∞-operads, which we will denote by

SMCat ↪→ SMCatlax ↪→ Op∞ .

A presentable SM ∞-category is a presentable ∞-category equipped with a closed symmetric
monoidal structure, i.e. an object in CAlg(PrL).

Given an∞-operad O, i.e. a map O⊗ −→ Fin∗, and a collection of objects S in the underlying
∞-category O⟨1⟩ that is closed under equivalences, the full suboperad of O on S is the full

subcategory of O⊗ spanned by all objects of the form x1 ⊕ · · · ⊕ xn with all xi ∈ S (cf. [Lur17Lur17,
Section 2.2.1]).

Let f : C −→ D be a SM functor and let W be the class of maps in C that are sent to
equivalences by f . We will say that f is a monoidal localization if it defines an initial object
in full subcategory of CAlg(Cat)C/ on those symmetric monoidal functors g : C −→ E sending

W to equivalences. If C is a SM ∞-category and f : C −→ C[W−1] is a (non-SM) localization
such that W is closed under tensor products with objects in C, then f admits a unique lift to a
monoidal localization of SM ∞-categories [Lur17Lur17, Proposition 4.1.7.4].

If C and D are SM ∞-categories, let us define a reflective monoidal localization to be an
adjoint pair L : C⊗ −→⊥←− D⊗ :R in the homotopy 2-category of ∞-operads such that ϵ : LR→ idD
is a natural equivalence. Note that a reflective monoidal localization is determined uniquely
by any one of the two maps L and R [RV16RV16]. If (L,R) is a reflective monoidal localization,
then the (a priori only lax SM) left adjoint L is a monoidal localization in the sense above
[Lur17Lur17, Corollary 7.3.2.12], [Hau21Hau21, Theorem 4.6]. Conversely, if L is a monoidal localization
which admits a (fully faithful) right adjoint at the level of the underlying ∞-categories, then it
determines a reflective monoidal localization [Lur17Lur17, Corollary 7.3.2.7].

Acknowledgments. We are grateful to the referee for their thorough report, which helped
greatly improve the paper. This project was funded by the CNRS, under the programme
Projet Exploratoire de Premier Soutien “Jeune chercheuse, jeune chercheur” (PEPS JCJC).
Furthermore, J.N. has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No
768679). M.P. was supported by grant SFB 1085.

2. Tangent bundles of ∞-categories

The purpose of this section is to recall some elements of the cotangent complex formalism
described by Lurie [Lur17Lur17, Section 7.3]. In particular, we will recall the definition of the
tangent bundle of an ∞-category C and the notion of a square zero extension. To motivate this
terminology, we show in Section 2.22.2 that the tangent bundle inherits a ‘square zero’ monoidal
structure from V. In Section 2.32.3, we introduce the notion of a ‘t-orientation’ on the tangent
bundle, allowing one to make sense of connective (and discrete) objects in its fibers. The tangent
bundle of stable (or more generally, additive) ∞-categories has a particularly simple structure,
which we discuss in more detail in Section 33.
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2.1. Recollections on tangent bundles and square zero extensions. Let V be an ∞-
category with finite limits. Following Lurie [Lur17Lur17, Definition 7.3.1.9], we define the tangent
bundle of V to be the ∞-category

TV = Exc(Sfin∗ ,V)

of excisive functors F : Sfin∗ −→ V from the∞-category of finite pointed spaces, i.e. those functors
sending pushout squares to pullback squares. The ∞-category TV comes with functors

π = ev∗ : TV // V Ω∞ = evS0 : TV // V

taking the base, resp. the (parametrized) infinite loop space object underlying such a parametrized
spectrum. The functor π is a Cartesian fibration and admits both a left and a right adjoint,
both taking the constant excisive functor on an object in V. We refer to the fiber of π at an
object X ∈ V as the tangent ∞-category TXV of V at X. The diagram

TV

π
%%

E 7→[E(S0)→E(∗)] // Fun
(
∆1,V)

codomww
V

then exhibits each fiber TXV as the stabilization Sp(V/X) of the over-category V/X [Lur17Lur17,
Section 7.3.1]. When V is presentable, TV and each of the fibers TXV are presentable as well
and the functor Ω∞ admits a left adjoint Σ∞+ .

Definition 2.1. Let V be a presentable ∞-category. Then the inclusion TV −→ Fun(Sfin∗ ,V)
admits a left adjoint, which we will denote by X 7→ Xexc. We will say that a map X −→ Y in
Fun(Sfin∗ ,V) is a TV-local equivalence if the map Xexc −→ Y exc is an equivalence.

Example 2.2. The tangent bundle TS can be thought of as the ∞-category of parametrized
spectra (with varying base space). Note that TS is in some sense the universal tangent bundle.
Indeed, using the tensor product on presentable ∞-categories [Lur17Lur17, Section 4.8.1] (with unit
S, exhibiting that all presentable ∞-categories are tensored over S), we have that

TV ≃ TS⊗ V.

Indeed, using [Lur17Lur17, Proposition 4.8.1.17], the full subcategory of Fun(Sfin∗ ,V) on the exci-
sive functors coincides under restriction along the Yoneda embedding with the full subcat-
egory of FunR

(
Fun(Sfin∗ , S)

op,V
)
of right adjoint functors that factor over the localization

(−)exc : Fun(Sfin∗ , S) −→ TS.

Remark 2.3. For any S ∈ Sfin∗ and C ∈ V, let hS ⊗ C = Map(S,−)⊗ C be the corresponding
corepresentable functor, i.e. the left Kan extension of C : ∗ −→ V along S : ∗ −→ Sfin∗ . Note that
F ∈ Fun(Sfin∗ ,V) is excisive if and only if it is a local object with respect to the set of maps

(2.1)
(
hS1

∐
hS3

hS2

)
⊗ Cα −→

(
hS0
⊗ Cα)

for any set of generators {Cα} of V and any pushout square in Sfin∗

S0
//

��

S1

��
S2

// S3.
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In particular, the TV-local equivalences are strongly generated by this set of maps [Lur09Lur09,
Proposition 5.5.4.15].

Remark 2.4. For any presentable ∞-category V, the description of the generating TV-local
equivalences from Remark 2.32.3 shows that evaluation at ∗ ∈ Sfin∗ sends TV-local equivalences to
equivalences in V. It follows that there is a commuting diagram

TV
� � //

''

Fun(Sfin∗ ,V)
(−)exc //

��

TV

ww
V.

The vertical functors are Cartesian (and coCartesian) fibrations, with right adjoint sections
taking the constant Sfin∗ -diagram. In particular, an arrow in TV or Fun(Sfin∗ ,V) is Cartesian if and
only if it is the pullback of a map between constant diagrams. It follows that the (right adjoint)
inclusion TV ↪→ Fun(Sfin∗ ,V) preserves Cartesian arrows. When V is compactly generated, or
more generally differentiable [Lur17Lur17, Definition 6.1.1.6] (cf. Lemma 6.56.5), the functor (−)exc
preserves Cartesian arrows by [Lur17Lur17, Theorem 6.1.1.10].

Let V be an ∞-category with finite limits and B ∈ V an object. For every E ∈ TBV, there is
a natural map Ω∞(E) −→ B, arising from the map of finite pointed spaces S0 −→ ∗. For every
map X −→ B, we denote by

H0
Q(X;E) = π0 Map/B(X,Ω

∞(E))

the set of homotopy classes of lifts η : X −→ Ω∞(E). Since Ω∞(E) is a grouplike E∞-monoid
over B by Proposition 2.282.28, this forms an abelian group; its unit is the zero map 0: X −→
B −→ Ω∞(E) induced by the map of finite pointed spaces ∗ −→ S0. More generally, we will
refer to the groups Hn

Q(X;E) = H0
Q(X; ΣnE) as the n-th Quillen cohomology groups of X

with coefficients in E. Given a section η : X −→ Ω∞(E), we will say that the pullback square

(2.2)

X̃ //

��

B

0
��

X
η
// Ω∞(E)

exhibits X̃ as a square zero extension of X [Lur17Lur17, Definition 7.4.1.6]. When η is homotopic

to 0: X −→ B −→ Ω∞(E), we will refer to X̃ ≃ X ×B Ω∞+1(E) as the trivial square zero
extension.

Remark 2.5. The above definition of a square zero extension looks slightly more general than
the one appearing in [Lur17Lur17, Definition 7.4.1.6], where it is assumed that B = X. However,
note that there is a natural map p : X −→ B (induced by the projection Ω∞(E) −→ B); pulling

back the parametrized spectrum E along p, one can also realize X̃ as the square zero extension
of X classified by the canonical map η′ : X −→ Ω∞(p∗E).

2.2. Monoidal structure on the tangent bundle. Our next goal will be to construct a
(closed) symmetric monoidal structure on the tangent bundle TV of a presentable SM∞-category.
To this end, let us recall that if V is a SM ∞-category and I is an ∞-category, then Fun(I,V)
can be endowed with a levelwise tensor product, as follows:
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Construction 2.6 ([Lur17Lur17, Remark 2.1.3.4]). Let V be a SM ∞-category, encoded by a
coCartesian fibration of ∞-operads V⊗ −→ Fin∗. If I is another ∞-category, let us consider the
map

Fun(I,V)⊗lev := Fun(I,V⊗)×Fun(I,Fin∗) Fin∗
// Fin∗ .

This is again a coCartesian fibration of ∞-operads [Lur17Lur17, Remark 2.1.3.4], which endows the
functor category Fun(I,V) with a symmetric monoidal structure that we will refer to as the
levelwise tensor product. For every f : I −→ J, the restriction functor f∗ : Fun(J,V) −→
Fun(I,V) has the natural structure of a symmetric monoidal functor because the induced map
f∗ : Fun(J,V)⊗lev −→ Fun(I,V)⊗lev preserves coCartesian arrows over Fin∗. On the other
hand, every SM functor V −→ W induces a SM functor Fun(I,V)⊗lev −→ Fun(I,W)⊗lev by
postcomposition.

For future reference, let us mention two alternative descriptions of the levelwise tensor
product:

Remark 2.7. The levelwise tensor product is adjoint to the Boardman–Vogt tensor product.
Indeed, we can view I as an∞-operad via the functor I −→ ∗ −→ Fin∗ where the second functor
is the inclusion of the object ⟨1⟩. For any ∞-operad O, recall that the ∞-category of ∞-operad
maps O⊗ ⊗BV I −→ V⊗ is then equivalent to the ∞-category BiFunc(O⊗, I;V⊗) of (dotted)
bifunctors of ∞-operads [Lur17Lur17, Definition 2.2.5.3]

O⊗ × I //

��

V⊗

��
Fin∗×∗

id×{⟨1⟩} // Fin∗×Fin∗
∧ // Fin∗ .

Since the bottom horizontal composite can simply be identified with the identity functor on Fin∗,
the∞-category BiFunc(O⊗, I;V⊗) is equivalent to the∞-category of functors f : O⊗× I −→ V⊗

relative to Fin∗ with the following equivalent properties:

(a) for each inert map α : x → y in O⊗ and each equivalence β : i → j in I, f(α, β) is an
inert map in V⊗.

(b) for each inert map α : x→ y in O⊗ and each object i ∈ I, f(α, idi) is an inert map in
V⊗.

Note that these conditions are indeed equivalent since f(α, β) ≃ f(idy, β) ◦ f(α, idi), where
f(idy, β) is an equivalence. The ∞-category of functors f satisfying condition (b) is in turn
equivalent to the ∞-category of ∞-operad maps O⊗ −→ Fun(I,V)⊗lev . Consequently, we have
natural equivalences

AlgO⊗BVI(V
⊗) ≃ BiFunc

(
O⊗, I;V⊗

)
≃ AlgO

(
Fun(I,V)⊗lev

)
.

Let us point out that by symmetry of the Boardman–Vogt tensor product, we also have that
AlgO

(
Fun(I,V)⊗lev

)
≃ AlgO⊗BVI(V

⊗) ≃ Fun
(
I,AlgO(V

⊗)
)
.

Remark 2.8. If I has coproducts, then the levelwise tensor product can be identified with the
Day convolution product. Indeed, let I⨿ be the corresponding coCartesian ∞-operad [Lur17Lur17,
Definition 2.4.3.7] and let us write Fun(I,V)⊗Day −→ Fin∗ for the ∞-operad obtained from I⨿

and V⊗ by Day convolution [Lur17Lur17, Definition 2.2.6.1]. By [Lur17Lur17, Proposition 2.2.6.16], this is
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a coCartesian fibration of ∞-operads that endows Fun(I,V) with a (closed) SM structure. For
any∞-operad O, we then have equivalences of∞-categories of maps of∞-operads (i.e. algebras)

AlgO
(
Fun(I,V)⊗Day

)
≃ AlgO×I⨿(V

⊗) ≃ Fun(I,AlgO(V
⊗)

)
≃ AlgO⊗BVI(V

⊗) ≃ AlgO
(
Fun(I,V)⊗lev

)
.

Here O× I⨿ is the product of ∞-operads, given explicitly by O⊗ ×Fin∗ I⨿ −→ Fin∗. The first
equivalence then follows from the universal property of the Day convolution [Lur17Lur17, Definition
2.2.6.1], the second from [Lur17Lur17, Theorem 2.4.3.18] and the last two equivalences follow from the
relation between the levelwise tensor product and the Boardman–Vogt tensor product (which is
symmetric).

Lemma 2.9. Let V be a presentable SM ∞-category and f : I −→ J a functor between
∞-categories with finite coproducts that preserves finite coproducts. Then the SM functor
f∗ : Fun(J,V)⊗lev −→ Fun(I,V)⊗lev admits a symmetric monoidal left adjoint f!.

Proof. Remark 2.82.8 identifies the lax SM functor f∗ : Fun(J,V)⊗lev −→ Fun(I,V)⊗lev (which
happens to be strong SM) with the lax SM functor f∗ : Fun(J,V)⊗Day −→ Fun(I,V)⊗Day arising
from naturality of the Day convolution product. The latter admits a SM left adjoint f! (given
by left Kan extension) by [LNP22LNP22, Remark 3.31]. □

Proposition 2.10. Let V be a presentable SM ∞-category and endow Fun(Sfin∗ ,V) with the
levelwise tensor product ⊗lev. Then the localization of Fun(Sfin∗ ,V) at the TV-local equivalences
is monoidal. In particular:

• The localization functor (−)exc : Fun(Sfin∗ ,V) −→ TV has a unique lift to a SM functor
between SM ∞-categories with domain given by

(
Fun(Sfin∗ ,V),⊗lev

)
.

• The closed SM structure on TV is given by X ⊗ Y =
(
X ⊗lev Y

)exc
.

Proof. By [Lur17Lur17, Proposition 4.1.7.4], it suffices to verify that X ⊗lev Y −→ X ⊗lev Y
′ is a

TV-local equivalence for every X : Sfin∗ −→ V and every TV-local equivalence Y −→ Y ′. Since
the TV-local equivalences are closed under colimits and ⊗lev preserves colimits in each variable,
we may assume that Y −→ Y ′ is a generating local equivalence of the form (2.12.1) and that
X = hT ⊗D. Since the tensoring Fun(Sfin∗ , S)×V −→ Fun(Sfin∗ ,V) is monoidal (for the levelwise
tensor product), there are equivalences

X ⊗lev Y
′ :=

(
hT ⊗D

)
⊗lev

(
hS0
⊗ C

)
≃

(
hT × hS0

)
⊗
(
C ⊗D

)
≃

(
hT∨S0

)
⊗

(
C ⊗D

)
.

The last equivalence uses that the copresheaf hT × hS0
= Map(T,−)×Map(S0,−) (valued in

spaces) is corepresentable by the coproduct T ∨ S0 in Sfin∗ . Similarly, we have that

X ⊗lev Y :=
(
hT ⊗D

)
⊗lev

((
hS1

∐
hS3

hS2

)
⊗ C

)
≃

(
hT ×

(
hS1

∐
hS3

hS2

))
⊗ (D ⊗ C) ≃

(
hT∨S1

∐
hT∨S3

hT∨S2

)
⊗ (D ⊗ C)

where the last equivalence uses that Fun(Sfin∗ , S) is Cartesian closed and that hT × hSi = hT∨Si .
It therefore suffices to show that the map(

hT∨S1

∐
hT∨S3

hT∨S2

)
⊗ (D ⊗ C) −→ hT∨S0 ⊗ (D ⊗ C)
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is a TV-local equivalence. This is obvious since

T ∨ S0
//

��

T ∨ S1

��
T ∨ S2

// T ∨ S3

is a pushout square in Sfin∗ . □

Lemma 2.11. Let V be a presentable SM ∞-category and endow TV with the closed symmetric
monoidal structure from Proposition 2.102.10. Then:

(1) The functor π : TV −→ V admits a natural symmetric monoidal structure.
(2) The induced oplax symmetric monoidal structure on the left adjoint to π [Lur17Lur17, Corollary

7.3.2.7] is strong monoidal. Consequently, TV is tensored over V via the formula

C ⊗X = (C ⊗lev X(−))exc.
(3) Ω∞ : TV −→ V has a natural lax symmetric monoidal structure.

Remark 2.12. The lax monoidal structure on Ω∞ induces an oplax symmetric monoidal
structure on Σ∞+ : V −→ TV [HHLN23HHLN23]. This does not make Σ∞+ a strong monoidal functor.
For example, taking V = S, we have that Σ∞+ (X) ∈ Sp(S/X) corresponds to the constant
parametrized spectrum over X with fiber given by the sphere spectrum S. Unraveling the
definitions (e.g. using equivalence (2.32.3)), one then sees that Σ∞+ (X)⊗ Σ∞+ (Y ) corresponds to
the constant parametrized spectrum over X × Y with fiber S ∨ S, while Σ∞+ (X × Y ) has fiber S.

Proof. Let t : ∗ −→ Sfin∗ be the inclusion of the initial (and also terminal) object. By Construction
2.62.6 and Lemma 2.92.9, restriction and left Kan extension along t yield an adjoint pair of SM
functors cst = t! : V

−→⊥←− Fun(Sfin∗ ,V) : t
∗ = ev∗, where the left adjoint takes the constant diagram

and the right adjoint evaluates at ∗.
For (1), we then note that ev∗ is itself a left adjoint and sends TV-local equivalences to

equivalences in V, since the domain and codomain of the generating TV-local equivalences
(2.12.1) are both sent to Cα. It follows that π : TV −→ V is symmetric monoidal for ⊗ as well.
For (2), one simply notes that the SM functor cst : V −→ Fun(Sfin∗ ,V) already takes values
in TV ⊆ Fun(Sfin∗ ,V). For (3), note that Ω∞ is the composite of the lax symmetric monoidal
inclusion TV −→ Fun(Sfin∗ ,V) and the symmetric monoidal functor evS0 : Fun(Sfin∗ ,V) −→ V (for
the levelwise tensor product on the domain). □

For any functor X : Sfin∗ −→ V, there is a canonical (counit) map X(∗) −→ X, where we
consider X(∗) ∈ V as a constant diagram.

Lemma 2.13. Let X,Y : Sfin∗ −→ V be two functors. Then the pushout-product map

ψ(X,Y ) : X(∗)⊗lev Y
∐
X(∗)⊗levY (∗)X ⊗lev Y (∗) // X ⊗lev Y

is a TV-local equivalence.

Proof. Suppose that X = colimXi for some diagram of functors Xi. Since evaluation and taking
the constant diagram preserve colimits, we can identify the pushout-product map ψ(X,Y ) with
the colimit colimi ψ(Xi, Y ) in the arrow category of Fun(Sfin∗ ,V). As TV-local equivalences are
stable under colimits, we can therefore reduce to the case where X = hS ⊗ C and Y = hT ⊗D
are corepresentables.
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Using that the constant diagram on X(∗) is given by h∗ ⊗X(∗), the pushout-product map
can then be identified with

hT ⊗ (C ⊗D)
∐

h∗⊗(C⊗D)

hS ⊗ (C ⊗D) // (hS ⊗ C)⊗lev (hT ⊗D).

As in the proof of Proposition 2.102.10, the codomain can be identified with hS∨T ⊗ (C ⊗D). The
above map is then a TV-local equivalence because

S ∨ T //

��

S ∨ ∗

��
∗ ∨ T // ∗ ∨ ∗

is a coCartesian square (see Remark 2.32.3). □

The above lemma can be described somewhat informally as follows: we can identify an object
of TV with a tuple consisting of C ∈ V and E ∈ Sp(V/C). Using the tensoring of TV over V

from Lemma 2.112.11, we then have an equivalence

(2.3) (C,E)⊗ (D,F ) ≃
(
C ⊗D, (C ⊗ F )⊕ (E ⊗D)

)
where the direct sum is taken in the fiber TC⊗DV. This justifies the following terminology:

Definition 2.14. Let V be a presentable SM ∞-category. The square zero tensor product
on TV is the symmetric monoidal structure provided by Proposition 2.102.10.

For any SM left adjoint f : V −→ W, postcomposition with f defines a SM left adjoint
Fun(Sfin∗ ,V) −→ Fun(Sfin∗ ,W) that descends to a natural SM left adjoint T(f) : TV −→ TW

between localizations.

Remark 2.15. Let ∅ be the initial object of V. Since {∅} ↪→ V is stable under the binary tensor
product of V and π : TV −→ V is symmetric monoidal, the full subcategory T∅V = TV×V {∅} ↪→
TV inherits a nonunital SM structure from TV. Lemma 2.132.13 shows that for all E,F ∈ T∅V, the
tensor product E ⊗ F is the zero object in T∅V.

Example 2.16. Let V be a cartesian closed presentable ∞-category. In this case, the levelwise
monoidal structure on Fun(Sfin∗ ,V) induced by the cartesian product on V is simply the cartesian
monoidal structure. Since the (reflective) full subcategory TV ↪→ Fun(Sfin∗ ,V) is closed under
the cartesian product, the induced square zero monoidal structure on TV is simply the cartesian
product as well.

Proposition 2.17. Let V be a presentable SM ∞-category and let O be an ∞-operad. Then
there is an equivalence of ∞-categories

AlgO(TV) ≃ T(AlgO(V))

where TV is endowed with the square zero monoidal structure.

Proof. The fully faithful functor TV −→ Fun(Sfin∗ ,V) is lax symmetric monoidal and hence
realizes TV⊗ as a full suboperad of the ∞-operad Fun(Sfin∗ ,V)

⊗. The ∞-category of O-algebras
in TV then embeds as the full subcategory of AlgO(Fun(S

fin
∗ ,V)) whose underlying functors are
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excisive. Using Remark 2.72.7 together with the commutativity of the Boardman–Vogt tensor
product [Lur17Lur17, Proposition 2.2.5.13], we obtain an equivalence

AlgO(TV)⊆ T(AlgO(V))⊆

AlgO
(
Fun(Sfin∗ ,V),⊗lev

) ∼ //

++

Fun(Sfin∗ ,AlgO(V))

ss
Fun(Sfin∗ ,V)

of ∞-categories over Fun(Sfin∗ ,V), where the diagonal functors are induced by forgetting algebra
structures. In particular, this equivalence identifies the full subcategory AlgO(TV) on the left
hand side with the full subcategory on the right spanned by diagrams of O-algebras in V whose
underlying diagrams are excisive. But this is the same as diagrams Sfin∗ −→ AlgO(V) that are
themselves excisive, because the forgetful functor from O-algebras to V detects limits [Lur17Lur17,
Corollary 3.2.2.4]. We conclude that the horizontal equivalence above identifies AlgO(TV) with
T(AlgO(V)), so the desired result follows. □

The following result provides a symmetric monoidal refinement of Example 2.22.2:

Proposition 2.18. Let V ∈ CAlg(PrL) and consider the commuting square in CAlg(PrL)

S

cst

��

η // V

cst

��
TS

T(η) // TV.

where the vertical functors are the SM left adjoints to the projection functors and the horizontal
functors are induced by the map η from the initial presentable SM ∞-category. This is a pushout
square in CAlg(PrL).

The proof requires some results about the tensor product of presentable ∞-categories [Lur17Lur17,

Section 4.8.1]. Let us recall that there is a sub-∞-operad PrL,⊗ ⊆ Catbig,× of the cartesian operad
of big∞-categories, whose objects are presentable∞-categories and MapPrL,⊗

(
C1, . . . ,Cn;D

)
is

the union of path components of MapCatbig
(
C1×· · ·×Cn,D

)
spanned by the functors preserving

colimits in each variable. Then the ∞-operad PrL,⊗ describes a (closed) symmetric monoidal

structure on PrL [Lur17Lur17, Proposition 4.8.1.15].
In the proof below, let us refer to functors g : C1 × C2 −→ D preserving colimits in each

variable simply as bifunctors and let us say that such a bifunctor g is initial if it defines an
initial object in the ∞-category of presentable ∞-categories (with left adjoints between them)
equipped with a bifunctor from C1 × C2. An initial bifunctor g : C1 × C2 −→ D exhibits D as
the tensor product of C1 and C2 in PrL.

Lemma 2.19. Let C1,C2 and D be presentable ∞-categories, g : C1 × C2 −→ D a bifunctor and
consider the functor

Ψ(g) : D
h // P(D)

g∗ // P(C1 × C2).

Then Ψ(g) takes values in the full subcategory of right adjoint functors

FunR(Cop
1 ,C2) ⊆ Fun(Cop

1 , C2) ⊆ Fun(Cop
1 ,P(C2)) ≃ P(C1 × C2)

and g is an initial bifunctor if and only if Ψ(g) : D −→ FunR(Cop
1 ,C2) is an equivalence.
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Proof. This follows from the proof of [Lur17Lur17, Proposition 4.8.1.17]. Indeed, the argument in
loc. cit. shows that Ψ(g) is in fact a right adjoint functor with values in the full subcategory

FunR(Cop
1 ,C2) and that the assignment g 7→ Ψ(g) determines a natural equivalence of spaces

MapPrL,⊗
(
C1, C2;D

)
≃ MapPrR

(
D,FunR(Cop

1 ,C2)
)
≃ MapPrL

(
FunR(Cop

1 ,C2),D
)
.

In particular (as concluded in loc. cit.), it follows that the presentable∞-category FunR(Cop
1 ,C2)

corepresents bifunctors, i.e. C1 ⊗ C2 ≃ FunR(Cop
1 ,C2). This immediately implies that g is an

initial bifunctor if and only if Ψ(g) : D −→ FunR(Cop
1 ,C2) is an equivalence. □

Proof of Proposition 2.182.18. Since S is the initial object in CAlg(PrL) and coproducts of E∞-
algebras are given by the tensor product in the underlying ∞-category [Lur17Lur17, Proposition
3.2.4.7], it will suffice to verify that the SM left adjoint functor F : TS⊗ V −→ TV induced by
the commuting square is an equivalence. To verify this, we need to show that the underlying
functor (forgetting SM structures) is an equivalence.

To this end, note that the proof of [Lur17Lur17, Proposition 3.2.4.7] implies that F can be identified
with the composite functor

F : TS⊗ V
T(η)⊗cst // TV⊗ TV

⊗ // TV.

The corresponding bifunctor is therefore given by

f : TS× V
T(η)×cst // TV× TV

⊗ // TV.

To see that F is an equivalence, we need to show that the bifunctor f satisfies the condition of
Lemma 2.192.19, i.e. that Ψ(f) : TV −→ FunR(TSop,V) is an equivalence. To identify the codomain

of Ψ(f), consider the functor hexc : Sfin,op∗ ↪→ P(Sfin,op∗ ) −→ TS given by the Yoneda embedding
followed by the localization from Remark 2.32.3. The universal properties of the Yoneda embedding
and this localization imply that restriction along hexc induces an equivalence

(hexc)∗ : FunR(TSop,V)
∼ // Exc(Sfin∗ ,V) = TV.

Using this equivalence, Ψ(f) can be identified with the functor Ψ(f) : TV −→ Exc(Sfin∗ ,V)
sending X ∈ TV to the functor Sfin∗ −→ V classifying the correspondence

Sfin∗ × V // S; (S, v) � // MapTV
(
(hS ⊗ 1V)

exc ⊗ cst(v), X
)
.

Here we used that T (η) : TS −→ TV sends hexcS to the excisive approximation of (hS ⊗ 1V).
By Proposition 2.102.10, the tensor product (hS ⊗ 1V)

exc ⊗ cst(v) in TV is naturally equivalent to
(hS ⊗ v)exc ∈ TV. This object has the universal property that

MapTV
(
(hS ⊗ v)exc, X

)
≃ MapV(v,X(S)).

It follows that Ψ(f) can simply be identified with the identity on TV. In particular, it is an
equivalence, so that Lemma 2.192.19 shows that f is an initial bifunctor and F is an equivalence, as
desired. □
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2.3. t-orientations on tangent categories. In later sections, we will consider various examples
of tangent bundles whose fibers are stable categories with a natural “connective part”. Let us
axiomatize this situation as follows:

Definition 2.20. Let p : E −→ B be a stable Cartesian fibration, i.e. a Cartesian fibration
such that each fiber EX is stable and each arrow f : X −→ X ′ in B induces an exact functor
f∗ : EY −→ EX . A t-orientation on p : E −→ B is a tuple of full subcategories

(
E≥0,E≤0

)
of E

such that:

(1) For each p-Cartesian arrow E −→ F in E with F ∈ E≤0, we have that E ∈ E≤0.
(2) For every X ∈ B, the tuple(

E≥0 ∩ EX , E
≤0 ∩ EX

)
defines a t-structure on the stable ∞-category EX .

In this case, we will refer to E♡ = E≥0 ∩ E≤0 as the heart of the t-orientation.

Example 2.21. Let π : TV −→ V be the tangent bundle of a presentable ∞-category. Then
each TXV carries a t-structure such that T≤−1X V is the full subcategory of E ∈ TXV such that
Ω∞(E) ≃ X is the terminal object in V/X [Lur17Lur17, Proposition 1.4.3.4]. Since such objects are
stable under base change along a map X ′ −→ X in the base, it follows that TV comes with a
canonical t-orientiation in which T≤−1V consists of those E such that Ω∞(E) ≃ π(E).

Note that Condition (1) of Definition 2.202.20 is equivalent to E≤0 −→ B being a Cartesian
fibration and the inclusion E≤0 ↪→ E preserving Cartesian edges.

Lemma 2.22. Let p : E −→ B be a stable Cartesian fibration with a t-orientation (E≥0,E≤0).
Then:

(1) the restriction of the projection p to each of the three subcategories E≥0,E≤0 and E♡ is
a Cartesian fibration.

(2) there exists a commuting square of adjunctions over B, i.e. in Cat∞ /B, of the form

E♡
� � //
� _

⊣

��

E≤0
τ≥0

⊥oo � _

⊣

��
E≥0
� � //

τ≤0

OO

E.
τ≥0

⊥oo

τ≤0

OO

Furthermore, all right adjoint functors preserve Cartesian edges.

In particular, E♡ −→ B is a Cartesian fibration whose fibers are (ordinary) abelian categories.

Proof. For each X ∈ B, the fiber EX comes equipped with a t-structure. In particular, for each
X there are coreflective localizations [Lur17Lur17, Proposition 1.2.1.5]

(2.4) E
≥0
X

� � //
EX

τ≥0

⊥oo E♡X

� � //
E
≤0
X .

τ≥0

⊥oo

The functors τ≥0 realize their codomain as the localization of the domain at the (−1)-coconnective
morphisms, i.e. those morphisms whose cofiber in EX is contained in E

≤0
X . By Condition (1) from

Definition 2.202.20, each morphism f : X −→ Y in E induces a left t-exact functor f∗ : EY −→ EX
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between the fibers. It follows that the (−1)-coconnective morphisms in (each fiber of) E and
E≤0 are stable under the functors f∗. Let us pass to a universe U such that E and B are U-small
and write X≥0 (resp. X♡) for the U-small ∞-category obtained from E (resp. E≤0) by localizing
at the (−1)-coconnective arrows in each fiber. We can then apply [Hin16Hin16, Proposition 2.1.4] in
the (U-small) setting where the marked arrows in B are just the equivalences to obtain maps of
Cartesian fibrations (preserving Cartesian arrows)

(2.5)
E

τ≥0 //

π ""

X≥0

zz

E≤0

π $$

τ≥0 // X♡

zz
B B.

By loc. cit., on the fiber over an object X ∈ B these maps can be identified with the local-
ization functors from (2.42.4). In particular, it follows from [Lur17Lur17, Proposition 7.3.2.6] that the
localizations from (2.52.5) both admit a left adjoint over B. These left adjoints are (fiberwise)
fully faithful and identify X≥0 and X♡ with the full subcategories E≥0 and E♡, respectively.
In particular, this shows that the projections from E≥0 and E♡ to B are Cartesian fibrations,
proving (1). Furthermore, the functors from (2.52.5) provide the horizontal right adjoints (relative
to B) in (2). Finally, the inclusions E♡ −→ E≥0 and E≤0 −→ E admit left adjoints over B by
[Lur17Lur17, Proposition 7.3.2.6]. □

Let us now specialize to the case of the tangent bundle.

Definition 2.23. Let V be an SM ∞-category with finite limits. A t-orientation on TV is
monoidal if T≥0V is closed under the square-zero tensor product and contains the unit.

Example 2.24. Consider the full subcategories of excisive functors F : Sfin∗ −→ S

T≥0S ⊆ TS T≤0S ⊆ TS

such that for every n, the map F (Sn) −→ F (∗) has n-connected, resp. n-truncated fibers. This
defines a t-orientation on TS, whose restriction to each fiber TXS ≃ Fun(X,Sp) consists of
diagrams of connective, resp. coconnective spectra. Furthermore, this t-orientation is monoidal
(the square zero monoidal structure simply being the Cartesian product by Example 2.162.16). In
particular, the heart T♡S can be identified with the ∞-category of local systems of abelian
groups. The inclusion T♡S ⊆ TS sends a local system of abelian groups A to the corresponding
parametrized Eilenberg–Maclane spectrum HA.

Let V be a SM ∞-category with finite limits and suppose that TV carries a monoidal t-
orientation. If O is an ∞-operad, we can use Proposition 2.172.17 to identify the Cartesian fibration
π : TAlgO(V) −→ AlgO(V) with AlgO(TV) −→ AlgO(V). Using this identification, consider the
two full subcategories

T≥0 AlgO(V) = AlgO(T
≥0V) T≤0 AlgO(V) = AlgO(T

≤0V)

where we view T≥0V and T≤0V as full suboperads of TV. In other words, these are the full
subcategories of O-algebras in TV whose underlying objects (for every colour x ∈ O) are
0-connective, resp. 0-coconnective in TV.

Proposition 2.25. These two full subcategories T≥0 AlgO(V) and T≤0 AlgO(V) define a monoidal
t-orientiation on TAlgO(V). For every colour x ∈ O, the forgetful functor x∗ : TAlgO(V) −→ TV

is t-exact, i.e. it preserves both 0-connective and 0-coconnective objects.
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Proof. First, to see that the t-orientation is monoidal, note that the full subcategory T≥0 AlgO(V) ≃
AlgO(T

≥0V) ⊆ AlgO(TV) is closed under tensor products, since evaluation on the set of colors
detects tensor products of algebras.

To verify condition (1) of Definition 2.202.20, notice that a morphism in AlgO(TV) is π-Cartesian
if and only if for every colour x ∈ O, its image under x∗ : AlgO(TV) −→ TV is a Cartesian arrow
[Lur17Lur17, Corollary 3.2.2.3]. This immediately implies that for every Cartesian arrow in AlgO(TV)
whose codomain is contained in T≤0 AlgO(V), the domain is contained in T≤0 AlgO(TV) as well.

For condition (2), consider the adjoint pair T≥0V −→⊥←− TV from Lemma 2.222.22. Since the
inclusion T≥0V −→ TV is symmetric monoidal, its right adjoint τ≥0 inherits a lax symmetric
monoidal structure [Lur17Lur17, Corollary 7.3.2.7]. We therefore obtain an adjoint pair at the level
of O-algebras which is natural with respect to restriction along maps of ∞-operads O→ O′ (cf.
[Lur17Lur17, Remark 7.3.2.13]). In particular, both adjoints commute with the forgetful functor for
each colour x ∈ O

T≥0 AlgO(V) ≃ AlgO(T
≥0V)

� � //

x∗

��

AlgO(TV)⊥oo

x∗

��
T≥0V

� � //
TV.⊥oo

Since the unit of the adjoint pair T≥0V −→⊥←− TV is an equivalence and its counit maps to an
equivalence in V by Lemma 2.222.22, the induced adjunction on O-algebras restricts to an adjunction
between the fibers over an O-algebra A

T
≥0
A AlgO(V)

� � //

x∗

��

TAAlgO(V)⊥
τ≥0

oo

x∗

��
T
≥0
x∗AV

� � //
Tx∗AV.

τ≥0

⊥oo

The left and right adjoint both commute with the forgetful functors and the unit of the adjunction
is an equivalence. In particular, it follows that an object E ∈ TAAlgO(V) is:

(a) contained in T
≥0
A AlgO(V) if and only if τ≥0(E) ≃ E.

(b) contained in T
≤−1
A AlgO(V) if and only if for every colour x ∈ O, x∗E ∈ Tx∗AV is

(−1)-coconnective, i.e. τ≥0(x∗E) ≃ 0. In turn, this is equivalent to τ≥0(E) ≃ 0 in
TAAlgO(V).

By [Lur17Lur17, Proposition 1.2.1.16], the subcategories T≥0A AlgO(V) and T
≤0
A AlgO(V) then determine

a t-structure on TAAlgO(V) if and only if the essential image of

τ≥0 : TAAlgO(V) −→ TAAlgO(V)

is closed under extensions. Since this functor is idempotent, (a) identifies its essential image

with T
≥0
A AlgO(V), which is closed under extensions because the forgetful functors x∗ (which

detect connectivity) preserve extensions and each T
≥0
x∗AV is closed under extensions. □

In the remainder of this section, we will show that for a large class of presentable∞-categories
V, the connective objects for the canonical t-orientation on TV (Example 2.212.21) admit a simpler
combinatorial description than that of an excisive functor. To this end, let us start by recalling
that every E ∈ TXV defines a reduced excisive functor E : Sfin∗ −→ V/X . Restricting E to the
full subcategory of finite pointed sets, we obtain a very special Γ-space object in V/X in the
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sense of Segal, whose underlying object is Ω∞(E). Indeed, for any two finite pointed sets S, T ,
the pushout square of finite pointed spaces (in fact, sets)

S ∨ T //

��

∗ ∨ T

��
S ∨ ∗ // ∗

induces an equivalence E(S ∨ T ) −→ E(S)× E(T ), from which the grouplike Segal conditions
follow. In other words, Ω∞(E) has the structure of a grouplike E∞-monoid in the sense of
[GGN15GGN15].

Conversely, in the presence of loop space machinery, every grouplike E∞-monoid arises from
a spectrum. For later purposes, let us make this slightly more precise: suppose that V is a
presentable ∞-category and let

Grp(V) ⊆ Fun(∆op,V) GrpE∞
(V) ⊆ Fun(Fin∗,V)

denote the ∞-categories of grouplike monoids, resp. grouplike E∞-monoids in V. Note that
both arise as full (reflective) subcategories of diagrams satisfying the grouplike Segal conditions
[Lur09Lur09, Definition 7.2.2.1], [Lur17Lur17, Section 2.4.2, Definition 5.2.6.2], [GGN15GGN15]. In addition, there
is an adjoint pair

(2.6) B : Grp(V)
//
V∗ : Ω⊥oo

where the left adjoint sends a grouplike monoid to its bar construction and the right adjoint
sends a pointed object in V to its loop space (endowed with the group structure coming from
the usual cogroup structure S1 −→ S1 ∨ S1).

Definition 2.26. Let V be a presentable ∞-category. We will say that V has loop space
machinery if it satisfies the following conditions:

(1) the Cartesian product V× V
×−→ V preserves geometric realizations.

(2) the unit of the adjunction (2.62.6) is an equivalence.

We will say that V has parametrized loop space machinery if each slice ∞-category V/X
has loop space machinery.

Example 2.27. Note that V has loop space machinery if and only if V∗/ has loop space
machinery. Using this, one readily sees that all ∞-toposes and stable presentable ∞-categories
have parametrized loop space machinery. More generally, a prestable presentable∞-category (i.e.
the connective part of a t-structure on a stable∞-category [Lur18Lur18, Section C.1]) has parametrized
loop space machinery. If V has (parametrized) loop space machinery and U : W −→ V is a
right adjoint functor preserving sifted colimits and detecting equivalences (in particular, it is
monadic), then W has (parametrized) loop space machinery.

Recall that a simplicial object ∆op → D in some ∞-category D is said to be n-skeletal if it
is left Kan extended from ∆op

≤n ⊆ ∆op.

Proposition 2.28. Let V be a presentable ∞-category with loop space machinery and consider
the adjoint pair

B : GrpE∞
(V)

//
Sp(V) = Excred(S

fin
∗ ,V) : Ω

∞⊥oo
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whose right adjoint restricts a reduced excisive functor along the inclusion i : Fin∗ −→ Sfin∗ .
Then the left adjoint B is fully faithful and a functor F : Sfin∗ −→ V lies in its essential image
(in particular, it will be reduced excisive) if and only if it satisfies the following two conditions:

(1) Its restriction to Fin∗ satisfies the grouplike Segal conditions.
(2) It preserves all finite geometric realizations, i.e. colimits of simplicial diagrams that

are n-skeletal for some n.

Before turning to the proof of Proposition 2.282.28, let us mention some consequences:

Definition 2.29. For a presentable ∞-category V, let us say that a functor A : Fin∗ −→ V is a
Segal E∞-groupoid if for any two finite pointed sets S, T ∈ Fin∗, the square

A(S ∨ T ) //

��

A(∗ ∨ T )

��
A(S ∨ ∗) // A(∗)

is cartesian. We will write GpdE∞
(V) ⊆ Fun(Fin∗,V) for the full subcategory on the Segal

E∞-groupoids.

Note that a Segal E∞-groupoid in V with A(∗) = X is equivalent to a grouplike E∞-monoid
in V/X .

Corollary 2.30. Let V be a presentable ∞-category with parametrized loop space machinery.
Then the following hold:

(1) There is a relative adjoint pair

GpdE∞
(V)

B //

ev∗
$$

TV = Exc(Sfin∗ ,V)⊥
Ω∞

oo

π
xx

V

whose right adjoint restricts an excisive functor along the inclusion i : Fin∗ −→ Sfin∗ .
(2) The left adjoint B is fully faithful and a functor F : Sfin∗ −→ V lies in its essential image

(in particular, it will be excisive) if and only if it preserves finite geometric realizations
and i∗F is a Segal E∞-groupoid.

(3) The connective part T≥0V of the canonical t-orientation (Example 2.212.21) on TV coincides
with the essential image of B.

Proof. Note that each excisive functor E : Sfin∗ −→ V can also be considered as a reduced excisive
functor with values in V/E(∗). The restriction to Fin∗ then defines a grouplike E∞-monoid in
V/E(∗), or equivalently, an E∞-groupoid in V. It follows that there is a well-defined functor
Ω∞ : TV −→ GpdE∞

(V) compatible with the projections to V. For each X ∈ V, the induced
functor between fibers admits a fully faithful left adjoint by Proposition 2.282.28 (applied to V/X).

For (1), we now note that the projections ev∗ and π are both Cartesian fibrations, so that
Ω∞ admits a relative left adjoint B [Lur17Lur17, Proposition 7.3.2.6]. For (2), note that B is given
fiberwise by the fully faithful left adjoint from Proposition 2.282.28. Since π and ev∗ are also
coCartesian fibrations, this implies that B is fully faithful (by [Lur09Lur09, Proposition 2.4.4.2]) and
that its essential image is as asserted in (2).
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For (3), the proof of [Lur17Lur17, Proposition 1.4.3.4] shows that it suffices to verify that the
essential image of B : GrpE∞

(V/X) ↪→ TXV is closed under extensions. For this, we just need to
verify that the additive presentable ∞-category GrpE∞

(V/X) satisfies the following condition
[Lur18Lur18, Proposition C.1.2.2]: for each map Y −→ ΣZ in GrpE∞

(V/X) to a suspension with
fiber F −→ Y , the natural map 0⨿F Y −→ ΣZ from the cofiber is an equivalence. To see this,
consider the following diagram in GrpE∞

(V/X):

. . . F ⊕ Z ⊕ Z //

��

//
// F ⊕ Z ////

��

F //

��

Y

��
. . . Z ⊕ Z ////// Z

// // 0 // ΣZ

Here the bottom row is the standard augmented simplicial object that computes ΣZ as a
geometric realization of coproducts (by restricting along the cofinal functor

(
∆/Λ2

0

)op −→ Λ2
0

and taking the left Kan extension along the left fibration
(
∆/Λ2

0

)op −→ ∆op). The top row is
obtained from the bottom row by base change along Y −→ ΣZ and each of the left vertical
maps can be identified with the evident projection onto a summand. However, note that the
simplicial structure of the top row is not just the direct sum of the bottom row and the constant
diagram on F .

Since the forgetful functor GrpE∞
(V/X) −→ V/X detects geometric realizations and V

has parametrized loop space machinery (so that the fiber product ×ΣZ preserves geometric
realizations), the top row is then a colimit diagram as well. The canonical map 0⨿F Y −→ ΣZ
is then an equivalence, since it can be identified with the geometric realization of the natural
equivalence of simplicial objects 0⨿F

(
F ⊕ Z⊕•−1

)
−→ Z⊕•−1. □

Corollary 2.31. Let V be a presentable SM ∞-category with parametrized loop space machinery.
Then there is a commuting square of presentable SM ∞-categories and symmetric monoidal left
adjoint functors

Fun(Fin∗,V)
i! //

��

Fun(Sfin∗ ,V)

(−)exc

��
GpdE∞

(V)
B // TV

where the top ∞-categories come equipped with the levelwise monoidal structure and the vertical
functors are monoidal localizations. In particular, the canonical t-orientation (Example 2.212.21) is
monoidal.

Proof. Corollary 2.302.30 already provides the desired square of presentable ∞-categories and left
adjoints without monoidal structures. Here the functors Fun(Fin∗,V) −→ GpdE∞

(V) and

Fun(Sfin∗ ,V) −→ TV are the localizations whose right adjoints are the evident inclusions of the
full subcategories of Segal E∞-groupoids and excisive functors. Since B is a fully faithful functor,
the localization Fun(Fin∗,V) −→ GpdE∞

(V) precisely inverts the class W of maps that are sent
to equivalences by (−)exc ◦ i.

To refine this commuting square to a commuting square of SM functors, observe that Fin∗ and
Sfin∗ both admit finite coproducts (given by wedge sums) and that the inclusion i : Fin∗ ↪→ Sfin∗
preserves coproducts. Lemma 2.92.9 now implies that i! : Fun(Fin∗,V)

⊗lev −→ Fun(Sfin∗ ,V)
⊗lev

admits a natural SM structure (adjoint to the SM structure on i∗). The functor (−)exc is a SM
localization by Proposition 2.102.10.
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Since (−)exc ◦ i is monoidal, the class W of arrows in Fun(Fin∗,V) is closed under the
tensor product with an object. It follows that the localization Fun(Fin∗,V) −→ GpdE∞

(V) is a
symmetric monoidal localization [Lur17Lur17, Proposition 4.1.7.4]; the functor B : GpdE∞

(V) −→ TV

then has a unique SM structure making the square commute.
For the conclusion about the canonical t-orientation being monoidal, note that GpdE∞

(V) ↪→
TV is a fully faithful symmetric monoidal functor whose essential image coincides with T≥0V

by Corollary 2.302.30. This implies that T≥0V contains the monoidal unit and is closed under the
tensor product, as desired. □

Let us now turn to the proof of Proposition 2.282.28, which requires some preliminaries.

Lemma 2.32. Let i : Fin∗ −→ Sfin∗ be the natural fully faithful inclusion. Then restriction and
left Kan extension define an adjoint pair

i! : Fun(Fin∗,V)
� � //

Fun(Sfin∗ ,V) : i
∗⊥oo

whose left adjoint is fully faithful. The essential image of i! consists exactly of those functors
F : Sfin∗ −→ V that preserve finite geometric realizations.

Proof. Note that i! is fully faithful because i is. To identify the essential image, let us factor the
Yoneda embedding as

Fin∗
i // Sfin∗

j // P(Fin∗)

where j sends T ∈ Sfin∗ to MapSfin
∗
(i(−), T ). Note that for each finite pointed set S ∈ Fin∗,

the functor MapSfin
∗
(i(S),−) preserves all finite geometric realizations in Sfin∗ , since it sends

T 7→ T×|S|−1. Consequently, j preserves finite geometric realizations as well. Since every finite
pointed space is the geometric realization of some n-skeletal simplicial diagram in Fin∗ and the
Yoneda embedding is fully faithful on Fin∗, it follows that j is fully faithful.

We then have a sequence of adjunctions given by restriction and left Kan extension

Fun(Fin∗,V)
� � i! //

Fun(Sfin∗ ,V)⊥
i∗
oo

� � j! //
Fun

(
P(Fin∗),V

)
⊥
j∗
oo

where the left adjoints are fully faithful. By [Lur09Lur09, Lemma 5.1.5.5], the essential image of j!i!
coincides with those functors P(Fin∗) −→ V preserving all colimits. Consequently, the essential
image of i! consists of those functors whose left Kan extension along j defines a colimit-preserving
functor P(Fin∗) −→ V.

Since j preserves finite geometric realizations, it follows that any functor in the image of
i! preserves finite geometric realizations. Conversely, given F : Sfin∗ −→ V preserving finite
geometric realizations, we have to verify that the counit map

i!i
∗F (T ) −→ F (T )

is a natural equivalence for T ∈ Sfin∗ . Note that the domain and codomain both preserve finite
geometric realizations in T . Since each T is the realization of a finite simplicial diagram in Fin∗,
we can reduce to the case where T ∈ Fin∗. But F and i!i

∗F agree on finite pointed sets by
construction. □

Recall that S1 arises as the geometric realization of the 1-skeletal (finite) pointed simplicial
set N•(∆

1/∂∆1) : ∆op −→ Fin∗, given explicitly in simplicial degree n by the finite pointed
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set ⟨n⟩ with (n+ 1)-elements [Seg74Seg74, p.295]. For every S ∈ Sfin∗ , the levelwise smash product
N•(∆

1/∂∆1) ∧ S then determines a simplicial diagram in Sfin∗ , given in degree n by the n-fold
wedge sum ⟨n⟩ ∧ S = S∨n.

Lemma 2.33. Suppose that V is a presentable ∞-category with loop space machinery and that
A : Fin∗ −→ V satisfies the grouplike Segal conditions. Let F = i!A : Sfin∗ −→ V be its image
under the left adjoint from Lemma 2.322.32. For each S ∈ Sfin∗ , the simplicial diagram

F
(
N•(∆

1/∂∆1) ∧ S
)
: ∆op // V

endows F (S) with the structure of a grouplike monoid in the sense of [Lur09Lur09, Definition 7.2.2.1].

Proof. Consider the functor Q : Sfin∗ −→ Fun(∆op,V) sending S to F
(
N•(∆

1/∂∆1) ∧ S
)
. We

have to show that Q takes values in the full subcategory Grp(V) ⊆ Fun(∆op,V) of simplicial
objects satisfying the grouplike Segal conditions.

Observe that the full subcategory Grp(V) ⊆ Fun(∆op,V) of simplicial objects X satisfying
the grouplike Segal conditions (i.e. the grouplike Segal maps X(n) −→ X(1)×n are equivalences)
is stable under geometric realizations: for every simplicial diagram X• in Fun(∆op,V), the
grouplike Segal maps |X•(n)| −→ |X•(1)|×n are equivalent to the geometric realizations of
simplicial diagram of Segal maps X•(n) −→ X•(1)

×n. On the other hand, the functor Q
preserves finite geometric realizations since F preserves finite geometric realizations (Lemma
2.322.32). Since every object in Sfin∗ is the geometric realization of a k-skeletal simplicial diagram
of finite pointed sets, it thus suffices to show that F

(
N•(∆

1/∂∆1) ∧ S
)
is a grouplike monoid

when S is a finite pointed set.
When S = ⟨m⟩, the simplicial object F

(
N•(∆

1/∂∆1) ∧ ⟨m⟩
)
can be identified explicitly

as follows: it is obtained from A((−) ∧ ⟨m⟩) : Fin∗ −→ V by restricting along the functor
N•(∆

1/∂∆1) : ∆op −→ Fin∗ from [Seg74Seg74, p.295]. Since A satisfies the grouplike Segal conditions,
A((−) ∧ ⟨m⟩) ≃ A(−)×m satisfies the grouplike Segal conditions as well. The simplicial object
obtained by restriction then satisfies the grouplike Segal conditions as well (as asserted somewhat
implicitly in loc. cit., see in particular Proposition 1.5). □

Proof of Proposition 2.282.28. Consider the adjoint pair (i!, i
∗) from Lemma 2.322.32. We claim that for

every A : Fin∗ −→ V satisfying the grouplike Segal conditions, the functor F := i!(A) : S
fin
∗ −→ V

is reduced excisive. Assuming this, the adjoint pair (i!, i
∗) simply restricts to an adjoint pair

between spectra and grouplike E∞-monoids, i.e. B = i! and Ω∞ = i∗. The characterization of
the essential image of B then follows from Lemma 2.322.32.

To verify the claim, note that F (∗) ≃ A(∗) ≃ ∗, so F is reduced. Since ∗ ∈ Sfin∗ is the initial

object, there is a canonical lift F̃ : Sfin∗ −→ V∗ such that postcomposing with the forgetful functor

V∗ −→ V yields F : indeed, F̃ is simply given by the functor sending S to the pointed object
∗ ≃ F (∗) −→ F (S) in V. Since the forgetful functor V∗ −→ V preserves limits, the functor F is

excisive if and only if F̃ is excisive.
To see that F̃ is excisive, it suffices to verify that for every S ∈ Sfin∗ , the natural map

(2.7) F̃ (S) // ΩF̃ (ΣS)

is an equivalence [Lur17Lur17, Proposition 1.4.2.13]. Using that ΣS = S1 ∧ S is the geometric

realization of the 1-skeletal simplicial diagram N•(∆
1/∂∆1) ∧ S and that F (and hence F̃ )

preserves finite geometric realizations, we have that F̃ (ΣS) is the bar construction of the group
object from Lemma 2.332.33. The map (2.72.7) can then be identified with the map underlying the
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canonical map of grouplike monoids F (S) −→ ΩB(F (S)), which is an equivalence because V

has loop space machinery. □

3. Tangent bundles of stable ∞-categories

The purpose of this section is to spell out the various definitions from Section 22 in the case
where V is a stable or additive presentable ∞-category, for which the tangent bundle has a much
simpler description.

3.1. Trivializing the tangent bundle. Let V be a pointed ∞-category with finite limits and
consider the full subcategory Ret ⊆ Sfin∗ on ∗ and S0. Then Ret is equivalent to the retract
category [Lur09Lur09, Definition 4.4.5.2] and there are functors

(3.1)

TV
G //

ev∗
%%

Fun(Ret,V)

ev∗

��

fib // V× V

π1

xx
V

Here the first horizontal functor is given by restriction and fib sends a retract diagram X →
Y → X to the tuple

(
X,Y ×X ∗

)
. The first functor exhibits TV as the fiberwise stabilization of

Fun(Ret,V): for every X ∈ V the induced functor TXV −→ Fun(Ret,V)X ≃ (V/X)∗ on fibers
over X exhibits its domain as the stabilization of its target.

Now suppose that V is an additive ∞-category. Then the functor fib is an equivalence, with
inverse sending (X,Y ) to X −→ X ⊕Y −→ X (see e.g. [CDH+20CDH+20, Lemma 1.5.12]). In this case,
we therefore obtain an equivalence

TV
≃ //

π
!!

V× Sp(V)

π1yy
V

between TV and the fiberwise stabilization of V× V over V. For stable V, the situation is even
simpler:

Lemma 3.1. If V is a stable ∞-category, then both G and fib are equivalences, so that there is
an equivalence TV ≃ V× V such that π(X,Y ) ≃ X and Ω∞(X,Y ) ≃ X ⊕ Y .

Proof. The functor fib is an equivalence since V is additive, so that the fibers of Fun(Ret,V) are
equivalent to V and hence already stable, which in turn implies that the functor G exhibiting the
fiberwise stabilization is an equivalence (cf. [HNP19bHNP19b, Corollary 2.2.5] for a similar argument). □

Lemma 3.2. Let V be an additive presentable ∞-category and let Σ∞ : V −→ Sp(V) be the left
adjoint functor exhibiting Sp(V) as the stabilization of V. Then the following induced square of
tangent categories is Cartesian:

TV
T(Σ∞) //

π

��

T(Sp(V))

π

��
V

Σ∞
// Sp(V).
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Proof. The left adjoint functor Σ∞ : V −→ Sp(V) commutes with the functor fib because one
can identify Y ×X 0 ≃ Y ⨿X 0 for a retract diagram X → Y → X. This implies that the functor
T(Σ∞) is obtained from the functor Σ∞ × Σ∞+ : V × V −→ Sp(V) × Sp(V) by stabilizing the
second factor, which readily implies the result. □

3.2. Square zero monoidal structure. If V is a stable presentable SM ∞-category, then
the square zero monoidal structure on TV ≃ V× V (Definition 2.142.14) can be made more explicit
using the following:

Definition 3.3. Let D be a presentable SM ∞-category. We will say that an object D ∈ D is
square zero if the canonical map ∅ −→ D ⊗D from the initial object is an equivalence and
denote by SqZ(D) ⊆ D the full subcategory on the square zero objects. Note that every SM left
adjoint F : D −→ D′ restricts to a natural map F : SqZ(D) −→ SqZ(D′).

Recall that the ∞-category of V-linear SM ∞-categories is given by the ∞-category
CAlgV(Pr

L) ≃ CAlg(PrL)V/ of presentable SM ∞-categories D equipped with a symmetric
monoidal left adjoint functor V −→ D.

Definition 3.4. Let W be a V-linear SM∞-category together with a square zero objectM ∈W.
We say that this exhibits W as the free V-algebra on a square zero object if for each
D ∈ CAlgV(Pr

L), evaluation at M defines a natural equivalence

evM : Fun⊗V(W,D) −→ SqZ(D).

Remark 3.5. Consider a pushout square in CAlg(PrL)

V1
//

��

V2

��
W1

f
// W2.

If M ∈ W1 exhibits W1 as the free V1-algebra on a square zero object, then f(M) exhibits
W2 ≃ V2⊗V1

W1 as the free V2-algebra on a square zero object: indeed, the evaluation at f(M)
factors as two equivalences

evf(M) : Fun⊗V2
(V2 ⊗V1 W1,D) ∼

f∗
// Fun⊗V1

(W1,D) ∼
evM // SqZ(D).

Proposition 3.6. There exists a free S-algebra S[ϵ] on a square zero object. Furthermore, the
functor

{A,M} // S[ϵ]

that sends A to the monoidal unit and M to the (universal) square zero object, exhibits S[ϵ] as
the free presentable ∞-category on the two-element set {A,M}.

In particular, the tensor product functor ⊗ : S[ϵ]×S[ϵ] −→ S[ϵ] is the unique functor preserving
colimits in each variable given on generating objects by A⊗A = A,A⊗M =M ⊗A =M and
M ⊗M = ∅ is the initial object.

Proof. First, let Finbij be the category of finite sets and bijections, with monoidal structure
given by disjoint union. By [Lur17Lur17, Proposition 2.2.4.9], the inclusion of the 1-element set

{1} : ∗ −→ Finbij exhibits Finbij as the free symmetric monoidal ∞-category on ∗. By [Lur17Lur17,

Corollary 4.8.1.12] (and the fact that Finbij ≃ Finbij,op), the ∞-category Fun(Finbij, S) of
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symmetric sequences admits a unique closed symmetric monoidal structure such that the Yoneda
embedding

Finbij
h // Fun(Finbij, S)

admits a symmetric monoidal structure. In particular, the (co)representable h0 on the empty set

is the monoidal unit and the universal property of
(
Finbij,⊔

)
and [Lur17Lur17, Proposition 4.8.1.10]

imply that the map {h1} : ∗ −→ Fun(Finbij, S) exhibits Fun(Finbij, S) as the free presentable
SM ∞-category on ∗. Finally, [Lur17Lur17, Remark 4.8.1.13] asserts that the resulting symmetric

monoidal structure on Fun(Finbij, S) is in fact given by Day convolution.
Let us now denote by S[ϵ] the (reflective) localization of symmetric sequences at the set of

maps ∅ −→ hn from the initial object, for all n ≥ 2. Then S[ϵ] ⊆ Fun(Finbij, S) is the full
subcategory of symmetric sequences X such that X(n) ≃ ∗ for all n ≥ 2. In particular, the
functor {A,M} −→ S[ϵ] sending A 7→ h0 and M 7→ h1 exhibits S[ϵ] as the free presentable
∞-category on {A,M}.

Note that for any m ≥ 0 and n ≥ 2, the map ∅ ⊗ hm −→ hn ⊗ hm is equivalent to the
map ∅ −→ hn+m, so (by the same argument as in Proposition 2.102.10) this exhibits S[ϵ] as a

symmetric monoidal localization of Fun(Finbij, S). By the universal property of symmetric
monoidal localizations, the square zero object h1 ∈ S[ϵ] then realizes S[ϵ] as the free presentable
SM ∞-category on a square zero object. □

Corollary 3.7. For every presentable SM ∞-category V, there exists a free V-algebra V[ϵ] on a
square zero object.

Proof. Proposition 3.63.6 provides the existence of the free S-algebra on a square zero object S[ϵ].
By Remark 3.53.5, V⊗S S[ϵ] then provides the free V-algebra on a square zero object. □

Remark 3.8. Let V be a presentable SM ∞-category. Then the free V-algebra V[ϵ] on a
square zero object can also be described in terms of a variant of the Day convolution product
applicable to promonoidal ∞-categories, as developed in recent work of Nardin–Shah [NS20NS20].
More precisely, one can check that the 2-coloured operad MCom for commutative algebras and
modules is such a promonoidal (∞-)category. Since the underlying category of MCom is simply
the set {A,M}, this endows Fun({A,M},V) with a Day convolution product which has the
property that

(hA ⊗ C)⊗ (hA ⊗D) = hA ⊗ (C ⊗D)

(hA ⊗ C)⊗ (hM ⊗D) = hM ⊗ (C ⊗D)

(hM ⊗ C)⊗ (hM ⊗D) = ∅.
In particular, the square zero object hM ⊗ 1V induces a symmetric monoidal functor from V[ϵ]
to this Day convolution, which is easily seen to be an equivalence. The universal property of the
Day convolution therefore implies that for any ∞-operad O, there is a natural equivalence

AlgO
(
V[ϵ]

)
≃ AlgO×MCom(V).

The ∞-operad MO = O×MCom is the ∞-operad for O-algebras and (operadic) modules over
them [Hin15Hin15, HNP19bHNP19b]. Combining this with Proposition 2.172.17 and Proposition 3.103.10 below,
one finds that TAlgO(V) ≃ AlgMO(V) for every stable presentable SM ∞-category V (see also
[Sch97Sch97, BM05BM05, Lur17Lur17]).

We will now relate the free V-algebra on a square zero object to TV:
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Construction 3.9. Let V be a stable presentable SM ∞-category and consider the following
cofiber sequence of excisive functors

h∗ ⊗ 1V
i⊗id // hS0 ⊗ 1V // MV

where i⊗ id is the canonical map of corepresentables induced by ∗ −→ S0. Lemma 2.132.13 shows
that the pushout-product of h∗ ⊗ 1V −→ hS0 ⊗ 1V with itself in Fun(Sfin∗ ,V) is a TV-local
equivalence. Consequently, the pushout-product map in the monoidal localization TV becomes
an equivalence. Since the cofiber of a pushout-product map is the tensor product of the cofibers
(see e.g. [GPS14GPS14, Theorem 6.2] for a proof at the level of stable monoidal derivators), it follows
that MV ⊗MV ≃ 0 in TV.

Proposition 3.10. Let V be a stable presentable SM ∞-category and consider TV as a V-linear
SM ∞-category via the left adjoint V −→ TV to the projection. Then the square zero object
MV ∈ TV exhibits TV as the free V-algebra on a square zero object.

Proof. Since V is a stable presentable SM ∞-category, the canonical SM left adjoint S −→ V

factors canonically over spectra [Lur17Lur17, Corollary 4.8.2.19]. This gives rise to the following

diagram in CAlg(PrL):

S

��

// Sp

��

// V

��
Sp[ϵ] //

ϕ
��

V[ϵ]

ϕV

��
TS // T Sp // TV.

Here each composite vertical functor is the left adjoint to the projection (i.e. taking constant
Sfin∗ -diagrams). For V and the∞-category of spectra, this left adjoint factors over the free algebra
on a square zero object: ϕ is the functor classifying the the square zero object MSp ∈ T Sp and
ϕV classifies MV. Since the functor T Sp −→ TV is a monoidal left adjoint, it sends MSp to MV

to that the diagram commutes.
Now notice that by Proposition 2.182.18, the total square and the left rectangle are both

pushout squares in CAlg(PrL). On the other hand, Remark 3.53.5 shows that the top right
square is coCartesian. It therefore follows that the bottom right square is coCartesian as well.
Consequently, ϕV is an equivalence as soon as ϕ is an equivalence, so we can reduce to the case
V = Sp. In this case, let us consider the composite functor

{A,M} // S[ϵ] // Sp[ϵ]

sending A to the monoidal unit and M to the universal square zero object. Proposition 3.63.6
asserts that the first functor exhibits S[ϵ] as the free presentable∞-category generated by {A,M}
and Remark 3.53.5 and [Lur17Lur17, Proposition 4.8.2.18] imply that the second functor exhibits Sp[ϵ]
as the stabilization of S[ϵ]. The composite therefore exhibits Sp[ϵ] as the free stable presentable
∞-category generated by {A,M}.

Now observe that by construction the monoidal functor

ϕ : Fun({A,M},Sp) ≃ Sp[ϵ] −→ T Sp

is given on generators by ϕ(hA) = 1T Sp = h∗ ⊗ 1Sp and ϕ(hM ) = MSp = cof
(
h∗ ⊗ 1Sp −→

hS0 ⊗ 1Sp
)
. It follows that the right adjoint to ϕ is is given by the composite functor T Sp −→
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Fun(Ret,Sp) −→ Sp×Sp appearing (3.13.1), which is an equivalence since Sp is stable. We
conclude that ϕ is an equivalence, as desired. □

Remark 3.11. If V is an additive presentable SM ∞-category, its stabilization Sp(V) carries an
induced symmetric monoidal structure and Σ∞ : V −→ Sp(V) is a symmetric monoidal functor
[GGN15GGN15, Theorem 5.1]. The pullback square of Lemma 3.23.2 then becomes a pullback square
of SM ∞-categories. Proposition 3.103.10 then provides an explicit description of the square zero
monoidal structure on TV ≃ V× Sp(V), given informally by the formula

(3.2) (C,E)⊗TV (D,F ) ≃
(
C ⊗V D, (Σ

∞C ⊗Sp(V) F )⊕ (E ⊗Sp(V) Σ
∞D)

)
.

Example 3.12. Let V be a stable presentable SM ∞-category and suppose that O is a
monochromatic ∞-operad in arity ≥ 1, i.e. O⊗⟨0⟩ = ∅ and O⊗⟨1⟩ is a category with (up to

equivalence) one object. This implies that AlgO(V) is pointed, i.e. the terminal algebra 0 is also
the initial algebra (by [Lur17Lur17, Proposition 3.1.3.13]).

For any A ∈ AlgO(V), TAAlgO(V) can be identified with the ∞-category of operadic A-
modules (see [HNP19bHNP19b, Corollary 1.0.5] or [Lur17Lur17, Theorem 7.3.4.13]). Alternatively, Remark
3.83.8 identifies TAlgO(V) ≃ AlgMO(V) with the ∞-category of O-algebras and modules over them.

Now, given such an A-module E, the O-algebra Ω∞(E) can be identified with the split square
zero extension A⊕ E. For any section η : A −→ A⊕ E, we then obtain pullback squares of the
form

Ω∞(0, E[−1]) //

��

Aη //

��

Ω∞(A,E)

��
Ω∞(0, 0) = 0 // A

η // Ω∞(A,E).

Here the map 0 −→ A is the initial map of O-algebras and total pullback arises as the image
under Ω∞ of the pullback in TAlgO(V) ≃ AlgMO(V) of the map (A, 0) −→ (A,E) along the
initial map (0, 0) −→ (A,E). In particular, Ω∞(0, E[−1]) is the image of an O-algebra (0, E[−1])
under the nonunital lax symmetric monoidal functor

Ω∞ : T0V = TV×V {0} ↪→ TV −→ V

where the first functor is the inclusion of the nonunital SM sub-∞-category from Remark 2.152.15.
We have seen there that the tensor product on T0V is null-homotopic, so that each operation
in O of arity ≥ 2 acts on (0, E[−1]) by a null-homotopic map. Consequently, the resulting
map Aη −→ A indeed behaves like a square zero extension in the sense of algebra: its fiber
Ω∞(0, E[−1]) is an O-algebra on which all operations in O of arity ≥ 2 act by null-homotopic
maps (cf. [Lur17Lur17, Proposition 7.4.1.14]).

3.3. t-orientations. Let us conclude with some remarks about t-orientations on tangent bundles
of additive and monoidal ∞-categories.

Example 3.13. Let V be an additive presentable ∞-category, so that TV ≃ V× Sp(V) (Lemma
3.23.2). Then any t-structure on Sp(V) determines a t-orientation on TV. Now suppose that V is
furthermore symmetric monoidal and recall that the square zero tensor product on TV can be
identified with the tensor product on V× Sp(V) given by Remark 3.113.11. From this description,
one sees that a t-structure on Sp(V) determines a monoidal t-orientation on TV if and only if
Sp(V)≥0 is closed under taking the tensor product in Sp(V) with objects of the form Σ∞(X),
for X ∈ V.
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Example 3.14. Suppose that V is an additive presentable∞-category and consider the canonical
t-orientation on TV ≃ V× Sp(V) (Example 2.212.21). A tuple (C,E) is then contained in T≤−1V if
and only if Ω∞(E) = 0 in V. The proof of [Lur17Lur17, Proposition 1.4.3.4] shows that (C,E) ∈ T≥0V

if and only if E is contained in the smallest subcategory of Sp(V) which is closed under colimits
and extensions and contains all Σ∞(X) for X ∈ V. If V is furthermore closed SM, then Example
3.133.13 shows that the canonical t-orientation is monoidal.

When V is stable, the canonical t-orientation simply produces the trivial t-structure (T≥0V =
TV). If V is prestable [Lur18Lur18, Definition C.1.2.1], the canonical t-orientation has T≥0V ≃ V× V

under the equivalence TV ≃ V× Sp(V) [Lur18Lur18, Proposition C.1.2.2].

Example 3.15. Suppose that V is a prestable SM ∞-category and O an ∞-operad. Endowing
TV ≃ V× Sp(V) with its canonical monoidal t-orientation and applying Proposition 2.252.25, we
obtain a t-orientation on TAlgO(V), and hence a t-structure on TAAlgO(V) for any O-algebra
A. Under the identification TAAlgO(V) ≃ ModA(Sp(V)) from Example 3.123.12, this is simply the
t-structure whose connective part is given by ModA(V) ⊆ ModA(Sp(V)).

4. Postnikov structures

The goal of this section is to give an axiomatic description of a decomposition of an object in
a nice ∞-category, together with the data of ‘k-invariants’, analogous to the Postnikov tower of
a space.

Definition 4.1. Let V be an ∞-category with finite limits. A Postnikov structure on an
object X in V consists of the following data:

(1) An infinite tower

X // ... // Xa
// ... // X1

of objects Xa ∈ V under X for a ≥ 1, exhibiting X as the limit of {Xa}a≥1.
(2) For each a ≥ 2, an object Ka : S

fin
∗ → V in TV together with a Cartesian square

Xa
//

��

π(Ka)

0

��
Xa−1

ka

// Ω∞Ka

exhibiting Xa −→ Xa−1 as a square zero extension (see (2.22.2)).

Note that the convention to start at a = 1 is rather arbitrary, and in various cases it can be
more natural to start at a = 0.

Warning 4.2. The notion of a Postnikov structure on an object X is a priori unrelated to the
tower of truncations of X, i.e. its underlying tower need not be given by the Postnikov tower
of X in the sense of [Lur09Lur09, Definition 5.5.6.23]. For example, Theorem 6.36.3 yields a Postnikov
structure on an (∞, n)-category C whose underlying tower consists of the homotopy categories
ho(n+a,n)(C) and not on its truncations τ≤n+a(C) in Cat(∞,n).

Warning 4.24.2 notwithstanding, we will see that a good source of Postnikov structures is given
by the usual Postnikov tower together with its k-invariants:
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Example 4.3. The motivating example of a Postnikov structure is the usual Postnikov tower
of a space X, together with the data of its k-invariants. In this case, Xa = τ≤aX and the Ka

are given by the (suspended) parametrized Eilenberg–Maclane spectra Ka = Σa+1Hπa(X) over
τ≤1X. We will come back to this in Example/Proposition 4.154.15.

To study naturality of Postnikov structures, it will be convenient to organize the data of an
object X equipped with a Postnikov structure into a single diagram T : E −→ V. To this end,
let us start by recalling the following definition:

Definition 4.4. Let ϕ : C −→ D be a functor of ∞-categories. We will denote by M(ϕ) the
domain of the coCartesian fibration classified by ϕ : ∆1 −→ Cat∞. By [Lur09Lur09, Lemma 3.2.3.3],
M(ϕ) can be identified with the mapping simplex [Lur09Lur09, Section 3.2.2], i.e. it can be identified
with the pushout of ∞-categories

M(ϕ) := D
∐
{1}×C

∆1 × C.

Using the coCartesian fibration M(ϕ) −→ ∆1, one can understand M(ϕ) as follows: an object
of M(ϕ) is either an object of C or an object of D, and for each c, c′ ∈ C and d, d′ ∈ D we have

MapM(ϕ)

(
c, c′) = MapC(c, c

′) MapM(ϕ)

(
c, d

)
= MapD(ϕ(c), d)

MapM(ϕ)(d, d
′) = MapD(d, d′) MapM(ϕ)(d, c) = ∅

with the evident composition. Let us write ϕ∗ : ∆
1 × C −→M(ϕ) for the natural map into the

pushout, sending (0, c) to c and (1, c) to ϕ(c).

Construction 4.5. For any integer a, let κa : {a→ (a− 1)} −→ Sfin∗ be the functor sending
the walking arrow a → (a − 1) to ∗ → S0 and let Ea = M(κα) be its mapping simplex. As
in Definition 4.44.4, we will identify the objects of Ea with the objects of Sfin∗ , together with two
additional objects a, a− 1. The functor σa∗ : ∆

1 × {a→ a− 1} −→ Ea is then given explicitly
by

σa(0, a) = a, σa(0, a− 1) = a− 1, σa(1, a) = ∗ σa(1, a− 1) = S0.

For any integer m, let us then define E≥m to as the pushout of ∞-categories:

Zop
≥m

//

��

[
Em+1

∐
{m+1} Em+2

∐
{m+2} Em+3

∐
...
]

��(
Zop
≥m

)◁ // E≥m

where the left vertical functor is the usual inclusion into the cone and the top horizontal functor
sends each map a → (a − 1) in Zop

≥m to the nondegenerate arrow corresponding arrow in Ea.
Given T : E≥m −→ V, we then observe that:

• the restriction of T to Sfin∗ ⊆ Ea corresponds to Ka.
• the restriction of T along σa∗ : ∆

1 × {a→ a− 1} ⊆ Ea corresponds to the square

Xa
//

��

Ka(∗) = π(Ka)

��
Xa−1

ka

// Ka(S
0) = Ω∞(Ka).
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• the restriction of T to (Zop
≥m)◁ ⊆ E encodes the tower X → . . .→→ Xm+1 → Xm.

By default, we will take E = E≥1.

Definition 4.6. We define the ∞-category of objects equipped with a Postnikov
structure to be the full subcategory

PoStr(V) ⊆ Fun(E,V)

of diagrams T for which (a) the restriction to each Sfin∗ ⊆ Ea is excisive, (b) the restriction along
each σa∗ is a Cartesian square and (c) the restriction to (Zop

≥1)
◁ is a limit cone.

Remark 4.7. The conditions determining PoStr(V) inside Fun(E,V) assert that certain desig-
nated cone diagrams I◁α −→ E, with Iα contractible (either a span or Zop

≥1), are sent to limit

cones. In particular, PoStr(V) ⊆ Fun(E,V) is closed under limits.

Evaluating at the cone point of the tower ∞ ∈ (Zop
≥1)

◁ ⊆ E determines a limit-preserving

functor ev∞ : PoStr(V) −→ V.

Definition 4.8. A Postnikov structure on an ∞-category V is defined to be a section
Φ: V −→ PoStr(V) of the functor ev∞ : PoStr(V) −→ V.

Warning 4.9. Note the distinction between a Postnikov structure on an object in an∞-category
V (Definition 4.14.1) and a Postnikov structure on an ∞-category V: the former is a single diagram
in V, while the latter is a family of diagrams depending functorially on X ∈ V. This should not
cause any confusion, since it is always clear from the context if we are dealing with a functor on
V.

Definition 4.10. Let V be a SM ∞-category and endow Fun(E,V) with the levelwise tensor
product. We define the ∞-operad of objects equipped with a Postnikov structure to be
the full suboperad

PoStr(V)⊗ ⊆ Fun(E,V)⊗lev

spanned by the objects from Definition 4.84.8. A multiplicative Postnikov structure on V is a
section of the map ev∞ : PoStr(V)⊗ −→ V⊗ in the ∞-category of ∞-operads.

Using that PoStr(V)⊗ is a full suboperad of Fun(E,V)⊗, Definition 4.104.10 can be rephrased
as follows: a multiplicative Postnikov structure on V is a lax symmetric monoidal section
Φ: V −→ Fun(E,V) of ev∞ : Fun(E,V) −→ V with the property that the underlying functor of
Φ is a Postnikov structure (Definition 4.84.8).

Remark 4.11. In general, the ∞-operad PoStr(V)⊗ need not be a SM ∞-category.

Remark 4.12. Suppose that Φ: V −→ Fun(E,V) is a multiplicative Postnikov structure. Re-
stricting to the copy of Sfin∗ ⊆ Em in level m, one obtains a lax monoidal functor Km(Φ) : V −→
Fun(Sfin∗ ,V) taking values in TV ⊆ Fun(Sfin∗ ,V). Since TV is a monoidal localization of
Fun(Sfin∗ ,V), each Km(Φ) defines a lax monoidal functor V −→ TV to the tangent bundle,
equipped with the square zero monoidal structure (Definition 2.142.14).

Example 4.13. Suppose that the monoidal structure on V is given by the Cartesian product.
Then the levelwise monoidal structure on Fun(E,V) is the Cartesian monoidal structure as well.
Consequently (cf. [Lur17Lur17, Section 2.4.1]), strong symmetric monoidal functors V→ Fun(E,V)
simply correspond to product preserving functors V→ Fun(E,V), i.e., to functors V→ Fun(E,V)
each of whose components V→ V are product preserving. In particular, any Postnikov structure
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Φ: V −→ Fun(E,V) on V whose individual components Φi : V → V are product preserving
canonically refines to a multiplicative Postnikov structure.

The main point of multiplicative Postnikov structures is that they induce such structures on
categories of algebras:

Proposition 4.14. Let O be an ∞-operad and let V be a symmetric monoidal ∞-category
equipped with a multiplicative Postnikov structure Φ: V −→ Fun(E,V). Then the induced map

AlgO(V)
Φ∗−→ AlgO

(
Fun(E,V)

)
≃ Fun

(
E,AlgO(V)

)
is also a multiplicative Postnikov structure.

Proof. First, note that we can view E as an ∞-operad (with only unary operations), so that
Fun(E,V) ≃ AlgE(V). By Remark 2.72.7, the symmetry of the Boardman-Vogt tensor product
of ∞-operads [Lur17Lur17, Proposition 2.2.5.13] then induces a commuting diagram of symmetric
monoidal ∞-categories

AlgO⊗BVE(V ) ≃ AlgO
(
Fun(E,V)

) ≃ //

AlgO(ev∞)

��

Fun
(
E,AlgO(V)

)
≃ AlgE⊗BVO(V )

ev∞

��
AlgO(V) =

// AlgO(V)

in which the horizontal arrows are equivalences. It follows that Φ∗ = AlgO(Φ) defines a lax
symmetric monoidal section of ev∞. To see that Φ∗ takes values in the full sub-∞-category
PoStr(AlgO(V)) ⊆ Fun(E,AlgO(V)), consider the commuting diagram

AlgO(V)
Φ∗ //

��

AlgO(Fun(E,V))
≃ //

��

Fun(E,AlgO(V))

��
Fun(O⟨1⟩,V) Φ∗

// Fun(O⟨1⟩,Fun(E,V)) ≃
// Fun(E,Fun(O⟨1⟩,V))

where O⟨1⟩ is the underlying ∞-category of O [Lur17Lur17, Remark 2.1.1.25]. Since the vertical
functors preserve limits and detect equivalences, the top horizontal composite defines a Postnikov
structure if and only if the bottom horizontal composite does (since an E-diagram is a Postnikov
structure if it sends certain sub-diagrams to limit diagrams). But for the bottom horizontal
composite this is clear, since limits are computed pointwise. □

4.1. Examples. Together with Proposition 4.144.14, the main sources of examples of multiplicative
Postnikov structures are the following:

Example/Proposition 4.15. Let S be the ∞-category of spaces. Then the Postnikov tower
X → . . . → τ≤2(X) → τ≤1(X), together with its k-invariants, gives rise to a multiplicative
Postnikov structure on (S,×).

Proof. Since we consider S with the Cartesian monoidal structure, Example 4.134.13 shows that it
suffices to construct the Postnikov structure without its lax monoidal structure, and only check
at the end that the individual components are product preserving. Now the underlying Postnikov
structure can be produced at the level of simplicial sets (and is classical, cf. [DK84DK84, GJ09GJ09]).
Indeed, for every Kan complex X, let us make the following definitions:
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(a) Let Pa(X) = coska+1(X) be the (a+ 1)-coskeleton and note that there is a canonical weak
equivalence P1(X) −→ N(Π1(X)) to the nerve of the fundamental groupoid.

(b) For every a ≥ 2, there is a functor πa(X) : Π1(X) −→ Ab sending a vertex x of X to the
corresponding homotopy group. Let us recall that this homotopy group can be presented as
quotient of the set of maps of pointed simplicial sets

(
ska∆

a+1, {0}
)
−→ (X,x) by pointed

homotopy.

(c) For every pointed simplicial set S, taking the free reduced πa(X)-module on its simplices
yields a simplicial Π1(X)-set πa(X)⊗ S : Π1(X) −→ sSet. Taking S = ∆n/skn−1∆

n, this
gives the functor sending each vertex x of X to the classical (minimal) model for the
Eilenberg–Maclane space K(πa(X,x), n). Recall that the latter is characterized up to
isomorphism by the following universal property: there is a natural bijection between
the set of maps of simplicial sets T −→ K(πa(X,x), n) and the set of n-cocycles in the
normalized cochain complex of T with coefficients in πa(X,x).

(d) Recall that there is a classifying space functor (−)hΠ1(X) from Fun(Π1(X), sSet) to simplicial
sets, given by the following explicit point-set model for the homotopy colimit: YhΠ1(X) has
n-simplices given by tuples of x0 → . . . → xn in Π1(X) and an n-simplex of Y (x0). In
particular, (∗)hΠ1(X) = N(Π1(X)) is the nerve of the fundamental groupoid.

(e) Let sSetfin∗ denote the full subcategory of pointed simplicial sets whose image in the

∞-category S∗ of pointed spaces is finite. We then define KX,a : sSetfin∗ −→ sSet by

KX,a(T ) =
[
πa(X)⊗ (T ∧ Sa+1)

]
hΠ1(X)

where Sa+1 = ∆a+1/ska∆
a+1.

(f) By [DK84DK84, 1.2(vi)], there is a natural map of simplicial sets for each a ≥ 2

ka : Pa−1(X) −→ KX,a(S
0) =

[
K(πa(X), a+ 1)

]
hΠ1(X)

.

Explicitly, this map is given as follows. The simplicial set KX,a(S
0) is (a+ 1)-coskeletal

and the map KX,a(S
0) −→ N(Π1(X)) induces an isomorphism on a-skeleta. The map ka

then coincides with Pa−1(X) −→ P1(X) −→ N(Π1(X)) on the a-skeleton, and sends an
(a + 1)-simplex of Pa−1(X), i.e. a map σ : ska∆

a+1 −→ X, to the associated element in
πa

(
X,σ(0)

)
(see point (b)(b)).

By construction, the map ka is trivial on all (a+ 1) simplices in Pa−1(X) that arise as
the image of an (a+ 1)-simplex in Pa(X), so that there is a commuting square

(4.1)

Pa(X)

��

// KX,a(∗)

0

��
Pa−1(X)

ka

// KX,a(S
0).

For any Kan complex X, the functor KX,a preserves weak equivalences of simplicial sets and
hence determines a functor of ∞-categories KX,a : S

fin
∗ −→ S. It is straightforward to verify the

conditions of Proposition 2.282.28, which imply that KX,a is excisive because S admits loopspace
machinery (Example 2.272.27). Furthermore, the square (4.14.1) defines a pullback square in the
∞-category S by [DK84DK84, Lemma 2.3] and the sequence X → . . .→ Pa(X)→ Pa−1(X)→ . . . is
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a homotopy limit sequence. It follows that the above construction defines, for every Kan complex
X, a simplicial model for a Postnikov structure on the underlying object in the ∞-category S.

All of the above data is strictly functorial in maps of Kan complexes and sends weak
equivalences to pointwise weak equivalences of simplicial sets. It therefore defines a section

S // PoStr(S)

ev∞

yy

on ∞-categorical localizations, as desired. To verify that the individual components of this
tower are product preserving we note that:

(1) For each a ≥ 1 the Postnikov piece functor Pa(X) is product preserving. Indeed on the
level of Kan complexes it is given by coska(−), which is product preserving on the nose.

(2) For each a ≥ 1 and T ∈ Sfin∗ , the functor

X 7−→ KX,a(T ) =
(
πa(X)⊗ (T ∧ Sa+1)

)
hΠ1(X)

is product preserving. Indeed, this follows from the fact that :
• Π1(−) is product preserving;
• taking a’th homotopy groups is product preserving when considered as a functor

from pointed spaces to abelian groups. In other words, the map πa(X×Y, (x, y))→
πa(X,x)× πa(Y, y) is an isomorphism.
• for a fixed finite set I the functor A 7→ A⊗ I = AI from abelian groups to sets is
product preserving;
• products in spaces commute with homotopy quotients in each variable separately.
Indeed, for two diagrams of simplicial sets X : G −→ sSet and Y : H −→ sSet
indexed by groupoids, the map (X × Y )h(G×H) −→ XhG × YhH is an isomorphism
by the explicit formula from (d)(d).

It follows that the Postnikov structure is multiplicative. □

Example 4.16. As mentioned in its construction, the multiplicative Postnikov structure of
Example 4.154.15 is not just lax symmetric monoidal, but strongly symmetric monoidal: it is a
product preserving functor Φ: S −→ Fun(E, S). It follows that for any small ∞-category with
finite products T, the ∞-category Fun×(T, S) of product preserving functors T → S comes with
a Postnikov structure

Fun×(T, S)
Φ∗ // Fun×(T,Fun(E, S)) ≃ Fun(E,Fun×(T, S)).

For every A ∈ Fun×(T, S), this provides a refinement of the tower A→ . . .→ τ≤2A→ τ≤1A of
truncations of A. In particular, when T is an algebraic theory, this shows that T-algebras over
in S have Postnikov towers equipped with k-invariants (cf. [GH00GH00] for algebras over simplicial
operads).

Example 4.17. Let X be an ∞-topos in which Postnikov towers converge [Lur09Lur09, Defini-
tion 5.5.6.23], i.e. X −→ limn τ≤nX is the limit of its full subcategories of truncated objects
(this implies that X is hypercomplete). In this case, there exists a reflective localization
L : Fun(Cop, S) −→⊥←− X : i such that L is left exact and preserves (limits of) Postnikov towers. We
then obtain a Postnikov structure on X

X
i // Fun(Cop, S)

Φ∗ // Fun(Cop,Fun(E, S)) ≃ Fun(E,Fun(Cop, S))
L∗ // Fun(E,X).



32 YONATAN HARPAZ, JOOST NUITEN, AND MATAN PRASMA

Indeed, this sends every object X ∈ X to the Postnikov structure of the presheaf i(X) (applying
Example 4.154.15 pointwise in C), and then applies L to the resulting diagram of presheaves. Since
L is left exact and preserves Postnikov towers, the resulting E-diagram in X is indeed a Postnikov
structure.

Observation 4.18. The proof of Example 4.154.15 admits the following modification: let Sπ−ab ⊆ S

be the full subcategory consisting of those spaces X such that each homotopy group π1(X,x) is
abelian and acts trivially on the higher πn(X,x). Then there exists a multiplicative Postnikov
structure

Sπ−ab // PoStr(Sπ−ab) ⊆ PoStr(S)

whose value on a space X is the Postnikov structure X → . . .→ τ≤1X → π0(X) including the
zeroth stage. Furthermore, the k-invariants are given by maps

ka : τ≤a−1X // Ω∞(Ka(X))

where Ka(X) is the parametrized spectrum over π0(X) whose fiber over x ∈ π0(X) denotes the
suspended Eilenberg–Maclane spectrum H(πa(X,x))[a+ 1]. Indeed, this follows from the fact
that the category of simplicial sets with homotopy type in Sπ−ab is closed under coskeleta and
products, together with the fact that the local system of homotopy groups from (b)(b) arises as
the pullback of a local system along the map Π1(X) −→ π0(X).

Example 4.19. Let MonE∞(Sπ−ab) be the ∞-category of E∞-spaces whose underlying space
has trivial actions of π1. Proposition 4.144.14 and Observation 4.184.18 imply that the Postnikov
tower A → . . . → τ≤1A → τ≤0A is part of a multiplicative Postnikov structure Φab on(
MonE∞(Sπ−ab),×

)
.

Let A be a grouplike E∞-space. Then A is in particular contained in MonE∞(Sπ−ab). The
corresponding Postnikov structure Φab

A : E −→ MonE∞(Sπ−ab) has the property that π0(Φ
ab
A ) is

the constant diagram with value π0(A). In particular, Φab
A takes values in the full subcategory

of grouplike E∞-monoids. It follows that the multiplicative Postnikov structure Φab restricts
to a multiplicative Postnikov structure on grouplike E∞-monoids, which fits into a commuting
square

GrpE∞
(S)

Φab
//

forget

��

PoStr
(
GrpE∞

(S)
)

forget

��
Sπ−ab

4.184.18 // PoStr(S).

The Postnikov structure on the category of grouplike E∞-spaces (or equivalently, connective
spectra) from Example 4.194.19 admits a generalization to more general complete Grothendieck
prestable ∞-categories [Lur18Lur18, Definition C.1.2.12, Definition C.1.4.2].

Remark 4.20. Recall that a presentable ∞-category V is a complete Grothendieck prestable
∞-category if and only if the left adjoint V −→ Sp(V) to its stabilization is fully faithful and
exhibits V ≃ Sp(V)≥0 as the connective part of a left complete t-structure on Sp(V) with the
property that the coconnective part Sp(V)≤0 ⊆ Sp(V) is closed under filtered colimits (see
[Lur18Lur18, Proposition C.1.4.1] and its proof). In particular, this implies that V is an additive
∞-category and that the full subcategory of 0-truncated objects τ≤0V is an abelian category,
equivalent to the heart Sp(V)♡. As usual, we will write πaX ∈ Sp(V)♡ for the homotopy groups
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with respect to the t-structure. Finally, we will say that a map f : A −→ B in V is a-connective
if its cofiber cof(f) ∈ V ⊆ Sp(V) is (a+1)-connective (in other words, the (a+1)-fold suspension
of an object in V).

For later purposes, let us record the following properties of prestable ∞-categories:

Remark 4.21. Consider a square F : ∆1 ×∆1 −→ V in a prestable ∞-category in which all
maps induce isomorphisms on τ≤0. Then the square is Cartesian if and only if it is coCartesian
in V. Indeed, the condition that all maps induce isomorphisms in τ≤0V ≃ Sp(V)♡ implies that
the square is Cartesian in V ≃ Sp(V)≥0 if and only if it is Cartesian in Sp(V), and likewise for
being coCartesian. Since pullback and pushout squares in Sp(V) coincide, the result follows.

Lemma 4.22. Let V be a SM prestable ∞-category such that the tensor product preserves finite
colimits in each variable and let n ≥ 0 and a ≥ 1. For each 1 ≤ i ≤ n, suppose we have an
a-connective map fi : Ai −→ Bi and a 0-connective map gi : Ai → A′i, and let B′i = A′i ⨿Ai

Bi
be their pushout. For the induced square⊗n

i=1Ai
//

��

⊗n
i=1A

′
i

��⊗n
i=1Bi

//⊗n
i=1B

′
i

the natural map Q −→
⊗n

i=1B
′
i from the pushout is (a+ 1)-connective.

Proof. Observe that there are pushout squares⊗n
i=1A

′
i

��

// Q //

��

⊗n
i=1B

′
i

��
0 // cof

(⊗n
i=1 fi

) θ // cof
(⊗n

i=1 f
′
i

)
where f ′i : A

′
i −→ B′i is the pushout of fi. It suffices to that θ is (a+ 1)-connective. Using (a

suspension of) [Lur17Lur17, Lemma 7.4.1.30] and the fact that fi and f
′
i have equivalent cofibers, θ

fits into a commuting square

cof
(⊗n

i=1 fi
) θ //

��

cof
(⊗n

i=1 f
′
i

)
��⊕n

i=1

(
B1 ⊗ · · · ⊗ cof(fi)⊗ . . . Bn

) θ′ //⊕n
i=1

(
B′1 ⊗ · · · ⊗ cof(fi)⊗ . . . B′n

)
where the vertical maps are (2a)-connective (hence in particular (a+ 1)-connective). It then
remains to verify that θ′ is (a+ 1)-connective, which follows from the fact that each Bi −→ B′i
is 0-connective and cof(fi) is (a+ 1)-connective. □

Example/Proposition 4.23. Let V be a complete Grothendieck prestable ∞-category and let
us write PoStrcn(V) ⊆ PoStr(V) for the full sub-∞-category of objects equipped with a Postnikov
structure (indexed over all a ≥ 0) with the following properties:

(a) For each a ≥ 0, the map X −→ Xa exhibits Xa ≃ τ≤aX as the a-truncation of X.
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(b) For each a ≥ 1, π(Ka) is 0-truncated and all maps in the pullback square

(4.2)

Xa
//

��

π(Ka)

0

��
Xa−1

ka // Ω∞Ka

induce isomorphisms on 0-truncations.
(c) For each a ≥ 1, the object Ka ∈ TV is contained in the connective part for the canonical

t-orientation (Example 3.143.14).

Then the map ev∞ : PoStrcn(V) −→ V is an equivalence. If V is furthermore closed SM, then ev∞
refines to an equivalence PoStrcn(V)⊗ −→ V⊗ between V⊗ and the full suboperad of PoStr(V)⊗

spanned by the objects equipped with Postnikov structures satisfying the above properties.

In particular, each object A ∈ V comes with a unique Postnikov structure satisfying the above
three conditions, and the resulting Postnikov structure on V carries a unique multiplicative
structure if V is symmetric monoidal. Let us point out that by Remark 4.214.21, the square (4.24.2) is
also a pushout square. Together with condition (a)(a), this implies that for each a ≥ 1, the square
(4.24.2) can be identified with the (co)Cartesian square

(4.3)

τ≤aA //

��

π0(A)

��
τ≤a−1A

ka // π0(A)⊕ Σa+1πa(A)

since the cofiber of the left (and hence right) vertical map is πa(X)[a+ 1] and the right vertical
map is the inclusion of a summand (since it admits a retraction). Taking algebras, we then
obtain the following:

Example 4.24. Let V be a complete SM Grothendieck prestable ∞-category and let O be an
∞-operad. For example, one can take V = Sp≥0 to be the∞-category of connective spectra with
the smash product. Combining Proposition 4.144.14 and Example/Proposition 4.234.23, we find that the
Postnikov tower A −→ . . . −→ τ≤1A −→ τ≤0A of an O-algebra in V is part of a (multiplicative)
Postnikov structure on AlgO(V).

By Example 3.123.12, this means that each stage of the Postnikov tower fits into a pullback
square of O-algebras (4.34.3) where π0(A)⊕Σa+1πa(A) is the trivial square zero extension of π0(A)
by the operadic module Σa+1πa(A). By specializing to O = En, this recovers [Lur17Lur17, Corollary
7.4.1.28].

The remainder of this section is devoted to a proof of Example/Proposition 4.234.23. To avoid
repetition, let us prove the claim for a symmetric monoidal V; the much simpler non-monoidal
case can be proven in the same way, removing all references to the monoidal structure. Our
proof will proceed by induction, where the inductive step relies on an analysis of the ∞-operad
of pullback squares (4.24.2). To this end, let us introduce some auxiliary categories:

Construction 4.25. For each a ≥ 1, let us denote by

Ea :=M(κa), Ecn
a :=M(κ′a)

the mapping simplices (Definition 4.44.4) of the functors κa : {a → (a − 1)} −→ Sfin∗ , as in
Construction 4.54.5, and κ′a : {a→ (a− 1)} −→ Fin∗ sending a 7→ ∗ and (a− 1) 7→ S0. Note that
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Ecn
a is an ordinary category, since it is the unstraightening of a diagram of ordinary categories.

In particular, Definition 4.44.4 provides a full description of Ecn
a , without need of specifying further

homotopy coherences.
Now consider the chain of functors

(4.4) a : ∗ 0 // ∆2 �
� j // Ecn

a
ĩ // Ea

where j is the inclusion of the full subcategory
{
a→ (a− 1)→ ∗

}
in Ecn

a (using the description

from Definition 4.44.4) and ĩ is the cobase change of the inclusion i : Fin∗ ↪→ Sfin∗ .

Definition 4.26. Let us denote by

Ext⊗a ↪→ Fun(Ea,V)
⊗lev , Extcn,⊗a ↪→ Fun(Ecn

a ,V)
⊗lev Trun⊗a ↪→ Fun(∆2,V)⊗lev

the three full sub-∞-operads defined as follows:

(1) Trun⊗a is spanned by sequences Ta → Ta−1 → T∗ with Ta ∈ τ≤aV and exhibiting
Ta−1 ≃ τ≤a−1Ta and T∗ ≃ τ≤0Ta.

(2) Extcn,⊗a is spanned by the diagrams T : Ecn
a −→ V such that:

(a) the restriction to {a→ (a− 1)→ ∗} is contained in Trun⊗a ,
(b) the restriction along κa∗ : ∆

1 × {a, a − 1} −→ Ecn
a (Definition 4.44.4) is a pullback

square in which all maps induce isomorphisms on 0-truncations,
(c’) the restriction to Fin∗ defines an E∞-groupoid object (Definition 2.292.29).

(3) Ext⊗a is spanned by the diagrams T : Ea −→ V satisfying conditions (a)(a) and (b)(b) above,
as well as:
(c) the restriction to Sfin∗ defines an object in T≥0V ⊆ TV = Exc(Sfin∗ ,V).

Lemma 4.27. Let V be a complete Grothendieck prestable ∞-category and T : Ecn
a −→ V a

diagram. Then the following are equivalent:

(1) T is contained in Extcna .
(2) T is left Kan extended from its restriction to {a→ (a− 1)→ ∗}, and this restriction is

contained in Truna.

Proof. Recall that j : ∆2 ↪→ Ecn
a denotes the inclusion of the full subcategory on a, (a− 1) and

∗. For any diagram F : ∆2 −→ V of the form F (a)→ F (a− 1)→ F (∗) and a finite pointed set
S with basepoint s0, the left Kan extension j!F (S) can be computed as the pushout⊕

s∈S F (a)
//

��

F (a)

��
F (∗)⊕

⊕
s∈S\{s0} F (a− 1) // j!F (S).

Here the vertical functor is given by F (a)→ F (∗) on the summand labeled by the basepoint
of S and by F (a)→ F (a− 1) on the summand labeled by each other point of S. Indeed, the
above colimit coincides with the colimit of

∆2 ×Ecn
a

(
Ecn
a

)
/S
−→ ∆2 F−→ V

where one can use the explicit description of the (ordinary) category Ecn
a to identify the comma

category. Using that V is a prestable (and in particular additive) ∞-category, this implies that

(4.5) j!F (S) = F (∗)⊕
⊕

s∈S\{s0}

cof
(
F (a)→ F (a− 1)

)
.
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This formula shows that the restriction j!F
∣∣
Fin∗

is a Segal E∞-groupoid and that the square

j!F (a) //

��

j!F (∗)

��
j!F (a− 1) // j!F (S0)

is coCartesian, and hence also Cartesian since V is prestable. It follows that (2) implies
(1). For the converse, if T ∈ Ecn

a , then the natural map ϵ : j!j
∗T −→ T is an equivalence

at the objects a, (a − 1) and ∗ because j is fully faithful. In light of Remark 4.214.21, the map
F (a) ⨿F (a−1) F (∗) −→ F (S0) is an equivalence so that ϵ is also an equivalence at S0. Since
both j!j

∗F and F restrict to Segal E∞-groupoids on Fin∗, it follows that ϵ is also an equivalence
at all other S ∈ Fin∗. □

Lemma 4.28. Let V be a complete Grothendieck prestable∞-category with a closed SM structure.
Then restriction along the maps (4.44.4) induces equivalences of ∞-operads

ev(0,a) : Ext⊗a
∼ // Extcn,⊗a

∼ // Trun⊗a
∼ // (τ≤aV)⊗.

Proof. Restriction along the functors in (4.44.4) defines SM functors between the ∞-categories of
V-valued diagrams, with the levelwise tensor product, which preserve the full sub-∞-operads
from Definition 4.264.26. We will check that each of the restriction functors is an equivalence.

Step 1. Using that ĩ : Ecn
a −→ Ea is the pushout of the inclusion i : Fin∗ −→ Sfin∗ , it follows

that there is a pullback square of ∞-operads

Ext⊗a
ĩ∗ //

��

Extcn,⊗a

��
(T≥0V)⊗

i∗=Ω∞
// GpdE∞

(V)⊗.

Here the∞-operads in the bottom row are full sub-∞-operads of Fun(Sfin∗ ,V)
⊗lev and Fun(Fin∗,V)

⊗lev ,
respectively. Corollary 2.312.31 implies that these bottom two∞-operads are in fact SM∞-categories
and that Ω∞ is a SM equivalence between them. Consequently, ĩ∗ is an equivalence of∞-operads
as well.

Step 2. Let j : ∆2 ↪→ Ecn
a denote the inclusion of the full subcategory {a → (a − 1) → ∗}.

To see that j∗ : Extcn,⊗a −→ Trun⊗a is an equivalence of ∞-operads, we will show that it is
essentially surjective and fully faithful, i.e. it induces equivalences on spaces of multi-morphisms
[Bar18Bar18, Proposition 7.17]. Essential surjectivity follows from Lemma 4.274.27: indeed, each object
F ∈ Truna arises as the restriction of its left Kan extension j!F ∈ Extcna .

To check that j∗ is fully faithful, let T1, . . . , Tn and T0 be objects in Extcna , and let us
abbreviate Xi = Ti(a) and Yi = Ti(a− 1). The condition that Ti ∈ Extcna then implies that Xi

is a-truncated and that

(4.6) Yi ≃ τ≤a−1Xi, Ti(∗) = π0Xi, cof
(
Ti(a)→ Ti(a− 1)

)
≃ Σa+1πaXi.

We now need to show that restriction along j induces an equivalence
(4.7)

MapFun(Ecn
a ,V)

(
T1 ⊗lev · · · ⊗lev Tn, T0

)
// MapFun(∆2,V)

(
j∗T1 ⊗lev · · · ⊗lev j

∗Tn, j
∗T0

)
.
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By adjunction, the map (4.74.7) is obtained by applying MapFun(Ecn
a ,V)(−, T0) to the counit map

ϵ : j!j
∗(T1 ⊗lev · · · ⊗lev Tn

)
−→ T1 ⊗lev · · · ⊗lev Tn. We claim that ϵ is given pointwise by an

(a+1)-connective map in V. This implies that (4.74.7) is an equivalence, because (a+1)-connective
maps induce equivalences on (a+1)-truncations and T0 takes values in (a+1)-truncated objects,
by equations (4.54.5) and (4.64.6).

It thus remains to verify that each component of the natural transformation ϵ is (a + 1)-
connective. This is clear for the components of the natural transformation ϵ at the objects a,
(a− 1) and ∗ in Ecn

a , where the counit is an equivalence (since j is fully faithful). We will prove
by induction on k ≥ 0 that the component of ϵ at the finite pointed set ⟨k⟩ with k + 1 elements
is (a + 1)-connective. The case k = 0 has already been treated, and for k ≥ 1 consider the
following commuting diagram

X1 ⊗ · · · ⊗Xn

��

// j!j∗
(
T1 ⊗ · · · ⊗ Tn

)
(⟨k − 1⟩) ϵ //

��

T1(⟨k − 1⟩)⊗ · · · ⊗ Tn(⟨k − 1⟩)

��
Y1 ⊗ · · · ⊗ Yn // j!j∗

(
T1 ⊗ · · · ⊗ Tn

)
(⟨k⟩) ϵ // T1(⟨k⟩)⊗ · · · ⊗ Tn(⟨k⟩).

Formula (4.54.5) shows that the left square is a pushout, so that the pushout Q for the right
cospan is equivalent to the pushout for the total cospan. Lemma 2.132.13 then implies that the
natural map Q −→ T0(⟨k⟩)⊗ · · · ⊗ Tn(⟨k⟩) is (a+ 1)-connective. On the other hand, the map
j!j
∗(T1 ⊗lev · · · ⊗lev Tn

)
(⟨k⟩) −→ Q is the pushout of the counit map ϵ at ⟨k − 1⟩, which was

(a+1)-connective by inductive hypothesis. We conclude that ϵ is a natural transformation given
at each object by an (a+ 1)-connective map, as desired.

Step 3. Finally, let us show that eva : Trun
⊗
a −→ (τ≤aV)

⊗ is an equivalence of ∞-operads.
Note that the objects of Truna are simply given by sequences σ =

[
X → τ≤a−1X → τ≤0X

]
with X ∈ τ≤aV. In particular, eva is essentially surjective. To see that it is a fully faithful map
of ∞-operads, i.e. that each

MapTrun⊗
a

(
σ1, . . . , σn;σ0

)
−→ Map(τ≤aV)⊗

(
eva(σ1), . . . , eva(σn); eva(σ0)

)
is an equivalence, it suffices to verify the following: for each diagram in τ≤aV of the form

X1 ⊗ · · · ⊗Xn

��

// (τ≤a−1X1)⊗ · · · ⊗ (τ≤a−1Xn) //

��

(τ≤0X1)⊗ · · · ⊗ (τ≤0Xn)

��
X0

// τ≤a−1X0
// τ≤0X0

there exists a contractible space of dotted extensions, as indicated. This follows from the fact
that the first horizontal map is a-connective and the second is 1-connective. □

Proof of Proposition 4.234.23. Let us inductively define a tower of ∞-operads PoStrcn≤a(V)
⊗ by

setting PoStrcn≤0(V)
⊗ = (τ≤0V)

⊗ and taking pullbacks

(4.8)

PoStrcn≤a(V)
⊗ //

��

Ext⊗a

eva−1

��

eva // (τ≤aV)⊗

PoStrcn≤a−1(V)
⊗ eva−1 // (τ≤a−1V)⊗.
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Note that each eva : PoStrcn≤a(V)
⊗ −→ (τ≤aV)

⊗ is an equivalence of ∞-operads: by inductive
hypothesis the first top horizontal arrow in (4.84.8) will be an equivalence, and the second map
is an equivalence by Lemma 4.274.27. Furthermore, step 3 of the proof of Lemma 4.274.27 shows
that the map of ∞-operads (τ≤aV)

⊗ ≃ Ext⊗a −→ (τ≤a−1V)
⊗ is given by the localization

τ≤a−1 : τ≤aV −→ τ≤a−1V with its canonical SM structure. We thus obtain a natural diagram

PoStrcn(V)⊗

ev∞

��

// . . . // PoStrcn≤2(V)
⊗ //

ev2∼
��

PoStrcn≤1(V)
⊗ //

ev1∼
��

PoStrcn≤0(V)
⊗

∼ ev0

��
V⊗ // . . . // (τ≤2V)⊗

τ≤1 // (τ≤1V)⊗
τ≤0 // (τ≤0V)⊗

Since V was a complete Grothendieck prestable ∞-category (so that Postnikov towers are
convergent), the bottom row exhibits V⊗ as the limit of the (τ≤a)

⊗. Using this and unraveling the
definitions (cf. Construction 4.54.5), we then have an equivalence PoStrcn(V)⊗ ≃ V⊗ ×lima(τ≤aV)⊗

lima PoStr
cn
≤a(V)

⊗. Since this is the pullback of a span consisting of two equivalences, we conclude

that ev∞ : PoStrcn(V)⊗ −→ V⊗ is an equivalence, as desired. □

5. Postnikov structures on enriched categories

In the previous section we have seen how multiplicative Postnikov structures give rise to
multiplicative Postnikov structures on ∞-categories of algebras over operads (Proposition 4.144.14).
The purpose of this section is to prove that similarly, a multiplicative Postnikov structure
on a symmetric monoidal ∞-category V induces a multiplicative Postnikov structure on the
∞-category of V-enriched ∞-categories.

5.1. Recollections on enriched ∞-categories. Let us briefly recall some elements of the
theory of enriched ∞-categories developed by Gepner–Haugseng [GH15GH15].

Definition 5.1. For each space X, let us write OX for the universal (X ×X)-coloured (sym-
metric) ∞-operad receiving a map from ∆op

X −→ ∆op −→ Fin∗, where ∆op
X is the generalized

nonsymmetric ∞-operad from [GH15GH15, Definition 4.1.1]. By [GH15GH15, Corollary 3.7.8, Corollary
4.2.8], one can model OX explicitly by the symmetrization of the simplicial operad from [GH15GH15,
Definition 4.2.4].

When the space X is a point, one recovers the associative operad O∗ = E1. The operads OX
depend functorially on the space X, so that we obtain a functor

O(−) : S // (Op∞)/E1
// Op∞ .

If V is a monoidal category, then an OX -algebra in V can be informally described as follows: an
algebra consists of objects Map(x, y) ∈ V, depending functorially on (x, y) ∈ X ×X, together
with composition operations satisfying obvious associativity conditions.

Definition 5.2. We will refer to the ∞-category AlgOX
(V) as the ∞-category of V-enriched

categorical algebras with space of objects X. These∞-categories depend (contravariantly)
functorially on X and we define the ∞-category of categorical algebras

(5.1) Ob: AlgCat(V) =
∫
X∈S AlgOX

(V) // S
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to be the domain of the corresponding Cartesian fibration [GH15GH15, Definition 4.3.1]. If V is a
presentable monoidal ∞-category, then AlgCat(V) is presentable as well [GH15GH15, Proposition
4.3.5].

For later purposes, we will mainly be interested in a refinement of this construction for
symmetric monoidal V.

Proposition 5.3. Let S× −→ Fin∗ denote the Cartesian ∞-operad associated to the ∞-category
of spaces. Then there exists a natural functor

AlgCat : SMCatlax∞ // SMCatlax,big∞/S×

that sends each SM ∞-category V to the ∞-category AlgCat(V) of categorical algebras, together
with a SM structure such that the tensor product of categorical algebras with spaces of objects X
and Y is a categorical algebra with space of objects X × Y .

Let us point out that the results from [GH15GH15] only provide functoriality of AlgCat(V) with
respect to (strong) SM functors in V. Since the proof of Proposition 5.35.3 is rather technical, we
will postpone it to Appendix AA and instead record two further consequences (which are also
proven in Appendix AA). First, note that Proposition 5.35.3 asserts in particular that AlgCat(V)
inherits a symmetric monoidal structure from V, whose underlying tensor product functor can
be identified as follows:

Lemma 5.4. Let V be a SM ∞-category. Then the tensor product

AlgCat(V)×AlgCat(V)
⊗ //

��

AlgCat(V)

��
S× S

× // S

arises as the unstraightening of the natural transformation of functors Sop × Sop −→ Cat given
at (X,Y ) by

(5.2) AlgOX
(V)×AlgOY

(V) // AlgOX×Y
(V)×AlgOX×Y

(V)
⊗ // AlgOX×Y

(V)

where the first functor restricts along the maps OX ← OX×Y → OY and the second functor
arises from the SM structure on algebras in V [Lur17Lur17, Example 3.2.4.4].

Informally, this means that given two categorical algebras C, D with spaces of objects X,Y ,
their tensor product C⊗ D has space of objects X × Y and mapping objects

MapC⊗D
(
(x0, y0), (x1, y1)

)
= MapC(x0, x1)⊗MapD(y0, y1).

In particular, the unit is given by the categorical algebra [0]1V with a single object ∗ and with
1V as endomorphisms.

Remark 5.5. If V is a SM ∞-category, then the natural map (5.25.2) can also be identified with
the composite map AlgOX

(V) × AlgOY
(V) −→ AlgOX×Y

(V × V) −→ AlgOX×Y
(V) where the

first map is the “exterior product” from [GH15GH15, Proposition 3.6.14, Proposition 4.3.11] and
the second map is the image under AlgOX×Y

(−) of the lax monoidal functor ⊗V : V× V −→ V.

Consequently, the functor ⊗ : AlgCat(V) × AlgCat(V) −→ AlgCat(V) from Proposition 5.35.3 is
naturally equivalent to the tensor product functor from [GH15GH15, Corollary 4.3.13]. In particular,
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we find that AlgCat(V) is a presentable SM ∞-category if V is a presentable SM ∞-category, i.e.
the monoidal structure is closed [GH15GH15, Corollary 4.3.16].

Proposition 5.6. For each ∞-category I, there is a commuting square depending functorially
on I

SMCatlax
AlgCat //

Fun(I,−)

��

SMCatlax,big/S×

Fun(I,−)×Fun(I,S×)S
×

��
SMCatlax

AlgCat

// SMCatlax,big/S×

where the vertical functors use the levelwise tensor product from Construction 2.62.6.

In other words, for each ∞-category I there is a natural monoidal equivalence

AlgCat(Fun(I,V)) ≃ Fun(I,AlgCat(V))×Fun(I,S) S.

When I is weakly contractible, the constant diagram functor S −→ Fun(I, S) is fully faithful,
so that we can rephrase this as follows: there is a natural (SM) fully faithful embedding
AlgCat(Fun(I,V)) ↪→ Fun(I,AlgCat(V)) whose essential image consists of I-diagrams of categori-
cal algebras whose underlying diagram of objects is constant.

For any presentable monoidal ∞-category V, we then define the ∞-category of V-enriched
∞-categories Cat(V) to be the full subcategory Cat(V) ⊆ AlgCat(V) of complete categorical
algebras. More precisely, there is a functor

J [−] : ∆ −→ AlgCat(V)

sending [n] to the categorical algebra with object set {0, . . . , n}, all mapping objects being 1V
and all compositions being equivalences. We will abbreviate J = J [1]. Every categorical algebra
C then defines a simplicial space

∆op // S; [n]
� // MapAlgCat(V)

(
J [n],C

)
.

This simplicial space is a Segal groupoid [GH15GH15, Corollary 5.2.7] and C is defined to be complete
if this Segal groupoid is essentially constant. Note that the above Segal space only depends on
the underlying space-valued categorical algebra, i.e. the categorical algebra in S obtained
by applying the lax monoidal functor Map(1V,−) : V −→ S to all mapping objects [GH15GH15,
Proposition 5.1.11]. Furthermore, the space Map(J [n],C) ⊆ Map([n]1V ,C) is a union of path
components in the space of n-composable sequences of arrows in C [GH15GH15, Proposition 5.1.17].

The inclusion of V-enriched ∞-categories into categorical algebras is part of an adjoint pair

AlgCat(V)
(−)∧ //

Cat(V)? _⊥oo

whose left adjoint is called completion [GH15GH15, Theorem 5.6.6]. When V is presentable symmetric
monoidal, this is a symmetric monoidal localization [GH15GH15, Proposition 5.7.14] (using Remark
5.55.5). Finally, let us recall that the completion functor realizes Cat(V) as the localization of
AlgCat(V) at the Dwyer–Kan (DK) equivalences, i.e. the fully faithful and essentially
surjective functors in the following sense:

Definition 5.7. We will say that a map of categorical algebras f : C −→ D is:



ON k-INVARIANTS FOR (∞, n)-CATEGORIES 41

(1) fully faithful if for every two objects x, y ∈ Ob(C), the map

f : MapC(x, y) −→ MapD
(
f(x), f(y)

)
is an equivalence in V. Equivalently, f is a Cartesian arrow for the Cartesian fibration (5.15.1).

(2) essentially surjective if the map

Map({0},C)×Map({0},D) Map(J,D) −→ Map({1},D)

is surjective on π0. Here the mapping spaces are taken in the ∞-category AlgCat(V).
(3) an isofibration if the induced map

Map(J,C) −→ Map(J,D)×Map({1},D) Map({1},C)

is surjective on π0.

Remark 5.8. Let F : V −→ W be a SM left adjoint functor between presentable SM ∞-
categories, with (lax SM) right adjoint G. Then AlgCat(G) : AlgCat(W) −→ AlgCat(V) preserves
underlying space-valued categorical algebras. Indeed, this follows from the equivalence of lax
SM functors MapW(1W,−) ≃ MapV(1V, G(−)), which is right adjoint to the equivalence of

SM functors between S
1V⊗−−−−−→ V

F−→ W and 1W ⊗ − : S −→ W, where 1W ⊗ − denotes the
unique SM functor preserving colimits (and likewise for V). In particular, the right adjoint
AlgCat(G) : AlgCat(W) −→ AlgCat(V) detects completeness of categorical algebras, as well as
essential surjectivity and being an isofibration for maps between these.

5.2. The cube and tower lemmas. Throughout, let V be a monoidal ∞-category. The
purpose of this section is to record two kinds of (‘homotopy’) limits of categorical algebras
that are preserved by the completion functor (−)∧ : AlgCat(V) −→ Cat(V). The results and
arguments are very analogous to the usual way of computing homotopy limits of categories in
terms of the canonical model structure on categories.

Lemma 5.9. Consider a commutative square of categorical algebras

(5.3)

C′
g′ //

p

��

D′

q

��
C

g
// D

such that g′ is essentially surjective, g is fully faithful and p is an isofibration. Then

Map({0},C′) ×
Map({0},D′)

Map(J,D′) −→ Map({0},C) ×
Map({0},D)

Map(J,D) ×
Map({1},D)

Map({1},D′)

is surjective on path components.

Informally, this means that for any object d ∈ D′, each lift-up-to-equivalence of q(d) to C
refines to a lift-up-to-equivalence of d to C′.

Proof. By [GH15GH15, Proposition 5.1.11], we may as well assume that V = S. Explicitly, suppose

that we are given objects c ∈ C and d′ ∈ D′ together with an equivalence α : g(c)
≃−→ d = q(d′)

in D, that is, a map from J . We then need to find an object c′ ∈ C′ lying over c and an

equivalence α′ : g′(c′)
≃−→ d′ in D′ lying over α.
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To begin, g′ being essentially surjective provides an object t′ ∈ C′ and an equivalence

γ′ : g′(t′)
≃−→ d′ in D′. One can then complete q(γ′) and α to a commutative triangle

(5.4)

q(g′(t′))
q(γ′)

$$
g(c)

δ
99

α // d

in D for some equivalence δ : g(c) −→ q(g′(t′)). Using the commuting square (5.35.3), we can
identify q(g′(t′)) ≃ g(p(t′)) in the space of objects of D. Because g is fully-faithful, every map
from g(c) −→ g(p(t′)) lifts to a unique map c −→ p(t′) in C, so that there exists an equivalence
ε : c −→ p(t′) lying over δ. Since p is an isofibration we may lift ε to an equivalence ε′ : c′ −→ t′

for some c′ ∈ C′ lying over c. We may then complete g′(ε′) and γ′ to a commutative diagram

(5.5)

g′(t′)
γ′

##
g′(c′)

g′(ε′)
::

α′
// d′

for some equivalence α′ : g′(c′) −→ d′ in D′, since Map(J [−],C) is a Segal groupoid object.
Because the image of triangle (5.55.5) under q : D′ −→ D agrees with triangle (5.45.4) on the inner
horn, it follows that q(α′) is homotopic to α. This yields the desired data of c′ and α′ : g′(c′) −→ d′

so that the proof is complete. □

Lemma 5.10 (Cube lemma). Consider a map of Cartesian squares in AlgCat(V)

(5.6)

P //

��

C′

p

��

Q //

��

D′

q

��

 f g′

g′′ g


+3

C′′
h
// C D′′

k
// D

such that p is an isofibration. If the components g : C −→ D, g′ : C′ −→ D′ and g′′ : C′′ −→ D′′
are Dwyer–Kan equivalences, then the same holds for f : P −→ Q.

Corollary 5.11. The completion functor (−)∧ : AlgCat(V) −→ Cat(V) sends pullback squares
with one leg being an isofibration to pullback squares.

Proof. Apply Lemma 5.105.10 to the case where the maps g, g′ and g′′ exhibit D,D′ and D′′ as
the completions of C,C′ and C′′ respectively (in this case Q ≃ D′ ×D D′′ is automatically
complete). □

Proof of Lemma 5.105.10. To show that f is fully faithful, let x, y ∈ P be two objects, and consider
the induced map of squares

MapP(x, y) //

��

MapC′(x, y)

p∗

��

MapQ(x, y) //

��

MapD′(x, y)

q∗

��
+3

MapC′′(x, y) // MapC(x, y) MapD′′(x, y) // MapD(x, y).

Both squares are Cartesian in V and by assumption the three maps associated to g, g′ and g′′

are equivalences, so that the map f∗ : MapP(x, y) −→ MapQ(x, y) is an equivalence as well.
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Let us now show that f is essentially surjective as a map of categorical algebras. Essential
surjectivity is detected on the level of the underlying space-valued categorical algebras [GH15GH15,
Proposition 5.1.11]. We may hence assume that V = S. Let y ∈ Q be an object and let
d′ ∈ D′, d ∈ D, d′′ ∈ D′′ be its images. Since g′′ : C′′ −→ D′′ is essentially surjective there exists

an object c′′ ∈ C′′ and an equivalence α′′ : g′′(c′′)
≃−→ d′′ in D′′. Let c := h(c′′) ∈ C. Applying

Lemma 5.95.9 to the image

α : g(c) ≃ k(g′′(c′′)) ≃−→ k(d′′) ≃ d ≃ q(d′)

of α′′ in D we deduce the existence of an object c′ ∈ C′ lying over c and an equivalence
α′ : g′(c′) −→ d′ in D′ lying over α. The compatible triple (c, c′, c′′) now determines an object

x ∈ P while the compatible triple (α, α′, α′′) determines an equivalence g(x)
≃−→ y in Q. □

Lemma 5.12 (Tower lemma). Consider a natural transformation between limit cones in
AlgCat(V)

P //

f

��

. . . // C2
p2 //

g2

��

C1

g1

��

p1 // C0

g0

��
Q // . . . // D2 q2

// D1 q1
// D0.

Suppose that all pi for i ≥ 1 are isofibrations and all gi for i ≥ 0 are Dwyer–Kan equivalences.
Then f is a Dwyer–Kan equivalence as well.

Corollary 5.13. The completion functor (−)∧ : AlgCat(V) −→ Cat(V) sends limits of towers
of isofibrations to limits.

Proof. Apply Lemma 5.125.12 to the case where the maps gi exhibit Di as the completion of Ci (in
which case Q is automatically complete). □

Proof of Lemma 5.125.12. To show that f is fully faithful, let x, y ∈ P be two objects, and consider
the induced map of towers

MapP(x, y) //

f∗

��

. . . // MapC1
(x, y) //

(g1)∗

��

MapC0
(x, y)

(g0)∗

��
MapQ(x, y) // . . . // MapD1

(x, y) // MapD0
(x, y)

.

Then both towers are limit towers in V and by assumption the (gi)∗ are equivalences, so that
the map f∗ : MapP(x, y) −→ MapQ(x, y) is an equivalence as well.

Let us now show that f is essentially surjective as a map of categorical algebras. We may
again assume that V = S [GH15GH15, Proposition 5.1.11]. Let y ∈ Q be an object and let di ∈ Di
be its images. Since g0 : C0 −→ D0 is essentially surjective, there exists an object c0 ∈ C0 and

an equivalence α0 : g0(c0)
≃−→ d0 in D0. Applying Lemma 5.95.9 to α0 and d1 ∈ D1, we deduce

the existence of an object c1 ∈ C1 lying over c0 and an equivalence α1 : g1(c1) −→ d1 in D1

lying over α1. Proceeding inductively, we obtain compatible sequences of objects ci ∈ Ci and
equivalences αi : gi(ci) −→ di. These determine an object x ∈ P and an equivalence g(x)

≃−→ y
in Q. □
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5.3. Postnikov structures on enriched ∞-categories. We now turn to our main result, pro-
viding Postnikov structures on V-enriched ∞-categories from (certain) multiplicative Postnikov
structures on V.

Definition 5.14. Let V be a SM ∞-category. We will say that a map f : X −→ Y in V is
an external π0-isomorphism if the induced map of spaces MapV(1V, X) −→ MapV(1V, Y )
induces an isomorphism on π0.

We will say that a Postnikov structure on an object T : E −→ V is externally π0-constant
if it sends every map in E to an external π0-isomorphism in V. A Postnikov structure Φ: V −→
Fun(E,V) on V is externally π0-constant if it sends each objectX ∈ V to an externally π0-constant
Postnikov structure on X.

Remark 5.15. If T ∈ PoStr(V) is externally π0-constant then each Ka ∈ TV has the property
that the induced parametrized spectrum Ea = MapV(1V,Ka) ∈ TS is 0-connected (or 1-
connective), i.e. each fiber is a 1-connective spectrum. Indeed, for each n ≥ 0, the map
Ea(S

n) = Ω∞−n(Ea) −→ π(Ea) induces an isomorphism on π0 by assumption and a surjection
on π1 since it admits a section, so that its fibers are all connected. It follows that the fiber
Ω∞−n(Ea)x is the connected delooping of Ω∞−n+1(Ea)x for each n ≥ 0 and Ea,x is a 1-connective
spectrum.

Example 5.16. The usual Postnikov structure on spaces (Example 4.154.15) is externally π0-
constant: for every space X, the resulting Postnikov structure is even constant after applying
τ≤1. For more general ∞-toposes (Example 4.174.17), the Postnikov structure is typically not
externally π0-constant: even though all maps induce isomorphisms on π0-sheaves, on global
sections they typically do not induce bijections on π0. For example, for any finite CW-complex
X, abelian group A and n ≥ 2, the map of constant sheaves K(A,n) −→ τ≤n−1K(A,n) ≃ ∗ in
Sh∞(X) induces an isomorphism on 1-truncations, but at the level of π0 of the global sections
we obtain Hn(X;A) −→ ∗, which need not be an isomorphism.

Example 5.17. The canonical Postnikov structure on Sp≥0 is externally π0-constant. Indeed,
for each E ∈ Sp≥0, the image of its Postnikov structure under MapSp≥0(S,−) is simply the
Postnikov structure on the space Ω∞(E), but extended down to dimension 0, see Example 4.194.19.
All spaces appearing in the Postnikov structure for Ω∞(E) have isomorphic π0.

More generally, let V be a stable, presentable SM ∞-category with a left complete t-structure
such that the connective part V≥0 is closed under finite tensor products. If the mapping spectrum
functor Map(1V,−) : V −→ Sp sends V≥0 to Sp≥0, then the Postnikov structure on V≥0 from
Example 4.234.23 is externally π0-constant. This is notably the case when V = ModR with R a
connective ring spectrum (with the usual t-structure).

Theorem 5.18. Let V be a SM ∞-category equipped with a multiplicative Postnikov structure
Φ: V −→ Fun(E,V). If Φ is externally π0-constant, then the composite

Cat(V) ⊆ AlgCat(V)
Φ∗ // AlgCat(Fun(E,V)) // Fun(E,AlgCat(V))

(−)∧ // Fun(E,Cat(V))

defines a multiplicative Postnikov structure ΦCat on Cat(V). Furthermore, this Postnikov
structure ΦCat is itself externally π0-constant.

Slightly informally (i.e. up to Dwyer–Kan equivalence), the Postnikov structure ΦCat(C) of a
V-enriched ∞-category C is obtained by applying Φ to all mapping objects in C. To see that
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this still yields a Postnikov structure after completion, we will make use of the cube and tower
lemmas (Lemma 5.105.10 and 5.125.12), for which we will need Φ to be externally π0-constant.

Note that Theorem 5.185.18 can be applied repeatedly:

Definition 5.19. Let V be a presentable SM ∞-category. Then the presentable SM ∞-category
of V-enriched (∞, n)-categories is defined inductively as

Catn(V) := Cat(Catn−1(V)).

For later purposes, let us record the following:

Lemma 5.20. Let V and W be presentable SM ∞-categories and L : V −→⊥←− W : ι a reflective
(symmetric) monoidal localization. This induces a reflective monoidal localization of presentable
SM ∞-categories

Catn(L) : Catn(V)
//
Catn(W) : Catn(ι).? _⊥oo

The essential image of ι∗ consists of those V-enriched (∞, n)-categories whose mapping objects
are (in the essential image of) W-enriched (∞, n− 1)-categories.

Proof. An inductive application of [GH15GH15, Corollary 5.7.12, Proposition 5.7.16] provides the
presentable SM structure on Catn(V) and Catn(W). The induced reflective monoidal localization
arises from an inductive application of [GH15GH15, Proposition 5.7.18]. □

An inductive application of Theorem 5.185.18 then immediately yields the following:

Corollary 5.21. Let V be a presentable SM∞-category equipped with a multiplicative, externally
π0-constant Postnikov structure Φ: V −→ Fun(E,V). Then there is an induced multiplicative
Postnikov structure

ΦCatn : Catn(V)
⊗ // PoStr

(
Catn(V)

)⊗
on the ∞-category of V-enriched (∞, n)-categories. Explicitly, ΦCatn is given (up to n-categorical
Dwyer–Kan equivalence) by applying Φ to objects of n-morphisms.

We will now turn to the proof of Theorem 5.185.18. Our strategy will be to first prove a version
of Theorem 5.185.18 for categorical algebras and then descend to enriched ∞-categories. The case
of categorical algebras follows readily from the following observation:

Lemma 5.22. Let I be a weakly contractible ∞-category, I◁ its cone and V a monoidal
∞-category with I-indexed limits. Consider the natural functor

ϕ : AlgCat(Fun(I
◁,V))

∼ // Fun(I◁,AlgCat(V))×Fun(I◁,S) S // Fun(I◁,AlgCat(V))

where the first functor is the natural equivalence from Proposition 5.65.6. If C is a categorical
algebra in Fun(I◁,V) whose mapping objects belong to the full subcategory of limit cones, then
ϕ(C) : I◁ −→ AlgCat(V) is a limit cone as well.

Proof. By naturality, the equivalences of Proposition 5.65.6 fit into a commuting square where the
horizontal functors restrict along I ↪→ I◁

AlgCat(Fun(I
◁,V)) //

≃
��

AlgCat(Fun(I,V))

≃
��

Fun(I◁,AlgCat(V))×Fun(I◁,S) S // Fun(I,AlgCat(V))×Fun(I,S) S.
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This induces a commuting square between the right adjoints of the two horizontal functors.
The top right adjoint is a fully faithful embedding whose essential image consists precisely of
categorical algebras enriched over limit cones. To compute the bottom right adjoint, consider
the diagram

Fun(I◁,AlgCat(V)) //

��

Fun(I◁, S)

��

Soo

Fun(I,AlgCat(V)) // Fun(I, S) Soo

where the vertical functors restrict along I −→ I◁. The horizontal functors then commute
with the right adjoints to the restriction functors as well: for the left square, this uses that
the forgetful functor AlgCat(V) −→ S preserves limits, and for the right square, this uses
that I is contractible, so that constant I◁-diagrams are limit cones. The right adjoint to
Fun(I◁,AlgCat(V)) ×Fun(I◁,S) S −→ Fun(I,AlgCat(V)) ×Fun(I,S) S is then the fiber product of
the three right adjoint functors [Lur17Lur17, Corollary 4.7.4.18]. In particular, the projection onto
the first factor commutes with these right adjoints. It follows that the composite ϕ intertwines
the right adjoints to restriction along I ↪→ I◁, which yields the result. □

Proof of Theorem 5.185.18. We have to verify that ΦCat is a lax symmetric monoidal section of the
(lax) symmetric monoidal functor ev∞ : Fun(E,Cat(V)) −→ V, and that it takes values in the
full subcategory PoStr(Cat(V)) ⊆ Fun(E,Cat(V)) of Postnikov structures.

For the first assertion, consider the commuting diagram

Cat(V)
� � //

=

��

AlgCat(V)

=

��

Φ∗ // AlgCat(Fun(E, V ))
φ //

ev∞

��

Fun(E,AlgCat(V))

ev∞

��

(−)∧ // Fun(E,Cat(V))

ev∞

��
Cat(V) �

� // AlgCat(V) =
// AlgCat(V) =

// AlgCat(V)
(−)∧

// Cat(V).

All arrows are lax SM functors. For the first and last horizontal arrows (in both rows), this
follows from [GH15GH15, Proposition 5.7.14] and for Φ∗, this follows from Proposition 5.35.3. The
functor φ is the composite of the SM equivalence from Proposition 5.65.6 and the SM projection
Fun(E,AlgCat(V))×Fun(E,S) S −→ Fun(E,AlgCat(V)). Furthermore, the second square commutes
since Φ∗ is a multiplicative Postnikov structure and all other squares commute by naturality
in the ∞-category E. This provides a lax SM section of ev∞ because the composition of the
bottom row is naturally equivalent to the identity via the (lax SM) counit of the monoidal
adjunction (−)∧ : AlgCat(V)

−→⊥←− Cat(V) : ι [GH15GH15, Proposition 5.7.14].
For the second assertion, it suffices to verify that for a V-enriched category C, its image

T∧ := ΦCat(C) : E −→ Cat(V)

defines a Postnikov structure in Cat(V). By construction, T∧ is the levelwise completion of the
diagram which applies the multiplicative Postnikov structure Φ to all mapping objects

T := ϕ
(
Φ∗(C)

)
: E −→ AlgCat(V).

For each of the cone diagrams I◁α −→ E from Remark 4.74.7 (with Iα contractible), T
∣∣
I◁

is a limit

cone in AlgCat(V) by Lemma 5.225.22. Consequently, T defines a Postnikov structure in AlgCat(V).
We have to show that these cones remain limit cones upon applying the completion functor
objectwise. This will follow from Corollary 5.115.11 and Corollary 5.135.13 once we verify that T sends
every arrow in E to an isofibration.
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To this end, consider a map T(i) −→ T(j) of categorical algebras induced by i→ j in E. By
construction, f induces the identity on spaces of objects and for every two objects x, y ∈ T(i),
the map

Map
(
1V,MapT(i)(x, y)

)
−→ Map

(
1V,MapT(j)(x, y)

)
is a π0-isomorphism since the Postnikov structure Φ is π0-constant (Definition 5.145.14). The
condition that T(i) → T(j) is an isofibration is determined at the level of the underlying
S-enriched categorical algebras, so we may as well assume that V = S. For every object x in T(i)
and every arrow α : x→ y in T(j), we then have a lift of α to a map α̃ : x −→ y in T(i) (note
that T(i) −→ T(j) is the identity on objects), which is furthermore unique up to homotopy. If
α is an equivalence, then α̃ is an equivalence by [GH15GH15, Proposition 5.1.15]: indeed, using that
such lifts of arrows to T(i) are unique up to homotopy, a homotopy inverse of α̃ is provided by
a lift of the homotopy inverse of α to T(i). We conclude that T(i)→ T(j) is an isofibration.

Finally, we have to verify that T∧ is a π0-constant Postnikov structure. Note that the
monoidal unit of Cat(V) is the completion 1Cat(V) = [0]∧1V of the unit object of AlgCat(V), given

by the operad map O∗ ≃ Ass −→ V⊗ encoding the unit (i.e. initial) associative algebra 1V in V.
In particular, the functor

MapCat(V)(1Cat(V),−) : Cat(V) −→ S

is equivalent to the functor sending a V-enriched ∞-category to its space of objects. To see that
T∧ is π0-constant, it therefore suffices to verify that the diagram of object spaces

Ob(T∧) : E T∧
// Cat(V)

Ob // S

sends each map i→ j in E to a map with 0-connected fibers (in particular, a π0-isomorphism).
Let us pick an object x ∈ T∧(j) and verify that the fiber Ob(T∧(i))x is connected. The object
x determines a map x : [0]1V −→ 1Cat(V) −→ T∧(j). Since the functor T(j) −→ T∧(j) induces
a π0-surjection on objects by [GH15GH15, Theorem 5.6.2], this composite map factors over T(j).
Taking pullbacks along these maps, we obtain a commuting square of categorical algebras

T(i)×T(j) [0]1V

��

// T∧(i)×T∧(j) 1Cat(V)

��
[0]1V

// 1Cat(V)

Since T(i) −→ T(j) was an isofibration, the top and bottom horizontal maps are Dwyer–Kan
equivalences (Cube Lemma 5.105.10) and the left vertical map is an isofibration. Lemma 5.95.9,
together with the fact that the right column consists of complete categorical algebras, then
implies that T(i)×T(j) [0]1V −→ T∧(i)×T∧(j) [0]1V induces a π0-surjection on spaces of objects.
Since T(i) −→ T(j) is constant on objects, the domain of this map has a contractible space of
objects. Consequently, Ob

(
T∧(i)×T∧(j) [0]1V

)
≃ Ob(T∧(i))x is connected, as desired. □

6. Local systems on (∞, n)-categories

In this section, we spell out the contents of Theorem 5.185.18 and Corollary 5.215.21 in the setting of
(∞, n)-categories. There are many equivalent models for the ∞-category of (∞, n)-categories,
one of which is the∞-category Catn(S) of S-enriched (∞, n)-categories of Definition 5.195.19 [Hau15Hau15,
Corollary 7.21]. This model is particularly well-adapted to definitions that proceed by induction
on mapping objects, such as the following:
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Definition 6.1. An (m, 0)-category is defined to be an m-truncated space. For any 0 ≤ n ≤ m,
an (∞, n)-category C is called an (m,n)-category if each mapping (∞, n− 1)-category is an
(m− 1, n− 1)-category.

In light of [GH15GH15, Corollary 6.1.10], this coincides with [GH15GH15, Definition 6.1.1].

Lemma 6.2. The fully faithful inclusion ι : Cat(m,n) ⊆ Cat(∞,n) of the full subcategory of (m,n)-
categories admits a left adjoint sending an (∞, n)-category C to its homotopy (m,n)-category
ho(m,n) C. The adjoint pair ho(m,n) : Cat(∞,n)

−→⊥←− Cat(m,n) : ι has the canonical structure of a
reflective monoidal localization.

Proof. Consider the reflective localization τ≤m−n : S
−→⊥←− τ≤m−nS : ι. Since truncation preserve

products, this is a reflective monoidal localization. Consequently, it induces a reflective monoidal
localization Catn(τ≤m−n) : Catn(S)

−→⊥←− Catn(τ≤m−nS) : Catn(ι) by Lemma 5.205.20. Note that (by
induction) the essential image of ι∗ is precisely the full subcategory Cat(m,n) ⊆ Cat(∞,n). It
follows that there is a left adjoint ho(m,n) : Cat(∞,n) −→ Cat(m,n) (equivalent to Catn(τ≤m−n)),
which has the canonical structure of a monoidal localization. □

The universal properties of the homotopy (m,n)-categories imply that they fit into a tower

(6.1) C // . . . // ho(m,n)(C) // ho(m−1,n)(C) // . . . // ho(n+1,n)(C).

By induction on n, one sees that this tower is convergent. Indeed, using that Cat(∞,n+1) ⊆
AlgCat(Cat(∞,n)) preserves limits, this follows from the fact that:

(a) at the level of spaces of objects, the tower induces isomorphisms on π0 so that C −→
limm ho(m,n+1)(C) is essentially surjective.

(b) the map MapC(c, d) −→ limmMapho(m,n+1)(C)
(c, d) ≃ limm ho(m,n)

(
MapC(c, d)

)
is an

equivalence for each c, d ∈ C by inductive hypothesis.

Theorem 5.185.18 and Corollary 5.215.21 then yield the following more precise statement of Theorem
1.11.1:

Theorem 6.3. For each n ≥ 1, the tower of natural transformations (6.16.1) refines to a multi-
plicative Postnikov structure on Cat(∞,n).

Proof. By Lemma 6.26.2, the reflective monoidal localization

ho(m,n) : Cat(∞,n) = Catn(S)
Catn(τ≤m−n) //

Catn(S≤m−n) = Cat(m,n) : ι? _

Catn(ι)
oo

arises from the reflective monoidal localization τ≤m−n : S
−→⊥←− S≤m−n : ι via Lemma 5.205.20. Now

let Φ: S −→ Fun(E, S) be the multiplicative, π0-constant Postnikov structure on spaces refining
the classical Postnikov tower (Example 4.154.15). By Theorem 5.185.18 and Corollary 5.215.21, this induces
a multiplicative Postnikov structure ΦCatn on Cat(∞,n).

Note that we can view ΦCatn as a diagram E −→ Fun⊗,lax(Cat(∞,n),Cat(∞,n)) of (lax
symmetric monoidal) endofunctors of Cat(∞,n), by adjunction with the Boardman–Vogt tensor
product (see Remark 2.72.7). Forgetting about the k-invariants, the underlying tower of ΦCatn is
given by the tower of functors

id // . . . // Catn(τ≤a) // Catn(τ≤a−1) // . . . // Catn(τ≤1).
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Lemma 6.26.2 identifies this with the natural tower of homotopy (m,n)-categories (6.16.1), as desired.
□

In other words, for each (∞, n)-category C and a ≥ 2, there exists a natural parametrized
spectrum object

Hπa(C) ∈ Tho(n+1,n)(C)

(
Cat(∞,n)

)
and a pullback square of (∞, n)-categories

ho(n+a,n) C

��

// ho(n+1,n) C

0
��

ho(n+a−1,n) C
ka

// Ω∞
(
Σa+1Hπa(C)

)
.

The proof of Theorem 6.36.3 is not completely satisfying because these parametrized spectra Hπa(C)
are defined somewhat implicitly. In the remainder of this section, we will explain how (as the
notation suggests) the parametrized spectra Hπa(C) can be considered as the Eilenberg–Maclane
spectra associated to local systems of abelian groups on ho(n+1,n)(C), as considered in
[Lur09bLur09b].

6.1. Tangent bundle of enriched ∞-categories. Our first goal will be to construct a t-
orientation (Definition 2.202.20) on the tangent bundle to V-enriched ∞-categories, using a version
of Proposition 2.252.25. To this end, we will need a description of the tangent bundle to enriched
∞-categories along the lines of Proposition 2.172.17:

Theorem 6.4. Let V be a differentiable presentable SM ∞-category such that 1V is compact.
Then there exists a natural equivalence of SM ∞-categories

(6.2)

Cat(TV)

Cat(πV) &&

L

∼
// TCat(V)

πxx
Cat(V)

where Cat(πV) is induced by the (monoidal) tangent projection πV : TV −→ V and π is the
tangent projection for Cat(V).

Recall from [Lur17Lur17, Definition 6.1.1.6] that a presentable ∞-category V is differentiable if the
sequential colimit functor colim: Fun(N,V) −→ V is left exact. In particular, any compactly
generated ∞-category is differentiable. To apply Theorem 6.46.4 inductively, let us record the
following observation:

Lemma 6.5. Let V be a presentable monoidal ∞-category which is differentiable and such
that 1V is compact. Then Cat(V) is differentiable and 1Cat(V) (i.e. the image of the categorical
algebra with one object with endomorphism algebra 1V) is compact as well.

Proof. By [Lur17Lur17, Remark 4.1.8.9], there exists a monoidal model category V presenting V of
the following form: one can construct a simplicial monoid A ∈ Alg(sSet) and take V = sSet/A,
with monoidal structure given by (X → A)⊗ (Y → A) = (X × Y → A× A→ A) and model
structure given by a left Bousfield localization of the covariant model structure. In particular,
V is simplicial and combinatorial, its cofibrations are the monomorphisms, all objects are
cofibrant and weak equivalences are stable under filtered colimits. Then Cat(V) arises from the
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model category Catstrict(V) on V-enriched categories [Hau15Hau15] and it then follows from [HNP18HNP18,
Corollary 3.1.12] that Cat(V) is again differentiable.

To see that 1Cat(V) is compact, note that the corepresentable functor Map(1Cat(V),−) can be
identified with the functor taking spaces of objects. This functor decomposes as

Cat(V) // Cat(S) ≃ Cat∞
Core // S

where the first functor is induced by the lax monoidal functor MapV(1V,−) : V −→ S and the
second functor takes the core (or maximal sub-∞-groupoid). Taking cores preserves filtered
colimits (as is easily checked using quasicategories). To see that Cat(V) −→ Cat(S) preserves
filtered colimits, we use model categories. Since V is simplicial and monoidal, there is a monoidal
Quillen pair 1V ⊗− : sSet −→⊥←− V : MapV(1V,−). Applying these functors on mapping objects
yields a Quillen pair on enriched categories. In light of [Lur09Lur09, Proposition 5.3.1.16], it now

suffices to verify that the right Quillen functor U : Catstrict(V) −→ Catstrict(sSet) preserves
filtered homotopy colimits.

Let C• : I −→ Catstrict(V) be a projectively cofibrant filtered diagram with colimit C∞.
To see that the natural map hocolimU(C•) −→ U(C∞) is a weak equivalence, note that the
Dwyer–Kan equivalences of simplicial categories are closed under filtered colimits. Consequently,
the homotopy colimit can simply be computed by the ordinary colimit and it suffices to verify
that colimU(C•) −→ U(C∞) is a Dwyer–Kan equivalence. At the level of objects, the map is
simply an isomorphism and for each c, d ∈ colimU(C•) arising from some U(Ci), the induced
map on mapping spaces is given by

colimj∈Ii/ MapV
(
1V,Cj(c, d)

)
// MapV

(
1V, colimj∈Ii/ Cj(c, d)

)
.

This map is a weak equivalence of simplicial sets because MapV(1V,−) preserves filtered
homotopy colimits and because weak equivalences in both sSet and V are closed under filtered
colimits. □

The proof of Theorem 6.46.4 requires a few preliminary observations:

Proposition 6.6. Let V be a presentable monoidal ∞-category and πV : TV −→ V its tangent
projection. Then the inclusions of complete objects and the completion functors fit into pullback
squares

Cat(TV) �
� //

Cat(πV)

��

AlgCat(TV)
(−)∧ //

AlgCat(πV)

��

Cat(TV)

Cat(πV)

��
Cat(V) �

� // AlgCat(V)
(−)∧ // Cat(V)

in which the vertical functors are all Cartesian and coCartesian fibrations.

Proof. Recall from Lemma 2.112.11 that the monoidal functor πV : TV −→ V has a (strong) monoidal
fully faithful left adjoint cst : V −→ TV taking constant diagrams, and that cst is also a monoidal
fully faithful right adjoint to πV. Considering πV as a right adjoint functor, Remark 5.85.8 then
implies that AlgCat(πV) : AlgCat(TV) −→ AlgCat(V) preserves and detects completeness, so that
the left square commutes and is Cartesian. On the other hand, considering πV as a monoidal
left adjoint, we find that the right square commutes: taking right adjoints, this comes down to
cst : AlgCat(V) −→ AlgCat(TV) preserving complete objects.
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Next, the two monoidal adjunctions (cst, πV) and (πV, cst) induce adjunctions

AlgCat(V)
� � AlgCat(cst) //

AlgCat(TV)
AlgCat(πV)

⊥oo AlgCat(TV)
AlgCat(πV) //

AlgCat(V)? _

AlgCat(cst)

⊥oo

in which AlgCat(cst) is fully faithful. This implies that AlgCat(πV) preserves limits and colimits
and by [CDH+20CDH+20, Lemma 2.6.1], it is both a Cartesian and coCartesian fibration. Since the left
square was a pullback, this implies that Cat(πV) is a Cartesian and coCartesian fibration as
well and that the inclusion Cat(TV) ↪→ AlgCat(TV) preserves Cartesian and coCartesian arrows.

It remains to verify that the right square is Cartesian. To see this, we claim that the following
conditions are equivalent for a map α : C −→ D in AlgCat(TV):

(a) α is a DK-equivalence.
(b) α is an AlgCat(πV)-coCartesian lift of a DK-equivalence in AlgCat(V).
(c) α is an AlgCat(πV)-Cartesian lift of a DK-equivalence in AlgCat(V).

Assuming this, it follows that AlgCat(πV) classifies a diagram AlgCat(V) −→ CatL sending
each DK-equivalence to an adjoint equivalence: over a fixed DK-equivalence in AlgCat(V), the
AlgCat(πV)-Cartesian and AlgCat(πV)-coCartesian arrows coincide, so that the proof of [Lur09Lur09,
Proposition 5.2.2.8] shows that the unit and counit of the induced adjunction are equivalences.
Since the DK-equivalences in AlgCat(TV) are precisely the AlgCat(πV)-(co)Cartesian lifts of
DK-equivalences in AlgCat(V), it then follows from [Hin16Hin16, Proposition 2.1.4] that the right
square is a Cartesian square.

To see the claim, let us write α0 : C0 −→ D0 for the image of α in AlgCat(V) and let
α′0 : C′0 −→ D′0 be the image of α0 under AlgCat(cst). The unit and the counit of the adjoint
pairs above then determine a commuting diagram in AlgCat(TV)

C′0
α′

0 ��

ϵ // C
η //

α
��

C′0
α′

0��
D′0

ϵ // D
η // D′0.

Since AlgCat(cst) and AlgCat(πV) both preserve DK-equivalences (having right adjoints preserv-
ing complete objects), α′0 is a DK-equivalence in AlgCat(TV) if and only if α0 is a DK-equivalence
in AlgCat(V). Furthermore, the left square is a pushout if and only if α is AlgCat(πV)-coCartesian
and the right square is a pullback if and only if α is AlgCat(πV)-Cartesian, by [CDH+20CDH+20, Lemma
2.6.1] and its opposite.

Using this, (b) implies (a) because DK-equivalences are stable under pushout. Conversely, if
α is a DK-equivalence, then α′0 is a DK-equivalence as well. Consequently, D′0 ⨿C′

0
C −→ D is

both a DK-equivalence and an equivalence on spaces of objects (since its image in AlgCat(V) is
an equivalence), and hence an equivalence.

Dually, (c) is equivalent to α′0 being a DK-equivalence and the right square being a pullback.
Since fully faithful maps are stable under pullback, this implies that α is fully faithful. Since
essential surjectivity is detected on the underlying space-valued categorical algebra, which in
turn is determined by the underlying V-enriched categorical algebra, we find that α is essentially
surjective as well. Conversely, if α is a DK-equivalence, then α′0 is a DK-equivalence as well.
Consequently, the map C −→ C′0 ×D′

0
D is fully faithful and an equivalence on spaces of objects,

and is hence an equivalence. □
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Lemma 6.7. Let V be a presentable SM ∞-category and let TV be its tangent bundle with the
square zero monoidal structure. Then there is a natural SM equivalence

AlgCat(TV) ≃ TAlgCat(V )×TS S

between AlgCat(TV) and the full subcategory of excisive functors C• : Sfin∗ −→ AlgCat(V) which
are constant at the level of objects.

Proof. Recall the equivalence AlgCat(Fun(S
fin
∗ ,V)) ≃ Fun(Sfin∗ ,AlgCat(V)) ×Fun(Sfin

∗ ,S) S from
Proposition 5.65.6. By Lemma 5.225.22, this restricts to an equivalence on full subcategories of excisive
functors. □

Lemma 6.8. Let V be a presentable monoidal ∞-category. Then there exists a natural relative
adjunction

AlgCat(TV)
� � φ //

AlgCat(πV) ((

TAlgCat(V)

πvv

ψ

⊥oo

AlgCat(V).

Proof. Using Lemma 6.76.7, we define φ as the projection onto the first factor

(6.3)

AlgCat(TV) ≃ TAlgCat(V)×TS S
φ //

AlgCat(πV)

��

TAlgCat(V )

π

��
AlgCat(V) ≃ AlgCat(V)×S S

∼ // AlgCat(V).

Here the square commutes by naturality of the equivalence from Proposition 5.65.6 with respect
to restriction along {∗} ↪→ Sfin∗ . Note that φ is the base change along the Cartesian fibration
TAlgCat(V) −→ TS of the fully faithful functor cst : S −→ TS that is left adjoint to the tangent
projection. The opposite of [Lur09Lur09, Corollary 5.2.7.11] then implies that φ is fully faithful and
admits a right adjoint ψ. This right adjoint can be described as follows: given C• : Sfin∗ −→
AlgCat(V), ψ(C•) : Sfin∗ −→ AlgCat(V) sends each space T to the full sub-categorical algebra of
CT obtained by restricting the objects along the canonical map Ob(C∗) −→ Ob(CT ). In other
words, the counit map ψ(CT ) −→ CT is a Cartesian lift of the map of spaces Ob(C∗) −→ Ob(CT ).
It follows from this description that ψ commutes with evaluation at ∗ as well, so that ϕ and ψ
form a relative adjunction. □

Proof of Theorem 6.46.4. To define the functor L, consider the composition

T((−)∧) ◦ φ : AlgCat(TV) ↪→ TAlgCat(V) −→ TCat(V).

Here φ is the functor from Lemma 6.86.8 and the last square arises from the adjoint pair
(−)∧ : AlgCat(V)

−→⊥←− Cat(V) : ι by taking tangent bundles. Note that φ sends DK-equivalences
in AlgCat(TV) to Sfin∗ -diagrams of DK-equivalences in AlgCat(V), which in turn are sent to
equivalences by T((−)∧). Consequently, the above composite induces a functor L : Cat(TV) −→
TCat(V) from the localization at the DK-equivalences.

Since (−)∧ : AlgCat(TV) −→ Cat(TV) is a monoidal localization, L inherits a natural SM
structure from the composite T((−)∧) ◦ φ : AlgCat(TV). Here T((−)∧) inherits its SM structure
from (−)∧, and φ corresponds under the SM equivalence of Proposition 5.65.6 to the projection
(6.36.3), which is a SM functor.
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To show that L is an equivalence, observe that (since (−)∧ : AlgCat(TV) −→ Cat(TV) has a
section), L coincides with the top horizontal composite

(6.4)

Cat(TV) �
� //

��

AlgCat(TV)
� � φ //

��

TAlgCat(V)

��

T((−)∧) // TCat(V)

��
Cat(V) �

� // AlgCat(V) =
// AlgCat(V)

(−)∧ // Cat(V).

Here all vertical functors are coCartesian fibrations, where we use Proposition 6.66.6 for the left
two. The first two horizontal functors preserve coCartesian arrows by Proposition 6.66.6 and by
Lemma 6.86.8 and [Lur17Lur17, Proposition 7.3.2.6]. The last functor T((−)∧) preserves coCartesian
arrows for formal reasons: for any adjoint pair F : C −→⊥←− D :G, the induced adjoint pair
TF : TC −→⊥←− TD :TG covering F and G has left adjoint TF preserving coCartesian arrows and
right adjoint TG preserving Cartesian arrows.

Having proven that L is a map between coCartesian fibrations preserving coCartesian arrows,
it suffices to verify that L induces an equivalence on fibers. Let us therefore fix a V-enriched
category C ∈ Cat(V) and let us write X = Ob(C) for its space of objects. Since the left
square in (6.46.4) was Cartesian, it suffices to verify that φ and completion induce an equivalence
AlgCat(TV)×AlgCat(V) {C} −→ TC Cat(V). This follows essentially from [HNP18HNP18, Section 3.1].

Indeed, note that the equivalence from Lemma 6.76.7 induces an equivalence on fibers

AlgCat(TV)×AlgCat(V) {C} ≃ TC AlgCat(V)×TXS {X}.

Recall that under the equivalence of Lemma 6.76.7, the functor φ was simply given by projection
onto the first factor. It will therefore suffice to verify that the composite

(6.5) TC AlgCat(V)×TXS {X}
φ=π1 //

TC AlgCat(V)
ψ

oo
TC((−)∧) //

TC Cat(V)
TC(ι)
oo

is an equivalence. As indicated, this composite admits a right adjoint: ψ is the right adjoint
from Lemma 6.86.8, restricting the space of objects to X, and T(ι) is induced by the canonical
inclusion ι : Cat(V) −→ AlgCat(V).

Now note that the above diagram arises upon stabilization from the following diagram of
adjunctions between ∞-categories of retractive objects over C:

F : AlgCat(V)C//C ×SX//X
{X}

π1 //
AlgCat(V)C//C

ψ′
oo

(−)∧ //
Cat(V)C//C : G.

ι
oo

Here the right adjoint ψ′ exists by (the opposite of) [Lur09Lur09, Corollary 5.2.7.11]. Explicitly,
it takes the full sub-categorical algebra with objects X, i.e. the counit map ψ′(D) −→ D is a
Cartesian lift of the map of spaces X = Ob(C) −→ Ob(D) (cf. Definition 5.75.7). Upon stabilization,
this induces the right adjoint pair in (6.56.5) by definition. For the left adjoint pair, note that
AlgCat(V)C//C ×SX//X

{X} is a fiber product of pointed ∞-categories along left exact functors,
and that stabilization preserves such fiber products. Consequently, the projection onto the first
factor induces the functor ϕ, and since stabilization sends an adjoint pair of left exact functors
to an adjunction between stable ∞-categories, its right adjoint ψ′ induces the functor ψ at the
stable level.
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We now follow the same proof as [HNP18HNP18, Proposition 3.1.9]: applying (the ∞-categorical
analogue of) [HNP19cHNP19c, Corollary 2.39], it suffices to verify that the unit and counit of (F,G)
become equivalences upon taking loop spaces. For the unit map, let C→ D→ C be a retract
diagram of categorical algebras with spaces of objects X. Then D −→ GF (D) is the natural
map obtained by decomposing D −→ D∧ (essentially uniquely) into a map that is the identity
on objects, followed by a fully faithful map. Since D −→ D∧ is itself fully faithful, the unit is
itself already an equivalence.

For the counit, let C −→ D −→ C be a retract diagram of V-enriched categories. Then the
counit map ϵD : FG(D) = ψ′(D)∧ −→ D is the natural map from the completion of the full
sub-categorical algebra ψ′(D) −→ D with objects X. Since ψ′(D) −→ D is fully faithful, ϵD
is fully faithful as well. Consequently, the base change FG(D) ×D C −→ C is fully faithful
as well. This map has a canonical section (since we are working in Cat(V)C//C) and is hence
also essentially surjective. Since all categorical algebras involved were complete, it follows that
FG(D)×D C ≃ C is the zero object in Cat(V)C//C. Using this, the looping of the counit map
Ω/C(ϵD) : C×FG(D) C −→ C×D C can be identified with C×FG(D) C −→ C×FG(D) FG(D)×D C,
which is the base change of an equivalence. It follows that the counit is an equivalence upon
taking loop space objects, so that (6.56.5) is indeed an equivalence. □

Proposition 6.9. Let V be presentable monoidal ∞-category and suppose that TV carries a
monoidal t-orientation. Then the full subcategories AlgCat(T

≥0V) and AlgCat(T
≤0V) define a

t-orientation on the stable Cartesian fibration AlgCat(TV) −→ AlgCat(V).

Proof. Theorem 6.46.4 and Proposition 6.66.6 imply that AlgCat(TV) −→ AlgCat(V) is a stable
Cartesian fibration, being the base change of such. For a fixed space of objects, the restrictions

(6.6) AlgCat(T
≥0V)×S {X} ≃ AlgOX

(T≥0V), AlgCat(T
≤0V)×S {X} ≃ AlgOX

(T≤0V)

coincide with the t-orientation on OX -algebras from Proposition 2.252.25. In particular, this implies
that AlgCat(T

≥0V) and AlgCat(T
≤0V) restrict to a t-structure on the fiber over a fixed categorical

algebra C.
For condition (1) of Definition 2.202.20, let f : C −→ D be a map in AlgCat(V), E ∈ AlgCat(T

≤0V)
an object living over D and f∗E −→ E the Cartesian lift of f . To see that f∗E ∈ AlgCat(T

≤0V),
factor f as a map g : C −→ D′ which is the identity on objects, followed by a fully faithful map
h : D′ −→ D. Then h∗(E) −→ E is fully faithful; in particular, if all mapping objects of E are
contained in T≤0V, the same holds for h∗(E). The map f∗(E) −→ h∗(E) is then a Cartesian
arrow in AlgOOb(C)

(TV), so that Proposition 2.252.25 implies that f∗(E) ∈ AlgCat(T
≤0V). □

Corollary 6.10. Let V be a differentiable presentable SM ∞-category such that 1V is compact
and suppose that TV carries a monoidal t-orientation. Under the equivalence TCat(V) ≃ Cat(TV)
from Theorem 6.46.4, the full subcategories

T≥0 Cat(V) ≃ Cat(T≥0V) T≤0 Cat(V) ≃ Cat(T≤0V)

then determine a monoidal t-orientation of the tangent bundle TCat(V), with heart T♡Cat(V) ≃
Cat(T♡V).

Proof. Using the left pullback square from Proposition 6.66.6, this is simply the base change of the t-
orientation from Proposition 6.96.9. It is a monoidal t-structure because Cat(−) preserves symmetric
monoidal functors and fully faithful functors, so that T≥0 Cat(V) ≃ Cat(T≥0V) ⊆ TCat(V) is
closed under the tensor product. □
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Remark 6.11. In the setting of Corollary 6.106.10, let C be V-enriched category together with a
π0-surjection of spaces X −→ Ob(C). Let CX ↪→ C be the induced fully faithful functor, which
realizes C as the completion of CX . Theorem 6.46.4 and Proposition 6.66.6 then provide equivalences
of stable ∞-categories

TC Cat(V) ≃ AlgCat(TV)×AlgCat(V) {CX} ≃ AlgOX
(TV)×AlgOX

(V) {CX}.

In the presence of a t-orientation, the proof of Proposition 6.96.9 (see Diagram (6.66.6)) shows that

this identifies T♡C Cat(V) with the fiber AlgOX
(T♡V)×AlgOX

(V) {CX}.

6.2. Local systems of abelian groups on (∞, n)-categories. Applying Corollary 6.106.10
inductively, starting with the t-structure on parametrized spectra from Example 2.242.24, we obtain
the following:

Corollary 6.12. Let C be an (∞, n)-category. Then the tangent ∞-category TC Cat(∞,n) carries
a t-structure, in which an object E is (co)connective if and only if for any two objects x, y ∈ C,
the functor

Map(−)(x, y) : TC Cat(∞,n) −→ TMapC(x,y) Cat(∞,n−1)

sends E to a (co)connective object.

Applying this inductively, one finds the following inductive description of the heart of the
t-orientation on TCat(∞,n):

Definition 6.13 (cf. [Lur09bLur09b, Definition 3.5.10]). The∞-category of local systems of abelian
groups on (∞, 0)-categories is defined to be the domain of the Cartesian fibration

Loc(∞,0) −→ S

classified by the functor Sop −→ Cat∞ sending a space X to the category of local systems
Fun

(
Π1(X),Ab

)
. This carries a symmetric monoidal structure given by the Cartesian product.

For n ≥ 1, we define the symmetric monoidal ∞-category of local systems of abelian groups
on (∞, n)-categories to be the domain of the Cartesian fibration

Loc(∞,n) = Cat
(
Loc(∞,n−1)

)
−→ Cat

(
Cat(∞,n−1)

)
= Cat(∞,n) .

Note that Loc(∞,n) inherits a symmetric monoidal structure from Loc(∞,n−1), such that the
projection to Cat(∞,n) is symmetric monoidal.

For each C, let us denote the fiber of Loc(∞,n) over C by Loc(∞,n)(C) and refer to it as the
abelian category of local systems on C. Note that Loc(∞,n)(C) is indeed an (ordinary)
abelian category by the following immediate consequence of Corollary 6.106.10:

Corollary 6.14. There are equivalences of ∞-categories over Cat(∞,n)

Loc(∞,n) ≃ Cat(Loc(∞,n−1)) ≃ Cat(T♡ Cat(∞,n−1)) ≃ T♡Cat(∞,n) .

Given an (∞, n)-category C, Remark 6.116.11 now implies that a local system A on C is given by
the datum of map of ∞-operads

Loc⊗(∞,n−1)

��
OX //

A

55

OOb(C)
C
// Cat⊗(∞,n−1)
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for any choice of π0-surjection of spaces X −→ Ob(C).

Remark 6.15. For the canonical choice X = Ob(C), the datum of a local system A on an
(∞, n)-category C can therefore be described informally by the as follows:

(0) for each x, y ∈ C, a local system Ax,y over the (∞, n− 1)-category of maps C(x, y).

(i) a map of local systems for each triple x, y, z ∈ C and a map of abelian groups for each
x ∈ C

mx,y,z : p
∗
1Ay,z × p∗0Ax,y −→ c∗Ax,z, ux : Z −→ e∗Ax,x.

Here c : C(y, z)× C(x, y) −→ C(x, z) is the composition, p0 : C(y, z)× C(x, y) −→ C(y, z)
and p1 : C(y, z)× C(x, y) −→ C(x, y) are the projections and e : ∗ −→ C(x, x) is the unit.

(ii) an associativity condition for each quadruple w, x, y, z ∈ C and left and right unitality
conditions for each tuple x, y ∈ C, given by the commutativity of the following diagrams:

p∗2Az,w × p∗1Ay,z × p∗0Ax,y
mw,y,z◦(id×mw,x,y)

**

mw,x,z◦(mx,y,z×id)

tt
(c ◦ (id×c))∗Ax,w

α∗

∼=
// (c ◦ (c× id))∗Ax,w

where α∗ arises from the associator α of C by naturality of base change, and

Ax,y

=

��

my,y,x◦(uy×id)

((

mx,x,y◦(id×ux)

vv
(c ◦ (id×e))∗Ax,y

ρ∗

∼=
// Ax,y (c ◦ (e× id))∗Ax,y

λ∗

∼=
oo

where the bottom maps arise from the left and right unit equivalences λ and ρ.

Note that there are no higher coherences because the local systems over each C(x, y) form
an ordinary 1-category. Definition 6.136.13 therefore gives a precise formulation of the (informal)
definition of local systems on (∞, n)-categories appearing in [Lur09bLur09b, Definition 3.5.10].

Remark 6.16. Taking X −→ Ob(C) to be a π0-surjection from a set, the datum of a
local system over C can also be identified with a section of the map of operads LC,X :=

Loc⊗(∞,n−1)×Cat⊗
(∞,n−1)

OX −→ OX . Now note that Loc⊗(∞,n−1) −→ Cat⊗(∞,n−1) induces maps on

mapping spaces with discrete fibers. Since X is a set, both OX and LC,X are therefore ordinary
operads and a section OX −→ LC,X is given by choosing images of objects and multi-morphisms
satisfying a certain associativity condition, but no higher coherences. In this situation, the
informal description of a local system from Remark 6.156.15, for objects taken in the set X, is
exactly the data of a local system on C.

The inductive construction of the Postnikov structure in Theorem 6.36.3 shows that all
parametrized spectra appearing in it are contained in the heart of the t-structure on TCat(∞,n).
We therefore obtain the following result (which appears without proof as [Lur09bLur09b, Claim 3.5.18]):

Corollary 6.17. For every (∞, n)-category C, the parametrized spectrum Hπa(C) of Theorem
6.36.3 is the Eilenberg–Maclane spectrum associated to

πa(C) ∈ Loc(∞,n)(C) = T♡ho(n+1,n)(C)
Cat(∞,n) .
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In terms of Remark 6.156.15, it is the Eilenberg–Maclane spectrum of the local system of abelian
groups on ho(n+1,n) C given inductively by πa(C)x,y = πaMapC(x, y), for any x, y ∈ C.

Appendix A. Symmetric monoidal structure on categorical algebras

In this appendix, we provide the proofs of Proposition 5.35.3, Lemma 5.45.4 and Proposition 5.65.6
about the symmetric monoidal structure on CatAlg(V). The key ingredient of these proofs will
be Construction A.3A.3: given an ∞-category C with finite products, this produces a diagram
FΨ : D −→ SMCatlax/C× of SM ∞-categories over C× from the data of a (suitable) diagram

Ψ: Cop ×D −→ SMCatlax∞ . Let us start with a preliminary observation:

Definition A.1. For an ∞-category D, let us write

coCart(D)lax ⊆ Cat∞/D, Cart(D)opl ⊆ Cat∞/D

for the full subcategories spanned by the coCartesian and Cartesian fibrations, respectively. Fur-
thermore, let us denote by Fun(D,SMCatlax∞ )strong ↪→ Fun(D,SMCatlax∞ ) the wide subcategory
whose morphisms µ : F −→ G are natural transformations such that for each d ∈ D, the map
µd : F (d) −→ G(d) is a strong (as opposed to lax) SM functor.

Lemma A.2. For any ∞-category D, there is a natural (wide) subcategory inclusion

Fun(D,SMCatlax)strong �
� // CAlg

(
Cart(Dop)opl

)
where we take commutative algebras with respect to the fiber product over D.

Proof. We will use unstraightening to identify both categories with (non-full) subcategories
of Cat∞/Dop×Fin∗ and then show that one is naturally included in the other. First, note

that Fun(D,SMCatlax)strong is a subcategory of Fun(D,Cat∞/Fin∗). By [HHLN23HHLN23, Corollary
2.3.4], unstraightening to a Cartesian fibration over D then provides an equivalence between

Fun(D,SMCatlax)strong and the following subcategory of Cat∞/Dop×Fin∗ :

(1) Objects are maps p = (p1, p2) : E −→ Dop × Fin∗ such that p1 is a Cartesian fibration,
p2 is a coCartesian fibration, p1 sends p2-coCartesian arrows to equivalences and p2
sends p1-Cartesian arrows to equivalences. Furthermore, for each d ∈ D, the fiber
Ed −→ Fin∗ is a SM∞-category and for each α : d→ d′ in D, the change of fiber functor
α∗ : Ed′ −→ Ed preserves p2-coCartesian lifts of inert morphisms in Fin∗.

(2) Morphisms are commuting triangles

(A.1)

E
f //

(p1,p2)=p &&

E′

q=(q1,q2)xx
Dop × Fin∗

such that f sends all p1-Cartesian arrows to q1-Cartesian arrows and all p2-coCartesian
arrows to q2-coCartesian arrows.

Similarly, we can view CAlg(Cart(Dop)opl) as a subcategory of Fun(Fin∗,Cat∞/Dop). By
[HHLN23HHLN23, Corollary 2.3.4], unstraightening to a coCartesian fibration over Fin∗ then provides
an equivalence between CAlg(Cart(Dop)opl) and the following subcategory of Cat∞/Dop×Fin∗ :
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(1’) Objects are maps p = (p1, p2) : E −→ Dop × Fin∗ such that p1 is a Cartesian fibration,
p2 is a coCartesian fibration, p1 sends p2-coCartesian arrows to equivalences and p2
sends p1-Cartesian arrows to equivalences. Furthermore, for each ⟨n⟩ in Fin∗, the Segal
maps induce an equivalence E⟨n⟩ ≃ E⟨1⟩ ×Dop · · · ×Dop E⟨1⟩ of Cartesian fibrations over
Dop.

(2’) Morphisms are commuting triangles (A.1A.1) such that f sends all p2-coCartesian arrows
to q2-coCartesian arrows.

Notice that conditions (1) and (1’) are equivalent. Indeed, consider the Segal map g : E⟨n⟩ ≃
E⟨1⟩ ×Dop · · · ×Dop E⟨1⟩ between categories over Dop. Then g preserves Cartesian arrows over
Dop if and only if for each α : d→ d′ in D, the change of fiber functor α∗ : Ed′ −→ Ed preserves
coCartesian lifts of inert morphisms in Fin∗. When this is the case, the Segal map is an
equivalence if and only if it induces an equivalence between the fibers over each d ∈ Dop, i.e. iff
each Ed is an SM ∞-category. We therefore obtain two subcategories with the same objects,
while on morphisms the condition (2) is clearly stronger than (2’). This yields the desired wide
subcategory inclusion. □

Construction A.3. Let C be an∞-category with finite products, D an∞-category and consider
a functor Ψ: Cop ×D −→ SMCatlax that sends each arrow in Cop to a strong SM functor. We
will construct from Ψ a natural functor FΨ : D −→ SMCatlax/C× where FΨ(d) −→ C× is a SM

functor whose underlying functor is the Cartesian fibration classified by Ψ(−, d) : Cop −→ Cat∞.
To do this, note that by adjunction and Lemma A.2A.2, we obtain a natural functor

Ψ: Cop // Fun
(
D,SMCatlax∞

)strong // CAlg
(
Cart(Dop)opl

)
.

By [Lur17Lur17, Theorem 2.4.3.18], this defines a map of ∞-operads

(Cop)⨿ // Cart(Dop)opl,× ≃ coCart(D)lax,×

from the coCartesian ∞-operad (Cop)⨿ to the Cartesian operad coCart(D)lax,×. Here the
equivalence of Cartesian operads arises from the equivalence sending a Cartesian fibration
E −→ Dop to the opposite coCartesian fibration Eop −→ D.

Since the target of the above map is a Cartesian ∞-operad, this is uniquely determined by an
(Cop)⨿-monoid object (Cop)⨿ −→ coCart

(
D)lax. The unstraightening of this functor determines

a functor

(A.2) p = (p1, p2) : X
◦,⊗
Ψ

// (Cop)⨿ ×D

with the following properties:

(1) p1 : X
◦,⊗
Ψ −→ (Cop)⨿ is a coCartesian fibration and p2 sends p1-coCartesian arrows to

equivalences.
(2) For each ⟨n⟩ ∈ Fin∗, the n inert maps σi : ⟨n⟩ −→ ⟨1⟩ induce an equivalence X

◦,⊗
Ψ,⟨n⟩ −→

X
◦,⊗
Ψ,⟨1⟩ ×D · · · ×D X

◦,⊗
Ψ,⟨1⟩.

(3) For each ⟨n⟩ ∈ Fin∗, the map between fibers over ⟨n⟩

p : X◦,⊗Ψ,⟨n⟩
// (Cop)⨿⟨n⟩ ×D ≃ (Cop)×n ×D

is a coCartesian fibration, classified by the functor sending (c1, . . . , cn, d) to Ψ(c1, d)
op×

· · · ×Ψ(cn, d)
op.
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Here (2) is equivalent to (Cop)⨿ −→ coCart(D)lax being a monoid object, after which (3)
is equivalent to the fact that the underlying functor Cop −→ coCart(D)lax corresponds to
Ψ: Cop ×D −→ Cat under unstraightening over D.

In particular, these conditions imply that for each d ∈ D, the map between fibers p1 : p
−1
2 (d) −→

(Cop)⨿ is a coCartesian fibration of ∞-operads and that each map d → d′ induces a map of
∞-operads p−12 (d) −→ p−12 (d′) over (Cop)⨿. Unraveling the definitions, the coCartesian fibration
p1 : p

−1
2 (d) −→ (Cop)⨿ arises as the coCartesian unstraightening of the functor

Cop // Cat; c � // Ψ(c, d)op

with lax monoidal structure maps given by

(A.3) Ψ(c, d)op ×Ψ(c′, d)op // Ψ(c× c′, d)op ×Ψ(c× c′, d)op // Ψ(c× c′, d)op.

Here the first map restricts along the maps c← c× c′ → c′ and the second map uses the SM
structure on Ψ(c× c′, d)op. Similarly, unwinding the construction shows that the coCartesian
fibration p−11 (c1, . . . , cn) −→ D is classified by the functor sending d to Ψ(c1, d)

op × · · · ×
Ψ(cn, d)

op.
Postcomposing with the map (Cop)⨿ −→ Fin∗, one can view (A.2A.2) as a map of coCartesian

fibrations over Fin∗. Let us take the induced map of fiberwise opposite coCartesian fibrations,
i.e. the coCartesian fibrations classifying the Fin∗-diagram of opposite ∞-categories [BGN18BGN18].
This yields a diagram of the form

X⊗Ψ

r $$

q=(q1,q2) // C× ×Dop

xx
Fin∗

where C× → Fin∗ is the Cartesian operad associated to the ∞-category with products C (which
is the fiberwise opposite of (Cop)⨿, cf. [Lur17Lur17, Variant 2.4.3.12]). Here the map q has the
following properties (which correspond to the properties of p under taking fiberwise opposites
over Fin∗):

(1) q is a map of coCartesian fibrations over Fin∗ preserving coCartesian arrows.
(2) For each ⟨n⟩ ∈ Fin∗, the n inert maps σi : ⟨n⟩ −→ ⟨1⟩ induce an equivalence X⊗Ψ,⟨n⟩ −→

X⊗Ψ,⟨1⟩ ×D · · · ×D X
◦,⊗
Ψ,⟨1⟩.

(3) For each ⟨n⟩ in Fin∗, the map on fibers X⊗Ψ,⟨n⟩ −→ C×⟨n⟩×D
op ≃ C×n×Dop is a Cartesian

fibration classified by the functor sending (c1, . . . , cn, d) 7−→ Ψ(c1, d)× · · · ×Ψ(cn, d).

In particular, the map (r, q2) : X
⊗
Ψ −→ Fin∗×Dop has the property that (1) r is a coCartesian

fibration and that q2 sends r-coCartesian arrows to equivalences in Dop and (2) for each
⟨n⟩ ∈ Fin∗, the map q2 : X

⊗
Ψ,⟨n⟩ −→ Dop is a Cartesian fibration. It follows from [HHLN23HHLN23,

Proposition 2.3.3] that q2 : X
⊗
Ψ −→ Dop is a Cartesian fibration and that q is a map of Cartesian

fibrations over Dop (preserving Cartesian arrows). We can therefore apply straightening over D,
and the above three conditions then imply that the straightening determines the desired functor
FΨ : D −→ SMCatlax/C× .

Proof of Proposition 5.35.3. Recall that there is a functor Opop∞ ×Op∞ −→ Op∞ sending (O,P)

to the ∞-operad of algebras AlgO(P)
⊗. This takes values in SMCatlax∞ if P is an SM ∞-

category [Lur17Lur17, Example 3.2.4.4], in which case restriction along O −→ O′ determines a
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SM functor AlgO′(P) −→ AlgO(P). We can thus apply Construction A.3A.3 to the functor

Sop × SMCatlax∞ −→ SMCatlax∞ sending X 7−→ AlgOX
(V). □

Proof of Lemma 5.45.4. Unraveling Construction A.3A.3, the structure of the SM functor AlgCat(V) −→
S arises as the straightening over Fin∗ of the map q1 : Alg⊗Cat(V) = q−12 (V) −→ S×. By construc-

tion, the straightening of q1 is the pointwise opposite of the straightening of p1 : p
−1
2 (V) −→

(Sop)⨿ over Fin∗ by taking fiberwise opposites over Fin∗. Consequently, the tensor product on
AlgCat(V) is arises as the unstraightening of the opposite of the natural transformation (A.3A.3),
as desired. □

Proof of Proposition 5.65.6. Construction A.3A.3 has the following general property: for any f : D′ −→
D and Ψ: Cop × D −→ SMCatlax, the functor FΨ◦(id×f) : D

′ −→ SMCatlax/C× is naturally
equivalent to the functor Fψ ◦ f . Consequently, the left-bottom composite in Proposition 5.65.6

arises by applying Construction A.3A.3 to the functor ΨI : S
op × SMCatlax −→ SMCatlax sending

(X,V) to AlgOX

(
Fun(I,V)

)⊗
.

Now notice that ΨI is equivalent to the functor sending (X,V) to Fun(I,AlgOX
(V)) with the

levelwise tensor product (by adjunction to the Boardman–Vogt tensor product, see Remark 2.72.7).
The result will therefore follow from the following general claim about Construction A.3A.3: for
any Ψ: Cop ×D −→ SMCatlax and any ∞-category I, applying Construction A.3A.3 to the functor
ΨI(c, d) = Fun(I,Ψ(c, d)) results in the composite functor

(A.4) FΨI
: D

FΨ // SMCatlax∞/C×

Fun(I,−)×Fun(I,C×)C
×

// SMCatlax∞/C× .

To see this, recall the inclusion Fun(D,SMCatlax) ↪→ CAlg
(
Cart(Dop)opl

)
from Lemma A.2A.2,

which was given by unstraightening over D. Under this inclusion, applying Fun(I,−) point-
wise corresponds to sending a Cartesian fibration Eop −→ Dop to the Cartesian fibration
Fun(I,Eop)×Fun(I,Dop) D

op −→ Dop. This implies that the monoid object determined by ΨI is
given by the composite

(Cop)⨿ −→ coCart(D)lax −→ coCart(D)lax

where the first functor is the monoid object associated to Ψ and the second functor sends a
coCartesian fibration E −→ D to Fun(Iop,E)×Fun(Iop,D) D −→ D (note that we took opposite
categories to pass from Cartesian to coCartesian fibrations). Next, applying the same reasoning
to the unstraightening over (Cop)⨿, we obtain that

X
◦,⊗
ΨI
≃ Fun

(
Iop,X◦,⊗Ψ

)
×Fun(Iop,(Cop)⨿×D) (C

op)⨿ ×D.

Taking fiberwise opposite coCartesian fibrations over Fin∗, one then obtains an equivalence of
Cartesian fibrations over Dop

X⊗ΨI
≃ Fun

(
I,X⊗Ψ

)
×Fun(I,C××Dop) C

× ×Dop.

Under straightening over Dop, this equivalence provides the desired identification of FΨI
as in

(A.4A.4). □
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