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Abstract

We introduce a notion of Θ-categories, which is a refinement of the
notion of symmetric monoidal ∞-categories. We use this notion to
prove a Tannakian duality statement, relating Θ-categories with fpqc-
stacks by means of a certain stack of fiber functors in the context of
Θ-categories. This provides, over a base ring of arbitrary characteris-
tic, a strong link between Tannakian Θ-categories and the schematic
homotopy types of [Toe06].
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Introduction

The idea that homotopy theory can be approached from a Galois or Tan-
nakian point of view goes back to Grothendieck. This perspective was first
incarnated in his theory of the fundamental group, both pro-finite and pro-
algebraic (see for instance [Ray71], [Del89]). To the best of our knowledge,
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the fact that this point of view on the fundamental group can be fruit-
fully extended to more general homotopy invariants appears in two letters of
Grothendieck: to Serre, dated 18.07.1959 for the pro-finite case (see [CS01,
p. 75]), and to Breen, dated 19.07.1975, for the pro-algebraic case (see [Gro,
cote 134-2, p. 75]).

In [Toe00], the second author suggested an approach to Tannakian dual-
ity for ∞-categories based on the notion of symmetric monoidal ∞-categories
defined as functors out of Γ, the category of pointed finite sets. In [Toe06]
certain stacks, called schematic homotopy types, have been identified as the
expected duals to Tannakian ∞-categories and have been used notably in
the setting of non-abelian Hodge theory (see [KPT08]). Thanks to the foun-
dational work of Lurie, actual Tannaka duality statements have been proven
by several authors, see for instance [Lur11], [Wal12] and [Iwa18]. However,
except in the specific case of characteristic zero, these results are obtained
in the setting of E∞-algebras, which do not relate well to the theory of
schematic homotopy types of [Toe06], and therefore do not provide the ex-
pected Tannakian interpretations for schematic homotopy types.

The starting point of this work is the simple observation that any notion
of Tannakian ∞-category solely based on symmetric monoidal ∞-categories
will fail to relate nicely to schematic homotopy types, or to stacks in alge-
braic geometry in general. Indeed, for any stack F on the fpqc-site of affine
schemes, the symmetric monoidal ∞-category QCoh(F ) of quasi-coherent
sheaves comes equipped with natural extra operations, namely the derived
symmetric power operations. These cannot be reconstructed purely from the
symmetric monoidal structure, and their existence is a theoretical obstruc-
tion for any Tannakian-type reconstruction result in algebraic geometry.

A second incarnation of this discrepancy can be seen at the level of com-
mutative algebras. The theory of schematic homotopy types from [Toe06]
uses co-simplicial commutative rings, a sub-class of the LSym-algebras (see
e.g. [BCN21, Rak20]) typically used in derived, as opposed to spectral, al-
gebraic geometry. In characteristic zero, these LSym-algebras coincide with
the E∞-algebras that exist naturally in any symmetric monoidal ∞-category,
but have an additional algebraic structure in general.

The purpose of this short note is to introduce a rudimentary notion of
Θ-categories, which is a refinement of the notion of symmetric monoidal
∞-categories suited for a Tannakian interpretation of schematic homotopy
types and similar stacks. The point of view adopted here will be somewhat
minimalist and takes the second discrepancy mentioned above as its starting
point. It is based on the principle that Θ-categories should morally be sym-
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metric monoidal ∞-categories in which an internal notion of LSym-algebras
exists. We implement this idea by defining Θ-categories simply as pairs
(T,M), consisting of a symmetric monoidal ∞-category and a monadM over
T equipped with a map from the E∞-monad and satisfying some conditions
(see Definition 1.5). The typical example to keep in mind is the case where F
is a stack, T = QCoh(F ) is its ∞-category of quasi-coherent complexes and
M is the LSym-monad, given by the direct sum of derived symmetric powers
E 7→

⊕
n LSym

n(E). The main content of our work is that this definition
gives rise to a well-behaved (2,∞)-category of Θ-categories, from which a
Tannakian duality theorem can be proven (see Theorem 2.9). In particular,
we show that any Tannakian Θ-category T is equivalent, as a symmetric
monoidal ∞-category, to P̂erf(FibLSym(T )), the ∞-category of ind-perfect
complexes on a certain stack of LSym-fiber functors. The stacks obtained as
stacks of LSym-fiber functors are moreover essentially the schematic homo-
topy types of [Toe06].

To finish this introduction, we would like to mention that the present
approach to Θ-categories is not optimal. The reader will for instance ob-
serve some limitations and unnatural conditions in our main result, Theorem
2.9. This is the price to pay for our minimalist approach, but we mention
some possible modifications and improvements in a final comment (see Re-
mark 2.15). We also want to mention that a more systematic theory of
Θ-categories as symmetric monoidal ∞-categories with additional symmet-
ric powers is presently under investigation by the first author. We believe
that the outcome of this work will allow for stronger and more natural re-
sults in a near future. Nevertheless, Theorem 2.9 can be applied in several
important situations to construct interesting Tannakian duals, such as the
theory of Nori’s motives (from which we can extract a motivic homotopy
type defined as a stack over SpecZ), or the theory of exponential complexes
appearing in [KKP08] (from which we can extract the exponential homotopy
type associated to an algebraic variety). These specific schematic homotopy
theories will be studied elsewhere.

1 Θ-Categories

1.1 µ-Categories

We let ∞-CatRpr be the (2,∞)-category of presentable (1,∞)-categories and
right adjoints (i.e. limit preserving accessible ∞-functors). We have the cor-
responding (2,∞)-category Fun(∆1,∞-CatRpr), of morphisms in ∞-CatRpr.
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For any object f : T ′ → T in Fun(∆1,∞-CatRpr), we will denote by f∗ : T →
T ′ the left adjoint to f , and sometimes write f∗ instead of f .

Definition 1.1. An object f∗ : T ′ → T in Fun(∆1,∞-CatRpr) is a µ-category
if f∗ is conservative and preserves sifted colimits.

Note that, by the Barr–Beck theorem [Lur22, Thm. 4.7.0.3] the condition
of being a µ-category implies that the canonical factorization of f∗

T ′ → LModM (T ) → T,

induces an equivalence T ′ ≃ LModM (T ). Here M = f∗f
∗ is the monad on

T associated with the adjunction (f∗, f∗), and LModM (T ) is the ∞-category
of M -modules in T .

Definition 1.2. Let f∗ : T ′
1 → T1 and g∗ : T

′
2 → T2 be two µ-categories in

the sense of Definition 1.1. A µ-morphism from T ′
1 → T1 to T ′

2 → T2 consists
of a commutative square in ∞-Cat

T ′
1

u //

f∗
��

T ′
2

g∗
��

T1 v
// T2,

with u and v colimit preserving ∞-functors, and such that the induced nat-
ural transformation g∗ ◦ v ⇒ u ◦ f∗ is an equivalence. We will write

∞-Catµ ⊂ Fun(∆1,∞-Cat)

for the (non-full) sub-(2,∞)-category of µ-categories and µ-morphisms.

Remark 1.3. Let us highlight the variance of the ∞-functors in the above
definition: we have decided to use the left adjoints u and v, instead of their
right adjoints u∗ and v∗ to specify the variance. A µ-morphism is therefore
given by a commutative square as in Definition 1.2 that is right adjointable
in the sense of [Lur22, Def. 4.7.4.13].

Remark 1.4. The condition on a µ-morphism implies that we have several
canonical equivalences between functors, obtained by taking various adjoints

g∗ ◦ v ≃ u ◦ f∗ v ◦ f∗ ≃ g∗ ◦ u v∗ ◦ g∗ ≃ f∗ ◦ u∗.
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Using this, there are various equivalent ways of defining µ-morphisms. For
instance, a µ-morphism from T ′

1 → T1 to T ′
2 → T2 can equivalently be

encoded by a left adjointable square in ∞-Cat of the form

T ′
2

u∗ //

f∗
��

T ′
1

g∗
��

T2 v∗
// T1,

This exhibits ∞-Catµ ⊂ Fun(∆1,∞-CatRpr)
op as a (non-full) sub-(2,∞)-

category of the opposite (2,∞)-category of morphisms in ∞-CatRpr.

By definition, an object T ′ → T can also be written, up to equivalence,
as the forgetful ∞-functor LModM (T ) → T for a monad M on T , which
furthermore commutes with sifted colimits. Objects in ∞-Catµ can therefore
be identified, up to equivalence, with pairs (T ′,M), with T a presentable ∞-
category and M a sifted colimit preserving monad on T . Morphisms in
∞-Catµ can then be viewed as ∞-functors endowed with compatibility data
with the monads; see [Hau21] for more details. This is our justification for
the terminology µ-category, where µ stands for monad.

We will often present objects in ∞-Catµ as pairs (T,M) of a presentable
∞-category T and a sifted colimit preserving monad M on T . The ∞-
category T will be called the underlying ∞-category of the object (T,M).
The association (T,M) 7→ T defines an evident forgetful (2,∞)-functor

∞-Catµ → ∞-CatLpr,

where ∞-CatLpr is the (2,∞)-category of presentable ∞-categories and left
adjoints as morphisms. The (2,∞)-functor above is also induced by the
composition of the inclusion ∞-Catµ ⊂ Fun(∆1,∞-Cat) and the evaluation
Fun(∆1,∞-Cat) → ∞-Cat at the object 1 ∈ ∆1. The forgetful (2,∞)-
functor ∞-Catµ → ∞-CatLpr is easily seen to be conservative. Indeed, if

T ′
1

u //

f∗
��

T ′
2

g∗
��

T1 v
// T2,

is a right adjointable square in ∞-Cat and if v is an equivalence, then u is
automatically an equivalence. The adjointability property implies that the
unit and counit of the adjunction (u, u∗)

a : u ◦ u∗ ⇒ id b : id⇒ u∗ ◦ u
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are sent by f∗ and g∗ to the unit and counit of the adjunction (v, v∗). As v
is an equivalence, these are equivalences in T1 and T2, and as f∗ and g∗ are
conservative, a and b must be equivalences to.

We finish this first section by noticing that ∞-Catµ receives a natural
(2,∞)-functor from the (2,∞)-category of presentable symmetric monoidal
∞-categories. For this, we let ∞-Cat⊗pr be the (2,∞)-category of pre-
sentable symmetric monoidal ∞-categories, and colimit preserving symmet-
ric monoidal ∞-functors as morphisms. To each T ∈ ∞-Cat⊗pr we can
associate the ∞-category of commutative algebras in T , formally defined
as CAlg(T ) := Funlax−⊗(∗, T ), the ∞-category of symmetric lax-monoidal
∞-functors from the punctual ∞-category (with its canonical symmetric
monoidal structure) to T . Evaluation at the unique object ∗ provides a well-
defined right adjoint ∞-functor CAlg(T ) → T . This construction extends to
a (2,∞)-functor

∞-Cat⊗pr → ∞-Catµ; T 7→ (CAlg(T ) → T )

from symmetric monoidal ∞-categories to µ-categories. To see this, note
that each symmetric monoidal left adjoint ∞-functor u : T1 → T2 defines a
left adjoint in the (2,∞)-category of symmetric monoidal ∞-categories and
symmetric lax-monoidal ∞-functors (see [Lur22, Cor. 7.3.2.7]). Composition
with (u, u∗) then defines an adjunction between ∞-categories of commutative
algebras, which commutes with the forgetful functors; this implies that u
induces a natural transformation from CAlg(T1) → T1 to CAlg(T2) → T2
that is right adjointable.

In terms of monads, one can think of ∞-Cat⊗pr → ∞-Catµ as sending a
presentable symmetric monoidal ∞-category T to the pair (T,M), consisting
of the underlying ∞-category T endowed with the E∞-algebra monad

SymE∞(x) =
∐
n∈N

(x⊗n)hΣn .

1.2 Θ-Categories

Let C be the (2,∞)-category defined by the following lax-cartesian square

∞-Cat⊗pr
q //

$,

Fun(∆1,∞-CatRpr)
op

C //

OO

∞-Catµ.

p

OO
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In this diagram, the top right corner is the (2,∞)-category of all morphisms
in ∞-CatRpr, the (2,∞)-category of presentable ∞-categories and right ad-
joints. The top horizontal arrow q arises from the canonical construction
discussed at the end of the last section: it sends T ∈ ∞-Cat⊗pr to the pair
CAlg(T ) → T , and a symmetric monoidal ∞-functor u : T1 → T2 to its right
adjoint

CAlg(T2)
u∗ //

��

CAlg(T1)

��
T2 u∗

// T1.

The morphism p is the inclusion from Remark 1.4, sending a µ-category
(T ′ → T ) to T ′ → T , and a morphism (u, v) to its right adjoint square
(u∗, v∗).

Objects in C can be thought of as triples (T1, (T
′
2 → T2), u), where T1

is a presentable symmetric monoidal ∞-category, (T ′
2 → T2) is a µ-category

and u is a commutative diagram in ∞-CatRpr

T ′
2

//

��

CAlg(T1)

��
T2 // T1.

Definition 1.5. The (2,∞)-category of Θ-categories is the full sub-(2,∞)-
category of the (2,∞)-category C defined above consisting of the objects
(T1, (T

′
2 → T2), u) that satisfy the following conditions.

(1) The induced (right adjoint) ∞-functor T2 → T1 is an equivalence.

(2) The induced (right adjoint) ∞-functor T ′
2 → CAlg(T1) commutes with

arbitrary colimits.

This (2,∞)-category is denoted by ∞-CatΘpr.

In more intuitive terms, objects in ∞-CatΘpr are presentable symmet-
ric monoidal ∞-categories T together with a monad M on their underly-
ing ∞-category, as well as a morphism of sifted colimit preserving monads
SymE∞ → M satisfying condition (2) from Definition 1.5. Note that, be-
cause push-outs in CAlg(T ) are given by tensor products, this condition has
the following equivalent reformulations.

(2’) For x, y ∈ T , the natural maps of E∞-algebras 1M → M(∅) and
M(x)⊗M(y) →M(x⨿ y) are equivalences.
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(2”) The forgetful functor LModM (T ) → CAlg(T ) preserves push-outs, that
is, push-outs in LModM (T ) are compatible with tensor products in T .

The equivalence of these conditions with condition (2) from Definition 1.5
follows from the fact LModM (T ) → CAlg(T ) already preserves sifted colimits,
so that it preserves all colimits if and only if it preserves finite coproducts of
free algebras.

There is an obvious forgetful (2,∞)-functor

∞-CatΘpr → ∞-Cat⊗pr,

which forgets the monad M . Note that it is conservative, because its compo-
sition with the conservative ∞-functor ∞-Cat⊗pr → ∞-CatLpr forgetting the
monoidal structure is equivalent to the forgetful ∞-functor sending a triple
(T1, (T

′
2 → T2), u) to T2 ≃ T1.

On the other hand, any symmetric monoidal ∞-category T can be sent
to the object in ∞-CatΘpr defined by taking M = SymE∞ , or equivalently
to the triple (T, (CAlg(T ) → T ), id). By construction, it is a fully faithful
(2,∞)-functor and provides a full embedding of (2,∞)-categories

∞-Cat⊗pr −→ ∞-CatΘpr.

Remark 1.6. The (1,∞)-category underlying ∞-CatΘpr has small limits,
and the forgetful functor ∞-CatΘpr → ∞-Cat preserves these. Indeed, the
lax pull-back C has limits, computed at the level of the underlying ∞-
categories, because the functors q : ∞-Cat⊗pr → Fun(∆1,∞-CatRpr)

op and
p : ∞-Catµ → Fun(∆1,∞-CatRpr)

op both preserve limits. For q, this uses the
fact that (T,⊗) 7→ CAlg(T ) preserves limits by [Lur22, Prop 2.2.4.9]. Since
the conditions from Definition 1.2 are stable under limits, ∞-CatΘpr ⊂ C is
closed under limits.

Notation 1.7. A Θ-category will be denoted symbolically by TΘ, and its
underlying presentable symmetric monoidal ∞-category will be denoted by
T . The Θ-structure of TΘ is by definition the extra right adjoint T ′ ≃
LModM (T ) → CAlg(T ) → T participating in the data of a Θ-category. It
will be symbolically denoted by

Θ-CAlg(TΘ) := T ′ → CAlg(T )

and objects in Θ-CAlg(TΘ) will be called Θ-algebras.
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The ∞-category of Θ-algebras comes equipped with a natural adjunction
of presentable ∞-categories

FΘ
E∞ : CAlg(T ) ⇆ Θ-CAlg(TΘ) : UΘ

E∞ .

The right adjoint UΘ
E∞

is conservative and, more importantly, also a left ad-
joint, as it commutes with arbitrary colimits by assumption. In particular, it
preserves the initial object. The initial object in CAlg(T ) is the monoidal unit
1 ∈ T , which therefore possesses a canonical compatible Θ-algebra structure.
The corresponding object will still be denoted by 1 ∈ Θ-CAlg(TΘ).

We finish this part with a basic description of the ∞-categories of mor-
phisms in ∞-CatΘpr. Let TΘ

1 and TΘ
2 be two Θ-categories and T1 and T2

their underlying symmetric monoidal ∞-categories. Recall that ∞-CatΘpr is
defined as a full sub-(2,∞)-category of C, the lax-fiber product below

∞-Cat⊗pr
q //

$,

Fun(∆1,∞-CatRpr)
op

C //

OO

∞-Catµ.

p

OO

Consequently, the ∞-category Fun∞-CatΘpr
(TΘ

1 , T
Θ
2 ) of morphisms in ∞-CatΘpr

can be identified with a natural fiber product as well. More precisely, the
mapping ∞-category fits into a square of ∞-categories

Fun∞-CatΘpr
(TΘ

1 , T
Θ
2 ) //

��

FunR
(
Θ-CAlg(TΘ

2 ),Θ-CAlg(TΘ
1 )

)
��

Fun∞-Cat⊗pr
(T1, T2) // FunR

(
Θ-CAlg(TΘ

2 ),CAlg(T1)
)
.

Here the bottom functor sends a left adjoint symmetric monoidal functor
f∗ : T1 → T2 to the composite right adjoint

f∗ ◦ UΘ
E∞ : Θ-CAlg(TΘ

2 ) → CAlg(T2) → CAlg(T1).

The right functor sends a right adjoint u∗ : Θ-CAlg(TΘ
2 ) → Θ-CAlg(TΘ

1 ) to
the composite UΘ

E∞
◦ u∗.

Lemma 1.8. The above square exhibits Fun∞-CatΘpr
(TΘ

1 , T
Θ
2 ) as the full sub-

∞-category of the fiber product on those tuples of a morphism f∗ : T1 → T2
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in ∞-Cat⊗pr and a right adjoint u∗ : Θ-CAlg(TΘ
2 ) → Θ-CAlg(TΘ

1 ) such that
the commutative square in ∞-CatRpr

Θ-CAlg(T2)

UΘ
E∞
��

u∗ // Θ-CAlg(T1)

UΘ
E∞
��

CAlg(T2)
f∗

// CAlg(T1)

is left adjointable: the induced natural transformation f∗ ◦UΘ
E∞

⇒ UΘ
E∞

◦ u∗
is an equivalence.

Proof. Let us write UE∞ : CAlg(T ) → T and UΘ = UE∞ ◦ UΘ
E∞

for the
forgetful functors. Unravelling the definitions (using Remark 1.4), one sees
that Fun∞-CatΘpr

(TΘ
1 , T

Θ
2 ) is the full sub-∞-category of the fiber product on

the pairs (f∗, u∗) such that the natural transformation f∗ ◦UΘ ⇒ UΘ ◦u∗ is
an equivalence. This natural transformation is equivalent to the composition
f∗ ◦ UE∞ ◦ UΘ

E∞
⇒ UE∞ ◦ f∗ ◦ UΘ

E∞
⇒ UE∞ ◦ UΘ

E∞
◦ u∗. The result follows

because the first map is an equivalence and UE∞ is conservative.

Taking the fiber of Fun∞-CatΘpr
(TΘ

1 , T
Θ
2 ) → Fun∞-Cat⊗pr

(T1, T2) over a
fixed morphism f : T1 → T2 in ∞-Cat⊗pr, we obtain the following proposition.

Proposition 1.9. For two Θ-categories TΘ
1 and TΘ

2 , and f : T1 → T2 in
∞-Cat⊗pr a fixed symmetric monoidal ∞-functor, we have a cartesian square

FunR,adj
/CAlg(T1)

(Θ-CAlg(T2),Θ-CAlg(T1))

��

// Fun∞-CatΘpr
(TΘ

1 , T
Θ
2 )

��
{∗}

f
// Fun∞-Cat⊗pr

(T1, T2),

where

FunR,adj
/CAlg(T1)

(Θ-CAlg(T2),Θ-CAlg(T1)) ⊂ FunR/CAlg(T1)
(Θ-CAlg(T2),Θ-CAlg(T1))

is the full sub-simplicial set of right adjoint functors u∗ making the square
from Lemma 1.8 commute and left adjointable.

Remark 1.10. The ∞-category FunR/CAlg(T1)
(Θ-CAlg(T2),Θ-CAlg(T1)), and

hence the fiber of f , is automatically an ∞-groupoid because the forgetful
∞-functor Θ-CAlg(T1) → CAlg(T1) is conservative.
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1.3 Θ-Categories of modules

To conclude this part on Θ-categories, we will define a Θ-category of left
B-modules for a given Θ-algebra B ∈ Θ-CAlg(TΘ). To this end, we first
consider the underlying commutative algebra B0 := UΘ

E∞
(B) and the corre-

sponding symmetric monoidal ∞-category LModB0(T ) of left B0-modules in
T endowed with its natural symmetric monoidal structure ⊗B0 . It will be
denoted by B0-Mod(T ).

We define a Θ-structure on B0-Mod(T ) by considering the composition
of forgetful ∞-functors

B/Θ-CAlg(TΘ) −→ B0/CAlg(T ) ≃ CAlg(B0-Mod(T )) −→ B0-Mod(T ).

The above sequence of ∞-functors defines an new Θ-category whose under-
lying ∞-category is the ∞-category of B0-modules and whose ∞-category
of Θ-algebras is B/Θ-CAlg(TΘ), the ∞-category of Θ-algebras under B.

Definition 1.11. We will refer to the Θ-category constructed above

B/Θ-CAlg(TΘ) −→ CAlg(B0-Mod(T )) −→ B0-Mod(T )

as the Θ-category of B-modules in T , and denote it simply by B-Mod(TΘ).

The Θ-category of Θ-modules in TΘ receives a natural morphism from
TΘ by tensoring with B. This natural morphism TΘ → B-Mod(TΘ) can be
represented by the following commutative diagram of ∞-categories

Θ-CAlg(TΘ) //

∐
B

��

CAlg(T )

⊗B0

��

// T

⊗B0

��
B/Θ-CAlg(TΘ) // B0/CAlg(T ) // B0-Mod(T ).

Here the rows are right adjoints whereas the vertical morphisms are left
adjoints, whose right adjoints (forgetting the maps from B or B0) commute
with the horizontal functors.

We can now state the following proposition, which is an extension to the
context of Θ-categories of the results [Lur22, Cor. 4.8.5.21] on symmetric
monoidal ∞-categories and commutative algebras.

Proposition 1.12. Let TΘ be a Θ-category. The ∞-functor sending a Θ-
algebra B ∈ Θ-CAlg(TΘ) to TΘ → B-Mod(TΘ) induces a fully faithful left
adjoint ∞-functor

Θ-CAlg(TΘ) −→ TΘ/∞-CatΘpr.
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Proof. Unwinding the definitions, this is a consequence of the following two
statements.

(1) The ∞-functor sending a commutative algebra B0 ∈ CAlg(T ) to T →
B0-Mod(T ) induces a fully faithful left adjoint functor of (2,∞)-categories

CAlg(T ) −→ T/∞-Cat⊗pr.

(2) For any presentable ∞-category C, the ∞-functor

C → (∞-CatRpr/C)
op

sending x ∈ C to the comma ∞-category x/C with the projection
x/C → C, and a morphism u : y → x to the composition x/C → y/C
with u, defines a full embedding.

Note that the ∞-category of maps B-Mod(T ) → T ′ in T/∞-Cat⊗pr is
in fact a space: any natural transformation µ : f ⇒ g between morphisms
f, g : B-Mod(T ) → T ′ in T/∞-Cat⊗pr is an equivalence. Indeed, the class B-
modules M such that µM is an equivalence is closed under colimits and con-
tains the free B-modules. In light of this, statement (1) is proven in [Lur22,
Thm. 4.8.5.11, Cor. 4.8.5.21], whereas statement (2) is simply a version of
the Yoneda lemma.

Let B ∈ Θ-CAlg(TΘ) be a Θ-algebra in TΘ and g : TΘ → TΘ
2 a Θ-functor.

Let g∗(1) ∈ Θ-CAlg(TΘ) be the image of 1 ∈ Θ-CAlg(TΘ
2 ) under the right

adjoint g∗. We then have the following commutative square of mapping
spaces (rather than ∞-categories, by Remark 1.10)

MapTΘ/∞-CatΘpr
(B-Mod(TΘ), TΘ

2 ) //

��

MapΘ-CAlg(TΘ)(B, g∗(1))

��
MapT/∞-Cat⊗pr

(B0-Mod(T ), T2) //MapCAlg(T )(B0, g∗(1)).

Here the top horizontal map sends a Θ-functor f : B-Mod(TΘ) → TΘ
2 to the

unit map B → f∗(1) in Θ-CAlg(B-Mod(TΘ)). This corresponds to a map
B → g∗(1) in Θ-CAlg(TΘ) under the equivalence

Θ-CAlg(B-Mod(TΘ)) ≃ B/Θ-CAlg(TΘ).

The bottom horizontal map is defined similarly.
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It now suffices to verify that the top horizontal map is an equivalence.
Indeed, this shows that the functor B 7→ B-Mod(TΘ) is a left adjoint. Taking
TΘ
2 = B2-Mod(TΘ), so that g∗(1) = B2, shows that it is fully faithful.

By property (1) above, the bottom horizontal map is an equivalence.
Let us therefore fix a symmetric monoidal ∞-functor f : B-Mod(T ) → T2
under T , and compare the induced map between the fibers of the two ver-
tical maps. By Proposition 1.9, there is a canonical equivalence between
MapTΘ/∞-CatΘpr

(B-Mod(TΘ), TΘ
2 )f and the space of all possible limit pre-

serving ∞-functors u filling up the diagram below in ∞-CatRpr

Θ-CAlg(TΘ
2 )

u

&&

g∗
��

// CAlg(T2)

f∗
##

g∗

��
Θ-CAlg(TΘ) // CAlg(T )

B/Θ-CAlg(TΘ) //

OO

B0/CAlg(T )

OO

such that f∗ ◦ UΘ
E∞

⇒ UΘ
E∞

◦ u∗ is an equivalence.
Note that there is an equivalence of ∞-categories

Θ-CAlg(TΘ
2 )×Θ-CAlg(TΘ) B/Θ-CAlg(TΘ) ≃ g(B)/Θ-CAlg(TΘ

2 )

since g : Θ-CAlg(TΘ) → Θ-CAlg(TΘ
2 ) is left adjoint to g∗, and similarly for

commutative algebras. Property (2) recalled at the start of the proof there-
fore identifies the space of u filling the diagram with the fiber at f of the
natural morphism

MapΘ-CAlg(TΘ
2 )(g(B),1) → MapCAlg(T2)(g(B0),1).

By adjunction, this is equivalent to the fiber at f of the natural morphism

MapΘ-CAlg(TΘ)(B, g∗(1)) → MapCAlg(T )(B0, g∗(1)).

The result now follows by noting that for each map of Θ-algebras B → g∗(1),
the natural transformation g∗(1) ⊗B0 U

Θ
E∞

(−) ⇒ UΘ
E∞

(g∗(1) ⨿B −) is an
equivalence since UΘ

E∞
preserves colimits.

Proposition 1.12 can be usefully combined with the following recognition
result. For this, we note that a Θ-functor f : TΘ

1 → TΘ
2 always induces an

adjunction on the level of the corresponding ∞-categories of Θ-algebras

f : Θ-CAlg(TΘ
1 ) ⇆ Θ-CAlg(TΘ

2 ) : f∗

13



where f and f∗ commute with the forgetful ∞-functors to T1 and T2. For
any B ∈ Θ-CAlg(TΘ

1 ), this yields a well-defined Θ-functor at the level of
modules

f : B-Mod(TΘ
1 ) → f(B)-Mod(TΘ

2 ).

Applying this to B = f∗(1), and composing with the base change along the
counit f(f∗(1)) → 1, we obtain a natural Θ-functor f∗(1)-Mod(TΘ

1 ) → TΘ
2

whose underlying adjunction of ∞-categories takes the form

1⊗f(f∗(1)) f(−) : f∗(1)-Mod(T1) ⇆ T2 : f∗.

Proposition 1.13. Let TΘ
1 → TΘ

2 be a Θ-functor and f : T1 → T2 the
underlying symmetric monoidal ∞-functor. We assume that the right adjoint
f∗ : T2 → T1 of f satisfies the following conditions.

(1) The ∞-functor f∗ is conservative and preserves geometric realizations.

(2) For y ∈ T2 and x ∈ T1, the natural morphism

x⊗ f∗(y) → f∗(f(x)⊗ y)

is an equivalence in T1.

Then the natural Θ-functor

f∗(1)-Mod(TΘ
1 ) −→ TΘ

2

is an equivalence of Θ-categories.

Proof. The underlying symmetric monoidal ∞-functor f∗(1)-Mod(T1) → T2
is an equivalence by the second part of [Lur22, Cor. 4.8.5.21]. As forget-
ting the Θ-structure ∞-CatΘpr → ∞-Cat⊗pr is conservative, this implies the
proposition.

2 Tannaka duality

In this section, we fix a commutative ground ring k. We denote by Stk the
∞-category of stacks on the big site of affine k-schemes endowed with the
fpqc topology.

14



2.1 Θ-Categories of quasi-coherent and ind-perfect sheaves

For a commutative k-algebra A, we consider QCoh(SpecA), also denoted by
QCoh(A), the symmetric monoidal ∞-category of complexes of A-modules.
When A varies in commutative k-algebras this defines an fpqc-stack in pre-
sentable symmetric monoidal ∞-categories

QCoh : Affop
k −→ ∞-Cat⊗pr.

We will need a slight modification of the stack QCoh, which involves ind-
perfect complexes. For any small stack F , the dualizable objects in the
symmetric monoidal ∞-category QCoh(F ) are the perfect complexes, whose
∞-category will be denoted Perf(F ). It comes equipped with the restriction
of the symmetric monoidal structure of QCoh(F ), and as such forms a small,
stable symmetric monoidal ∞-category.

Definition 2.1. The presentable symmetric monoidal ∞-category of ind-
perfect complexes on F is the ind-completion of Perf(F ). It is denoted by

P̂erf(F ) := Ind(Perf(F )).

For any small stack F ∈ Stk we have a natural adjunction of presentable
symmetric monoidal ∞-categories

P̂erf(F ) ⇆ QCoh(F ),

where the left adjoint is the canonical extension by filtered colimits of the
inclusion Perf(F ) ⊂ QCoh(F ). When X = SpecA is an affine k-scheme,
or more generally a quasi-compact and quasi-separated k-scheme, then the
perfect complexes are compact generators of QCoh(X), and thus the above
adjunction is an equivalence. However, we warn the reader that for a gen-
eral stack, even representable by a nice Artin stack, perfect complexes might
not even be compact objects in quasi-coherent complexes. In general, the
natural ∞-functor P̂erf(F ) → QCoh(F ) is therefore neither fully faithful nor
essentially surjective.

We want to enhance the two ∞-functors F 7→ P̂erf(F ) and F 7→ QCoh(F )
from small stacks to ∞-Cat⊗pr, to ∞-functors to ∞-CatΘpr. This is straight-
forward for quasi-coherent complexes (see Remark 2.3 below), but more in-
volved for ind-perfect complexes because the (L)Sym-monad does not pre-
serve perfect complexes. We will therefore construct explicit models for
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these symmetric monoidal ∞-categories with strict representatives of the in-
volved monads. A more intrinsic approach should follow from the techniques
of [Rak20, §4.2].

We let X∗ : I → Affk be a small diagram of affine k-schemes over F such
that the canonical morphism colimi∈IXi → F is an equivalence. Dually, this
yields a diagram of (discrete) commutative k-algebras A∗ : I

op → k-CAlg♡.
This diagram can be seen as a commutative algebra object in the ((1, 1)-)
category of presheaves of abelian groups Fun(Iop,Ab), so that we can consider
the abelian category A∗-Mod of presheaves of A∗-modules. Recall that an
object M in A∗-Mod consists of Ai-modules Mi for all i ∈ I, and morphisms
u∗ : Aj⊗AiMi →Mj of Aj-modules for all u : j → i in I, satisfying the usual
compatibilities with compositions and identity in I. The abelian category
A∗-Mod possesses enough projective objects: these are the direct sums of free
A∗-modules F (i) on objects i ∈ I, characterized by the functorial bijection
Hom(F (i),M) ≃Mi. They can also be written more explicitly as F (i)(j) =⊕

j→iAj for j ∈ I.
We let scA∗-Mod be the category of simplicial-cosimplicial objects in the

abelian category A∗-Mod. As explained in [BCN21] the category scA∗-Mod
is endowed with a model category structure whose weak equivalences are
induced by the totalization functor to presheaves of cochain complexes of
abelian groups

Tot⊕ : scA∗-Mod −→ Fun(Iop, C(Z)).

The fibrations are the levelwise fibrations of simplicial-cosimplicial abelian
groups of [BCN21, Defn. 5.2]. A set of generating cofibrations is given by the
family of morphisms F (i)⊗ZE → F (i)⊗ZE

′ where i varies in I and E → E′

is a generating cofibration of the model category of simplicial-cosimplicial
abelian groups (see proof of [BCN21, Thm. 5.5]). We note in particular that
the evaluation functor at i ∈ I, scA∗-Mod → scAi-Mod preserves cofibrations
and trivial cofibrations.

Let L(scA∗-Mod) be the ∞-category obtained from scA∗-Mod by invert-
ing the weak equivalences. The ∞-category L(scA∗-Mod) is presentable and
closed symmetric monoidal, and is equivalent to the lax limit of the diagram
i 7→ QCoh(Ai) (see e.g. [Har19]). The limit of this diagram, QCoh(F ), sits
as a full symmetric monoidal sub-∞-category in L(scA∗-Mod): it consists
precisely of objects M such that for any morphism j → i in I the induced
morphism

Aj ⊗L
Ai
Mi →Mj

is an equivalence of simplicial-cosimplicial modules (i.e. a quasi-isomorphism
on the corresponding Tot⊕).
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Let us now consider the category scA∗-CAlg of strictly commutative
simplicial-cosimplicial A∗-algebras, together with its natural forgetful func-
tor scA∗-CAlg → scA∗-Mod. We can lift the (semi-)model category structure
along this forgetful functor, which now becomes a right Quillen functor pre-
serving all weak equivalences. It induces a right adjoint ∞-functor between
presentable ∞-categories

L(scA∗-CAlg) → L(scA∗-Mod).

Similarly, if O is a cofibrant model for the simplicial E∞-operad we can con-
sider O-algebras inside scA∗-Mod, together with its natural (semi-)model
category structure lifted from the forgetful functor scA∗-AlgO → scA∗-Mod.
The canonical projection O → ∗ to the terminal operad provides a factor-
ization of (right Quillen) forgetful functors

scA∗-CAlg → scA∗-AlgO → scA∗-Mod.

Lemma 2.2. Upon inverting weak equivalences, the above sequence of right
Quillen functors induces a sequence of right adjoints between presentable ∞-
categories

L(scA∗-CAlg) → L(scA∗-AlgO) ≃ CAlg(L(scA∗-Mod)) → L(scA∗-Mod).

that endows the presentable symmetric monoidal ∞-category L(scA∗-Mod)
with the structure of a Θ-category.

Proof. On localizations, we obtain a sequence of conservative right adjoints
that furthermore preserve geometric realizations, since these can be com-
puted by the diagonal in the simplicial direction. In particular, L(scA∗-CAlg)
and L(scA∗-AlgO) can be identified with ∞-categories of modules for two
monads on L(scA∗-Mod). In the second case, this is the E∞-monad and
we obtain the middle equivalence. Both monads preserve sifted colimits by
(the proof of) [BCN21, Prop. 5.17], so that the forgetful ∞-functors pre-
serve sifted colimits as well. Finally, the forgetful functor L(scA∗-CAlg) →
L(scA∗-AlgO) ≃ CAlg(L(scA∗-Mod)) also preserves coproducts, which are
computed by (derived) tensor products.

Finally, we define a Θ-structure on QCoh(F ) simply by pull-back along
the inclusion QCoh(F ) ⊂ L(scA∗-Mod)

L(scA∗-CAlg) // CAlg(L(scA∗-Mod)) // L(scA∗-Mod)

Θ-CAlg(QCoh(F )) //

OO

CAlg(QCoh(F )) //

OO

QCoh(F ),

OO
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where each square above is cartesian. Using Lemma 2.2 and the fact that
QCoh(F ) ⊂ L(scA∗-Mod) is closed under colimits, one sees that this indeed
defines a Θ-structure. We will write QCohLSym(F ) for this Θ-structure and
refer to it as the LSym Θ-structure. We leave it to the reader to construct
functorialities in F to provide a well defined ∞-functor F 7→ QCohLSym(F )
from small stacks to Θ-categories.

Remark 2.3. One can also give a more intrinsic description of QCohLSym(F ),
as follows. Let LSym-CAlg(k) denote the ∞-category of LSym-algebras
over k, that is, algebras for the LSym-monad on QCoh(k) induced by the
symmetric algebra monad on flat k-modules by right-left extension (see
[BCN21, Rak20]). This comes with a forgetful functor LSym-CAlg(k) →
k-CAlg to E∞-algebras over Z that preserves limits and colimits (sifted col-
imits and tensor products).

For each discrete k-algebra A, we then have a natural sequence of right
adjoint forgetful functors

A/LSym-CAlg(k) → A/k-CAlg → A-Mod(QCoh(k)) ≃ QCoh(A)

depending functorially on A. Since the first functor preserves colimits and
A/k-CAlg ≃ CAlg(QCoh(A)) by [Lur22, Cor. 3.4.1.7], this determines a Θ-
structure on QCoh(A), equivalent to the LSym Θ-structure considered above.
Using this, we obtain a functor QCohLSym : Affop

k → ∞-CatΘpr satisfying fpqc
descent (since QCoh does). For each cardinal κ, we then define

QCohLSym : Stκ−small,op
k → ∞-CatΘpr

to be the unique extension preserving κ-small limits (using Remark 1.6).

We now turn to the case of ind-perfect complexes. For the Θ-structure on
P̂erf(F ), we will need a slight modification of the previous construction. For
this, we let P ⊂ scA∗-Mod be the full sub-category of objects M satisfying
the following conditions.

(1) The object M is cofibrant.

(2) For any i ∈ I, Tot⊕(Mi) defines a compact object in QCoh(Ai) and
moreover for any i→ j the induced morphism Aj ⊗Ai Mi →Mj is an
equivalence of simplicial-cosimplicial Aj-modules.

The localization of P along its weak equivalences is equivalent, via the
canonical inclusion, to Perf(F ) ⊂ QCoh(F ) ⊂ L(scA∗-Mod).
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For any integer n ≥ 0 we have an endofunctor Θn : P → P sending M
to its genuine n-th symmetric power (M⊗n)Σn . This defines an N-graded
object in the category Fun(P,P), that is, a functor

Θ∗ : N → Fun(P,P),

where N is the discrete category of natural numbers. The functor Θ∗ is
moreover an N-graded monad, or equivalently, Θ∗ : N → Fun(P,P) admits a
natural structure of a lax monoidal functor, where the monoidal structure
on N is given by the multiplication and the monoidal structure on Fun(P,P)
is the composition of endo-functors. The lax monoidal structure is given by
the natural morphisms

Θm(Θn(M∗)) = ((M⊗n
∗ )Σn)

⊗m
Σm

≃ (M⊗nm
∗ )Σn⋉Σ×n

m
−→ (M⊗nm

∗ )Σnm

induced by the canonical map Σn⋉Σ×n
m → Σnm. The graded monad Θ∗ will

be denoted by LSym∗.
Similarly, any cofibrant simplicial operad O such that O(k)hΣk

has the
homotopy type of a finite CW complex gives rise to an N-graded monad

Sym∗
O : N → Fun(P,P)

by sending n to (O(n) ⊗ (−)⊗n)hΣn . The finiteness condition on O implies
that each endofunctor (O(n)⊗ (−)⊗n)hΣn preserves the sub-category P. The
lax monoidal structure on Sym∗

O is the usual one and endows Sym∗
O with

the structure of a graded monad over P. Moreover, the canonical projection
O → ∗ to the terminal simplicial operad (which is not cofibrant anymore),
produces a canonical morphism of graded monads

Sym∗
O → LSym∗.

We now apply this to cofibrant models for the En-operads, and obtain a
sequence of morphisms of graded monads on P

Id = Sym∗
E0

→ · · · → Sym∗
En

→ Sym∗
En+1

→ · · · → LSym∗. (S)

These monads preserve the weak equivalences on P, so that they induce a
sequence of morphisms of graded monads on the localization Perf(F ). We
thus obtain a sequence (S) in the ∞-category of lax monoidal ∞-functors

N → Fun(Perf(F ),Perf(F )),
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from the multiplicative monoid N to the monoidal ∞-category of endo-∞-
functors of Perf(F ). Now recall that there is a canonical full monoidal embed-
ding Fun(Perf(F ),Perf(F )) ↪→ Fun(P̂erf(F ), P̂erf(F )), whose essential image
consists of filtered colimit preserving ∞-functors that also preserve compact
objects. We can therefore identify the sequence (S) with a sequence in the
∞-category of graded monads on P̂erf(F ). Taking the sum over N, we get a
sequence of monoids in Fun(P̂erf(F ), P̂erf(F ))

Id→ · · · → SymEn
→ SymEn+1

→ · · · → LSym

whose colimit provides the desired morphism of monads on P̂erf(F )

Sym = colimnSymEn
→ LSym.

Note that Sym is identified with the E∞-monad, and therefore the ∞-
categories of algebras and their forgetful ∞-functors

LModLSym(P̂erf(F )) → LModSym(P̂erf(F )) → P̂erf(F )

defines a Θ-structure on P̂erf(F ).
We have thus constructed a Θ-category, denoted by P̂erfLSym(F ), with

underlying symmetric monoidal ∞-category equivalent to P̂erf(F ). We leave
it to the reader that this can be made functorial in F and provides a well
defined ∞-functor

P̂erfLSym(−) : Stsmall
k → ∞-CatΘpr

from small stacks to Θ-categories. The canonical functor P̂erf(F ) → QCoh(F )
can be lifted to a morphism of Θ-categories

P̂erfLSym(F ) → QCohLSym(F ).

Note that this comparison map is an equivalence whenever the stack F ≃
Spec A is affine.

Definition 2.4. Let F be a small stack over k. We define the LSym Θ-
categories of quasi-coherent and ind-perfect complexes on F to be the Θ-
categories QCohLSym(F ) and P̂erfLSym(F ) constructed above.

For each stack F ∈ Stk, the Θ-categories QCohLSym(F ) and P̂erfLSym(F )

are equipped with a natural map from P̂erfLSym(k) ≃ QCohLSym(k). They
thus acquire a natural k-linear structure in the following sense.
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Definition 2.5. We define a k-linear Θ-category to be a map of Θ-categories
P̂erfLSym(k) ≃ QCohLSym(k) → TΘ. We will write

k/∞-CatΘpr := P̂erfLSym(k)/∞-CatΘpr

for the (2,∞)-category of k-linear Θ-categories.

Lemma 2.6. The underlying ∞-category T of a k-linear Θ-category TΘ is
a stable presentable ∞-category.

Proof. The underlying symmetric monoidal ∞-functor u : QCoh(k) → T in-
duces a natural tensored structure of T over QCoh(k) by the simple formula
E⊗x := u(E)⊗x, for E ∈ QCoh(k). As QCoh(k) is stable, this automatically
implies the stability of T .

2.2 Tannakian Θ-categories and Tannakian gerbes

For the sake of simplicity we will only deal with the neutral case in the
present work.

Definition 2.7. A neutralized k-linear Tannakian Θ-category is a map of
k-linear Θ-categories

ω : TΘ −→ P̂erfLSym(k) ≃ QCohLSym(k)

satisfying the following conditions.

(T1) The underlying presentable symmetric monoidal ∞-category T is "rigid":
it is compactly generated and compact objects in T coincide with du-
alizable objects.

(T2) The underlying ∞-functor ω : T → P̂erf(k) ≃ QCoh(k) is conservative.

(T3) Let QCoh(k)≤0 ⊂ QCoh(k) denote the full sub-∞-category of connec-
tive objects. The full sub-∞-category ω−1(QCoh(k)≤0) ⊂ T then de-
fines the connective part of a bounded (on compact objects) t-structure
on T for which ω becomes t-exact.

Let us write k/∞-CatΘpr/k :=
(
k/∞-CatΘpr

)/
QCohLSym(k) for the (2,∞)-

category of k-linear Θ-categories over QCohLSym(k) and

k-T anΘ∗ ⊆ k/∞-CatΘpr/k

for the full sub-(2,∞)-category on the neutralized k-linear Tannakian Θ-
categories. Here the "∗" refers to the neutralized assumption. As ω is
conservative, the (2,∞)-category k-T anΘ∗ is in fact a (1,∞)-category.
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Definition 2.8. A pointed (or neutralized) Tannakian gerbe over k is a
pointed stack F ∈ ∗/Stk satisfying the following conditions.

(G1) The natural morphism of fpqc-sheaves ∗ → π0(F ) is an isomorphism.

(G2) The stack F is pointed Q-local : for any morphism of pointed and con-
nected stacks u : G1 → G2 whose induced ∞-functor u∗ : QCoh(G2) →
QCoh(G1) is an equivalence, the induced morphism in mapping spaces

u∗ : MapStk
(G2, F ) → MapStk

(G1, F )

is an equivalence.

(G3) There exists a coconnective k-linear LSym-algebra B and an equiva-
lence

SpecB ≃ Ω∗F

(see [Toe06] for the notion of spectrum of coconnective LSym-algebras
and the theory of affine stacks). Moreover, B is of positive Tor-
dimension (also called connectively flat): if E is a coconnective object
in QCoh(k), then E ⊗k B remains coconnective.

(G4) The k-linear Θ-functor ω : P̂erfLSym(F ) → P̂erfLSym(k), obtained by
pull-back along the base point ∗ → F , makes P̂erfLSym(F ) into a Tan-
nakian Θ-category.

We will write k-Gerb∗ ⊂ ∗/Stk for the full sub-∞-category on the pointed
Tannakian gerbes over k.

Let TΘ be a k-linear Θ-category. For a commutative k-algebra A, we set

FibLSym(TΘ)(A) := Mapk/∞-CatΘpr
(T,QCohLSym(A)).

Since QCohLSym defines an fpqc-stack of k-linear Θ-categories, varying A in-
side the category of commutative k-algebras yields an fpqc-stack FibLSym(TΘ),
called the stack of Θ-fiber functors on TΘ. This is part of an adjunction

FibLSym : k/∞-CatΘpr
//
Stopk : QCohLSym.oo

Indeed, since QCohLSym satisfies fpqc descent, there is a natural equivalence
for F ∈ Stk and TΘ ∈ k/∞-CatΘpr

Mapk/∞-CatΘpr
(TΘ,QCohLSym(F )) ≃ MapStk

(F,FibLSym(TΘ)).
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In particular, we have adjunction morphisms

βTΘ : TΘ → QCohLSym
(
FibLSym(TΘ)

)
F → FibLSym

(
QCohLSym(F )

)
.

The second morphism, composed with the canonical morphism P̂erfLSym(F ) →
QCohLSym(F ), induces a morphism

αF : F → FibLSym
(
P̂erfLSym(F )

)
.

This extends naturally to the neutralized, or pointed, situation as follows.
Let us write FibLSym∗ (TΘ) ⊂ FibLSym(TΘ) for the full sub-stack consisting of
all fiber functors locally equivalent to ω : TΘ → QCohLSym(k). This full
sub-stack can also be written

FibLSym∗ (TΘ) ≃ BautΘ(ω) ⊂ FibLSym(TΘ)

where autΘ(ω) is the stack of Θ-auto-equivalences of ω. The stack FibLSym∗ (TΘ)
is connected (by definition) and canonically pointed at ω. Note that any Θ-
endomorphism of ω is also a self-equivalence, as a consequence of the rigidity
condition (T1).

Similarly, if x : ∗ → F is a pointed connected stack, we can identify
QCohLSym(F ) with an object in k/∞-CatΘpr/k using its canonical fiber func-
tor at the basepoint x∗ : QCohLSym(F ) → QCohLSym(k). This yields a similar
adjunction

FibLSym∗ : k/∞-CatΘpr/k
//
(∗/Stcnk )op : QCohLSymoo

where ∗/Stcnk denotes the ∞-category of pointed connected stacks. Using
the unit and counit of this adjunction, together with natural morphism
P̂erfLSym → QCohLSym(F ), we obtain two canonical morphisms

βTΘ : TΘ → QCohLSym(FibLSym∗ (TΘ)) αF : F → FibLSym∗ (P̂erfLSym(F ))

The Tannakian duality investigated in the next chapter ensures that β
and α are somehow equivalences when TΘ is Tannakian and F is a Tannakian
gerbe. We will only have partial answers, but we refer to Remarks 2.13 and
2.15 for some indications of how better results can be obtained.

2.3 The Tannakian duality theorem

We start by investigating the morphism β.
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Theorem 2.9. Let TΘ be a neutralized Tannakian Θ-category over k. Then
the following hold.

(1) The unit morphism of Θ-categories βTΘ : TΘ → QCohLSym(FibLSym∗ (TΘ))
induces an equivalence of symmetric monoidal ∞-categories

T ≃ P̂erf(FibLSym∗ (TΘ)).

(2) The stack FibLSym∗ (TΘ) is a pointed Tannakian gerbe.

The proof of Theorem 2.9 relies on the following property of the fiber
functor of a neutralized Tannakian Θ-category.

Lemma 2.10. Let TΘ be a neutralized Tannakian Θ-category over k. Then
there is an equivalence of Θ-categories under TΘ

TΘ

ω

zz

ω∗(1)⊗−

&&
QCoh(k)

ω∗
∼

// ω∗(1)-Mod(TΘ).

Proof. It suffices to verify that ω : TΘ → QCohLSym(k) satisfies the condi-
tions of Proposition 1.13. As dualizable objects are preserved by symmetric
monoidal ∞-functors, ω preserves compact objects by condition (T1). Since
T is stable by Lemma 2.2, this implies that its right adjoint ω∗ : QCoh(k) → T
preserves colimits, so in particular geometric realizations. Condition (2) of
Proposition 1.13 is obvious when x is a dualizable object, because we have
for any z ∈ T

MapT (z, x⊗ ω∗(y)) ≃ MapT (z ⊗ x∨, ω∗(y)) ≃ MapT (ω(z)⊗ ω(x)∨, y)

≃ MapT (ω(z), ω(x)⊗ y) ≃ MapT (z, ω∗(ω(x)⊗ y)).

The general case follows by writing x as a colimit of compact and thus
dualizable objects.

Proof of Theorem 2.9. Let us start by describing the stack FibLSym∗ (T θ) ≃
BautΘ(ω) in more detail. Let us write

B := ω∗(1) ∈ Θ-CAlg(TΘ)

and let B∗ : ∆op
+ → Θ-CAlg(TΘ) be the augmented cosimplicial diagram

given by the co-nerve of the map 1 → B (so B−1 = 1 and B0 = B). We
obtain an augmented cosimplicial diagram of Θ-categories

B∗-Mod(TΘ) ∈ TΘ/∞-CatΘpr

24



By Proposition 1.12, the co-Segal maps exhibit each Bn-Mod(TΘ) as the
(n + 1)-fold coproduct of B-Mod(TΘ) in TΘ/∞-CatΘpr. It follows that the
simplicial diagram of stacks of Θ-fiber functors

G∗ := FibLSym(B∗-Mod(TΘ))

is equivalent to the nerve of the map FibLSym(B-Mod(TΘ)) → FibLSym(TΘ).
By Lemma 2.10, this is equivalent to the nerve of the basepoint x : ∗ →
FibLSym(TΘ) corresponding to ω. Consequently, we obtain an equivalence of
group stacks

autΘ(ω) ≃ FibLSym
(
B⊗2-Mod(TΘ)

)
=: G

where the group structure on G is encoded by the simplicial diagram G∗ (in
particular, Gn ≃ G×n via the Segal maps). The stack G can be identified
more explicitly as follows.

Lemma 2.11. Let TΘ be a neutralized Tannakian Θ-category over k. Then
the stack of Θ-self-automorphisms of its fiber functor ω is an affine stack,
given by

autΘ(ω) ≃ Specω(B).

In addition, the LSym-algebra ω(B) has positive tor-dimension.

Proof of Lemma 2.11. Let ω∗(1) ⊗ B → ω∗(ω(B)) be the natural map of
LSym-algebras adjoint to the map ω(ω∗(1)) ⊗ ω(B) → 1 ⊗ ω(B). This is
an equivalence by the projection formula. Lemma 2.10 therefore gives an
equivalence

B⊗2-Mod(TΘ) ≃ ω(B)-Mod(QCoh(k)).

We now note that the stack of Θ-fiber functors of ω(B)-Mod(QCoh(k)) is
equivalent to Specω(B) by Proposition 1.12.

To see that ω(B) has positive tor-dimension, let E be a coconnective
complex of k-modules. Then the projection formula shows that

E ⊗ ω(B) ≃ ω(ω∗(E))

remains coconnective, since ω is t-exact and ω∗ is (hence) left t-exact.

All in all, we see that FibLSym∗ (TΘ) ≃ BG where G = Specω(B) is the
group stack whose group structure is encoded by the simplicial diagram G∗.
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Let us now prove (1). The unit map fits into a natural transformation of
augmented cosimplicial Θ-categories

TΘ //

β
TΘ

��

B-Mod(TΘ)
//
//

β0

��

B⊗2-Mod(TΘ) //
//
//

β1

��

. . .

QCohLSym(BG) // QCohLSym(k)
//
// QCoh

LSym(G) //
//
// . . .

The bottom row is a limit diagram by definition. For the top row, note that
B has positive tor-dimension because (by Lemma 2.11) ω(B) has positive
tor-dimension and ω is t-exact and conservative. In addition, B ⊗ − : T →
B-Mod(T ) is conservative, since it is equivalent to ω by Lemma 2.10. An ab-
stract version of flat descent, for which we refer to Proposition A.1, therefore
shows that the top row restricts to an equivalence on eventually coconnective
objects

T>−∞ ≃ lim
n∈∆

(
B∗-Mod(T>−∞)

)
.

Since dualizable objects in T are bounded for the t-structure, we therefore
obtain a diagram of symmetric monoidal ∞-categories of dualizable objects

T rig //

β
TΘ

��

B-Mod(T )rig
//
//

β0

��

B⊗2-Mod(T )rig //
//
//

β1

��

. . .

Perf(BG) // Perf(k)
//
// Perf(G) //

//
// . . .

in which both the top and bottom row are limit diagrams.
For each n ≥ 0, the functor βn : B⊗1+n-Mod(T ) −→ QCoh(G×n) can be

identified as follows. By the same projection formula argument as in the
proof of Lemma 2.11, there is a symmetric monoidal equivalence

B⊗1+n-Mod(T ) ≃ ω(B)⊗n-Mod.

By construction, this equivalence identifies βn with the canonical symmetric
monoidal left adjoint ∞-functor

O ⊗ω(B)⊗n − : ω(B)⊗n-Mod −→ QCoh(G×n) ≃ QCoh(Specω(B)⊗n)

coming from the canonical equivalence, as an E∞-algebra, between ω(B)⊗n

and the endomorphisms of the unit O ∈ QCoh(Specω(B)⊗n). Using that
the right adjoint to the above functor takes global sections, one readily sees
that the restriction to dualizable objects ω(B)⊗n-Modrig → Perf(G×n) is
fully faithful.
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We conclude that each βn : B⊗n-Mod(T )rig → QCoh(G×n) is fully faith-
ful. In addition, β0 is evidently an equivalence. It follows that the induced
functor on limits

βTΘ : T rig ≃−→ Perf(BG)

is an equivalence as well. Since T is rigid by (T1), it then follows that βTΘ

induces a symmetric monoidal ∞-categories T ≃ P̂erf(BG), proving (1).
We now turn to point (2). Condition (G1) for being a Tannakian gerbe is

satisfied because FibLSym∗ (TΘ) is pointed and connected by definition. Con-
dition (G3) holds by Lemma 2.11 and condition (G4) holds by point (1).
It remains to prove that (G2) is also satisfied. For any other stack G, the
inclusion FibLSym∗ (TΘ) ⊂ FibLSym(TΘ) induces a full embedding on mapping
spaces

MapStk
(G,FibLSym∗ (TΘ)) ⊂ MapStk

(G,FibLSym(TΘ)).

If G is furthermore pointed and connected this inclusion fits into a cartesian
square

MapStk
(G,FibLSym∗ (TΘ)) //

��

MapStk
(G,FibLSym(TΘ))

��
BautΘ(ω)(k) // FibLSym(TΘ)(k),

where bottom horizontal morphism is the inclusion of the connected compo-
nent containing the global point ω ∈ FibLSym(TΘ)(k). By the definition of
the stack FibLSym(TΘ), the mapping space on the top right corner identifies
canonically

MapStk
(G,FibLSym(TΘ)) ≃ Mapk/∞-CatΘpr

(TΘ,QCohLSym(G)).

As a result, we see that if f : G1 → G2 is a morphism between pointed and
connected stacks, such that f∗ : QCoh(G2) → QCoh(G1) is an equivalence,
then the induced morphism on mapping spaces

f∗ : MapStk
(G2,Fib

LSym
∗ (TΘ)) −→ MapStk

(G1,Fib
LSym
∗ (TΘ))

is an equivalence as required, showing that FibLSym∗ (TΘ) is always pointed
Q-local.

The following corollary gathers the important conclusion of the Theo-
rem 2.9, which states the existence of Tannakian duals for Tannakian Θ-
categories.
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Corollary 2.12. Let TΘ be a neutralized Tannakian Θ-category over k.
Then there exists an affine group stack G = SpecC, with C a k-linear
LSym-algebra of positive tor-dimension, and an equivalence of symmetric
monoidal ∞-categories

β : T ≃ P̂erf(BG).

Remark 2.13. The reader will notice that in the proof of Theorem 2.9 we
have a commutative diagram of symmetric monoidal ∞-categories

T

''

≃ // P̂erf(FibLSym∗ (TΘ))

��
QCoh(FibLSym∗ (TΘ))

where the top horizontal ∞-functor is an equivalence. Moreover, each of
the two other ∞-functors possesses a natural lift to a morphism of Θ-
categories. However, we have not been able to prove that the equivalence
T ≃ P̂erf(FibLSym∗ (TΘ)) can be enhanced to an equivalence of Θ-categories.
This is due to our choice of definition of Θ-category, which is probably not
optimal (see also Remark 2.15).

The next corollary investigates the other direction of Tannakian duality,
and the morphism α. We recall that we have introduced the notion of Q-
local stacks in the definition of Tannakian gerbes (condition (G2)). It has a
refined version called P -local, which already naturally appears in the setting
of schematic homotopy theory of [Toe06]. A pointed and connected stack F
is said to be pointed P -local if for any morphism of pointed and connected
stacks u : G1 → G2 such that u∗ : Perf(G2) → Perf(G1) is an equivalence,
the induced morphism

u∗ : MapStk
(G2, F ) → MapStk

(G1, F )

is also an equivalence. As perfect complexes are the rigid objects in quasi-
coherent complexes, being pointed Q-local implies being pointed P -local.
However, the converse does not hold.

Corollary 2.14. Let F be a pointed Tannakian gerbe. Then, the adjunction
morphism

αF : F → FibLSym∗ (P̂erfLSym(F ))

induces an equivalence of Θ-categories

α∗
F : P̂erfLSym(FibLSym∗ (P̂erfLSym(F ))) ≃ P̂erfLSym(F ).
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In particular, if the stack F is pointed P -local, then αF is a retract. If the
stacks F and FibLSym∗ (P̂erfLSym(F )) are both pointed P -local, then it is an
equivalence of stacks.

Proof. By our Theorem 2.9 applied to P̂erfLSym(F ), the ∞-functor induces
by pull-back along αF is an equivalence on Ind-perfect complexes

α∗
F : P̂erf(FibLSym∗ (P̂erfLSym(F ))) ≃ P̂erf(F ).

As the forgetful ∞-functor ∞-CatΘpr → ∞-Cat⊗pr is conservative, the corol-
lary follows.

Remark 2.15. As a final comment, we see that the results on Tannakian du-
ality are imperfect and do not induce a nice equivalence between Tannakian
Θ-categories and Tannakian gerbes. One reason for this has been identified in
Remark 2.13: the equivalence of symmetric monoidal ∞-categories of Corol-
lary 2.14 has not been shown to lift to an equivalence of Θ-categories. We
think it is probably not possible to improve this using the present approach
to Θ-categories. The technical complication comes here from the use of pre-
sentable, and thus non-small ∞-categories everywhere, whereas the natural
approach would be to write everything in terms of ∞-categories of perfect
complexes as opposed to quasi-coherent sheaves or ind-perfect complexes.
The problem with working with small ∞-categories of perfect complexes is
of course that the monads involved, as the LSym monad does not preserve
perfect complexes globally.

One possible approach is to consider the LSym monads as graded monads,
as done in §2.1 for the construction of the Θ-structure in ind-perfect com-
plexes. Alternatively, and perhaps more satisfactorily, one can develop a the-
ory of Θ-categories in terms of symmetric monoidal ∞-categories equipped
with additional symmetric power operations. Since the derived symmetric
powers LSymn preserve perfect complexes, such a theory would also allow to
view Perf(X) as a Θ-category. We believe that such an approach, allowing
for Θ-categories to be small ∞-categories could reduce the imperfection of
Theorem 2.9. This will be investigated elsewhere.

A Positive tor-dimension descent

Let T be a stable presentable symmetric monoidal ∞-category endowed with
a non-degenerate and multiplicative t-structure. For a morphism of commu-
tative algebras u : 1 → B in T , we can consider the co-nerve of u, which is a

29



coaugmented cosimplicial object

CN(u)∗ : ∆+ −→ CAlg(T )

sending n ≥ −1 to B⊗n+1. Tensoring along 1 → CN(u)∗ yields a colimit
preserving ∞-functor

ψ : T = 1-Mod(T ) → lim
n∈∆

(CN(u)n-Mod(T )).

The right adjoint to this ∞-functor is obtained as the composition

limn∈∆
(
CN(u)n-Mod(T )

)
// T∆ lim // T

where the first ∞-functor is the levelwise forgetful ∞-functor to T .
We now assume that B has positive tor-dimension. That is, the ∞-

functor M 7→ B ⊗M preserves the sub-∞-category T [0,∞[ ⊂ T of coconnec-
tive objects with respect to the t-structure. We will denote by T>−∞ the
full sub-∞-category of eventually coconnective objects, that is, the union of
sub-∞-categories ⋃

a<0

T [a,∞[ ⊂ T.

Similarly, for B ∈ CAlg(T ) we denote by B-Mod(T )>−∞ ⊂ B-Mod(T ) the
full sub-∞-category of modules whose underlying objects lie in T>−∞.

Proposition A.1. Assume that B ∈ CAlg(T ) is of positive tor-dimension
and that B ⊗− : T>−∞ → T>−∞ is conservative. Then the ∞-functor

ψ : T>−∞ → lim
n∈∆

(
CN(u)n-Mod(T )>−∞)

is an equivalence of ∞-categories.

Proof. Let us first assume that B is augmented via a morphism of commuta-
tive algebras B → 1. In this case, the constant diagram 1 becomes a homo-
topy retract of the cosimplicial diagram CN(u)∗. The augmentation induces
a retraction CN(u)∗ → 1, and the composition CN(u)∗ → 1 → CN(u)∗

is simplicially homotopic to the identity as a morphism of cosimplicial ob-
jects in CAlg(T ). This implies that the cosimplicial diagram of categories
CN(u)∗-Mod(T ) is homotopy equivalent to the constant diagram T , and
thus that we have

T ≃ lim
n
CN(u)n-Mod(T ).
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In this special case, the proposition holds even without the restriction to
T>−∞ and without the positive tor-dimension condition, and without any
need of a t-structure: it remains true for any augmented commutative algebra
B in a stable presentable symmetric monoidal ∞-category.

Let us now treat the general case. We first observe that B⊗− commutes
with limits of diagrams x∗ : ∆ → T [a,∞[, that is, limits of uniformly bounded
below cosimplicial diagrams. Indeed, in this case, for all i there is a k,
depending on a and i only, such that

lim
n
(xn) → lim

n≤k
(xn)

induces an equivalence on τ≥i. As B is of positive tor-dimension the same
holds for the limit lim(B⊗xn) instead. Because B⊗− commutes with finite
limits, we see that the canonical morphism

B ⊗ lim
n
(xn) → lim

n
(B ⊗ xn)

is an equivalence on all truncations τ≥i for all i, and thus must be an equiv-
alence in T .

Because B ⊗ − is conservative and commutes with the involved limits,
we can base change to B to prove this last statement. After base change
the statement is true as it is related to the co-nerve of B → B ⊗ B inside
B-Mod(T ), which is augmented via the multiplication map B⊗B → B.
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