
AN EXTENSION OF QUILLEN’S THEOREM B

IEKE MOERDIJK AND JOOST NUITEN

Abstract. We prove a general version of Quillen’s Theorem B, for actions of

simplicial categories, in an arbitrary left Bousfield localization of the homotopy
theory of simplicial presheaves over a site. As special cases, we recover a version of

the group completion theorem in this general context, as well a version of Puppe’s

theorem on the stability of homotopy colimits in an ∞-topos, due to Rezk.

1. Introduction

Theorem B is one of the first results in Quillen’s influential paper ‘Higher K-Theory
I’ [1616] and as such plays an important role in the foundations of algebraic K-theory. For
a functor f : D→ C between small categories, this theorem provides a way to identify
the homotopy fibre of the induced map BD→ BC between classifying spaces: it is the
classifying space of the over-category D/x, provided that for each morphism x→ y in C,
the functor D/x→ D/y induces a weak equivalence between the associated classifying
spaces. This condition can also be phrased by saying that the classifying spaces of these
various D/x form a diagram of spaces over C, on which C acts by weak equivalences.
From this point of view, the theorem is very close to other results in the literature, such
as Volker Puppe’s theorem [1515] on homotopy colimits of homotopy cartesian diagrams.
A version of this theorem also holds for actions by homology equivalences, and this
version yields the group completion theorem [1212, 1717, 1313] and Bott periodicity [66].

These results all predate the development of Quillen model categories and their
left Bousfield localizations, the homotopy theory of simplicial presheaves and sheaves,
and the theory of ∞-categories and ∞-toposes. The purpose of this paper is to
reconsider Quillen’s Theorem B in the light of these developments. We will prove a
very general version of Theorem B over an arbitrary site, for actions of a presheaf
of simplicial categories on another simplicial presheaf. (See Theorem 5.15.1 below for
a precise formulation.) This general theorem states that if the action is by weak
equivalences in some further left Bousfield localization of one of the standard model
structures on simplicial presheaves, then the fibre and the homotopy fibre of the action
become equivalent in this localization. We should emphasize that by a presheaf of
simplicial categories, we mean an internal category object in the category of simplicial
presheaves on the given site. In particular, the objects of this internal category form
themselves a simplicial presheaf. This level of generality is relevant in several examples
(cf. Example 6.26.2) and requires some caution in the definition of an action by weak
equivalences (see e.g. Lemmas 4.24.2 and 4.34.3 below). A version of Quillen’s Theorem B for
quasi-categories takes a different form, and in fact the natural definition of an action
by weak equivalences renders it somewhat tautologous, as we will explain in a brief
appendix.
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Theorem 5.15.1 mentioned above has the expected applications, such as a version of the
group completion theorem for actions of presheaves of simplicial monoids (such as the
classifying space of a coproduct

∐
nBGLn(R) for a sheaf of rings R) (Examples 6.116.11 and

6.146.14 below). When R is a sheaf of commutative rings on a site, the theorem shows that
the associated projective space P∞ is A1-homotopy equivalent to its group completion
ΩB(P∞) (Example 6.106.10). We expect our general version of Quillen’s theorem to have
further applications when applied to specific sites such as the Nisnevich topology for
A1-homotopy theory [1414]. As another special case of the theorem, we recover a version
of Puppe’s theorem for homotopy cartesian morphisms between diagrams of simplicial
presheaves over a site (Example 6.26.2 below). In the particular case of simplicial sets,
this result reduces to a variant of Puppe’s theorem for Bousfield localizations [33]. When
applied to a left exact localization of simplicial presheaves, it gives precisely what is
sometimes referred to as (Rezk) descent for ∞-toposes [1818]. It is also possible to recast
the theorem in terms of an equivalence of model categories. In doing so, we obtain a
generalization of a result by Jardine [88].

The plan of this short paper is as follows. In Sections 22 and 33 we review the homotopy
theory of simplicial and bisimplicial presheaves and sheaves. This material is largely
standard, and can be found in many sources of which we will mention the main ones. In
Section 44 we introduce the necessary notation and terminology for actions by categories
on simplicial presheaves, so as to state and prove the main theorem in Section 55. Our
proof closely follows the strategy of [1313]. We provide some applications in Section 66.
We conclude our paper with a brief appendix on a quasi-categorical version of Quillen’s
Theorem B.

2. Simplicial presheaves and sheaves

In this section we review some basic definitions and facts about the homotopy theory
of simplicial presheaves and sheaves. Almost everything in this section traces back to
[22, 77, 99].

Let (S, J) be a site, i.e. a small category S equipped with a Grothendieck topology
J . Let PSh(S) and Sh(S, J) be the categories of presheaves (resp. sheaves) of sets on S
and let

i∗ : PSh(S)
//
Sh(S, J) : i∗oo (2.1)

be the adjoint pair given by the full embedding i∗ and the associated sheaf functor i∗.
By adjointness i∗ preserves all limits and i∗ preserves all colimits, while in addition i∗

preserves finite limits.
A point of the topos Sh(S, J) (or “of the site (S, J)”) is such an adjoint pair

p∗ : Sh(S, J)
//
Sets : p∗oo

for which p∗ preserves finite limits (i.e. the pair forms a geometric morphism p : Sets→
Sh(S, J)). The topos Sh(S, J) is said to have enough points if the collection of functors
p∗, for all points p of Sh(S, J), is jointly conservative (i.e. detects isomorphisms).
Equivalently, Sh(S, J) has enough points if there exists a topological space X and
a geometric morphism f : Sh(X) → Sh(S, J) for which f∗ is conservative (i.e. “f is
surjective”). Many sites occurring in nature have enough points [55, 1111] and in some
definitions and arguments we will assume that there are enough points, in order to help
develop some intuition and to connect to the classical homotopy theory of simplicial
sets. However, this assumption is never essential and can be circumvented by either
working with a surjective “Boolean point” or by using the internal logic of Sh(S, J).
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The adjoint pair (2.12.1) induces an adjoint pair

i∗ : sPSh(S)
//
sSh(S, J) : i∗oo

between the categories of simplicial presheaves and sheaves. The category sPSh(S)
can be endowed with the projective model structure, for which the fibrations and weak
equivalences are defined levelwise: a map Y → X of simplicial presheaves on S is a
fibration or weak equivalence if for each object S ∈ S, the map Y (S) → X(S) is a
fibration or weak equivalence in the classical Kan-Quillen model structure on simplicial
sets. All model categorical notions for presheaves will refer to the projective model
structure, unless stated otherwise.

The category sSh(S, J) carries the Joyal or injective model structure, for which the
cofibrations are the monomorphisms and the weak equivalences are the so-called local
weak equivalences : a map Y → X of simplicial sheaves is called a local weak equivalence
iff the map p∗Y → p∗X is a weak equivalence of simplicial sets for every point p. There
are rather few fibrations in this model structure, but there is a wider class of so-called
local fibrations, viz. the maps Y → X for which each p∗Y → p∗X is a Kan fibration.
Equivalently, these are the maps for which the map

Y (∆[n]) // X(∆[n])×X(Λk[n]) X(Λk[n])

is a surjection of sheaves of sets, for each n ≥ 1 and each 0 ≤ k ≤ n. Here we use
that each simplicial set K and simplicial sheaf Y determine a sheaf (of sets) Y (K),
determined by

Y (∆[n]) = Yn

Y (colimKi) = limY (Ki).

Alternatively, using that the Joyal model structure is a simplicial model structure, one
can identify Y (K) with the sheaf of vertices of Y K . Similarly, a local trivial fibration is
a map Y → X for which each p∗Y → p∗X is a trivial fibration of simplicial sets, or
equivalently, for which each map

Y (∆[n]) // X(∆[n])×X(∂∆[n]) Y (∂∆[n]) n ≥ 0

is a surjection of sheaves of sets.
One easily verifies that the adjoint pair

i∗ : sPSh(S)
//
sSh(S, J) : i∗oo

is a Quillen pair. Among general Quillen pairs, it has some additional properties that
are useful to keep in mind:

(a) i∗ preserves weak equivalences between arbitrary objects (not just cofibrant
ones).

(b) Let us say that a map of simplicial presheaves Y → X is a local weak equivalence
(resp. a local (trivial) fibration) if its image under i∗ is such. Since i∗ preserves
finite limits (as we already mentioned), it follows that any levelwise (trivial)
fibration between simplicial presheaves is a local (trivial) fibration.

It follows from (a) and the fact that i∗i∗ ∼= id that Li∗Ri∗ ' id, so that sSh(S, J) is
a localization of sPSh(S). Since the weak equivalences in sSh(S, J) form an accessibly
embedded accessible subcategory of the arrow category of sSh(S, J), it follows that
there exists a left Bousfield localization sPSh(S)J of (the projective model structure
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on) sPSh(S) whose weak equivalences are the local weak equivalences. In this way one
obtains a diagram of left Quillen functors

sPSh(S)

id

��

i∗ // sSh(S, J)

sPSh(S)J

j∗

88

As ordinary functors, j∗ and its right adjoint j∗ can be identified with i∗ and i∗. The
pair j∗ and j∗ forms a Quillen equivalence because Lj∗Rj∗ ' id and j∗ preserves and
detects weak equivalences.

We will use the following simple observations.

Lemma 2.2. In sSh(S, J), as well as in sPSh(S)J , the pullback along a local fibration
is a homotopy pullback.

Proof. The two cases are proved in the same way. Let

W //

��

Y

f

��

Z
g
// X

be a pullback in sSh(S, J) (or in sPSh(S)J) in which f is a local fibration. The image
of this pullback square under a point of Sh(S, J) is a homotopy pullback of simplicial
sets, since the usual model structure on simplicial sets is right proper. In particular,
pullbacks along local fibrations preserve local weak equivalences, so that sSh(S, J) is
right proper as well.

Now let Z
∼
↪→ Z ′ → X be a factorization of g into a local weak equivalence, followed

by a fibration. Then the pullback Z ′ ×X Y computes the homotopy pullback of f and
g and the map W → Z ′ ×X Y is a local weak equivalence. �

Lemma 2.3. Let Y → X ← Z be a diagram in sSh(S, J). Then its homotopy pullback
can be computed as i∗(Q), where

Q //

��

i∗(Z)

��

i∗(Y ) // i∗(X)

is a homotopy pullback in sPSh(S).

Proof. Let i∗(Y )→ P → i∗(X) be a factorization into a weak equivalence, followed by
a fibration of simplicial presheaves. Then Q = P ×i∗(X) i∗(Z) is the homotopy pullback
in sPSh(S) since this model category is right proper. So i∗(Q) ∼= i∗(P )×X Z and i∗(P )
fits into a sequence

Y ∼= i∗i∗(Y ) // i∗(P ) // i∗i∗(X)

of a local weak equivalence, followed by a local fibration. The lemma now follows from
Lemma 2.22.2. �
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3. Bisimplicial presheaves and sheaves

We will write bisSh(S, J) and bisPSh(S) for the categories of bisimplicial sheaves and
presheaves on the site (S, J). These carry several model structures, but we will mostly
be interested in the “diagonal” one, making the model categories Quillen equivalent to
sPSh(S) and sSh(S, J), respectively. More precisely, write

i∗ : bisPSh(S)
//
bisSh(S, J) : i∗oo

for the associated sheaf functor i∗ and its fully faithful right adjoint, and let

δ∗ : bisPSh(S) // sPSh(S)

be the diagonal functor. The functor δ∗ has a left adjoint δ! and a right adjoint δ∗.
Using the same notation for sheaves, we obtain a diagram of adjoint pairs

sPSh(S)
i∗ //

δ!

��

δ∗

��

OO

δ∗

sSh(S, J)
i∗

oo

δ!

��

δ∗

��

bisPSh(S)
i∗ //

bisSh(S, J)
i∗
oo

δ∗

OO

which are related by the following natural isomorphisms

δ∗i∗ = i∗δ∗ δ∗i∗ = i∗δ
∗

and hence δ!i
∗ = i∗δ!.

Proposition 3.1 (cf. [1313]). The (projective, resp. Joyal) model structures can be trans-
ferred along the adjoint pair (δ!, δ

∗) and give model structures and Quillen equivalences

δ! : sPSh(S)
//
bisPSh(S) : δ∗oo

δ! : sPSh(S)J
//
bisPSh(S)J : δ∗oo

δ! : sSh(S, J)
//
bisSh(S, J) : δ∗oo

Proof. We prove the second case; the other two cases are similar. To show that the
transferred model structure exists, it suffices to verify that δ∗δ! maps generating trivial
cofibrations to local weak equivalences that are monic. Indeed, these maps are stable
under pushout and transfinite composition while δ∗ and δ! both commute with colimits.

It is easy to check that δ∗δ! preserves monomorphisms. The fact that it preserves local
weak equivalences follows immediately from the fact that the unit map X → δ∗δ!(X) is
a levelwise weak equivalence of simplicial presheaves. Indeed, this just follows from the
analogous statement for simplicial sets: by a standard skeletal induction it suffices to
verify that for every simplex ∆[n], the map ∆[n]→ δ∗δ!(∆[n]) is a weak equivalence.
But this map can be identified with the diagonal map ∆[n]→ ∆[n]×∆[n].

Similarly, the fact that X → δ∗δ!(X) is a levelwise weak equivalence shows that
the Quillen pair is a Quillen equivalence (because δ∗ preserves and detects weak
equivalences). �

Remark 3.2. Since δ∗ preserves monomorphisms and weak equivalences, the pair
δ∗ : bisSh(S, J) � sSh(S, J) : δ∗ is a Quillen pair as well.

The proof of Proposition 3.13.1 applies equally well to further left Bousfield localizations
of these model categories. More precisely, let λ be a set of maps (which one can always
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take to be cofibrations) in sPSh(S) and let us denote by

i∗ : sPSh(S)J,λ
//
sSh(S, J)λ : i∗oo

the associated Quillen equivalence between the left Bousfield localizations at λ and
i∗(λ), respectively. We will refer to the weak equivalences in these model structures
as λ-equivalences (leaving the reference to J implicit when working with simplicial
presheaves). The argument of Proposition 3.13.1 shows that these two model structures can
be transferred to model structures on bisimplicial (pre)sheaves along (δ!, δ

∗), yielding
two Quillen equivalences

δ! : sPSh(S)J,λ
//
bisPSh(S)J,λ : δ∗oo

δ! : sPSh(S, J)λ
//
bisSh(S, J)λ : δ∗.oo

In fact, the transferred model structure bisPSh(S)J,λ is simply the left Bousfield
localization of bisPSh(S)J at the set of maps δ!(λ), and similarly for sheaves.

Lemma 3.3. Let f : X → Y be a map of bisimplicial (pre)sheaves over S. If f induces
a λ-equivalence Xn,− → Yn,− of simplicial (pre)sheaves for each n ≥ 0, then the
diagonal δ∗X → δ∗Y is a λ-equivalence as well.

Proof. This follows from the fact that δ∗ : bisSh(S, J) → sSh(S, J)λ is a left Quillen
functor for the Reedy model structure on bisSh(S, J) = sSh(S, J)∆

op

. �

4. Actions on simplicial presheaves and sheaves

We begin with some terminology and notation. Let C be a category object in one of
the (model) categories sPSh(S) or sSh(S, J). Thus C is given by simplicial (pre)sheaves
ob(C) and mor(C) of objects and morphisms, together with structure maps for source
and target

mor(C)
s //

t
// ob(C)

and two more structure maps for units and composition, all satisfying the usual identities.
For any such category object C, its nerve NC is a bisimplicial (pre)sheaf whose diagonal
we denote

BC = δ∗NC
and call the classifying (pre)sheaf or “space” of C. Thus, BC is an object of sPSh(S)
or sSh(S, J).

A left action of C on a simplicial presheaf X is given by maps

π : X // ob(C) and µ : s∗(X) = mor(C)×ob(C) X // X

satisfying the usual identities (which express that for any S ∈ S, the components πS
and µS determine a covariant simplicial functor C(S) → sSet, natural in S). The
domain of the map µ is the pullback s∗(X) of π along s. Such an action by C on X
defines a new category object XC in sPSh(S) (or in sSh(S, J)) with

ob(XC) = X

mor(XC) = s∗(X)

while the new source and target map s∗(X) ⇒ X are the projection and the action
µ. For any object S ∈ S and any simplicial degree n, the category XC(S)n (in sets)
can therefore be described as follows: the objects are n-simplices x ∈ X(S)n and a
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morphism x → y is a morphism φ : π(x) → π(y) in the category C(S)n such that
µ(φ, x) = y. There is an obvious projection functor

π : XC // C

which induces a map of classifying spaces

Bπ : BXC // BC.

For any n-simplex c ∈ ob(C)(S)n, i.e. a map S×∆[n]→ ob(C) of simplicial presheaves,
we write X(c) for the pullback

X(c) //

��

X

π

��

S ×∆[n]
c
// ob(C)

A 0-simplex c : S ×∆[0]→ ob(C) determines a map S ×∆[0]→ BC and X(c) fits into
a pullback of simplicial (pre)sheaves

X(c) //

��

BXC

��

S ×∆[0]
c
// BC.

The action µ defines a map µ = (π1, µ) over mor(C)

s∗(X)
µ

//

$$

t∗(X)

zz

mor(C).

If φ ∈ mor(C)(S)n is a morphism from c to d, i.e. φ : S ×∆[n]→ mor(C) with sφ = c
and tφ = d, then µ restricts to a map of simplicial presheaves

φ∗ : X(c) // X(d).

Given a set of maps λ in sPSh(S)J or sSh(S, J), we can require these action maps to
be weak equivalences in the resulting left Bousfield localization:

Definition 4.1. Let C be a category acting on X in sPSh(S), as above. Then C is said
to act by λ-equivalences if for any object S ∈ S and any morphism φ : S×∆[n]→ mor(C)
from c = sφ to d = tφ, the map φ∗ : X(c)→ X(d) is a λ-equivalence.

As Ob(C) is itself a simplicial presheaf rather than a presheaf of sets, this definition
needs to be treated with some care, and it is helpful to give some equivalent formulations.
To this end, let us call a map of simplicial presheaves over a simplicial presheaf B

X //

  

Y

~~

B

a stable λ-equivalence if for any map A → B, the pullback A ×B X → A ×B Y is a
λ-equivalence.

Lemma 4.2. Suppose that the map π : X → ob(C) is a local fibration. Then C acts by
λ-equivalences iff the condition holds for n = 0 only, i.e. for every vertex in mor(C)(S).



8 IEKE MOERDIJK AND JOOST NUITEN

Proof. Let φ : c → d be as in the definition and for any i = 0, . . . , n, consider the
pullback

X(ci)

��

(φi)∗

&&

wi // X(c)
φ∗

&&

��

X(di)

xx

ui // X(d)

xx

S ×∆[0]
vi

// S ×∆[n]

where vi is the inclusion of the i-th vertex and ui and wi are its pullbacks. Each of these
three maps is a local weak equivalence by Lemma 2.22.2, so that φ∗ is a λ-equivalence if
and only if (φi)∗ is. �

Lemma 4.3. Let C be a category acting on X in sPSh(S), as above. Then C acts on
X by λ-equivalences iff µ : s∗(X)→ t∗(X) is a stable λ-equivalence over mor(C).

Proof. Since the maps φ∗ are pullbacks of µ over mor(C), the condition of the lemma
is clearly sufficient. For the converse, consider a map A→ mor(C) and let

s∗(X)A //

##

t∗(X)A

{{
A

be the pullback of µ along A → mor(C). Consider the bisimplicial presheaf X̃(s) ∈
bisPSh(S) whose value on an object S ∈ S has as (p, q)-simplices diagrams of the form

∆[p]

��

// s∗(X)A(S)

��

∆[n0] // . . . // ∆[nq] // A(S).

In the same way, let X̃(t) be the bisimplicial presheaf obtained using t∗(X)A instead
of s∗(X)A.

For fixed S and p, the simplicial set X̃(s)(S)p is the nerve of a category whose
objects are pairs consisting of a p-simplex of s∗(X)A and a factorization of ∆[p] →
s∗(X)A(S)→ A(S) through a simplex ∆[n] (as in the above diagram, for q = 0). For
a fixed p-simplex of s∗(X)A, there is an initial such factorization, so that there is a
(natural) weak equivalence

s∗(X)A,p // X̃(s)(S)p

from a discrete simplicial set to the simplicial set X̃(s)(S)p. Taking diagonals, it follows
that there is a (projective) weak equivalence of simplicial presheaves

s∗(X)A // δ∗X̃(s).

The same holds for t∗(X)A → δ∗X̃(t), of course.

On the other hand, in each fixed simplicial degree q, the map X̃(s)−,q → X̃(t)−,q is
a coproduct of maps φ∗ : X(c)→ X(d), indexed by the composite maps

φ : ∆[n0] // . . . // ∆[nq] // A(S) // mor(C).
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These maps φ∗ are λ-equivalences by assumption, so the map δ∗X̃(s)→ δ∗X̃(t) is a
λ-equivalence as well, by Lemma 3.33.3. The commutative square

s∗(X)A //

∼
��

t∗(X)A

∼
��

δ∗X̃(s) // δ∗X̃(t)

now shows that s∗(X)A → t∗(X)A is a λ-equivalence, which finishes the proof. �

5. The main theorem

In this section we will state and prove the main theorem. Some examples and
applications have already been mentioned in the introduction and will be elaborated
on in the next section. As before, we work over a fixed site (S, J) and consider the
projective local model structure on sPSh(S)J , the injective one on sSh(S, J), as well as
left Bousfield localizations of these at a set of maps λ.

Theorem 5.1. Let C be a category object acting on a simplicial presheaf X by λ-
equivalences. Suppose π : X → ob(C) is a local fibration. Then for any object S ∈ S
and any c ∈ C(S)0, the map from the pullback X(c) as in

X(c) //

��

BXC

��

S ×∆[0] // BC

(5.2)

to the homotopy pullback is a λ-equivalence.

Remark 5.3. Note that the theorem refers to the homotopy pullback in the projective
model structure and not in the λ-localized model structure. Of course, the two notions
coincide in the case where the localization is (homotopy) left exact. This is the case
where the model category sPSh(S)λ presents an ∞-topos.

It will be clear that our proof for presheaves applies to sheaves as well, but in fact
the case of sheaves is also just a direct consequence:

Corollary 5.4. Consider a left Bousfield localization sSh(S, J)λ of the Joyal model
structure. If a category object C acts on a simplicial sheaf X by λ-equivalences and the
map X → ob(C) is a local fibration, then the map

X(c) // BXC ×hBC

(
S ×∆[0]

)
is a λ-equivalence, where the homotopy pullback is computed in the Joyal model structure.

Proof. Form the homotopy pullback of simplicial presheaves

Q //

��

i∗
(
BXC)

��

i∗
(
S ×∆[0]

)
// i∗(BC).

The left Bousfield localization sSh(S, J)λ is Quillen equivalent to the left Bousfield
localization sPSh(S)J,λ and the map i∗X(c) → Q is a λ-equivalence of simplicial
presheaves. It follows that X(c)→ i∗Q is a λ-equivalence of simplicial sheaves, so that
the result follows from Lemma 2.32.3. �
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Proof (of Theorem 5.15.1). We follow the strategy from [1313]. The square (5.25.2) in the
theorem is obtained by applying the diagonal functor δ∗ to the pullback square of
bisimplicial presheaves

X(c)

��

// N(XC)

��

S ×∆[0] // N(C).

(5.5)

Here X(c) and S ×∆[0] are considered as bisimplicial presheaves which are constant in
one simplicial direction. It thus suffices to prove the theorem for the homotopy pullback
of (5.55.5) in bisPSh(S). This homotopy pullback can be formed by factoring the map
S ×∆[0]→ N(C) as a trivial cofibration, followed by a fibration and then taking the
pullback of N(XC)→ N(C) along that fibration.

Such a factorization is obtained in the standard way from the small object argument,
as a transfinite composition of pushouts of generating trivial cofibrations, i.e. maps
T × δ!Λ

k[n] → T × δ!∆[n] for any object T ∈ S. Since pulling back along a map
commutes with colimits in bisimplicial presheaves, it thus suffices to show that for any
pullback diagram of the form

Xσi
� � //

��

Xσ
//

��

N(XC)

��

T × δ!Λk[n] �
�

i
// T × δ!∆[n] // NC

(where i denotes the inclusion), the map Xσi → Xσ becomes a λ-equivalence after
applying δ∗. Indeed, then the map δ∗(Xσi) → δ∗(Xσ) becomes a trivial cofibration
in the λ-localization of the injective model structure, and a transfinite composition of
pushouts of these remains a λ-equivalence.

Let us explicitly spell out the bisimplicial presheaves Xσ and Xσi. The map
σ : T × δ!∆[n]→ NC is a string of morphisms

σ =
(
c0

σ1 // c1 // . . .
σn // cn

)
in the category C(T )n. For any object R in the site S, an element of the set Xσ(R)p,q
is a quadruple (

f, α, β, x
)

where f : R→ T is a map in S, α and β are maps in ∆

α : [p] // [n] β : [q] // [n]

and x ∈ X(R)q is an element whose image under π : X → ob(C) satisfies

π(x) = β∗
(
cα(0) · f

)
.

An object of Xσi is a similar quadruple (f, α, β, x) satisfying the additional condition

that there is some l = 0, . . . , k̂, . . . , n such that α and β both miss l.
Now consider the bisimplicial presheaves X0

σ and X0
σi whose (p, q)-simplices at R

are quadruples (f, α, β, x) exactly as before, except that we require

π(x) = β∗(c0 · f) ∈ ob(C)(R)q
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(so c0 instead of cα(0)). These bisimplicial presheaves fit into a commuting square

X0
σi

σ∗

��

// X0
σ

σ∗

��

Xσi
// Xσ

where the vertical maps σ∗ = (σα(0) ◦ · · · ◦ σ1)∗ are induced by the action of C on X.

The top inclusion X0
σi → X0

σ fits into a pullback diagram of bisimplicial presheaves

X0
σi

��

// X0
σ

��

// X(c0) //

��

X

��

T × δ!(Λk[n]) // T × δ!∆[n] // T ×∆[n] // ob(C)

where all objects in the most right square are constant in one simplicial direction (the
p-direction, in the above notation). Since the diagonal functor δ∗ preserves limits, it
follows that δ∗(X0

σi)→ δ∗(X0
σ) is the pullback of a (local) weak equivalence along the

(local) fibration X → ob(C). Lemma 2.22.2 then implies that δ∗(X0
σi) → δ∗(X0

σ) is a
(local) weak equivalence as well.

To finish the proof, it remains to verify that the two vertical maps σ∗ induce λ-
equivalences on the diagonals. But for a fixed p, the action map σ∗ : X0

σ → Xσ is a
coproduct over α : [p]→ [n] of maps of the form

X(c0) //

%%

X(cα(0))

xx

T ×∆[n].

These maps are all λ-equivalences of simplicial presheaves by assumption, so the induced
map on diagonals is a λ-equivalence by Lemma 3.33.3. �

6. Examples

Example 6.1 (Quillen’s Theorem B). Let f : D→ C be a functor between categories.
Let Xc = N(f/c) be the nerve of the comma category f/c for c ∈ C. These Xc form
a covariant diagram of simplicial sets indexed by C. The category C acts by weak
equivalences on this diagram if for each α : c→ c′ in C, the functor f/c→ f/c′ induces
a weak equivalence on nerves.

As a very special case of Theorem 5.15.1, we find that if this is the case, then Xc is the
homotopy fibre of

hocolimX // BC.
The space hocolimX is the nerve of the category f/C and the spaces Xc are the nerves
of the fibres of the functor f/C→ C [1919].

There is an inclusion D→ f/C sending d to (d, f(d)
=→ f(d)), which is left adjoint

to the obvious projection f/C→ D. This functor induces a homotopy equivalence on
nerves, so that the map hocolimX → BC is homotopy equivalent to the map BD→ BC.
We therefore obtain Quillen’s original Theorem B, identifying the homotopy fibre of
BD→ BC over c ∈ C with the nerve of f/c.

Theorem 5.15.1 gives an extension to localizations (e.g., to the case where each Xc → Xc′

is a homology isomorphism), as well as to functors D → C between (pre)sheaves of
categories on a site (S, J).
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Example 6.2 (Homotopy colimits and Puppe’s theorem). Let I be a small category
and let X and Y be two I-indexed diagrams of simplicial sets. A natural transformation
f : Y → X is called homotopy cartesian if for any morphism α : i→ j in I, the naturality
square

Yi
α∗ //

fi

��

Yj

fj

��

Xi α∗
// Xj

(6.3)

is a homotopy pullback. Puppe’s theorem [1515] states that for any homotopy cartesian
transformation f and any i0 ∈ I, the square

Yi0 //

��

hocolimYi

��

Xi0
// hocolimXi

(6.4)

is a homotopy pullback. This theorem is in fact a special case of Theorem 5.15.1 (for the
trivial site, so for simplicial sets rather than simplicial (pre)sheaves). Indeed, let C be

the simplicial category XI with space of objects X̃ =
∐
i∈I Xi and space of morphisms

mor(XI) =
∐
i→j

Xi.

The natural transformation f defines an action of XI on Ỹ =
∐
i∈I Yi. Notice that, as

X̃ is not discrete, XI is an internal category in simplicial sets, rather than a category
enriched over simplicial sets.

After replacing Y → X by a fibration in the projective model structure on sSetI ,
the hypothesis on the squares (6.36.3) mean precisely that XI acts by weak homotopy
equivalences. The space BXI is a model for hocolimiXi, and Theorem 5.15.1 gives for
this special case that (6.46.4) is a homotopy pullback.

Still working on the trivial site, Theorem 5.15.1 gives variations of Puppe’s theorem
for left Bousfield localizations. For example, suppose that all the squares (6.36.3) are
“homology cartesian”, in the sense that for each vertex x ∈ Xi, the map from the
homotopy fibre of fi over x to the one of fj over α∗(x) is a homology equivalence.
Then the map from Yi0 to the homotopy pullback inscribed in (6.46.4) is also a homology
equivalence. Alternatively, such variants for Bousfield localizations can be deduced
from Puppe’s theorem itself using model categorical techniques [33, Theorem 8.3].

For a left Bousfield localization λ of the model category sPSh(S)J or sSh(S, J),
we obtain a similar result for a map f : Y → X between I-diagrams of simplicial
(pre)sheaves: Theorem 5.15.1 states that the map

Yi0 // Xi0 ×hhocolimXi
hocolimYi

(homotopy pullback in the non-localized model structure) is a λ-weak equivalence
whenever the map between homotopy fibres

hofib(Yi)x // hofib(Yj)α∗(x)

is a λ-weak equivalence for each i ∈ I and each vertex x ∈ Xi(S). If the localization λ
is left exact, then Theorem 5.15.1 translates into the statement that if each square (6.36.3) is
homotopy cartesian in the λ-localized model structure, then so is each pullback square
(6.46.4). This is a version of Puppe’s theorem for ∞-toposes, which is also referred to as
descent, cf. [1818] or [1010, Chapter 6.1.3].
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Example 6.5. For a corollary of Theorem 5.15.1 at the level of model categories, let
E = sPSh(S)J , endowed with the J-localization of the injective model structure. (For
what follows, the reader could also take E = sSh(S, J) if he or she so wishes.) Suppose
that C is a category object in E such that s : Ar(C)→ Ob(C) is a local fibration. Let
E [C] be the category of internal diagrams on C in E . An object in E [C] is given by a
map of simplicial sheaves X → Ob(C), endowed with a (left) action s∗(X)→ t∗(X).

The object inclusion u : Ob(C)→ C induces an adjoint pair

u! : E/Ob(C)
// E [C] : u∗.oo

Here u∗ is the forgetful functor, which admits a further right adjoint and therefore
preserves colimits. If A→ Ob(C) is an object of E/Ob(C), then u!(A) = A/C, whose
underlying object in E/Ob(C) is the pullback s∗(A). In particular, u∗u! preserves
injective cofibrations and weak equivalences in E/Ob(C) because s is a local fibration,
cf. Lemma 2.22.2. It follows that E [C] admits a (proper) model structure whose fibrations,
cofibrations and weak equivalences are all transferred from the J-local injective model
structure on E .

For a diagram X over C, let us denote

h!(X) := BXC = δ∗N
(
XC
)
.

The functor h! preserves colimits, monomorphisms and, by Lemma 3.33.3, these transferred
weak equivalences. Consequently, it is the left adjoint of a Quillen pair

h! : E [C]
// E/BC : h∗.oo (6.6)

For p : A→ Ob(C), the obvious functor A→ A/C induces a natural weak equivalence

A
∼ //

��

h!u!(A) = B(A/C)

��

Ob(C) // BC.

(6.7)

This weak equivalence can be viewed as an injective weak equivalence in E/BC. Conse-
quently, it induces for every Y → BC a natural map

u∗h∗(Y ) // Ob(C)×BC Y (6.8)

by adjunction. When Y → BC is a fibration, this map is a weak equivalence. Now
suppose that C acts on X by weak equivalences. Then the derived unit map of (6.66.6)

X // Rh∗h!(X)
∼ // Ob(C)×hBC BXC

is a weak equivalence by Theorem 5.15.1.
Consider the left Bousfield localization E [C]w of the transferred model structure

at the set of maps t(α)/C → s(α)/C, for all maps α : S × ∆[n] → Ar(C) from a
representable. An object X ∈ E [C] is fibrant in this localization iff C acts on X by
weak equivalences and X → Ob(C) is a fibration in E . Because of the weak equivalence
(6.76.7), (h!, h

∗) descends to a Quillen pair

h! : E [C]w
// E/BC : h∗.oo

This Quillen pair is a Quillen equivalence. Indeed, the derived unit map is a weak
equivalence for all local objects in E [C], as just observed. Furthermore, Rh∗ detects weak
equivalences, since it is equivalent to taking the homotopy pullback along Ob(C)→ BC,
by (6.86.8).
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There are variations on this result in the case of a further localization at a set
of maps λ. For instance, (h!, h

∗) descends to a Quillen equivalence between the left
Bousfield localizations of E [C]w and E/BC with respect to the stable λ-equivalences
over Ob(C) and over BC: this follows immediately from the fact that Rh∗ detects
stable λ-equivalences, by the proof of Lemma 4.34.3. For a right proper left Bousfield
localization Eλ of E , the same argument as above provides a Quillen equivalence (see
Remark 5.35.3 and Corollary 5.45.4)

h! : Eλ[C]w
// Eλ/BC : h∗.oo

When C has a presheaf of objects, instead of a simplicial presheaf, this recovers a result
of Jardine [88, Theorem 17]. A closely related result where C is a small category (in
sets) occurs in [44].

Example 6.9 (Grouplike monoids). Let (S, J) be a site and M a presheaf of simplicial
monoids on S. Then M acts on itself by left multiplication and we obtain a pullback
square

M //

��

B(MM )

��

∗ // B(M).

The simplicial presheaf B(MM ) is contractible, since the unit element is an initial
object of the simplicial category MM . For S ∈ S and m ∈M0(S), left multiplication
determines a map m∗ : M/S → M/S , where M/S = S × M . If each such m∗ is a
λ-equivalence, then it follows from Theorem 5.15.1 (and Lemma 4.24.2) that

M // ΩBM

is a λ-equivalence as well.
There is often a more familiar criterion for the above condition, in terms of the sheaf

πλ0 (M) associated to the presheaf

Sop // Set; S � // HomHo(sPSh(S)J,λ)

(
S,M

)
.

To state this criterion, let us assume that for any λ-equivalence X → X ′ between
simplicial presheaves and any S ∈ S, the map X ×S → X ′×S is a λ-equivalence. This
holds in various cases, e.g. for ∞-toposes (cf. Example 6.26.2) and for A1-model structures
[1414] (cf. Example 6.106.10). It follows that f × g : X × Y → X ′ × Y ′ is a λ-equivalence if f
and g are. In particular, if M → M ′ is an (injectively) fibrant replacement of M in
sPSh(S)J,λ, then M ′ inherits a multiplication µ′ via

M ×M

∼
��

µ
// M

∼
��

M ′ ×M ′
µ′
// M ′.

This is unital and associative up to homotopy, so that homotopy classes of maps into
M ′ form a monoid and πλ0 (M) is a sheaf of monoids. The map M → ΩBM is a
λ-equivalence whenever πλ0 (M) is a sheaf of groups.

To see this, take S ∈ S and m ∈ M0(S), with image m′ in M ′0(S). To see that
m∗ : M/S → M/S is a λ-equivalence, it suffices to verify that m′∗ : M ′/S → M ′/S is a
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λ-equivalence. Because πλ0 (M) is a sheaf of groups, there is a cover αi : Si → S such
that each m′i = α∗i (m

′) admits a homotopy inverse ni ∈M ′0(Si). It follows that each

(m′i)∗ : M ′/Si
// M ′/Si

is a homotopy equivalence. Similarly, the restriction of m′ to an iterated pullback Si0...in
admits a homotopy inverse and (m′i0...in)∗ is a homotopy equivalence as well. These
weak equivalences assemble into a natural weak equivalence of bisimplicial presheaves∐

i0...in

M ′/Si0...in
∼ //

((

∐
i0...in

M ′/Si0...in

vv∐
i0...in

Si0...in .

The realization of this natural weak equivalence is weakly equivalent to the map
m′∗ : M ′/S →M ′/S over S (for instance by Puppe’s theorem, cf. Example 6.26.2), so that

m′∗ and m∗ are λ-equivalences.

Example 6.10 (Infinite projective space). Consider a site (S, J) endowed with a sheaf
of commutative rings R and let us use A1 to denote the sheaf of sets underlying R. Let
sPSh(S)J,A1 be the left Bousfield localization at all projection maps

X × A1 // X.

This model category describes ‘A1-homotopy theory over R’. In particular, two maps
f, g : X → Y describe the same map in the homotopy category of sSh(S, J)A1 if there
exists an A1-homotopy

H : X × A1 // Y

such that H
∣∣
X×{0} = f and H

∣∣
X×{1} = g.

Let Gm ⊆ A1 be the sub-presheaf of invertible elements and let An+1
∗ be the union

n⋃
i=0

Ai ×Gm × An−i ⊆ An+1.

The presheaf Gm is a presheaf of groups under multiplication, which acts on An+1
∗ via

Gm × An+1
∗

// An+1
∗ ; z · (x0, . . . , xn) = (zx0, . . . , zxn).

This action is free, with quotient Pn = An+1
∗ /Gm given by the n-th projective space.

The projective spaces fit into a sequence

. . .
x7→(x,0)

// An+1
∗

x7→(x,0)
//

��

An+2
∗

��

x 7→(x,0)
// . . . // A∞∗

q

��

. . .
[x]7→[x:0]

// Pn
[x]7→[x:0]

// Pn+1

[x]7→[x:0]
// . . . // P∞

whose colimit P∞ is the quotient of the colimit A∞∗ by the (free) action of Gm given by
z · (x0, . . . , xn, 0, . . . ) = (zx0, . . . , zxn, 0, . . . ).

The presheaf A∞∗ can be identified with the presheaf of polynomials with coefficients
in R, with at least one invertible coefficient. Multiplication of polynomials then endows
A∞∗ and its quotient P∞ with the structure of a commutative monoid. Let us use the
criterion of Example 6.96.9 to verify that

P∞ // ΩB(P∞)
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is an A1-weak equivalence. In fact, πA1

0 (P∞) is the terminal sheaf: for any S ∈ S and
any point [x] = [x0 : . . . : xn : 0 : . . .] ∈ P∞(S), there are A1-paths

[xt] = [x0 : x1 : . . . : xn : t : 0 : . . .]

[yt] = [tx0 : tx1 : . . . : txn : 1 : 0 : . . .]

[zt] = [t : 0 : . . . : 0 : 1 : 0 : . . .]

[wt] = [1 : 0 : . . . : 0 : t : 0 : . . .]

connecting the point [x] to the unit element [1] = [1 : 0 : 0 : . . . ] of P∞. Identifying
A1-homotopic elements in π0(P∞) therefore yields the terminal sheaf, which implies

that πA1

0 (P∞) is terminal as well (by [1414, Corollary 3.22]).

Examples 6.116.11 and 6.146.14 and Variant 6.156.15 generalize the classical argument of
the group completion theorem (see [1212, 1717]) to Bousfield localizations of simplicial
(pre)sheaves. We only describe the case of simplicial sheaves, the case of simplicial
presheaves being completely analogous.

Example 6.11 (Group completion). Let (S, J) be a site and consider the functor

h∗ : sSh(S) // Sh(S; Abgr) (6.12)

sending each simplicial sheaf X to its homology sheaves, i.e. the associated sheaves of
the presheaves H∗(X(−);Z). This functor has the following properties:

(1) It sends local weak equivalences to isomorphisms of sheaves of graded abelian
groups.

(2) If X : I → sSh(S) is a filtered diagram of simplicial sheaves, then the natural map

colimh∗(Xi) // h∗(hocolimXi)

is an isomorphism.
(3) Let X and Y be two I-indexed diagrams of simplicial sheaves and let f : X → Y be

a natural transformation between them. If each h∗(Xi)→ h∗(Yi) is an isomorphism,
then the map h∗(hocolimX)→ h∗(hocolimY ) is an isomorphism.

(4) It is lax symmetric monoidal, i.e. there are natural maps

h∗(X)⊗ h∗(Y ) // h∗(X × Y ) Z→ h∗(∗)

where ⊗ denotes the usual tensor product of sheaves of graded abelian groups. In
particular, h∗ sends simplicial monoids to graded rings.

(5) h∗ is part of an indexed functor in the following sense. For every sheaf (of sets) S,
its category of elements S/S inherits a natural Grothendieck topology from (S, J).
As in (6.126.12), there is a functor (h∗)/S taking the homology of simplicial sheaves
over S/S, which satisfies conditions (1) - (4). For any map of sheaves f : S → T ,
these functors fit into a square which commutes up to natural isomorphism

sSh(S/T )
(h∗)/T

//

f∗

��

Sh(S/T ; Abgr)

f∗

��

sSh(S/S)
(h∗)/S

// Sh(S/S; Abgr).

Here f∗ restricts a (simplicial) sheaf along the functor S/S → S/T .

Conditions (1) - (3) imply that there exists a left Bousfield localization sSh(S, J)h∗
of the Joyal model structure whose weak equivalences are the h∗-isomorphisms (cf.
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the appendix of [11]). Condition (5) expresses the local nature of the functor h∗; for
example, it implies that there is a natural map of sheaves π0(X)→ h0(X).

Let M be a sheaf of simplicial monoids on S and suppose that M admits a countable
set of global sections mi : ∗ →M such that the map

(mi)i∈N : N // M

induces a surjection on π0-sheaves. In this case, the group completion theorem asserts
that the map

h∗(M)[π0(M)−1] // h∗(ΩBM)

is an isomorphism if the sheaf π0(M) is contained in the center of h∗(M).
To see this, let Ms denote the simplicial sheaf obtained as the (homotopy) colimit of

the sequence of right multiplication maps

M
(−)·mi1 // M

(−)·mi2 //// . . . (6.13)

where each mi occurs infinitely many times. It follows that

h∗(Ms) ∼= colim
(
h∗(M)

mi1 // h∗(M)
mi2 // h∗(M) // . . .

)
.

Because π0(M) is contained in the center of h∗(M), this colimit has the structure of
an associative algebra. Since every local section of π0(M) agrees with the restriction of
some global section mi, we have that

h∗(Ms) ∼= h∗(M)[π0(M)−1].

It therefore suffices to provide an h∗-isomorphism Ms → ΩBM . To do this, note that
left multiplication turns (6.136.13) into a sequence of left M -modules, so that Ms is a left
M -module as well. We obtain a pullback square of simplicial sheaves

Ms
//

��

B((Ms)M )

��

∗ // BM.

The simplicial sheaf B((Ms)M ) is weakly contractible, being a filtered colimit of
simplicial sheaves B(MM ) (see Example 6.96.9). By Theorem 5.15.1, the map Ms → ΩBM
is an h∗-isomorphism if M acts on Ms by h∗-isomorphisms.

To see that M acts on Ms by h∗-isomorphisms, we can use (5) to work locally. Given
an element m : S ×∆[0]→M , we may therefore assume that m is homotopic to one of
the global elements mi : ∗ →M , restricted to S. Then m acts by h∗-isomorphisms as
soon as mi acts by h∗-isomorphisms on M∞. The map

h∗(Ms) ∼= h∗(M)[π0(M)−1]
mi·(−)

// h∗(M)[π0(M)−1] ∼= h∗(Ms)

arises from left multiplication by mi in h∗(M), which becomes an isomorphism on
h∗(M)[π0(M)−1] by construction.

Example 6.14. Suppose that R is a sheaf of commutative rings on S. For each n, let
GLn(R) ⊆ Rn×n be the subsheaf of matrices with invertible determinant. Consider
the monoid M =

∐
nBGLn(R) whose multiplication is induced by the block sum of

matrices GLn(R) × GLm(R) → GLn+m(R). There is an isomorphism of simplicial
sheaves

Ms
∼= Z×BGL∞(R) := Z× colim

(
BGL1(R)

(−)⊕1
// BGL2(R)

(−)⊕1
// . . .

)
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because π0(M) ∼= N is generated by a single element 1. The group completion theorem
of Example 6.116.11 now asserts that the map

Z×BGL∞(R) // ΩB(M)

induces an isomorphism on homology sheaves.

Variant 6.15. The same argument applies when the (integral) homology functor h∗ is
replaced by any other functor

E∗ : sSh(S) // Sh
(
S; Modgr

E∗(∗)
)

which takes values in sheaves of graded modules over a sheaf of graded-commutative
rings E∗(∗) and satisfies conditions (1) - (5) above.

Appendix A.

In this appendix we briefly outline how Quillen’s Theorem B arises in the setting of
∞-categories, i.e. quasi-categories. If C is a quasi-category, (left) actions by C on spaces
can be modelled by left fibrations E → C. There are various ways to express that
E → C encodes an action of C by weak equivalences. For instance, let C → C[C−1]
denote a fibrant replacement of C in the Kan-Quillen model structure on simplicial
sets. We can factor the composite E → C → C[C−1] into a left anodyne map, followed
by a left (hence Kan) fibration over C[C−1], as in the right square of the diagram

E ×C {c} //

��

E //

��

E[C−1]

��

{c} // C // C[C−1].

(A.1)

We might say that C acts by weak equivalences if the map to the (homotopy) pullback
E → E[C−1]×C[C−1] C is a covariant weak equivalence. Informally, this means that

the action of C descends to an action of C[C−1].
Now recall that the Kan-Quillen model structure is the left Bousfield localization of

the covariant model structure over C at the inclusions {1} → ∆[1], for all φ : ∆[1]→ C.
Because E[C−1] ×C[C−1] C → C is a Kan fibration, it follows that C acts by weak
equivalences if and only if E → C is itself a Kan fibration. Equivalently, this means
that φ∗E → ∆[1] is a Kan fibration for every morphism φ in C. In this case, the
left pullback square in (A.1A.1) is certainly a homotopy pullback square for every object
c ∈ C. This square is the analogue of the square (5.25.2), where E plays the role of
XC. In other words, in the setting of quasi-categories one can give several (equivalent)
plausible definitions of ‘acting by weak equivalences’ which render Quillen’s Theorem
B tautologous.
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