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Abstract

A theorem of Pridham and Lurie provides an equivalence between formal moduli
problems and Lie algebras in characteristic zero. We prove a generalization of this
correspondence, relating formal moduli problems parametrized by algebras over a Koszul
operad to algebras over its Koszul dual operad. In particular, when the Lie algebra
associated to a deformation problem is induced from a pre-Lie structure it corresponds to
a permutative formal moduli problem. As another example we obtain a correspondence
between operadic formal moduli problems and augmented operads.
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1 Introduction

A classical heuristic in deformation theory asserts that the infinitesimal deformations of an
algebro-geometric object over a field k of characteristic zero are controlled by a differential
graded Lie algebra. A first instance of this can already be found in the work of Kodaira–
Spencer on deformations of complex manifolds [KS58KS58]; its recognition as a key principle in
deformation theory traces back to ideas of Deligne and Drinfeld. These ideas have been
further developed in the work of various authors [GM88GM88, Hin01Hin01, Kon03Kon03, Man04Man04], leading to
a precise mathematical formulation of the above heuristic as an equivalence of categories
between deformation problems and dg-Lie algebras [Pri10Pri10, Lur11Lur11].

More precisely, following work of Schlessinger [Sch68Sch68], one can describe the infinitesimal
deformations of an algebro-geometric object X over k by a functor

defX : Ringartk Set

from the category of (commutative) Artin local k-algebras with residue field k. This functor
sends each Artin local k-algebra A to the set of deformations ofX over A. The aforementioned
works have led to two modifications of this idea.

First, the deformations of X typically have automorphisms and homotopies between
them, leading to the study of deformation functors with values in spaces or simplicial sets.
Second, it has been observed that the deformation theory of an object X usually comes with
an additional obstruction theory, which is not encoded by the functor defX . A key idea,
tracing back to Drinfeld, is to incorporate such an obstruction theory by extending defX to
the category of dg-Artin local k-algebras. One is therefore led to contemplate deformation
functors

DefX : CAlgartk S

from the ∞-category of (connective) dg-Artin local k-algebras to the ∞-category of spaces.
Such deformation problems satisfy a variant of the Schlessinger conditions: their value on
k is contractible and they preserve fiber products along maps inducing a surjection on H0
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(see Section 22 for more details). Following Lurie [Lur11Lur11], we will refer to such functors as
formal moduli problems. The work of Lurie [Lur11Lur11] and Pridham [Pri10Pri10] now provides an
equivalence of ∞-categories

FMPk Liek
∼

between formal moduli problems and differential graded Lie algebras over k.
The equivalence between Lie algebras and formal moduli problems indexed by commuta-

tive algebras can be viewed as a manifestation of the Koszul duality between the commutative
operad and the Lie operad. In fact, there is a similar equivalence between associative algebras
and formal moduli problems indexed by associative algebras [Lur11Lur11], which can be thought of
as an incarnation of the Koszul self-duality of the associative operad. These two equivalences
are related in a natural way: if a Lie algebra arises from an associative algebra by taking
the commutator bracket, then the corresponding commutative formal moduli problem is the
restriction of an associative formal moduli problem.

Statement of results

The purpose of this paper is to generalize the above results to more general pairs of Koszul
dual operads over a field of characteristic zero. More precisely, for any augmented operad
P one can define an ∞-category ArtP of Artin P-algebras. A P-algebraic formal moduli
problem is then given by a functor

F : ArtP S

satisfying a natural analogue of the Schlessinger conditions (see Section 22 for more details).
We denote the ∞-category of such functors by FMPP. When P is a Koszul binary quadratic
operad, we prove that such P-algebraic formal moduli problems can be classified by algebras
over its Koszul dual operad:

Theorem 1.1. Let k be a field of characteristic zero and consider:

• a Koszul binary quadratic operad P in nonpositive cohomological degrees.

• its Koszul dual operad P!.

Then there is an equivalence of ∞-categories

FMPP AlgP! ; F T (F )[−1].

Here T (F ) denotes the tangent complex of the formal moduli problem, as defined by Lurie
[Lur11Lur11] (see also Definition 2.142.14).

This recovers the aforementioned results of Lurie and Pridham, taking P to be the
commutative operad, whose Koszul dual is the Lie operad, or the associative operad. It also
applies to many other Koszul dual pairs of algebraic operads (see Section 33). In fact, allusions
to the role of Koszul duality in such a correspondence have appeared before, notably in
[Dri14Dri14], [KonKon, Lecture 15] and in [Pri13Pri13]. For example, taking P to be the permutative operad,
whose Koszul dual is the pre-Lie operad [CL01CL01], we obtain a classification of permutative
formal moduli problems in terms of pre-Lie algebras. Such pre-Lie algebras indeed appear
naturally in the deformation theory of operadic algebras, see the work of Dotsenko, Shadrin
and Vallette [DSV15DSV15] (in fact, this was the original motivation for the present paper). From
the point of view of deformation theory, a Lie algebra underlies a pre-Lie algebra structure
whenever the corresponding commutative formal moduli problem is the restriction of a
permutative formal moduli problem.
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Our proof of Theorem 1.11.1 will make little use of the Koszul property of P: the Koszul
property mainly serves to guarantee that the operad P admits a resolution with good
properties. More precisely, we will deduce Theorem 1.11.1 from a statement about algebras over
the dual of the bar construction of an augmented dg-operad. In fact, it will be convenient to
work in a slightly more general setting:

(a) We work with coloured dg-operads.

(b) Instead of taking dg-operads over the base field, we will consider operads which are
augmented over a connective dg-algebra or, in the coloured case, over a connective
dg-category k (here connective means that the cohomology groups are concentrated in
nonpositive degrees). More precisely, we will consider coloured dg-operads P which fit
into a retract diagram of operads

k P k.

Given a dg-category k, we will refer to such objects as (augmented) k-operads.

For example, one can take k to be a discrete dg-category with finitely many objects
and only zero maps between them, or (Morita equivalently, cf. Remark 1.71.7) the semisimple
associative algebra k = k×n. In this case, deformations parametrized by Artin associative
algebras relative to k correspond to multi-pointed deformations, as frequently considered in
noncommutative geometry [Lau02Lau02].

The usual operadic homological algebra (as in [LV12LV12], for example) has an analogue
for augmented k-operads; Appendix AA provides all the results and definitions that we will
need. In particular, every (augmented) k-operad P has a dual kop-operad, given somewhat
informally as

D(P) = Dk(P) = ExtP(k,k).

More precisely, we can make the following definition:

Definition 1.2. Let k be a dg-category and let P be a (augmented) k-operad, which we
assume to be cofibrant as a left k-module throughout this introduction. We define the dual
operad to be the k-linear dual of the bar construction of P over k

Dk(P) := Bk(P)
∨.

The kop-operad structure arises from the k-cooperad structure on the bar construction. Up
to a degree shift, this corresponds to the dual operad introduced in [GK94GK94], see Section A.2A.2
for more details.

With these definitions, our main result is then the following:

Theorem 1.3. Let k be a dg-category over Q and let P be an augmented k-operad. Suppose
that the following conditions are satisfied:

(1) k and P are both connective, i.e. their cohomology is concentrated in nonpositive degrees.

(2) k is cohomologically bounded, i.e. there exists an N ∈ N such that all H∗(k)(c, d) are
concentrated in degrees [−N, 0].

(3) The derived relative composition product

P(1) ◦hP≥1 P(1)

is concentrated in increasingly negative cohomological degrees as the arity increases (cf.
Definition 3.373.37).
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Then there is an equivalence of ∞-categories

FMPP AlgDk(P); F T (F ) (1.4)

where T (F ) denotes the tangent complex (Definition 2.142.14). Furthermore, this equivalence is
natural in P.

We will denote the inverse equivalence (1.41.4) by

MC: AlgDk(P) FMPP

and think of it as sending a D(P)-algebra to the ‘formal P-algebraic stack of solutions to the
Maurer–Cartan equation’. Some justification for this terminology is provided in Section 77,
where we show that for various operads P, this inverse functor does indeed admit a description
in terms of Maurer–Cartan elements of dg-Lie algebras, resembling the construction by Hinich
[Hin01Hin01] in the commutative case. This is a by-product of our proof of Theorem 1.31.3, which
relies on a careful analysis of the adjoint pair

D : AlgP AlgopD(P) : D
′. (1.5)

Here D sends a P-algebra to the k-linear dual of its operadic bar construction. We point
out a slight difference from the arguments of Lurie: when P is the commutative operad,
we study the behaviour of the functor D (the Harrison complex) instead of the functor D′

(the Chevalley–Eilenberg complex). An adjunction between the Harrison and Chevalley–
Eilenberg complex also appears in the arguments from [Pri10Pri10, GLST20GLST20]; here the∞-category
of commutative algebras is replaced by a certain model category of pro-artinian algebras
(with the effect of making the Harrison complex a right adjoint detecting equivalences, in
contrast to (1.51.5)).

The conditions of Theorem 1.31.3 hold for Koszul binary quadratic operads, leading to the
following proof of Theorem 1.11.1:

Proof of Theorem 1.11.1 (from Theorem 1.31.3). The Koszul property of P asserts that there are
weak equivalences of operads (using curly brackets to denote degree shift)

ΩP¡ P D(P) P!{−1}.∼ ∼

Since P is generated by binary operations in degrees ≤ 0, the quadratic dual cooperad P¡

is generated by binary operations in degrees ≤ −1. It follows that the generators of ΩP¡

are concentrated in increasingly negative degrees as the arity increases. The operad P then
satisfies the conditions of Theorem 1.31.3 (condition (3) follows from Corollary A.26A.26), and the
sequence of equivalences

FMPP AlgD(P) AlgP!{−1} AlgP!

F 7→T (F ) ∼ V 7→V [−1]

provides the desired result.

Suppose that P is an augmented k-operad arising as the bar dual of a (sufficiently nice)
kop-operad. Theorem 1.31.3 then gives an interpretation of the ∞-category AlgP in terms
of formal moduli problems. One may wonder if there is a similar interpretation of the
∞-category of algebras over an arbitrary augmented k-operad P. Somewhat informally, one
expects a P-algebra to correspond to some homotopy-theoretic, or geometric, analogue of a
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‘conilpotent coalgebra over a conilpotent cooperad’. Theorem 1.31.3 precisely provides us with
a geometric way to think about this conilpotent cooperad, as a formal moduli problem

MCP : ArtOp S

on the category of Artin (i.e. nilpotent, finite-dimensional) operads. This is discussed in more
detail in Section 88 and relies on the fact that the operad for nonunital symmetric operads
is Koszul self-dual, relative to the dg-category of finite sets and bijections (k-linearizing
all sets of maps). One may informally think of the functor MCP as encoding a family
of finite-dimensional nilpotent operads, corresponding to the family of linear duals of the
finite-dimensional conilpotent sub-cooperads of the conilpotent cooperad BP.

Given a formal moduli problem X : ArtOp −→ S, there is a natural notion of formal
moduli problem over X. Indeed, in a similar way as one usually defines quasi-coherent
sheaves on moduli functors in algebraic geometry, one can define a formal moduli problem
over X to consist of the following data:

(1) a Q-algebraic formal moduli problem Fx ∈ FMPQ for every x ∈ X(Q).

(2) for every map f : Q −→ Q′ and every x ∈ X(Q), an equivalence

Ff∗(x) f∗Fx∼

together with coherence data between them (see Definition 6.146.14). Here f∗Fx denotes
the restriction of Fx along the forgetful functor ArtQ′ −→ ArtQ.

Informally, these formal moduli problems can be thought of as geometric analogues of
conilpotent coalgebras over conilpotent cooperads. Indeed, a formal moduli problem over X
describes a coherent collection of finite-dimensional nilpotent algebras over finite-dimensional
nilpotent operads. This roughly corresponds to the collection of linear duals of the finite-
dimensional conilpotent sub-coalgebras of a conilpotent coalgebra.

We then have the following result:

Theorem 1.6. Let P be a 1-coloured augmented operad. Then there is an equivalence of
∞-categories

FMPMCP
AlgP; F T (F ).∼

One may consider this as a geometric, or ∞-categorical, version of the relation between
algebras over P and conilpotent coalgebras over the conilpotent cooperad BP [Val14Val14].

Finally, let us point out that Brantner and Mathew [BM19BM19] have recently established
that in positive characteristic, formal moduli problems do not correspond to dg Lie algebras
but rather to partition Lie algebras. Their result can also be interpreted as a refinement of
Koszul duality following [BCN21BCN21, Example 1.6].

1.1 Outline and how to read the paper

Let us briefly describe the structure of the rest of the paper. In Section 22 we introduce the
main definitions concerning formal moduli problems parametrized by algebras over operads.

In Section 33, we will discuss various (non-)examples and special cases of our main theorem;
these include many of the well-known operads. This section essentially only makes reference
to the statement of the main theorem relating operadic moduli problems with algebras over
the dual operad (Theorem 1.31.3), or rather to a slightly more precise formulation thereof
(Theorem 5.15.1). Taking this for granted, Section 33 essentially only assumes some familiarity
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with operadic homological algebra. For operads over a field k of characteristic 0, all operadic
results we use are classical and contained for instance in [GK94GK94, LV12LV12].

Some additional techniques are required in Section 3.33.3, where we treat deformations
parametrized by operads. Since these are themselves algebras over a coloured operad, this
involves a version of the usual operadic homological algebra relative to a dg-category k. This
is developed in Appendix AA, with a few more specific results used in Section 3.33.3 appearing in
Section 88. For readability, we have tried to put the tools from Appendix AA in the background;
as a rule of thumb, the reader may think of k as a dg-algebra and suppose that all results
that hold for classical k-operads will also hold for k-operads and their algebras, as long as the
corresponding modules are k-cofibrant. In particular, the reader only interested in moduli
problems for algebras over k-operads can safely ignore Appendix AA.

In Section 44 we explain how to associate to an operadic formal moduli problem an algebra
which requires establishing the adjoint pair (1.51.5) (see Theorem 4.104.10) and proceed to describe
the general framework that that goes into our proof of Theorem 1.31.3.

Section 55 is the technical heart of the proof (Theorem 5.15.1); in this section, we verify
the technical hypotheses that allow us to apply the axiomatic argument (Theorem 4.184.18)
described in Section 4.24.2. In Section 66, we discuss the naturality of the equivalence (1.41.4) in
the operad P and apply this to deduce Theorem 1.61.6 in Section 6.36.3. Under certain conditions
on the operad P, we describe this equivalence more concretely in terms of Maurer–Cartan
elements in Section 77 (see Theorem 7.187.18).

Finally, Section 88 contains some further remarks about Koszul duality relative to a base
k. In particular, we use this to spell out some leftover proofs from Section 3.33.3; in particular,
we show that the operad for operads is, in a relative sense, Koszul self-dual.
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1.2 Conventions

Throughout, we work over a field k of characteristic zero11 and all objects involved are
differential graded (with differentials of degree +1), even if this is not said explicitly.

Given k ∈ Z and a graded vector space V we denote by V [k] its degree shift satisfying
(V [k])d = V k+d.

Model categories and ∞-categories. Since certain functors are only defined at the level
of ∞-categories, we will need to distinguish between model categories or relative categories,
and the∞-categories obtained from them by inverting the weak equivalences. We will employ
the following basic convention: we will denote by Cdg a certain category of dg-objects, e.g.

1In fact, everything we do also works over an arbitrary ring, instead of a field of characteristic zero, if one
restricts to nonsymmetric operads.
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operads or algebras over them, and by C the underlying ∞-category. For example:

AlgdgP =
{
dg-algebras over P

}
AlgP = AlgdgP [quasi-iso−1].

We will typically refer to the objects of each of these two categories as P-algebras, leaving
the differential graded structure implicit (except for dg-categories, in order not to confuse
these with ordinary categories or ∞-categories).

Linear algebra. Let A be a dg-category (over our base field of characteristic zero). Recall
that a left A-module is a dg-functor A −→ Chk to the category of cochain complexes and a
right A-module is a functor Aop −→ Chk, i.e. a left Aop-module. By default, modules are
left modules. For an object c ∈ A, the free A-module at c is the corepresentable functor

Ac : A Chk; d A(c, d).

An A-B-bimodule is a Bop ⊗A-module (so that an A-k-bimodule is just an A-module). We
will denote the canonical A-bimodule by

A : Aop ⊗A Chk; (c, d) A(c, d).

Given an A-B-bimodule E and a B-C-bimodule F , we can form the tensor product (Day
convolution) E ⊗B M ; for a ∈ A and c ∈ C, one explicitly computes (E ⊗B F )(c, a) as the
coequalizer

⊕
b,b′∈B

E(b′, a)⊗B(b, b′)⊗M(c, b)
⊕
b∈B

E(b, a)⊗M(c, b) (E ⊗B F )(c, a).
act on E

acts on F

In particular, when C = k this defines a functor E ⊗B − : LModdgB −→ LModdgA , and
similarly for right modules. This satisfies the obvious identities, e.g. A ⊗A M = M and
E ⊗B Bc = Ec = E(c,−). As usual, composing two such functors coincides with tensoring
bimodules: if E is a A-B-bimodule, and F a B-C-bimodule, then

(E ⊗B −) ◦ (F ⊗C −) ∼= (E ⊗B F )⊗C − .

The functor E ⊗B − has a right adjoint, given by HomA(E,−), where the left B-module
structure on HomA(E,N) comes from the right B-action on E. Similarly, the right adjoint
to −⊗A E is HomB(E,−).

Finally, for M a left A-module, we will denote

M∨ := HomA(M,A).

This is a right A-module via the canonical right action of A on itself.

Remark 1.7. Let A be a dg-category with finitely many objects and consider its (ordinary)
category of left modules. This category has a single compact projective generator, given by
the direct sum of all free modules

P =
⊕
c∈A

Ac.

Likewise, the category of right A-modules has a single compact generator Q =
⊕

c∈A(cA). It
follows from Morita theory that the category of left A-modules is equivalent to the category
of modules over the dg-algebra B = EndA(P )

op ∼= EndAop(Q). Unraveling the definition,
this algebra is given by the cochain complex

B ∼=
∏
c,d

A(c, d)
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and the product of two morphisms is their composition whenever they are composable, and 0
otherwise. The equivalence from leftA-modules toB-modules simply sends a leftA-moduleM
to Q⊗AM ∼=

⊕
cM(c), with the obvious action maps arising from A(c, d)⊗M(c) −→M(d).

The following is a special case of [Lur09Lur09, Proposition A.3.3.2] (where we enrich over Chk
with the projective model structure):

Proposition 1.8. For any dg-category k, the category of k-modules admits a cofibrantly
generated model structure for which the fibrations are pointwise surjections and weak equiva-
lences are pointwise quasi-isomorphisms. Furthermore, this model structure is enriched over
Chk.

Remark 1.9 (Cofibrant objects). Note that this model structure arises from transfer along

the free-forgetful adjunction
∏
c∈k Chk ⇆ LModdgk with right adjoint evaluating at each

object c ∈ k. Every free k-module (in the image of the left adjoint) is therefore cofibrant
and the generating cofibrations are the cone inclusions kc[n] −→ Cone(kc[n]) for c ∈ k.
Conversely, a cofibrant object is (in particular) the retract of quasi-free k-module.

It is not hard to verify that a map in LModdgk is a cofibration if and only if it is a
monomorphism whose cokernel is cofibrant. As a consequence, if M is a k-module equipped
with an exhaustive increasing filtration whose associated graded is cofibrant, then M is itself
cofibrant.

If k is of the form k[G], where G is any locally finite groupoid, then Maschke’s theorem
[Wei94Wei94, Chapter 4.2] implies that every k[G]-module M is the retract of the free k[G]-module
generated by M (by averaging over G). By the above remark, this implies that all objects
are cofibrant and that the cofibrations are the monomorphisms.

Operads. In this paper we make extensive use of the machinery of algebraic operads,
namely bar (denoted B) and cobar (denoted Ω) constructions for both (co)operads and for
(co)algebras, relative to a Koszul twisting morphism (denoted −→·· ), as developed in [LV12LV12].

In fact, throughout we will employ the theory of coloured operads relative to a base
dg-category, which we will denote by k. More precisely, suppose that k has a set of objects
S. By a k-operad P we will mean an S-coloured (symmetric, differential graded) operad
together with maps of S-coloured operads k −→ P −→ k that compose to the identity (cf.
Proposition A.2A.2 for a slightly different perspective). In particular, we will always assume
that P is augmented over k, unless explicitly stated otherwise.

An algebra over a k-operad P is simply an algebra over the underlying coloured operad.
In particular, each P-algebra has an underlying left k-module and the usual constructions
with P-algebras, such as the free P-algebra or the bar construction, can be performed at the
level of k-modules as well. We refer to Appendix AA for an extensive discussion of the usual
operadic homological algebra relative to a dg-category k.

For any operad P we denote by P{k} its degree shift by k, such that A is a P{k} algebra
if and only if A[k] is a P algebra. In particular, if P is concentrated in degree 0, P{1}(n) is
concentrated in degree −n+ 1.

All operads (resp. cooperads) are assumed to be unital and augmented (resp. counital
and coaugmented) and have no other constraints in arities 0 and 1, unless otherwise explicitly
written.

We will say that a k-operad P is n-reduced if the map k −→ P is an isomorphism in
arities ≤ n (in particular, it is trivial in arities ̸= 1 and ≤ n).

Assumption 1.10 (Cofibrancy assumptions). Since we are not working over a field, various
point-set level constructions involving tensor products and k-linear duals are only well-
behaved when applied to left k-modules that are cofibrant (for the model structure of
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Proposition 1.81.8). For this reason, we will typically (tacitly) assume throughout the text that
our k-operads are cofibrant as left k-modules and that k-cooperads are filtered-cofibrant left
k-modules (Definition A.13A.13). Since our main results are formulated in homotopy-invariant
terms, one can always replace P by a k-operad for which this assumption holds.

2 Moduli problems for algebras over operads

In this section we introduce the main notion of a formal moduli problem for algebras over a
(augmented) k-operad P and describe the associated tangent complex. Recall that a classical
(commutative) formal deformation functor is a functor

Ringartk Set

from the category of Artin local commutative k-algebras satisfying (some version of) the
Schlessinger conditions. To describe the notion of a formal moduli problem for algebras over
a k-operad P, we will replace the category of Artin local rings by the following category of
Artin P-algebras.

Definition 2.1. Let k be a dg-category and let P be a k-operad. A trivial algebra is a
P-algebra obtained from a k-module by restriction along the augmentation map P −→ k.
We will denote by

kc[n] := k(c,−)[n]
the trivial algebra whose underlying k-module is free on a generator at the object c ∈ k, of
cohomological degree −n. We denote its cone by kc[n, n+ 1].

Definition 2.2 (cf. [Lur11Lur11, Definition 1.1.8]). The ∞-category ArtP of Artin P-algebras is
the smallest full subcategory of the ∞-category of P-algebras such that:

(1) the trivial algebra kc[n] is Artin for every object c ∈ k and every n ≥ 0.

(2) for any Artin P-algebra A and any map A −→ kc[n] with n ≥ 1, the homotopy pullback
A×hkc[n] 0 is also Artin.

By definition, being Artin is a homotopy-invariant condition: any algebra quasi-isomorphic
to an Artin algebra is itself Artin. As we see in Example 2.102.10, in the case P is the commutative
operad, we recover the usual notion of an Artin local algebra (or rather, their augmentation
ideals, which is equivalent data).

Example 2.3. Suppose that A is an Artin P-algebra and that

kc[n] B A

is a strict square zero extension of A by the trivial A-module kc[n], for n ≥ 0. Then B
is Artin as well. Indeed, pulling back to a quasi-free resolution of A if necessary, we may
assume that A is a quasi-free P-algebra. In this case, we can write B = A⊕ kc[n] as a split
square zero extension, with differential of the form

d
(
a, v

)
=

(
da, dv + χ(a)

)
a ∈ A v ∈ kc[n].

The map χ defines a P-algebra map χ : A −→ kc[n+ 1], and one can easily verify that A′

fits into a strict pullback square (a homotopy pullback since the vertical maps are fibrations)

B = A⊕ kc[n] kc[n, n+ 1]

A kc[n+ 1].χ

10



Since kc[n, n+ 1] is contractible, we find that B ≃ A×hkc[n+1] 0 is Artin.

Remark 2.4. In fact, the argument from Example 2.32.3 can be used to give the following
chain-level description of the Artin P-algebras: they form the smallest class of P-algebras
that is closed under quasi-isomorphisms and (strict) square zero extensions by the trivial
modules kc[n] with n ≥ 0.

Definition 2.5. A P-algebra A is strictly Artin if it admits a filtration

A = A(n) −→ . . . −→ A(0) = 0

with the property that each A(i) −→ A(i−1) is a square zero extension with kernel kci [pi],
for some ci ∈ k and pi ≥ 0.

An iterated application of Example 2.32.3 shows that a strictly Artin P-algebra is Artin.
Conversely, if P is a cofibrant k-operad, then every Artin P-algebra is quasi-isomorphic to a
strictly Artin P-algebra (see Lemma 5.125.12).

Remark 2.6. The k-module underlying a strictly Artin P-algebra is cofibrant, and quasi-
freely generated (i.e. disregarding differentials) by finitely many generators of degree ≤ 0. In
particular, it is a perfect left k-module.

Let us remark that in favourable cases, being Artin reduces to a condition at the level of
the cohomology groups of a P-algebra:

Definition 2.7. Let X be a coloured symmetric sequence of chain complexes (e.g. a k-operad).
We will say that X is connective if for all tuples of colours,

H∗(X(c1, . . . , cp; c0)) = 0 for all ∗ > 0.

Furthermore, X is eventually highly connective if for every n ∈ Z, there exists an p(n) ∈ N
such that H∗(X) vanishes in degrees ∗ ≥ n in arities ≥ p(n).

Lemma 2.8. Suppose that k = k is a field and that P is a connective operad. Then a
P-algebra A is Artin if and only if it satisfies the following conditions:

• Hi(A) = 0 for i > 0 and i≪ 0.

• each Hi(A) is a finite-dimensional vector space.

• each Hi(A) is a nilpotent module over the H0(P)-algebra H0(A), in the following sense:
consider the action maps

µ(a1, . . . , aq−1,−) : Hi(A) Hi(A) (2.9)

for µ ∈ H0(P)(q) and ai ∈ H0(A). Then there exists an n such that any n-fold composition
of such (possibly different) action maps is zero.

Proof. Consider a homotopy pullback of P-algebras of the form B ≃ A ×hk[n] 0. Then the

map H∗(B) −→ H∗(A) on cohomology is a square zero extension of H0(P)-algebras with
kernel k[n − 1]. Using this inductively, one verifies the above conditions for every Artin
P-algebra A.

For the converse, we may assume P is a cofibrant operad and by homotopy transfer [LV12LV12,
Section 10.3] that A is minimal, so that Hi(A) = Ai. Let i ≤ 0 be the minimal number such
that Ai ̸= 0. We claim that there exists a nonzero v ∈ Ai such that µ(a1, . . . , ap, v) = 0
for any operation µ. Assuming this, we find that

〈
v
〉
−→ A −→ A/

〈
v
〉
is a square zero
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extension by k[i]. Example 2.32.3 then shows that A is Artin if A/
〈
v
〉
is Artin, and the result

follows by induction.
Since we assumed P to be connective, degree reasons dictate that the claim is equivalent

to the following: there exists a v ∈ Ai on which the H0(P)-algebra A0 acts trivially. Let n
be the minimal number such that any n-fold composition of action maps (2.92.9) is zero. If
n = 0 then A0 acts trivially on Ai and we are done. For n ≥ 1, there exists by assumption
an (n− 1)-fold composite of action maps which is nonzero. Any nontrivial element v in its
image is then annihilated by all of A0.

Example 2.10. Let P = Com be the 1-reduced commutative operad. An Artin Com-algebra
is exactly a nonunital cdga m with finite dimensional cohomology groups which are zero in
degrees > 0 and ≪ 0, and with H0(m) nilpotent. These are exactly the augmentation ideals
of the unital Artin dg-k-algebras from [Lur11Lur11, Proposition 1.1.11].

With the Artin P-algebras playing the role of local Artin dg-algebras, we now define a
‘P-algebraic formal moduli problem’ to be a functor ArtP −→ S satisfying the Schlessinger
conditions.

Definition 2.11. Let P be a k-operad. A formal moduli problem over P is a functor

F : ArtP S

to the ∞-category of spaces, satisfying the following two conditions:

(1) F (0) ≃ ∗, where 0 is the zero algebra.

(2) F sends a pullback diagram in ArtP of the form

A′ 0

A kc[n]

(2.12)

to a pullback square of spaces, for every colour c ∈ k and n ≥ 1.

We will denote the ∞-category of formal moduli problems over P by FMPP.

Example 2.13. To every P-algebra B we can associate its formal spectrum, a formal moduli
problem Spf(B) : ArtP −→ S, given by A 7−→ MapP(B,A).

If one thinks of the functor F as assigning to a P-algebra A the space of deformations
of a certain object X , then the above conditions encode the usual obstruction theory for
deformations along square zero extensions. Indeed, note that the pullback square (2.122.12)
exhibits A′ as a square zero extension of A by the trivial A-module kc[n− 1] (cf. Example
2.32.3). For every deformation XA ∈ F (A), one obtains an ‘obstruction class’

ob(XA) ∈ π0F (kc[n])

by applying the functor F to the map A −→ kc[n]. This obstruction class is zero if and only
if XA lifts to a deformation over the square zero extension A′.

Let us recall that there is a more cohomological way of interpreting these kinds of
obstruction classes, as follows. Applying condition (2)(2) in the case where A = 0, one obtains
a natural sequence of equivalences

F
(
kc
)

ΩF
(
kc[1]

)
Ω2F

(
kc[2]

)
. . .∼ ∼ ∼

In other words, the sequence of spaces F
(
kc[n]

)
n≥0

forms an Ω-spectrum T (F )c.
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Definition 2.14. We refer to T (F )c as the tangent complex of F at c, and to the spectra
T (F )c∈k collectively as the tangent complex of F .

In fact, the tangent complex admits a canonical kop-module structure, as we will see in
the next lemma. We denote the category of spectra by Sp. Recall that there is a functor
ModZ → Sp sending X to the spectrum formed by (the Dold–Kan image of) its iterated
connective covers τ≤0X, τ≤1X, . . . , each of which is the looping of the next.

Lemma 2.15. For any formal moduli problem F over P, the tangent complex has a unique
inverse image under the forgetful functor

Modkop
∏
c∈kop ModZ

∏
c∈kop Sp (2.16)

with the following property: for all free kop-modules generated by c ∈ kop in degree n ≥ 0,
there is a natural equivalence

MapModkop

(
kopc [−n], T (F )

)
≃ F

(
kc[n]

)
.

In other words, the obstructions to lifting deformations along square zero extensions are
given by classes in the cohomology of the kop-module T (F ).

Remark 2.17. The first functor in (2.162.16) takes a kop-module V to the collection of chain
complexes V (c). Equivalently, one can consider these as HZ-module spectra (via the Dold-
Kan correspondence [SS03SS03]). The second functor then forgets the HZ-module structure. The
composite functor preserves both limits and colimits, since its left adjoint preserves compact
generators: it sends (0, . . . , 0,Sn, 0, . . . , 0), with a sphere at place c, to the free kop-module
kopc [n].

Proof. Uniqueness follows from the fact that the free modules kopc [−n] with n ≥ 0 generate
the ∞-category Modkop under colimits. Existence follows either from Theorem 4.184.18, or from
the following argument. Let C≤n ⊆ Modkop denote the subcategory generated by the free
kop-modules kopc [n] under finite limits and let C = colimn C

≤n be their union. Consider the
functors

Xn :
(
C≤n)op S; V ΩnF

(
V [−n]∨

)
.

These functors are well-defined because the trivial P-algebra V [−n]∨ is Artin for all V ∈ C≤n.
Because F is a formal moduli problem, there are natural equivalences Xn ≃ Xn+1

∣∣
C≤n , so

that one obtains a functor

X : Cop S; V ΩnF
(
V [−n]∨

)
.

This functor sends finite colimits in C to limits of spaces, since F is a formal moduli problem.
But C ⊆ Modkop contains all free kop-modules and is closed under finite colimits, so it follows
that X is representable by a kop-module [Lur09Lur09, Corollary 5.3.5.4, Proposition 5.3.5.11].
Unravelling the definitions, this is exactly the desired kop-module T (F ).

3 Examples and applications

In this section we discuss various examples and applications of our Theorem 1.11.1. We start
in Section 3.13.1 by recalling the usual deformation theory along artinian algebras from this
perspective, with emphasis on (commutative) deformations of algebraic structures.

In the deformations theory of operads and algebras over them, one also encounters
deformation problems parametrized by permutative algebras. Koszul dually, this roughly
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corresponds to the fact that deformation complexes are pre-Lie algebras. In Section 3.23.2 we
more generally treat such permutative deformation problems, their pre-Lie tangent spaces
and some concrete examples, while in Section 3.33.3 we consider deformations along operads.

Finally, in Section 3.43.4, we will give some further examples of operads satisfying the
conditions of Theorem 1.31.3. Of these conditions, the most important one is condition (3)(3),
which we discuss in some detail. This last section is mostly independent of the previous ones.

3.1 Commutative and associative deformation theory

Let us start by briefly reviewing how Theorem 1.11.1 plays out in the classical cases of the
(k-linear) commutative operad Com and associative operad As. Note that, since we are
always working with augmented operads, algebras over the operads Com and As are given by
nonunital commutative and associative algebras. Such algebras are equivalent to augmented
unital commutative algebras by adding a unit and taking the augmentation ideal:

AlgCom CAlgaugk AlgAs Algaugk .∼=
A↔A+

∼=
A↔A+

In particular, this identifies the subcategory of nonunital (commutative) Artin dg-algebras
with the subcategory of augmented Artin dg-algebras and we can identify F ∈ FMPCom with
a formal moduli problem F : CAlgartk −→ S in the usual sense of [Lur11Lur11] (and similarly in
the associative case).

The operads Com and As are binary Koszul with Koszul dual operads given by Lie and
As. Consequently, there are Koszul duality functors

DLie : AlgCom AlgopLie DAs : AlgAs AlgopAs

sending a commutative (associative) algebra A to the linear dual of the cofree coLie (coasso-
ciative) coalgebra on A[1], with differential induced by the multiplication on A. These con-
structions preserve quasi-isomorphisms, so that they indeed induce functors of ∞-categories.
Theorem 1.11.1, or more precisely Theorem 5.15.1, then yields equivalences

FMPCom AlgLie FMPAs AlgAs

T [−1]

MC

∼
T [−1]

MC

∼

where the functor MC is defined such that for a pair (g, A) of a Lie algebra and an Artin
commutative algebra (resp. two associative algebras)

MCg(A) = Map(D(A), g).

Of course, these two cases of the theorem have already been established by Pridham [Pri10Pri10]
and Lurie [Lur11Lur11]. To illustrate these equivalences (and motivate what will follow), let us
recall how these equivalences can be used to study deformations of algebras and modules:

Example 3.1. Suppose that B is a connective associative algebra and M a connective
B-module. Then one can consider the associative formal moduli problem

DefM : ArtAs S; DefM (A) = ModA+⊗B ×Modk⊗B {M}

sending a (nonunital) associative algebra A to the space of all A+⊗B-modules M ′ equipped
with a B-linear equivalence k ⊗A+ M ′ ≃ M . This formal moduli problem is classified
by the derived endomorphism algebra RHomB(M,M) [Lur11Lur11, Corollary 5.2.15], i.e. the
endomorphism algebra of a cofibrant resolution of M over B.
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Example 3.2. Suppose that Q is a connective k-operad and that R is a connective k-linear
Q-algebra. Then one can consider the deformation problem

DefR : ArtCom S; DefR(A) = AlgA+⊗Q ×AlgQ
{R}

sending a (nonunital) commutative algebra A to the space of all A+-linear Q-algebras R′

(equivalently, algebras over the tensor product A+⊗Q) equipped with a Q-algebra equivalence
k⊗A+ R′ ≃ R. The Lie algebra classifying this formal moduli problem is given by the derived
derivations of R, i.e. the derivations of a cofibrant replacement of R [Hin04Hin04, Nui19Nui19].

Remark 3.3. When Q is an operad concentrated in arity 1 (i.e. an algebra), Example 3.23.2 is
simply the restriction of Example 3.13.1 to commutative Artin algebras. This is reflected in
the fact that the Lie algebra classifying commutative deformations of a B-module M is the
Lie algebra underlying the associative algebra RHomB(M,M). We will come back to this in
Section 3.23.2 and (in more detail) in Section 66.

Example 3.4. For an operad Q and a Q-algebra (R,µ), one can also consider the commutative
formal moduli problem DefR sending A to the space of A+-linear Q-algebra structures on
A+ ⊗ R with a Q-algebra equivalence k ⊗A+ (A+ ⊗ R) ≃ R. Note that this differs from
Example 3.23.2: we only consider deformations of (R,µ) whose underlying complex is the trivial
deformation A+ ⊗R of the complex underlying R (i.e. we do not deform the differential).

Note that a Q-algebra structure on R⊗A+ is equivalent to the datum of a k-linear operad
map to the (A+-linear, non-augmented) endomorphism operad of A+ ⊗R

Q −→ EndA+(A+ ⊗R) ≃ End(R)⊗A+.

Here the equivalence follows from the fact that A+ is Artin, so in particular perfect as a
k-module. Using this, it follows that the space DefR(A

+) is equivalent to the space of dotted
lifts in the following diagram in the ∞-category Opk of k-linear operads:

Endk(R)⊗A+

Q Endk(R).µ

(3.5)

The commutative formal moduli problem from Example 3.43.4 makes sense more generally:
instead of deforming an operad map into the endomorphism operad Endk(R), one can take
any map of k-linear operads ϕ : Q −→ P. To describe the associated Lie algebra, let us
suppose that Q = ΩC arises as the cobar construction of a k-cooperad (which can always be
arranged up to quasi-isomorphism, cf. Proposition A.22A.22) and recall the following construction:

Construction 3.6 (Deformation complex). Let P be a (not necessarily augmented) k-linear
operad, C a k-cooperad with cokernel C of its coaugmentation, and Q = ΩC. The complex

g = Hom(C,P) =
∏
p

Hom
(
C(p),P(p)

)Σp
of maps of symmetric sequences C −→ P comes equipped with a binary operation ⋆,
such that [ϕ, ψ] = ϕ ⋆ ψ − (±)|ϕ|·|ψ|ψ ⋆ ϕ endows g with the structure of a dg-Lie algebra
[LV12LV12, Proposition 6.4.7]. Informally, ϕ ⋆ ψ(c) is obtained by taking the sum of all partial
cocompositions of c into two elements of C, applying ϕ and ψ to them and then applying the
composition in P (see also Construction A.17A.17 and Remark A.19A.19 for more details).
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An operad map ϕ : Q = ΩC −→ P then corresponds to a Maurer–Cartan element in g
[LV12LV12, Theorem 6.5.7] (or see Proposition A.20A.20). Given such a map ϕ : Q −→ P, let us write

gϕ =
(
g, d+ [ϕ,−]

)
for the twisting of g by the Maurer–Cartan element ϕ. This is again a dg-Lie algebra for the
original bracket [−,−].

Let ϕ : ΩC = Q −→ P be a map from an augmented to a not necessarily augmented
k-linear operad. The deformations of ϕ determine a formal moduli problem

Defϕ : Q→P(A) = MapOp(Q,P⊗A+)×MapOp(Q,P) {ϕ} (3.7)

sending each A ∈ AlgartCom to the space of deformations of ϕ (as in Diagram (3.53.5)). This
deformation problem is classified by the Lie algebra gϕ, as illustrated by the following two
observations:

Lemma 3.8. Suppose that g is a Lie algebra and that A is strictly Artin. If one chooses a
fibrant simplicial resolution of g, then the space MCg(A) can be modeled by the simplicial set
of Maurer–Cartan elements

MCg(A) = MC(g• ⊗A) .

Proof. For strictly finite-dimensional A, the Lie algebra D(A) = DLie(A) freely generated
by A∨[−1], with differential given on generators by the linear dual of the product. If A is
furthermore nilpotent, then DLie(A) is cofibrant: the dual of the adic filtration on A yields a
filtration on D(A) where each stage is obtained from the previous one by adding generators
whose differential is contained in the previous stage. The mapping space MapLie(D(A), g)
can then be modeled by the simplicial set of maps D(A) −→ g•. Since D(A) is quasi-free on
A∨[−1], such maps are determined by degree 1 elements in A⊗ g• and compatibility with
the differential translates into the Maurer–Cartan equation [LV12LV12, Corollary 11.1.4].

Proposition 3.9. Let ϕ : ΩC = Q −→ P be as above and let A be a strictly Artin commutative
dg-algebra. Then there is an equivalence Defϕ : Q→P(A) ≃ MCgϕ(A).

Proof. Let us start by recalling the following property of the twisting of a Lie algebra by a
Maurer–Cartan element: a degree 1 element ϕA ∈ gϕ ⊗A is Maurer–Cartan element if and
only if the element ϕ⊗1+ϕA defines a Maurer–Cartan element in g⊗A+ = (g⊗k)⊕ (g⊗A).
Since A is finite-dimensional, the Lie algebra g ⊗ A+ coincides with the Lie algebra from
Construction 3.63.6 applied to C and P⊗A+. By the discussion there, we obtain bijections

MC(gϕ ⊗A) ∼= MC(g⊗A+)×MC(g) {ϕ} = HomOpdg(ΩC,P⊗A+)×Hom
Opdg

(ΩC,P) {ϕ}

to the set of maps of dg-operads ΩC −→ P⊗A+ which reduce ϕ modulo A.
Now note that Construction 3.63.6 is natural in P. A fibrant simplicial resolution P• of

the operad P with P0 = P therefore gives rise to a simplicial Lie algebra gϕ• , which forms a
simplicial resolution of gϕ. Lemma 3.83.8 and the previous argument then show that the space
MCgϕ(A) can be modeled by the simplicial set

HomOpdg(ΩC,P• ⊗A+)×Hom
Opdg (ΩC,P•) {ϕ}.

Since ΩC is a cofibrant operad and P•⊗A+ is a simplicial resolution of P⊗A+, the simplicial
set HomOpdg(ΩC,P• ⊗ A+) is a model for the space MapOp(ΩC,P ⊗ A+). Furthermore,
note that the map of simplicial resolutions P• ⊗ A+ −→ P• is a Reedy fibration between
simplicial resolutions (the relative matching maps are given by the surjections Pn ⊗A+ −→
Mn(P•) ⊗ A+ ×Mn(P•) Pn). Consequently, the map of simplicial sets HomOpdg(ΩC,P• ⊗
A+) −→ HomOpdg(ΩC,P•) is a Kan fibration [Hir03Hir03, Theorem 16.5.2]. The above pullback
is therefore a homotopy pullback, so that it indeed models the space Defϕ : Q→P(A).
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3.2 Permutative deformation theory

In this section we will spell out the contents of Theorem 1.11.1 in a bit more detail for a less
classical pair of Koszul dual operads: we will consider deformation problems whose associated
Lie algebra arises from a pre-Lie algebra.

Definition 3.10. A pre-Lie algebra is a vector space V equipped with a bilinear operation
{−,−} such that for every x, y, z ∈ V ,

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}} .

Such pre-Lie algebras are algebras over a k-linear operad preLie.

Definition 3.11 ([Cha01Cha01]). A permutative algebra, or Perm-algebra, is an associative algebra
(X, ·) such that for every x, y, z ∈ X,

x · (y · z) = x · (z · y) . (3.12)

One easily sees that permutative algebras are algebras over a k-linear operad Perm (which in
fact arises from an operad in sets).

The operads Perm and preLie are both binary quadratic, and it is not hard to verify that
they are each others quadratic dual. Consequently, there is a functor of ∞-categories

D : AlgPerm AlgoppreLie; A BcopreLie(A)
∨ (3.13)

sending a permutative algebra A to the k-linear dual of its bar construction, i.e. of the
cofree pre-Lie coalgebra generated by the suspension A[1], with differential determined by
the permutative structure on A [GK94GK94, LV12LV12] (or see Definition A.30A.30). This construction
preserves quasi-isomorphisms and hence descends to a functor of ∞-categories.

Since the operads Perm and preLie are Koszul [CL01CL01], we then have the following special
case of Theorem 1.11.1 (made slightly more precise, as in Theorem 5.15.1):

Theorem 3.14. For every pre-Lie algebra g, consider the functor

MCg : ArtPerm S; A MappreLie
(
D(A), g

)
.

Here the domain is the ∞-category of Artin permutative algebras, i.e. A such that H∗(A) is
finite-dimensional and concentrated in degrees ≤ 0, and such that H0(A) is nilpotent (see
Lemma 2.82.8). This determines an equivalence of ∞-categories

MC: AlgpreLie FMPPerm.
∼

Remark 3.15. The operad Perm fits into a sequence of Koszul binary quadratic operads

As −→ Perm −→ Com ,

(compatible with quadratic data) whose quadratic dual sequence is

As←− preLie←− Lie .

This dual sequence sends the Lie bracket to the commutator of the pre-Lie structure
(respectively, of the associative product). The equivalence from Theorem 1.11.1 is natural in
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these operads, in the sense that the equivalence of Theorem 3.143.14 and the equivalences from
Section 3.13.1 fit into a commuting diagram of ∞-categories (Proposition 6.106.10)

AlgAs AlgpreLie AlgLie

FMPAs FMPPerm FMPCom.

∼ ∼ ∼

Here the top horizontal maps forget algebraic structure, while the bottom horizontal maps
restrict formal moduli problems along the forgetful functors ArtCom −→ ArtPerm −→ ArtAs.
This tells us in particular that a commutative formal moduli problem lifts to a permutative
one (respectively, to an associative one) if and only if the Lie bracket on its tangent complex
arises from a pre-Lie structure (respectively, an associative structure).

In fact, this same remark applies to any other map P −→ Q of Koszul binary quadratic
operads, with Koszul dual map Q! −→ P!.

Before providing several examples, let us give a more explicit description of the value of
the permutative formal moduli problem MCg classified by a pre-Lie algebra g on a strictly
Artin permutative algebra A. To this end, note that the tensor product g⊗A of a pre-Lie
algebra g and a permutative algebra A is a Lie algebra under

[x⊗ a, y ⊗ b] := (−1)|a||y|{x, y} ⊗ a · b− (−1)(|a|+|x|)|y|{y, x} ⊗ a · b .

Lemma 3.16. Suppose that g is a pre-Lie algebra and that A is strictly finite-dimensional
nilpotent permutative algebra A. If one chooses a fibrant simplicial resolution g• of g, then
the space MCg(A) can be modeled by the simplicial set of Maurer–Cartan elements

MCg(A) = MC(g• ⊗A) .

Proof. The proof of Lemma 3.83.8 carries over verbatim (or see Remark 7.217.21).

A similar result applies to any Koszul dual pair of binary quadratic operads.

Example: two-parameter permutative deformations.

Let A be the quotient of the free permutative algebra on two degree zero generators
ℏ, ϵ by the relations ℏ · ϵ = 0 = ϵ2. As a vector space, it admits the following basis:
{ℏn, ϵ · ℏm|n ≥ 1,m ≥ 0}.

Lemma 3.17. For every pre-Lie algebra g, the Maurer–Cartan set of g⊗A consists of pairs
(X,Y ) of degree one elements in g[ℏ] = g⊗k k[ℏ] such that

X(0) = 0, dX + {X,X} = 0 and ∇X(Y ) = 0,

where ∇X = d− (−1)|−|{−, X}.

Proof. A degree one element γ in g⊗A is a (finite) linear combination

γ =
∑
n≥1

Xn ⊗ ℏn +
∑
m≥0

Ym ⊗ ϵℏm ,

where the Xn and Ym have degree one. The Maurer–Cartan equation dγ + {γ, γ} = 0 then
translates into two infinite families of equations: looking at the coefficient of ℏn for each
n ≥ 1 and the coefficient of ϵℏm for each m ≥ 0 gives

dXn +
∑
k+l=n

{Xk, Xl} = 0 and dYm +
∑

k+l=m

{Yk, Xl} = 0 .
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Writing X :=
∑
n≥1Xnℏn ∈ ℏ · g[ℏ] and Y :=

∑
m≥0 Ynℏn ∈ g[ℏ], these two families of

equations are equivalent to the two equations dX + {X,X} = 0 and dY + {Y,X} = 0.

Remark 3.18. Observe that this is different from what we would get by looking at the
Maurer–Cartan set of g⊗ C, where C is the nonunital commutative algebra generated by
ℏ, ϵ subject to the relation ϵ2 = 0: the equation ∇X(Y ) = 0 would have to be replaced by
dX(Y ) = 0, where dX = d+ [X,−].

The permutative algebra A introduced above is not Artin, but each finite-dimensional
quotient An = A/(ℏn) is. Using Lemma 3.173.17, one sees for instance that the space of Maurer–
Cartan elements in g ⊗ A2 is the space of pairs of 1-cocycles (Y,X) in g together with a
null-homotopy of {Y,X}:

MCg(A2) ≃ hofib
(
(τ≤1g)×2 { , }−−→ τ≤2g

)
.

Deforming trivial morphisms of operads

A standard source of pre-Lie algebras is given by convolution pre-Lie algebras [LV12LV12, Section
6.4] (see also Remark A.19A.19). We have already seen these pre-Lie algebras implicitly in
Construction 3.63.6: if C is a k-cooperad, C the cokernel of its coaugmentation and P be a
k-linear operad (not necessarily augmented), then the convolution pre-Lie algebra is given by

g =
∏
p≥0

Hom
(
C(p),P(p)

)Σp
with pre-Lie structure given by the operation ⋆ built from the partial composition of P and
partial cocomposition of C (see Construction 3.63.6 or Construction A.17A.17). Note that g arises
as the totalization of a Z≥0-graded pre-Lie algebra ggr, where

ggr(p) = Hom
(
C(p),P(p)

)Σp
and the pre-Lie operation ⋆ has weight −1 with respect to the Z≥0-grading.

To describe the permutative deformation problem classified by the pre-Lie algebra g,
observe that for every permutative algebra A, there is a nonunital operad P⊗A, such that:

• the underlying symmetric sequence is given by (P⊗A)(n) := P(n)⊗A;

• the composition operation reads as

(ψ0 ⊗ a0) ◦ (ψ1 ⊗ a1, . . . , ψp ⊗ ap) := ±
(
ψ0 ◦ (ψ1, . . . , ψp)

)
⊗ a0 · a1 · · · ap

where ± is a Koszul sign. Associativity of the composition follows from the associa-
tivity of permutative algebras and the permutative axiom (3.123.12), while the equivari-
ance/commutativity directly follows from (3.123.12).

Now let ΩC denote the augmentation ideal of the cobar construction of C and consider the
functor

Def0: ΩC→P : ArtPerm S; A MapOpnu

(
ΩC,P⊗A

)
(3.19)

sending every Artin permutative algebra to the space of nonunital operad maps ΩC −→ P⊗A.
Using that P⊗ (−) sends homotopy pullbacks of permutative algebras to homotopy pullbacks
of nonunital operads, one sees that F is a permutative FMP. Adding units to our operads,
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one can think of F as the FMP describing permutative deformations of the trivial map of
operads

0: ΩC k P.ϵ 1

In particular, the restriction of Def0: ΩC→P to Artin commutative algebras coincides with
the commutative deformation problem (3.73.7) for the trivial map 0. Note that this map 0
corresponds to the zero Maurer–Cartan element in g, i.e. the Lie algebra g0 is simply the Lie
algebra underlying the convolution pre-Lie algebra g.

Proposition 3.20. Let C be a k-cooperad, P a (not necessarily augmented) k-linear operad,
and g their convolution pre-Lie algebra. For every strictly Artin permutative algebra A, there
is an equivalence

Def0: ΩC→P(A) ≃ MCg(A).

In other words, the convolution pre-Lie algebra g classifies deformations of the trivial
operad map ΩC −→ P. When P = End(V ) is the endomorphism operad of a complex V , g
therefore classifies deformations of the trivial ΩC-algebra structure on V .

Proof. The proof is analogous to that of Proposition 3.93.9: a fibrant simplicial resolution P•
of P induces a simplicial resolution g• of the pre-Lie algebra g and Lemma 3.163.16 then asserts
that MCg(A) can be modeled by the simplicial set of Maurer–Cartan elements MC(g• ⊗A).
Unraveling the definitions, one sees that this simplicial set coincides with the simplicial set
of maps of nonunital operads ΩC −→ P• ⊗ A, which in turn models the mapping space
MapOpnu(ΩC,P⊗A) = Def0: ΩC→P(A).

3.3 Operadic deformation theory

In the previous section, we have seen how the convolution pre-Lie algebra

g =
∏
p≥0

Hom
(
C(p),P(p)

)Σp
classifies permutative deformations of the trivial map of operads ΩC −→ k −→ P. In fact,
the pre-Lie algebra g arises from an even richer algebraic structure: the sequence of mapping
complexes Hom

(
C(p),P(p)

)
forms a nonunital operad, the convolution operad of C and P.

In this section, we will explain how this additional algebraic structure can be understood
from a deformation theoretic point of view.

Let us start by considering formal moduli problems that are classified by (monochromatic)
nonunital operads. Here we take a nonunital operad to be a symmetric sequence equipped
with partial composition maps satisfying the usual associativity and equivariance conditions
(see also Definition 3.273.27 below). In particular, the category of nonunital operads is equivalent
to that of (augmented) k-operads by the functors P 7→ P+ adding a unit (in arity 1) and
P 7→ P taking the augmentation ideal. In particular, in analogy to the functor (3.133.13), we
have a functor

D : Opnu Opnu,op; P D(P) = B(P+)∨

taking (the augmentation ideal of) the dual operad in the sense of Definition 1.21.2. We can
then mimick the construction in Theorem 3.143.14 to associate to a nonunital operad a formal
moduli problem indexed by the ∞-category ArtOp of Artin nonunital operads. Theorem 1.31.3
(or more precisely, Theorem 5.15.1) then yields:
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Theorem 3.21. For every nonunital operad P, consider the functor

MCP : ArtOp S; R MapOpnu

(
D(R),P

)
.

This establishes an equivalence of ∞-categories MC: Opnu −→ FMPOp.

Remark 3.22. Throughout this section, it will be convenient to slightly enlarge the
subcategory ArtOp ⊆ Opnu of Artin operads so that it is also closed under retracts. This will
not change the theory, since an S-valued diagram on retracts of Artin operads is determined
uniquely by its value on Artin operads as in Definition 2.22.2. The Artin operads in this slightly
broader sense then have the following simple description, as in Lemma 2.82.8: they are those
nonunital symmetric operads R such that H∗(R) is concentrated in nonpositive degrees, of
finite total dimensional (summing over degrees and arities) and H0(R) is a nilpotent operad.

Example 3.23. Let V be a chain complex in degrees ≤ 0 and consider the functor associating
to each Artin nonunital operad R the space of R+-algebras A together with an equivalence
k ◦R+ A ≃ V after inducing along the augmentation of R+. One can show that this defines
an operadic formal moduli problem (using that the composition product ◦ is exact in the
first variable). The operad classifying this is the coendomorphism operad

coEnd(V )(n) = Hom(V, V ⊗n).

To exemplify this, suppose that R is strictly finite dimensional, nilpotent and in degrees ≤ 0.
Then there is an isomorphism D(R) = B(R)∨ ∼= Ω(R+∨) between the dual operad of R and
the cobar construction of the cooperad R+∨ (which is a cofibrant operad). An operad map
ϕ : Ω(R+∨) −→ coEnd(V ) is uniquely determined by its restriction to the generators. This
restriction in turn corresponds to a collection of equivariant maps δn : R

∨(n)⊗ V −→ V ⊗n,
or equivalently (since R is finite-dimensional), to a map δ : V −→ R ◦ V . Unraveling the
definitions, ϕ is a map of operads precisely when R+ ◦V is a dg-R+-algebra whose differential
is given on generators by d+ δ. Such an algebra determines a deformation of V over R.

Notice that this recovers Example 3.13.1 by seeing an associative algebra as an operad in
arity 1.

To see how Theorem 3.213.21 fits into the framework of Theorem 1.31.3, let us recall how
(monochromatic) operads themselves are algebras over a coloured operad.

The operad of nonunital operads

Let us start by recalling the operad whose algebras are nonunital nonsymmetric operads.
To this end, consider the linear category kns having nonnegative integers as objects and
morphisms

kns(m,n) :=

{
0 if m ̸= n

k else.

Note that kns-operads are just (augmented) Z≥0-coloured operads. Nonunital nonsymmetric
operads then arise as algebras over the following quadratic operad:

Definition 3.24 (see [VdL03VdL03]). Let a, b and c denote colours in Z≥0 and let Ons be the
kns-operad generated by ◦i : (a, b) −→ a+ b− 1 for i = 1, . . . , a, subject to the relations

(a, b, c) (a, b+ c− 1)

(a+ b− 1, c) a+ b+ c− 2

(a,◦j)

(◦i,c) ◦i

◦i+j−1

(3.25)
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for 1 ≤ i ≤ a and 1 ≤ j ≤ b, and

(a, b, c) (a, c, b) (a+ c− 1, b)

(a+ b− 1, c) a+ b+ c− 2

(◦j ,c)

(◦i,b)

◦j+c−1

◦i

(3.26)

for 1 ≤ i < j ≤ a.

To discuss the case of nonunital symmetric operads, let us introduce another linear
category k[Σ], having objects the nonnegative integers, and

k[Σ](p, q) :=

{
0 if q ̸= p
k[Σp] else.

Note that k[Σ] ≃ k[Σ]op by taking inverse permutations. There is a quadratic k[Σ]-operad
Osym whose algebras are nonunital symmetric operads:

Definition 3.27 (see [DV21DV21, Definition 1.7]). Let Osym be the unital non-augmented
operad generated by ◦i : (a, b) −→ a+ b− 1 as in Definition 3.243.24 and σ : a −→ a for σ ∈ Σa,
subject to the equations (3.253.25) and (3.263.26), together with the group structure equations

σ · τ = (στ) : a −→ a σ, τ ∈ Σa,

and the equations

(a, b) (a, b) (a, b) (a, b)

a+ b− 1 a+ b− 1 a+ b− 1 a+ b− 1

(a,τ)

◦i ◦i

(σ,b)

◦i ◦σ(i)

τ/i i/σ

(3.28)

where for τ/i and i/σ are some permutations of a + b − 1 determined from τ , σ and the
number i. Finally, we impose the relation that the identity of the group 1a ∈ Σa is identified
with the operadic unit 1a ∈ Osym(a; a).

Remark 3.29. Unlike the usual conventions in this manuscript, we are forced to consider
Osym as a unital non-augmented operad. The reason for this is that there is no way to define
an augmentation since the relations σ · σ−1 produce the unit. Comparing with [DV21DV21], we
notice that there are other problems with this presentation that heuristically come from
seeing the symmetric groups as additional structure: the presentation is not quadratic (and
e.g. a result like Proposition 8.98.9 is not expectable for the operad of symmetric operads).

Instead, it is more convenient to consider Osym as an operad relative to k[Σ]. In this case,
there is a natural augmentation Osym −→ k[Σ], so that Osym is a k[Σ]-operad in the sense
of Section A.1A.1. We will show in Section 88 that Osym is Koszul self-dual relative to k[Σ], i.e.
that Osym ≃ D(Osym). Theorem 3.213.21 then arises as a special case of Theorem 1.31.3:

Proof of Theorem 3.213.21. We apply the main Theorem 1.31.3 (or more precisely, Theorem 5.15.1) to
the k[Σ]-operad Osym. To see that Osym indeed satisfies condition (3), note that Osym(1) =
k[Σ], so that

k[Σ] ◦hOsym k[Σ] ≃ Bk[Σ](O
sym) ≃

(
Osym{−1}

)∨
.

To see that this is concentrated in increasingly negative cohomological degrees as the arity
increases, one uses the same argument as in the proof of Theorem 1.11.1. Finally, the functor
D : AlgOsym −→ AlgopOsym appearing in Theorem 5.15.1 coincides with the functor taking dual
operads, by Proposition 8.128.12.
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Connecting permutative and operadic deformation theories

Let us now spell out the relation between permutative and operadic deformation theory.
First, we have seen in Section 3.23.2 that every permutative algebra A defines functorially a
nonunital symmetric operad L(A), given in each arity by the permutative algebra A and
with all partial compositions given by the product of A. When A is Artin, L(A) is not quite
Artin (it is concentrated in all arities, hence not finite-dimensional). However, one can show
(Lemma 3.343.34) that it arises as the limit of a (canonical) object L̂(A) ∈ Pro(ArtOp), given by
a pro-system of Artin operads · · · → L(A)1 → L(A)0 which is eventually constant in each
individual arity.

On the other hand, if P is a nonunital operad, then
∏
p≥0 P(p)

Σp can be equipped with
the structure of a pre-Lie algebra [LV12LV12, Proposition 5.3.17]. The equivalences from Theorem
3.143.14 and 3.213.21 are intertwined by these constructions:

Proposition 3.30. There is a commuting square of ∞-categories

Opnu FMPOsym

AlgpreLie FMPPerm.

∏
p(−)Σp

∼

L̂∗

∼

Here the right vertical functor sends an operadic formal moduli problem F to the permutative
formal moduli problem L̂∗F (A) = F (L̂(A)) := limn F (L(A)n).

In other words, a pre-Lie algebra g arises as g =
∏
p≥0 P(p)

Σp if and only if the corre-
sponding permutative deformation problem lifts to an operadic deformation problem.

Before addressing the proof of Proposition 3.303.30, let us first describe its implications to
the deformation theory of operad maps.

Example 3.31 (Deforming trivial morphisms of operads (continued)). Let C be a k-cooperad
and P a k-linear operad. The convolution pre-Lie algebra g =

∏
p≥0 Homk

(
C(p),P(p)

)
Σp

then arises from the (nonunital) convolution operad

Conv(C,P)(p) := Homk

(
C(p),P(p)

)
,

whose operad structure arises from the convolution of the (nonunital) cocomposition on C

and the composition on P.
The operadic deformation problem associated to the convolution operad sends an Artin

operad R to the space of nonunital operad maps Ω(C) −→ P ⊗H R to the Hadamard (i.e.
aritywise) tensor product of P and R. To see this, note that for a strictly Artin operad R,
the following maps are in 1-1 correspondence:

(1) nonunital operad maps Ω(C) −→ P⊗H R,

(2) twisting morphisms C −→·· P⊗H R,

(3) twisting morphisms R∨ −→·· Conv(C,P),

(4) nonunital operad maps D(R) −→ Conv(C,P).

Here (1)⇐⇒ (2) and (3)⇐⇒ (4) follow from the universal property of the cobar construction,
together with the fact that D(R) = B(R+)∨ ∼= Ω(R+∨) for finite dimensional R. The bijection
(2) ⇐⇒ (3) follows by unraveling the definition of a twisting morphism (see e.g. Definition
A.17A.17); at the level of the underlying maps of symmetric sequences, it simply sends a Σp-
invariant map C(p) −→ P(p) ⊗ R(p) to the adjoint map R(p)∨ −→ Hom(C(p),P(p))Σp .
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Replacing P by a fibrant resolution, one obtains an equivalence between spaces of operad
maps as in (1) and (4).

Proposition 3.203.20 now asserts that the permutative deformation functor associated with
g =

∏
Conv(C,P)(p)Σp sends a strictly Artin permutative algebra A to the mapping space

lim
n

MapOpnu

(
Ω(C),P⊗H L(A)n

)
≃ MapOpnu(Ω(C),P⊗H L(A)

)
(here we use that the tower of L(A)n is eventually constant in each arity). But the Hadamard
tensor product P⊗H L(A) simply coincides with the levelwise tensor product of P with the
permutative algebra A. In other words, we precisely recover the permutative deformation
problem Def0: ΩC→P (3.193.19).

In the remainder of this section, we will prove Proposition 3.303.30 by describing the relation
between the operad Osym and the operad Perm. This requires comparing operads defined
over a different base: Perm is defined over the base field k and Osym over k[Σ]. To do this,
note that each k-linear symmetric sequence M gives rise to a k[Σ]-symmetric sequence

L(M)(n1, . . . , nk;n0) =

{
M(k) if n1 + · · ·+ nk = n0 + k − 1
0 otherwise

carrying a trivial Σn1
×· · ·×Σn0

action. This defines a functor L : BiModΣ,dgk → BiModΣ,dgk[Σ] .

Proposition 3.32. The functor L extends to a functor

L : Opdgk −→ Opdgk[Σ]

which preserves (Koszul) quadratic operads and their quadratic duals. Furthermore, at the
level of algebras there is an adjoint pair

L : AlgdgQ AlgdgL(Q) : R.

If A is a Q-algebra, then the underlying k[Σ]-module of L(A) is the constant one L(A)(p) = A.
The right adjoint R is given by R(A) =

∏
pA(p)Σp .

The proof of Proposition 3.323.32 is not difficult, but due to some technical points we leave
the details to Section 8.38.3 (where quadratic duality of k[Σ]-operads is discussed as well). For

now, let us point out that the explicit formula of the functor L : Opdgk −→ Opdgk[Σ] shows that

it commutes with linear duality and preserves quasi-isomorphisms. Furthermore, Proposition
3.323.32 implies that D(L(Q)) ≃ L(Q)! ∼= L(Q!) for any binary Koszul operad Q, and that
Theorem 1.11.1 applies to such operads as well (cf. Observation 8.38.3).

We can now express the fact that every permutative algebra gives rise to an operad
(constant in every arity) in terms of a map of k[Σ]-operads.

Lemma 3.33. There is a natural map of binary quadratic k[Σ]-operads Osym −→ L(Perm).
Koszul dually, this induces a map of binary quadratic k[Σ]-operads L(preLie) −→ Osym.

Proof. By Proposition 3.323.32, the k[Σ]-operad L(Perm) is generated by operations µ : (a, b)→
a+ b− 1 which are Σa × Σb × Σa+b−1-invariant, subject to the associative and permutative
relation (3.123.12). At the level of quadratic data, the map Osym −→ L(Perm) then sends each
operation ◦i : (a, b)→ a+ b− 1 to the operation µ : (a, b)→ a+ b− 1.

Notice that both adoint functors L andR from Proposition 3.323.32 preserve quasi-isomorphisms
(they actually form a Quillen pair), so that they induce an adjoint pair on ∞-categories.
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Lemma 3.34. Let Q be a Koszul binary quadratic operad in degree 0 and A ∈ ArtQ. Then
the formal moduli problem

Spf
(
L(A)

)
= MapL(Q)

(
L(A),−

)
: ArtL(Q) S.

is corepresentable by a pro-Artin L(Q)-algebra L̂(A) which is eventually constant in each
fixed arity.

Proof. The formal moduli problem Spf(L(A)) is classified by the dual L(Q!)-algebra D(L(A)).
It then suffices to verify that this L(Q!)-algebra can be written as the colimit of a sequence
0 = D(L(A))0 → D(L(A))1 → . . . where each D(L(A))n is obtained from the previous one
by adding a positive degree cell (cf. (4.214.21)), so that in total we add only finitely many cells
in each arity. Indeed, by Theorem 5.15.1, this means that each D(L(A))n is the dual of an
Artin L(Q)-algebra L(A)n, giving the desired pro-system22.

Now L is monoidal and preserves duals, so we can identify D(L(A)) = L(D(A)). Since
A is Artin, D(A) is obtained by such a finite process of cell attachments (Theorem 5.15.1).
Concretely, this means that D(A) arises as a quasifree Q!-algebra generated by x1, . . . , xn,
where d(xi) is an expression in x1, . . . , xi−1. Then D(L(A)) ≃ L(D(A)) is a quasifree L(Q!)-
algebra generated by x1,p, . . . , xn,p for each arity p. One now obtains the desired sequence
by giving the generator xi,p weight

(
p+i
2

)
+ i and letting D(L(A))n be the subalgebra on the

generators of weight ≤ n.

Lemma 3.35. Let Q be a Koszul binary quadratic operad over k with Koszul dual Q!. Then
there is a commuting diagram of ∞-categories

AlgL(Q!) FMPL(Q)

AlgQ! FMPQ

∼

R L̂∗

∼

(3.36)

where the right vertical functor is given by L̂∗F (A) = F (L̂(A)) := limn F (L(A)n).

In other words, L̂∗F parametrizes deformations along pro-Artin L(Q)-algebras of the
form L(A), with A a Artin Q-algebra.

Proof. The functor L : Modk −→ Modk[Σ] taking constant symmetric sequences preserves
tensor products and linear duals, and hence commutes with taking the dual of the (operadic)
bar construction. In other words, we obtain a commuting diagram of ∞-categories

AlgopQ AlgQ! FMPQ

AlgopL(Q) AlgL(Q)! FMPL(Q).

L

B(−)∨ ∼

L L̂!

B(−)∨ ∼

The composite horizontal functors have a very simple description: they send a Q-algebra
A to the formal moduli problem Spf(A) = MapQ(A,−) of Example 2.132.13. Consequently,
the right vertical functor L̂! (which is defined uniquely by the above diagram) sends the
formal moduli problem corepresented by an Artin Q-algebra A to the formal moduli problem
Spf(L(A)). By Lemma 3.343.34, this formal moduli problem is pro-represented by L̂(A), i.e.
Spf(L(A)) = colimn Spf(L(A)n) with L(A)n Artin. Passing to right adjoints then yields the
desired square (3.363.36).

2Technically, the L(A)n thus obtained are not Artin algebras, but only retracts of such. One can always
enlarge the subcategory of Artin L(Q!)-algebras to include such retracts, cf. Remark 3.223.22.
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Proof of Proposition 3.303.30. Compose the square (3.363.36), with Q = Perm and Q! = preLie, with
the square

Opnu FMPOsym

AlgL(preLie) FMPL(Perm)

∼

∼

obtained from naturality with respect to the map of k[Σ]-operads Osym −→ L(Perm) (Propo-
sition 6.106.10).

3.4 Splendid operads

The main technical condition of Theorem 1.31.3 is Condition (3)(3), which asserts that the operad
is splendid in the following sense:

Definition 3.37. Let P be a k-operad. We will say that P is splendid if its 0-reduced part
P≥1 (the suboperad such that P≥1(0) = 0 and agrees in other arities) satisfies the following
condition: the derived relative composition product

P(1) ◦hP≥1 P(1)

is eventually highly connective (Definition 2.72.7).

Remark 3.38. At least for connective P, this definition should be considered as a homotopy-
invariant reformulation of the following condition: P≥1 admits a free resolution whose
generators are in increasingly negative degrees (as the arity increases). See Section A.4A.4.

An immediate natural question to ask is therefore whether a given operad is splendid.
Let us start by making some general observations about the property of being splendid.
First of all, let us observe that more Koszul operads are splendid than just the binary ones
considered in the Introduction, so that Theorem 1.11.1 applies to these as well:

Observation 3.39. A (non-necessarily binary) Koszul quadratic operad T (E)/(R) living in
nonpositive degrees generated by a symmetric sequence E with generators in bounded arity
(i.e. E(n) = 0 for n≫ 0) is splendid. Indeed, its Koszul resolution has generators sitting in
increasingly negative degrees by the same argument as in the proof of Theorem 1.11.1.

Example 3.40. For a pair of Koszul dual quadratic operads (P,P!) in degree 0, Observation
3.393.39 is of course symmetric in P and P!. For example, in addition to commutative formal
moduli problems being classified by Lie algebras, formal moduli problems over Artin Lie
algebras are classified by (nonunital) commutative algebras. We do not know of a good
geometric interpretation of this equivalence, but let us point out the following.

Suppose we are working over k = Q and consider Q as a nonunital commutative algebra.
Then the formal moduli problem MCQ : ArtLie −→ S sends an Artin Lie algebra g, i.e. one
with H∗(g) finite dimensional, nilpotent and in nonpositive degrees, to the corresponding

rational homotopy type. Indeed, Theorem 5.15.1 identifies MCQ(g) ≃ MapCom(C
∗
CE(g),Q) with

the spatial realization of the corresponding Sullivan model. More generally, for any unital
commutative A one can identify MCA(g) with the A-points of the (rational) schematic
homotopy type corresponding to g.

Example 3.41 (and non-example). A quadratic operad that does not fit the constraints of
the previous observation is the gravity operad Grav [Get94Get94, Theorem 4.5]. The operad Grav
is generated by a sequence E such that E(n) is 1-dimensional and concentrated in degree
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−1. Clearly such an operad cannot be splendid, as the generators of a resolution need to
cover all generators of Grav.

In fact, there is some ambiguity in the literature regarding the degrees of these operads.
We denote by Grav what we will also call the gravity operad, which has the same quadratic
presentation but with generators V (n) a 1-dimensional space concentrated in degree 2− n
(in other words, Grav is obtained from Grav by reversing the degrees and operadicaly shifting
down by 1).

The operad Grav is Koszul and its Koszul dual is the operad HyperCom of hypercom-
mutative algebras [Get95Get95], generated by one operation in arity n in degree 2(n− 2) for all
n ≥ 2. It follows that Grav is splendid and from Theorem 1.31.3 we deduce that the ∞-category
FMPGrav is equivalent to the ∞-category of hypercommutative algebras.

Note that one cannot exchange the roles of Grav and HyperCom in this statement:
HyperCom is not splendid and Theorem 1.31.3 does not hold for hypercommutative formal
moduli problems.

Remark 3.42. Suppose that P is a monochromatic augmented operad which is 1-reduced,
i.e. P(0) = 0 and P(1) = k · 1. If P is connective, then the shifted operad P{1} satisfies the
conditions of Theorem 1.31.3. The case where P is in addition aritywise finite-dimensional also
appears in work of Brantner–Mathew [BM19BM19, Corollary 5.59] (see also [CH19CH19]).

Next, note that an operad typically satisfies the conditions of Theorem 1.31.3 as soon as its
cohomology does:

Lemma 3.43. Let P be a (coloured) connective operad over Q. If H∗(P) is splendid, then P

is splendid as well.

Proof. We can assume that P is 0-reduced and consider the simplicial resolution

. . . P(1) ◦ P ◦ P(1) P(1) ◦ P(1) P(1) ◦hP P(1).

Taking (at each tuple of colours) the corresponding normalized cochains, we obtain a
(cohomologically) Z≤0 × Z≤0-graded bicomplex, with an associated convergent spectral
sequence

Er,∗2 = Hr
(
H∗P(1) ◦hH∗P H

∗P(1)
)

=⇒ Hr+∗(P(1) ◦hP P(1)
)
.

Here H∗P(1) ◦hH∗P H
∗P(1) is computed in the category of (nonpositively) graded symmetric

sequences of complexes. If H∗P is splendid, then p-ary part of the E1-page is concentrated in

degrees ∗ ≤ 0 and r ≤ f(p) ≤ 0, with f(p)
p→∞−−−→ −∞. Then the p-ary part of P(1)◦hPP(1) is

also concentrated in cohomological degrees ≤ f(p), and we conclude that P is splendid.

Example 3.44 (Variants of the little discs operads). Using this lemma one can show that
the little n-discs operad En is splendid without having to use that it is quasi-isomorphic to
its homology en. Indeed, en is a binary quadratic Koszul operad [LV12LV12, Section 13.3.16] and
is therefore splendid. In the next section we will show that the homology of the framed little
n-discs operad is also splendid.

Another application of Lemma 3.433.43 involves the result of Hoefel and Livernet [HL13HL13] that
the homology of the Swiss–Cheese operad (scvor in loc. cit.) is a quadratic binary Koszul
colored operad. This shows the Swiss–Cheese operad is splendid, even though we do not
know a simple model for its dual.

In the following subsections we will look at a few examples in a bit more detail.
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The homology of the framed little discs operad

Recall that the non-unital little n-discs operad En carries an action of SOn and, following
[SW03SW03], the framed little n-discs operad arises as the associated semi-direct product Efr

n =
En ⋊ SOn. At the homological level, en := H∗(En) is an operad in the category of modules
over the cocommutative Hopf algebra H∗(SOn). Likewise, one can express

H∗(Efr
n) =: e

fr
n = en ⋊H∗(SOn)

as the semi-direct product of en with H∗(SOn). We will show that efrn and (hence) Efr
n are

both splendid.
More generally, let H be a cocommutative Hopf algebra and let P be a k-operad in the

(symmetric monoidal) category of modules over H. The semi-direct product P ⋊ H is a
k-operad arising from a distributive law (see [LV12LV12, 8.6.1] or Section 88) as follows.

The underlying symmetric sequence of P⋊H is P ◦H, viewing H as an operad in arity
1. The action of H on P gives a map

∆: H ◦ P −→ P ◦H,

sending h⊗ψ ∈ H(1)⊗P(p) to (h(1) ·ψ)⊗ (h(2)⊗· · ·⊗h(1+p)), using the p-fold coproduct of
h. One verifies property (I) from [LV12LV12, 8.6.1] using the coassociativity and cocommutativity
of the coproduct in H, while property (II) follows from the compatibility of the product and
the coproduct in H. We then have

P⋊H := P◦∆H.

Lemma 3.45. Let P be a 1-reduced k-operad equipped with an action of a cocommutative
Hopf algebra H in degrees ≤ 0. If P is splendid as a k-operad, then P ⋊H is a splendid
k-operad.

Proof. The operad P ⋊ H = P ◦∆ H is given by H in artiy 1, so we have to show that
H ◦hP◦∆H

H is eventually highly connective. To see this, we will resolve H as a right P ◦∆H-
module. Let us consider the symmetric sequence BP ◦π P ◦H, where BP ◦π P is the twisted
composition product associated to the universal twisting morphism π : BP −→·· P [LV12LV12,
Section 6.5.4] (or see Definition A.23A.23). Explicitly, BP ◦π P ◦ H is spanned by trees with
vertices labeled by P[1], onto which we graft to each leaf a 2-level tree with root vertex
labeled by P and leaf vertices labeled by H. The differential is given by (a) applying dP
or dH to vertices, (b) contracting edges between P[1]-labeled vertices and composing the
labels, and (c) for each P[1]-labeled vertex furthest from the root, compose with all P-labeled
vertices above it.

Note that BP ◦π P ◦H has a manifest right P ◦∆H-module structure which is compatible
with the differential (since parts (b) and (c) of the differential only involved composition in
P, without any interference of H). The augmentation BP ◦π P −→ k is a quasi-isomorphism
[LV12LV12, Lemma 6.5.9] (or Lemma A.25A.25), so that the induced map BP ◦π P ◦H −→ H is a
quasi-isomorphism as well. This is readily seen to be a map of right P ◦∆ H-modules.

One can endow BP ◦π P ◦H with an increasing filtration by the number of P[1]-labeled
vertices, whose associated graded is the free right P ◦∆ H-module on gr(BP). Using this
filtration as in Lemma A.25A.25, ones sees that the functor (BP ◦π P ◦H) ◦P◦∆H (−) preserves
quasi-isomorphisms. This implies that we can compute H ◦hP◦∆H

H as the (strict) relative
composition product

H ◦hP◦∆H H ≃ (BP ◦π P ◦H) ◦P◦∆H H ∼= BP ◦H.

Since H is connective and B(P) is eventually highly connective (since P was splendid), it
follows that H ◦hP◦∆H

H ≃ BP ◦H is eventually highly connective as well.
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Corollary 3.46. The k-operad efrn is splendid. Furthermore, efrn is naturally a H∗(SOn)-
operad which is splendid.

Proof. The first statement follows directly from Observation 3.393.39 and the previous lemma.
The second statement follows from Example 8.78.7.

The BD-operad

For each n ≥ 0, there is a k[ℏ]-linear operad BDn which agrees with the (0-reduced) En-operad
away from ℏ = 0 and with the (0-reduced) shifted Poisson operad at ℏ = 0 [CPT+17CPT+17]:

BDn ⊗hk[ℏ] k[ℏ
±] ≃ En[ℏ±], BDn ⊗hk[ℏ] k[ℏ]/ℏ ≃ Poisn.

For example, the BD0-operad from [CG16CG16, CG18bCG18b] (see also [BD04BD04]) is the k[ℏ]-operad
generated by a commutative product and a Lie bracket of degree 1 satisfying the Leibniz
rule, and equipped with the differential d(− · −) = ℏ[−,−].

Similarly, the operad BD1 is obtained as the Rees construction of the associative operad,
equipped with the PBW-filtration [CG18bCG18b, CPT+17CPT+17]; explicitly, a BD1-algebra is a k[ℏ]-
module equipped with a (nonunital) associative product ∗ and a Lie bracket [−,−] satisfying

[a, b ∗ c] = [a, b] ∗ c+ b ∗ [a, c] a ∗ b− b ∗ a = ℏ[a, b].

Proposition 3.47. The k[ℏ]-operads BD0 and BD1 are Koszul self-dual

D(BD0) ≃ BD0 D(BD1) ≃ BD1{−1}

(relative to k[ℏ]) and satisfy the conditions of Theorem 1.31.3, so that there are equivalences

FMPBDn AlgBDn ; X TX [−n], for n = 0, 1.∼

Proof. Case n = 0: note that BD0 = Free(E)/R is a binary quadratic operad on two
generators µ = (− · −) and λ = [−,−], with differential dµ = ℏ · λ. Since the relations are
the ones of the usual Poisson operad, its quadratic dual BD!

0 = Free(E∨)/R⊥ is isomorphic
to BD0{1}. To see that it is Koszul, it suffices to see that

BD¡
0 = coFree

(
E[1], R[2]

)
B
(
BD0

)
is a quasi-isomorphism of k[ℏ]-modules. To see this, it suffices to verify that the maps

BD¡
0 ⊗hk[ℏ] k[ℏ

±] B(BD0)⊗hk[ℏ] k[ℏ
±]

BD¡
0 ⊗hk[ℏ] k[ℏ]/ℏ B(BD0)⊗hk[ℏ] k[ℏ]/ℏ

are both quasi-isomorphisms (by derived Nakayama, the second condition implies that the
localizations at ℏ = 0 are quasi-isomorphic). Because extension of scalars is symmetric
monoidal and all BD0(p) and BD¡

0(p) are finite complexes of free k[ℏ]-modules (so that we
do not have to derive the tensor product), the above two maps agree with the maps(

BD0 ⊗k[ℏ] k[ℏ±]
)¡

B
(
BD0 ⊗k[ℏ] k[ℏ±]

)
(
BD0 ⊗k[ℏ] k[ℏ]/ℏ

)¡

B
(
BD0 ⊗k[ℏ] k[ℏ]/ℏ

)
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The first map is a quasi-isomorphism between two cooperads which are both quasi-isomorphic
to the trivial cooperad k[ℏ±], while the second map is a quasi-isomorphism because
BD0 ⊗k[ℏ] k[ℏ]/ℏ ∼= P0 is a quadratic Koszul operad.

Case n = 1: note that BD1 = Free(E)/R is a quadratic operad on two binary generators
µ = − · −, λ = [−,−], on which Σ2 acts trivially, resp. by the sign representation. The
module of relations R is generated by:

(J) Jacobi relation [a, [b, c]] + [b, [c, a]] + [c, [a, b]].

(L) Leibniz rule [a, b · c]− c · [a, b] + b · [a, c].

(A) associativity for a ∗ b := a · b+ ℏ[a, b], or explicitly:(
a · (b · c)− c · (a · b)

)
+ ℏ

(
a · [b, c]− c · [a, b] + [a, b · c] + [c, a · b]

)
+ ℏ2

(
[a, [b, c]] + [c, [a, b]]

)
.

Note that Free(E)(p) and BD1(p) are finitely generated projective (equivalently, torsion
free) k[ℏ]-modules for all p; for BD1(p) this follows from the fact that it arises as the Rees
construction of a vector space with an increasing filtration. It follows that R is also finitely
generated and projective. Note that R has rank 6, since its fiber at ℏ = 0 is the vector space
of relations for the Poisson operad P1, which has dimension 6.

Now consider the inner product on E of signature (1, 1), determined by
〈
µ, λ

〉
= 1. This

induces an inner product on Free(E)(3) of signature (6, 6), and an explicit computation
shows that R ⊆ Free(E)(3) is isotropic, hence Lagrangian. For example, one has〈

(A); (J)
〉
=

〈
a · (b · c); [a, [b, c]]

〉
−

〈
c · (a · b); [c · [a, b]]

〉
= 1− 1 = 0〈

(A); (L)
〉
=

〈
ℏ a · [b, c]; [a, b · c]

〉
−

〈
ℏ [c, a · b]; c · [a, b]

〉
= ℏ− ℏ = 0

and
〈
(A); (A)

〉
is given by 2ℏ2 times〈

a · (b · c); [a, [b, c]]
〉
−
〈
c · (a, b); [c, [a, b]]

〉
+

〈
a · [b, c]; [a · (b · c)]

〉
−

〈
c · [a, b]; [c, (a · b)]

〉
= 0.

Now consider the quadratic dual BD!
1 = Free(E∨)/R⊥. Identifying µ∨ ↔ λ and λ∨ ↔ µ

using the inner product described above and using that the inner product identifies the
Lagrangian R with R⊥, we obtain an isomorphism BD!

1
∼= BD1.

It remains to verify that BD1 is Koszul. This follows as in the case of BD0: we have to
show that the map BD¡

1 −→ B(BD1) is a quasi-isomorphism, which can be checked at ℏ = 0
and after inverting ℏ. Since each BD1(p) is a finitely generated projective k[ℏ]-module and
extension of scalars is symmetric monoidal, one then reduces to checking that BD1⊗k[ℏ] k[ℏ±]
and BD1 ⊗k[ℏ] k are Koszul operads. But these are just the associative and P1-operads.

Remark 3.48. Proposition 3.473.47 also applies to the operads BDn with n ≥ 2, which are
defined as the Rees construction of the En-operads, endowed with their Postnikov filtration.
Indeed, by the (rational) formality of the En-operad [Wil18Wil18], this filtration splits and one
can identify BDn ≃ en[ℏ]. Probably one can also deduce Proposition 3.473.47 directly from the
self-duality of the En-operad [Fre11Fre11].

G-equivariant algebras

Suppose that k is a connective symmetric monoidal dg-category. Recall that this sym-
metric monoidal structure can be encoded by a non-augmented k-operad k⊗, defined by
k⊗(c1, . . . , cn; c0) = k(c1 ⊗ · · · ⊗ cn; c0). Note that each k⊗(c1, . . . , cn;−) is a free left k-
module (on c1 ⊗ · · · ⊗ cn). Consequently, as a symmetric k-bimodule k⊗ is isomorphic
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to its k-linear dual (k⊗)∨ and comes with a cocomposition k⊗ −→ k⊗ ◦k k⊗ dual to the
composition of k⊗.

Now let P be a k-operad and consider the k-operad P⊗k⊗ given by the exterior Hadamard
tensor product (A.9A.9). Unraveling the definitions, one sees that a P⊗k⊗-algebra is a P-algebra

in the symmetric monoidal category LModdgk of k-modules as in Section 1.21.2 (with ⊗ given
by Day convolution). The fact that k⊗(c1, . . . , cn;−) is a free left k-module implies that
there is an isomorphism

Bk(P⊗ k⊗) (BP)⊗ k⊗

between the bar construction of P ⊗ k⊗ relative to k and the exterior Hadamard tensor
product of k⊗ with the bar construction of P over k. This is a map of k-cooperads if one
gives BP⊗ k⊗ the cooperad structure coming from the one on k⊗ ∼= (k⊗)∨ and BP.

In particular, if P is a finite type binary Koszul operad, then P⊗ k⊗ is splendid and its
dual operad (relative to k) is P!{−1} ⊗ k⊗.

Example 3.49. Suppose that G is a reductive algebraic group over k and let RepG =
QCoh(BG) denote the symmetric monoidal ∞-category of G-representations. It follows
from [BZFN10BZFN10, Corollary 3.22] that RepG is compactly generated by the finite dimensional
G-representations (concentrated in degree 0). Let k = RepfdG be the symmetric monoidal
dg-category of these representations and note that k is simply a category enriched over vector
spaces (in degree 0): there are no higher Ext-groups since G is reductive. The symmetric

monoidal model category LModdgk then presents the symmetric monoidal ∞-category RepG.
Let us now apply the previous discussion to the operad P = Lie. Then Theorem 1.31.3

provides an equivalence between the ∞-category of formal moduli problems ArtLie⊗k⊗ −→ S

indexed by Artin Lie algebras carrying a G-representation, and that of nonunital commutative
algebras in RepG. This correspondence has been considered extensively in [Pri07Pri07, Pri08Pri08] in
the study of pro-algebraic homotopy types.

Operads with only nullary operations

The following baby-example might also be useful to illustrate what happens for operads
with nullary operations, when the category k has nontrivial (endo)morphisms. Let k be a
connective dg-algebra and let V be a connective left k-module. There is a k-operad P whose
algebras are left k-modulesW with a k-linear map V −→W : P(0) = V , P(1) = k, and P(n) =
0 for every n ≥ 2. The dual operad (relative to k) is the kop-operad Dk(P) whose algebras
are left kop-modules W endowed with an kop-linear map V ∨[−1] = Homk(V [1],k) −→W .

In this case, the Koszul duality functor D : AlgP −→ AlgopDk(P) can be identified with the

functor

V
/
LModk

(
V ∨[−1]

/
RModk

)op

(
V −→W

)
fib(W∨ −→ V ∨).

(3.50)

The category of Artin P-algebras can be identified with the category of V −→W , where W
is a finitely presented k-module, with generators in nonpositive degrees. Using this, one sees
that

FMPP ≃ Ind
(
C
op
1

)
C1 =

{
V −→W : perfect W

}
⊆ V

/
LModk.

Similarly, the category of right k-modules under V ∨ is compactly generated, so that there is
an equivalence

AlgDk(P) ≃ Ind
(
C2

)
C2 =

{
V ∨ −→W : perfect cofiber

}
⊆ V ∨/RModk.

Theorem 1.31.3 then reduces to the assertion that the functor (3.503.50) establishes a contravariant
equivalence between C1 and C2.
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4 From FMPs to algebras

In this section we introduce the main ingredients that will be used to relate formal moduli
problems of algebras over an operad P to algebras over its dual operad D(P) as in Definition
1.21.2. In particular, we describe an adjoint pair of ∞-categories

D : AlgP AlgopD(P) : D
′

sending an algebra to its (bar) dual algebra (see Section 4.14.1). This adjunction is an example
of a weak Koszul duality context in the sense of [CG18aCG18a] and will be the main actor in the
proof of our main theorem (Theorem 1.31.3). Indeed, the axiomatic framework developed
in [Lur11Lur11, CG18aCG18a] provides explicit conditions under which this adjoint pair induces an
equivalence between D(P)-algebras and formal moduli problems over P. We will recall these
conditions in Section 4.24.2 (see Theorem 4.184.18).

We follow Assumption 1.101.10: all k-(co)operads are assumed to be (co)augmented and
(filtered) cofibrant as left k-modules.

4.1 Duality for algebras over operads

Let k be a dg-category and let ϕ : C −→·· P be a twisting morphism from a k-cooperad to a
k-operad (see Construction A.17A.17). Recall our convention that C (resp. P) is always assumed
to be filtered-cofibrant (resp. cofibrant) as a left k-module, see Assumption 1.101.10.

Recall that (Proposition A.32A.32) the twisting morphism ϕ gives rise to an adjoint pair

Ωϕ : CoAlgdgC AlgdgP : Bϕ.

Taking the linear dual of the bar construction, we obtain a functor

AlgdgP CoAlgdgC Algdg,opC∨
Bϕ (−)∨

with values in algebras over the dual kop-operad C∨ (cf. Proposition A.15A.15). By Lemma
A.33A.33, this functor preserves quasi-isomorphisms between algebras which are cofibrant as left
k-modules. Consequently, it induces a functor of ∞-categories

Dϕ : AlgP AlgopC∨ .

If ϕ is weakly Koszul (Definition A.27A.27) we can identify the ∞-category of algebras over
C∨ with algebras over the dual operad D(P) = B(P)∨.

Lemma 4.1. Suppose that ϕ : C −→·· P is weakly Koszul. Then the following assertions hold:

(1) For any P-algebra A, there is a natural equivalence of kop-modules

Dϕ(A) ≃ RDerP(A,k)

to the (derived) kop-module of P-algebra derivations of A with coefficients in the trivial
A-module k.

(2) The functor Dϕ preserves all colimits, so it is the left adjoint in an adjoint pair

Dϕ : AlgP AlgopC∨ : D′
ϕ. (4.2)
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In the terminology of [CG18aCG18a], the adjoint pair (4.24.2) is an example of a weak Koszul
duality context (this is essentially the assertion of Corollary 4.74.7).

Proof. The first assertion implies the second: indeed, the functor Dϕ preserves colimits (and
hence admits a right adjoint by the adjoint functor theorem [Lur09Lur09, Corollary 5.5.2.9]) if
and only if the composite

AlgdgP CoAlgdgC Algdg,opC∨ Moddg,opkop
Bϕ (−)∨ forget

(4.3)

preserves homotopy colimits. The functor RDer(−,k) taking derived modules of derivations
clearly has this property.

Since C −→ BP is a quasi-isomorphism between cofibrant left k-modules, the functor
(4.34.3) is naturally equivalent to the functor associated to the universal twisting morphism
ϕuni : BP −→ P. It will therefore suffice to prove assertion (1)(1) for ϕ = ϕuni. In this case,
consider the Quillen pair

I : AlgdgP Moddgk : triv

where the right adjoint takes the trivial P-algebra (using the augmentation P −→ k) and I
sends a P-algebra to its module of indecomposables. Unraveling the definitions, one sees
that there is an isomorphism of k-modules

Bϕ(A)
∨ ∼= I

(
ΩϕBϕ(A)

)∨ ∼= DerP
(
ΩϕBϕ(A),k

)
where we have used that I(B)∨ = DerP(B, k). By Lemma A.34A.34, the map ΩϕBϕ(A) −→ A
is a quasi-isomorphism whenever A is cofibrant as a k-module, i.e. it provides a functorial
cofibrant replacement of A. It follows that Dϕ computes indeed the derived functor of
derivations with coefficients in the trivial A-module k.

Let us note that the adjoint pair (4.24.2) depends naturally on ϕ, in the following sense (we
will come back to this in Section 66):

Lemma 4.4. Consider a commuting square

C P

D Q.

g

ϕ

f

ψ

(4.5)

where g is a map of k-cooperads, f is a map of k-operads and ϕ and ψ are weakly Koszul
twisting morphisms. Then there is a natural transformation of D∨-algebras

µ : Bψ(f!A)
∨ g∗Bϕ(A)

∨.

When A is a cofibrant P-algebra, this map is a weak equivalence.

In other words, a diagram like (4.54.5) induces a square of ∞-categories

AlgP AlgopC∨

AlgQ AlgopD∨

f!

Dϕ

g∗∼

Dψ

(4.6)

commuting up to a natural equivalence µ. In particular, Dϕ is a homotopy invariant of the
map ϕ, in the following sense: if f (and, by Lemma A.21A.21, also g) is a quasi-isomorphism,
then the vertical functors in (4.64.6) are equivalences by Corollary A.8A.8 which intertwine Dϕ

and Dψ.
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Proof. We define µ to be the dual of a natural map of D-coalgebras

g∗Bϕ(A) Bψ(f!A).

Without differentials, this map is given by the map C(A) −→ D(f!A), defined on cogenerators
by C(A) −→ A −→ f!A. This map of D-coalgebras indeed preserves the bar differential.
To see that it is a weak equivalence when A is cofibrant, we can work at the level of the
underlying k-modules. In that case, we have a weak equivalence

Der(A,k) Der
(
ΩϕBϕ(A),k

) ∼= Bϕ(A)
∨∼

from the complex of P-algebra derivations of A (see Lemma 4.14.1). We obtain a commuting
square of chain complexes

DerQ(f!(A),k) DerP(A,k)

Bψ(f!A)
∨ Bϕ(A)

∨

∼ ∼

µ

The top horizontal map is an isomorphism, so the result follows.

Corollary 4.7. For any weakly Koszul twisting morphism ϕ : C −→·· P and any k-module V ,
there is a natural equivalence of C∨-algebras

Dϕ

(
P(V )

)
triv

(
V ∨).

Consequently, for any algebra g over the kop-operad D(P) = (BP)∨, the underlying k-module
of D′

ϕ(g) is given by the derived functor of derivations

D′
ϕ(g) ≃ RDerD(P)(g,kop).

Proof. The first assertion is a special case of Lemma 4.44.4 and the second assertion follows by
passing to right adjoints.

Definition 4.8. Let P be a k-operad and let D(P) = (BP)∨ be its dual operad. We will
denote by

D : AlgP AlgopD(P) : D
′ (4.9)

the adjunction associated to the universal twisting morphism π : BP −→·· P. By the discussion
after Lemma 4.44.4, we are allowed to model D(P) and P using any quasi-isomorphic twisting
morphism ϕ : C −→·· P′.

We conclude by giving an explicit description of the right adjoint D′.

Theorem 4.10. For any k-operad P, there exists a natural map

η : P D(D(P))

in the ∞-category of k-operads, and the right adjoint functor D′
ϕ : AlgopD(P) −→ AlgP is

naturally equivalent to the functor

AlgopD(P) AlgD(D(P)) AlgP.
D η∗
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To define the map η, which will arise from a zig-zag of maps at the chain level, let us
make the following observation:

Construction 4.11. Let C be a k-cooperad and D a kop-cooperad. Then there is an
isomorphism of convolution Lie algebras (cf. Remark A.19A.19)

HomBiModΣ
kop

(
D,C∨) ∼= HomBiModΣ

k

(
C,D∨)

sending a linear map ψ : D −→ C∨ to its adjoint ψ⊤ : C −→ D∨. In particular, this restricts
to a bijection between twisting morphisms. For a twisting morphism ψ and a D-coalgebra
X, there is a natural map of C∨-algebras

Ωψ(X)
(
Bψ⊤(X∨)

)∨
(4.12)

given on generators by the obvious inclusion X −→ X∨∨ −→
(
D ◦X∨)∨.

Let us now fix a k-cooperad C which is filtered-cofibrant as a left k-module and let
ϵ : Q

∼−→ C∨ denote a replacement of C∨ by a kop-operad which is cofibrant as a left
kop-module. Consider the canonical twisting morphisms

ϕ : C ΩC ϕ† : BQ Q.

Applying Construction 4.114.11 to the case where D = BQ, the twisting morphism ϵ◦ϕ† : BQ −→··
C∨ has an adjoint twisting morphism (ϵ ◦ϕ†)⊤ : C −→·· B(Q)∨. We can write (ϵ ◦ϕ†)⊤ = η ◦ϕ,
where

η : ΩC B(Q)∨

is the corresponding map of k-operads out of the cobar construction. In this setting, we have
the following identification of the right adjoint D′

ϕ:

Proposition 4.13. In the above situation, the right adjoint D′
ϕ : AlgopC∨ −→ AlgΩC is

naturally equivalent to the functor

AlgopC∨ AlgopQ AlgB(Q)∨ AlgΩC.
ϵ∗

∼
D
ϕ† η∗

Remark 4.14. When C is finite dimensional the map η : Ω(C) −→ B(C∨)∨ is an isomorphism
and we can simply identify D′

ϕ with Dϕ† .

Proof. Our first goal will be to define a natural map of ΩC-algebras

η∗Dϕ†(ϵ∗g) D′
ϕ(g) (4.15)

for every C∨-algebra g. By adjunction, it suffices to provide a natural map

g Dϕ

(
η∗Dϕ†(ϵ∗g)

)
(4.16)

in the ∞-category of C∨-algebras. To do this, note that Bϕ(η
∗−) ∼= Bηϕ(−) and Bϕ†(ϵ∗−) =

Bϵϕ†(−) both preserve objects that are cofibrant as left modules. Consequently, we can
compute

Dϕ

(
η∗Dϕ†(g)

)
∼=

(
Bηϕ

(
Bϵϕ†g

)∨)∨
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whenever g is cofibrant as a left k-module. Now apply Construction 4.114.11 to the case where
D = B(Q) and to the twisting morphisms

ψ = ϵϕ† : D = B(Q) C∨ ψ⊤ = ηϕ : C D∨.

For the D-coalgebra X = Bϵϕ†g, the map (4.124.12) then gives a natural map of C∨-algebras

Ωϵϕ†
(
Bϵϕ†(g)

) (
Bηϕ

(
Bϵϕ†g

)∨)∨
. (4.17)

The domain is the usual bar-cobar construction of g, which comes with a natural quasi-
isomorphism Ωϵϕ†

(
Bϵϕ†(g)

)
−→ g when g is cofibrant as a kop-module (Lemma A.34A.34). At the

level of ∞-categories, we therefore obtain the desired map (4.164.16) and the adjoint comparison
map (4.154.15).

We now have to check that the comparison map (4.154.15) is an equivalence, for which it
suffices to see that the underlying map of k-modules is an equivalence. Note that Lemma 4.14.1
and Corollary 4.74.7 produce natural equivalences of k-modules

Dϵϕ†(g) ≃ RDerC∨(g,kop) D′
ϕ(g) ≃ RDerC∨(g,kop).

Under these equivalences, the comparison map (4.154.15) corresponds to a natural endomorphism
of

RDerC∨
(
g,kop

)
≃ DerC∨

(
Ωϵϕ†Bϵϕ†(g),kop

) ∼= Bϵϕ†(g)∨.

Unravelling the definitions, this endomorphism can be described as follows: an element
α ∈ Bϵϕ†(g)∨ is sent to the kop-linear map

fα : Bϵϕ†g Ωϵϕ†Bϵϕ†g
(
Bηϕ

(
Bϵϕ†g

)∨)∨
Bϵϕ†(g)∨∨ kop.(4.174.17) evα

Here the first map is the inclusion of the generators and the third map is the projection, dual
to the inclusion of Bϵϕ†(g)∨ into its bar construction (as the primitive elements). The last
map evaluates an element of the bidual at α. One easily sees that the assignment α 7−→ fα
is an isomorphism, so that (4.154.15) is indeed an equivalence.

Proof (of Theorem 4.104.10). Suppose that P is cofibrant as a left k-module and consider the
situation of Proposition 4.134.13 in the case where C = BP. Then

C∨ ≃ Q ≃ D(P) and B(Q)∨ ≃ D(D(P))

so that the natural zig-zag P
∼←− ΩBP

η−→ B(Q)∨ defines a natural map in the ∞-category

of k-operads η : P −→ D(D(P)). Theorem 4.104.10 then follows from Proposition 4.134.13.

4.2 Axiomatic argument

We will now describe the strategy of the proof of our main result, Theorem 1.31.3. Our
strategy follows the axiomatic frameworks developed in [Lur11Lur11, CG18aCG18a]. More precisely, let
us consider the adjunction

D : AlgP AlgopD(P) : D
′.

This adjunction is essentially never an equivalence, because it involves taking duals: both
D and D′ send an algebra to its module of derivations with coefficients in k (Lemma 4.14.1
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and Corollary 4.74.7). Instead, one can try to refine the above adjunction to an equivalence
between D(P)-algebras and formal moduli problems over P, using the following construction:
every D(P)-algebra g defines a functor

ArtP S; A MapD(P)

(
D(A), g

)
.

Under suitable conditions on the functor D, this functor will satisfy the axioms of a formal
moduli problem (Definition 2.112.11). Furthermore, the results leading to [Lur11Lur11, Theorem
1.3.12] provide general conditions on D under which this construction becomes an equivalence.
In the current situation, we can summarize these results as follows:

Theorem 4.18. Let P be a k-operad. Then there is an equivalence of ∞-categories

MC: AlgD(P) FMPP; g MapD(P)(D(−), g).∼

if the following conditions are satisfied:

(A) For every Artin P-algebra A, the unit map A −→ D′D(A) is an equivalence.

(B) For every trivial algebra kc[n] generated by a single element of degree n ≥ 0, the
D(P)-algebra D

(
kc[n]

)
is freely generated by kc[n]∨.

(C) The functor D sends every pullback square of Artin algebras

A′ 0

A kc[n]

with n ≥ 1 to a pushout square of D(P)-algebras.

In this case, the inverse of the functor MC sends a formal moduli problem F to its tangent
complex T (F ), endowed with some D(P)-algebra structure.

Remark 4.19. The notation MC is supposed to be suggestive: when P satisfies suitable
finite-dimensionality conditions, the formal moduli problem MCg can indeed be described
concretely in terms of Maurer–Cartan simplicial sets of Lie algebras. We will discuss this in
more detail in Section 77.

The technical part of the proof of our main result (Theorem 1.31.3) will consist of verifying
the above conditions for a suitable class of operads. This will be done in Section 55. In the
remainder of this section, we will describe how Theorem 4.184.18 follows from the results of
[Lur11Lur11, CG18aCG18a].

Proof. Condition (C)(C) guarantees that for every D(P)-algebra g, the functor

MCg : ArtP S; A MapD(P)

(
D(A), g

)
does indeed define a formal moduli problem. Consequently, we obtain a well-defined functor
MC: AlgD(P) −→ FMPP. By condition (B)(B), we have that

MCg(kc[n]) = MapD(P)

(
D(kc[n]), g

)
≃ MapD(P)

(
Free(kc[n]∨), g

)
≃ Mapkop

(
kopc [−n], g

)
.
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It then follows from Lemma 2.152.15 that the tangent complex of the formal moduli problem
MCg is given by

T
(
MCg

)
≃ g. (4.20)

In particular, if MC admits an inverse, then this inverse will necessarily send a formal moduli
F to T (F ), endowed with a D(P)-algebra structure. To see that MC indeed does admit an
inverse, let us recall the following terminology [CG18aCG18a, Definition 2.15]. The class of good
D(P)-algebras is the smallest class of algebras such that:

(1) It contains the free algebras Free
(
kopc [n]

)
for n ≤ 0.

(2) For any pushout square

Free
(
kopc [n]

)
g

0 h

(4.21)

where g is good and n ≤ −1, h is good as well.

By condition (A)(A), the functor D restricts to a fully faithful embedding of the ∞-category
of Artin P-algebras into AlgopD . By conditions (B)(B) and (C)(C), the essential image of this
embedding is (the opposite of) a full subcategory of AlgD(P) which satisfies conditions (1)(1)
and (2)(2). In particular, it contains the good D(P)-algebras. But then the image of the
good D(P)-algebras under D′ is a full subcategory of the Artin P-algebras that satisfies the
conditions of Definition 2.22.2. Since the Artin algebras were the smallest subcategory with
these properties, we conclude that D and D′ induce an equivalence

D : ArtP
(
AlggoodD(P)

)op
: D′.∼ (4.22)

It will now follow from [Lur11Lur11, Theorem 1.3.12] that the functor MC is an equivalence.
Indeed, the conditions of [Lur11Lur11, Definition 1.3.1] hold precisely because D restricts to the
equivalence (4.224.22). The remaining condition [Lur11Lur11, Definition 1.3.9] asserts that the functor

AlgD(P) FMPP

∏
c Sp

MC T

preserves sifted colimits. But it follows from (4.204.20) that this functor is naturally equivalent
to the composite

AlgD(P) Modkop
∏
c Sp.

forget

Forgetting the structure of an algebra over an operad always preserves sifted homotopy
colimits [HNP19HNP19, Appendix A] and the second functor preserves all colimits (see Remark
2.172.17).

5 Cohomology of Artin algebras

Let P be a k-operad and consider the adjoint pair whose left adjoint sends a P-algebra to its
dual D(P)-algebra

D : AlgP AlgopD(P) : D
′.

The purpose of this section is to show that under certain conditions on the operad P, the
functor D is well-behaved when restricted to the class of Artin P-algebras. In particular, it
satisfies the assumptions of Theorem 4.184.18, so that the above adjunction can be refined to an
equivalence between D(P)-algebras and formal moduli problems over P. More precisely, will
prove the following:
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Theorem 5.1 (Theorem 1.31.3). Let k be a dg-category and P an (augmented) k-operad.
Assume that the following conditions hold:

(1) k and P are both connective.

(2) k is cohomologically bounded, i.e. there exists an n ∈ N such that all H∗(k)(c, d) are
concentrated in degrees [−n, 0].

(3) P is splendid.

Then the following assertions hold:

(A) For any Artin P-algebra (Definition 2.22.2), the unit map A −→ D′D(A) is an equivalence.

(B) D
(
kc[n]

)
is freely generated by kc[n]∨, for all c and n ≥ 0.

(C) The functor D sends every pullback square of Artin algebras

A′ 0

A kc[n]

(5.2)

with n ≥ 1 to a pushout square of D(P)-algebras.

In particular, Theorem 4.184.18 applies and there is an equivalence

FMPP ≃ AlgD(P).

Assumption 5.3. We will assume, as usual, that P is cofibrant as a left k-module. Because
k is assumed to be connective and cohomologically bounded, we will furthermore make
the following chain-level assumption throughout this section: we will assume that k is a
dg-category such that every k(c, d) is concentrated in degrees [−N, 0], for some fixed N .

5.1 Polynomial subalgebras

Let us start with the following general observation. Let ϕ : C −→·· P be a weakly Koszul
twisting morphism from an k-cooperad to a k-operad. Then Dϕ(A) = Bϕ(A)

∨ is given by

Dϕ(A) =
(⊕
p≥0

C(p)⊗Σp⋉k⊗p A
⊗p

)∨

∼=
∏
p≥0

(
C(p)⊗Σp⋉k⊗p A

⊗p
)∨
.

Consider the graded C∨-subalgebra

Dpoly
ϕ (A) :=

⊕
p≥0

(
C(p)⊗Σp⋉k⊗p A

⊗p
)∨
⊆ Dϕ(A). (5.4)

Note that this is not necessarily closed under the differential, but it will be if A satisfies the
following condition:

Definition 5.5. A P-algebra A is nilpotent if A is annihilated by all operations of arity ≥ p,
for some p.
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Remark 5.6. When P is concentrated in arity ≥ 2, then a nilpotent algebra is annihilated
by any composition of ≥ p operations in P, for some p. Conversely, if P is generated by
operations in finitely many arities and A is annihilated by any composition of ≥ p operations,
then A is nilpotent.

Remark 5.7. The algebra Dpoly
ϕ (A) is not homotopy invariant: it depends on the point-set

choices for A and the twisting morphism ϕ. Note that an algebra that is quasi-isomorphic to
a nilpotent algebra need not be nilpotent itself.

To prove Theorem 5.15.1, it will be much more convenient to work with Dpoly(A) instead of
D(A). Indeed, the following result shows that Dpoly(A) is typically much better behaved
than D(A):

Lemma 5.8. Let ϕ : C −→·· P be a Koszul twisting morphism. If A is a strictly Artin,
nilpotent P-algebra, then Dpoly

ϕ (A) is a cofibrant C∨-algebra.

Proof. Let us start with the following general observation: if A −→ B is a square zero
extension of P-algebras by kc[n], with n ≥ 0, then their bar constructions fit into a pullback
square of C-coalgebras

Bϕ(A) C(kc[n, n+ 1])

Bϕ(B) C(kc[n+ 1]).

(5.9)

Indeed, this follows from writing A ∼= B ⊕ kc[n] as k-modules (without differential), so that
Bϕ(A) is obtained from Bϕ(B) by adding cogenerators from kc[n]. Assuming that A and
(hence) B are nilpotent, we can take duals and restrict to ‘polynomial’ subalgebras to obtain
a square

C∨(kopc [−n− 1]
)

Dpoly
ϕ (B)

C∨(kopc [−n,−n− 1]
)

Dpoly
ϕ (A).

(5.10)

Without differentials, this square is a pushout square of C∨-algebras, so the same is true
with differentials. Since the left vertical map is a (generating) cofibration of C∨-algebras, it

follows that Dpoly
ϕ (A) is cofibrant as soon as Dpoly

ϕ (B) is.
Now suppose that A is strictly Artin and nilpotent. By definition, A fits into a sequence

A = A(n) −→ . . . −→ A(0) = 0 of square zero extensions by various kci [pi]. Proceeding by

induction, it follows that Dpoly
ϕ (A) is cofibrant.

To reduce statements about D(A) to statements about the more tractable algebra
Dpoly(A), we will use of the following result:

Proposition 5.11. Suppose that k is as in Assumption 5.35.3 and that P is a splendid k-
operad, concentrated in nonpositive degrees. Let π : BP −→·· P be the universal Koszul twisting
morphism and let A be a P-algebra which is strictly Artin and nilpotent. Then the map of
BP∨-algebras

Dpoly
π (A) Dπ(A)

is a quasi-isomorphism.

This proposition forms the technical heart of our proof of Theorem 5.15.1 (and hence
Theorem 1.31.3). In particular, its proof is somewhat involved and is proven in increasing levels
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of generality, using some of the results of Appendix AA. We will therefore postpone the proof
to Section 5.35.3 and instead discuss how it can be used to prove Theorem 5.15.1.

As a first application of Proposition 5.115.11, we find that every Artin P-algebra can be
modelled by a nilpotent algebra. More precisely, we have the following:

Lemma 5.12. Consider a retract diagram of k-operads P
∼−→ ΩC

∼−→ P, where C is
filtered-cofibrant as a left k-module. Then the following assertions hold:

(1) Every Artin P-algebra is quasi-isomorphic to a strictly Artin P-algebra (Definition 2.52.5).

(2) Suppose that the (Koszul) twisting morphism ϕ : C −→·· P associated to ΩC −→ P has
the following property: for every A which is strictly Artin and nilpotent, the map
Dpoly
ϕ (A) −→ Dϕ(A) is a quasi-isomorphism. Then every Artin P-algebra is quasi-

isomorphic to a strictly Artin P-algebra which is furthermore nilpotent.

Every cofibrant k-operad P fits into a retract diagram P
∼−→ ΩBP

∼−→ P. Consequently,
part (1)(1) asserts that Artin algebras over cofibrant operads are quasi-isomorphic to strictly
Artin algebras.

Proof. The Artin P-algebras form the smallest class of P-algebras that is closed under
homotopy pullbacks along the maps of trivial algebras 0 −→ kc[n+ 1] (with n ≥ 0). It
therefore suffices to show the following: let A be a strictly Artin P-algebra, let ΩϕBϕ(A) −→ A
be its bar-cobar resolution (using Lemma A.34A.34, since strictly Artin algebras are k-cofibrant
by Remark 2.62.6) and consider any (homotopy) pullback diagram of the form

Y kc[n, n+ 1]

ΩϕBϕ(A) kc[n+ 1].
χ

(5.13)

Then the map Y −→ ΩϕBϕ(A) is naturally quasi-isomorphic to a square zero extension
B −→ A with kernel kc[n]. For part (2)(2), we must furthermore show that B can be taken
nilpotent, assuming A is nilpotent.

We will only prove this assertion for part (2)(2); the argument for part (1)(1) is similar but
easier. Let us denote by i : P −→ ΩC and r : ΩC −→ P the inclusion and retraction, and let
ψ : C −→·· ΩC denote the universal twisting morphism. There are natural maps

Bϕ(A) Bψ(r
∗A) i∗Ωψ(C) Ωϕ(C)

∼=

for a P-algebra A and a C-coalgebra C. The first map is an isomorphism and the second
map is obtained by applying i∗ to the natural map Ωψ(C) −→ r∗Ωϕ(C). Now observe that
there are bijections

χ : ΩϕBϕ(A) −→ kc[n+ 1] ⇐⇒ χ : Bϕ(A) −→ C(kc[n+ 1])

where C
(
kc[n+ 1]

)
is the cofree C-coalgebra on a single generator of degree n+ 1 at place

c. A map χ : ΩϕBϕ(A) −→ kc[n+ 1] therefore corresponds to a degree −(n + 1) cycle
χ ∈ Dϕ(A)(c). Homologous cycles correspond to homotopic maps, and hence give rise to
weakly equivalent homotopy pullbacks Y . We may therefore change χ by a coboundary and
assume that it is contained in the image of the quasi-isomorphism

Dpoly
ϕ (A) Dϕ(A).
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Now consider the pullback square of C-coalgebras

C ′ C
(
kc[n, n+ 1]

)
Bϕ(A) C

(
kc[n+ 1]

)
.χ

(5.14)

Unravelling the definitions, one sees that the map C ′ −→ Bϕ(A) is isomorphic to a map of
the form Bψ(A

′) −→ Bψ(r
∗A), where A′ −→ r∗A is a square zero extension of ΩC-algebras

with kernel kc[n]. In particular, A′ is a strictly Artin ΩC-algebra.
To see that A′ is a nilpotent ΩC-algebra, we use that A′ ∼= A ⊕ kc[n] is a square zero

extension of r∗A by a trivial r∗A-module. Each generator µ ∈ C[−1] ⊆ ΩC acts on A′ by

µA′ :
(
A⊕ kc[n]

)⊗p
A⊗p A⊕ kc[n].

(µA,χ(µ,−))

Here χ(µ,−) denotes the composite

A⊗p C(p)[−1]⊗A⊗p ⊆ Bϕ(A) kc[n].
µ⊗id χ[−1]

By our assumption that χ lies in the image of Dpoly(A), the generating operations χ(µ,−)
vanish when the arity of µ is high enough. Furthermore, the composition of at least two such
generating operations maps A to A and vanishes on kc[n]. Because A was assumed to be a
nilpotent P-algebra, it follows that such composite operations also vanish if their arity is
high enough. We conclude that A′ is a nilpotent ΩC-algebra.

Now, applying functor i∗Ωψ to (5.145.14) and using that there is a natural map i∗Ωψ −→ Ωϕ,
we obtain a diagram of P-algebras

i∗A′ i∗ΩψBψ(A
′) ΩϕBϕ(kc[n+ 1, n]) kc[n+ 1, n]

A ΩϕBϕ(A) ΩϕBϕ(kc[n+ 1]) kc[n+ 1].

∼ ∼

∼ ∼

(5.15)

Taking B = i∗A′, we obtain a nilpotent square zero extension of A. The above diagram
shows that it is related to the pullback Y of (5.135.13) by a zig-zag

B = i∗A′ i∗ΩψBψ(A
′) Y.∼

It remains to verify that the right map is a quasi-isomorphism, for which we can work at the
level of the underlying complexes. But forgetting P-algebra structures, there are natural
sections i∗A′ −→ i∗ΩψBψ(A

′) and A −→ ΩϕBϕ(A) that make the composition of the three
squares a (homotopy) pullback square of chain complexes. Consequently, we find maps of
complexes

B = A×hkc[n+1] 0 ΩψBψ(A
′) ΩϕBϕ(A)×hkc[n+1] 0 = Y.

The first map and the composite map are quasi-isomorphisms, so that i∗ΩψBψ(A
′) −→ Y is

a quasi-isomorphism, as desired.

Corollary 5.16. Suppose that k is as in Assumption 5.35.3 and that P is a splendid cofibrant
k-operad, concentrated in nonpositive cohomological degrees. Then every Artin P-algebra is
quasi-isomorphic to a strictly Artin P-algebra which is nilpotent.

Proof. Apply part (2)(2) of Lemma 5.125.12 to the retract diagram P −→ ΩBP −→ P, where first
map exists since P is assumed cofibrant.
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5.2 Proof of Theorem 5.15.1

In this section, we will prove Theorem 5.15.1, and hence Theorem 1.31.3, using Proposition 5.115.11
(whose proof will be taken up in Section 5.35.3). Since the statement of Theorem 5.15.1 only
depends on the quasi-isomorphism classes of k and P, we are allowed to make the following
assumptions throughout this section: we will assume that k is bounded, as in Assumption
5.35.3, and that P is a cofibrant k-operad which is concentrated in nonpositive cohomological
degrees. We denote by

π : BP P

the universal Koszul twisting morphism and will model D : AlgP −→ AlgopD(P) by Dπ.

Proof of Theorem 5.15.1 (A)(A). Suppose that A is an Artin P-algebra. By Corollary 5.165.16, we
can assume that A is strictly Artin and nilpotent. To verify that the unit map

A D′
πDπ(A)

is an equivalence, it suffices to work at the level of the underlying k-modules. By Corollary 4.74.7,
the functor D′

π is given at the level of k-modules by the derived functor of B 7→ Der(B, k). By
Lemma 5.85.8 and Proposition 5.115.11, a cofibrant resolution of Dπ(A) is given by the polynomial
subalgebra Dpoly

π (A). It therefore suffices to verify that the natural map

A Der
(
Dpoly
π (A),k

)
is a quasi-isomorphism. Since Dpoly

π (A) is the free graded algebra on A∨, one can identify
the underlying map of graded k-modules with the canonical map

A A∨∨.

This is an isomorphism since A is a finitely generated quasi-free k-module (Remark 2.62.6).

For part (B)(B) of Theorem 5.15.1, let us make the following more general observation:

Proposition 5.17. Let k be a bounded connective dg-category and f : P −→ Q a map
of augmented k-operads which are connective and splendid. Let D(f) : D(Q) −→ D(P) be
the induced map on bar dual operads. For every Q-algebra A, there is a natural map of
D(P)-algebras

(Df)!
(
D(A)

)
D
(
f∗(A)

)
.

This map is an equivalence whenever A is a Artin Q-algebra.

Proof. We can assume that P and Q are cofibrant k-operads and consider the map between
twisting morphisms

BP P

BQ Q.

Bf

ϕ

f

ψ

Let B(f)∗ denote the forgetful functor from BP-coalgebras to BQ-coalgebras. Then there is
a natural map of BQ-coalgebras for every Q-algebra A

B(f)∗Bϕ(f
∗(A)) Bψ(A).

43



Without differentials, this is given by the obvious map BP(A) −→ BQ(A) into the cofree
BQ-coalgebra on A. Taking duals gives a map of DQ-algebras

Dψ(A) D(f)∗Dϕ

(
f∗(A)

)
.

The desired natural map of algebras over D(P) is then obtained by adjunction, i.e. by
(derived) inducing up along DQ −→ DP.

Now suppose that A is a Artin Q-algebra. By Corollary 5.165.16, we may assume that A
is strictly Artin and nilpotent. By Proposition 5.115.11 and Lemma 5.85.8, there are cofibrant
resolutions

Dpoly
ψ (A) Dψ(A) Dpoly

ϕ (f∗(A)) Dϕ(f
∗(A)).∼ ∼

In particular, we obtain a commuting square

D(f)!D
poly
ψ (A) Dpoly

ϕ (f∗(A))

D(f)!Dψ(A) Dϕ(f
∗(A))

∼ ∼

where in the second row, D(f)! (implicitly) denotes the derived functor. Unravelling the
definitions, the top horizontal map is given without differentials by the natural map

D(P) ◦D(Q)

(
D(Q) ◦kop A∨

)
D(P) ◦kop A∨.

This map is an isomorphism, so the result follows.

Proof of Theorem 5.15.1 (B)(B). This is the special case of Proposition 5.175.17 where the map P −→
P′ = k is the augmentation map.

Proof of Theorem 5.15.1 (C)(C). Let A be an Artin P-algebra and consider a pullback square
(5.25.2) in the ∞-category of P-algebras. Inspecting the proof of Lemma 5.125.12 (cf. Diagram
(5.155.15)), one can present such a square in the ∞-category of P-algebras by a strict diagram of
P-algebras of the form

B B̃ kc[n, n+ 1]

A Ã kc[n+ 1],

p

∼

∼

where p : B −→ A is a square zero extension of strictly Artin, nilpotent P-algebras. By a
standard model categorical argument, one can in fact assume that the surjective map B̃ −→ Ã
is given by ΩB(p) : ΩϕBϕ(B) −→ ΩϕBϕ(A), and that the left two quasi-isomorphisms are
the canonical maps from the bar-cobar resolution.

Now apply the bar construction Bϕ to the above diagram. Then the left two weak
equivalences admit canonical sections. Using these canonical sections, one obtains a composite
square of BP-coalgebras of the form (5.95.9), which is cartesian. After dualizing, one obtains a
square of the form

Dϕ

(
kc[n+ 1]

)
Dϕ(A)

Dϕ

(
kc[n, n+ 1]

)
Dϕ(B).

44



We have to show that this square is a homotopy pushout square of D(P)-algebras. Since all
P-algebras involved in this square are strictly Artin and conilpotent, Proposition 5.115.11 implies
the above square is naturally equivalent to the square (5.105.10) of polynomial subalgebras. But
then the proof of Lemma 5.85.8 shows that this square is a (homotopy) pushout square of
D(P)-algebras (cf. Diagram (5.105.10)).

We conclude that the functor D : AlgP −→ AlgopD(P) satisfies the conditions of Theorem

4.184.18. In particular, this says that the functor

MC: AlgD(P) FMPP; g MapD(P)(D(−), g).∼

is an equivalence of ∞-categories, with inverse sending a formal moduli problem F to T (F ).
This proves Theorem 1.31.3.

Variant 5.18. Let C be a k-cooperad which is filtered-cofibrant as a k-module and let
ι : C −→ ΩC = P be the universal twisting morphism. Inspecting the above proof, one
sees that the conclusions of Theorem 5.15.1 remain valid as long as Dpoly

ι (A) −→ Dι(A) is a
quasi-isomorphism for every A that is strictly Artin and nilpotent. Consequently, Theorem
1.31.3 then holds for the operad P = ΩC.

As an important example of this situation, let us record the following. Suppose that k is
a dg-category such that all k(c, d) are concentrated in some fixed interval [a, b], and suppose
that C is a k-cooperad with the following property: C(p) is concentrated in degrees ≤ f(p),
with

f(p) −∞.p→∞

Note that when A is strictly Artin, there is an n such that any n-fold composition of generating
operations acts trivially on A. Since A is concentrated in finitely many degrees (Remark 2.62.6),
this means that such A is automatically nilpotent (Definition 5.55.5). Furthermore, the map
Dpoly
ι (A) −→ Dι(A) is then an isomorphism for degree reasons (cf. the proof of Lemma 5.195.19).

The above proof and Theorem 4.184.18 then imply that there is equivalence of ∞-categories

AlgC∨ = AlgD(P) FMPP.
∼

Note that C may have contributions from positive degrees, as long as it is eventually
concentrated in sufficiently negative degrees. In particular, this hold when C concentrated in
finitely many arities.

5.3 Proof of Proposition 5.115.11

This section is devoted to the proof of Proposition 5.115.11. Throughout, we assume that k
is as in Assumption 5.35.3, i.e. concentrated in cohomological degrees [−N, 0], and that P is
a k-operad in nonpositive degrees. We will prove Proposition 5.115.11 in increasing levels of
generality, starting with the following special case:

Lemma 5.19. Suppose that P = P≤p is nonpositively graded and concentrated in arities
≤ p, and let π : BP −→ P be the universal twisting morphism. If A is a nonpositively graded
P-algebra, then the map of BP∨-algebras

Dpoly
π (A) Dπ(A)

is an isomorphism.
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Proof. Since P is concentrated in arities ≤ p, its bar construction is generated by operations
in arities ≤ p and degrees ≤ −1. This means that the arity q part of BP is concentrated in
degrees ≤ −q/p. Consequently, each term

BP(q)⊗Σq⋉k⊗q A
⊗q

is concentrated in degrees ≤ −q/p. Since k is concentrated in degrees [−N, 0], the k-linear
dual is concentrated in degrees ≥ q/p−N in arity q. Consequently, in each degree there are
only finitely many arities that contribute to D(A), i.e. the map

⊕
q≥0

(
BP(q)⊗Σq⋉k⊗q A

⊗q
)∨ ∏

q≥0

(
BP(q)⊗Σq⋉k⊗q A

⊗q
)∨

is an isomorphism in each individual degree.

Let us next consider the case of a 0-reduced k-operad P, i.e. P(0) = 0. Then the tower of
quotients

P . . . P≤p P≤p−1 . . . P≤1

is a tower of operads. By definition, every nilpotent P-algebra A can be considered as a
P≤p0-algebra, for some p0.

Lemma 5.20. Let P be a 0-reduced k-operad, concentrated in nonpositive degrees, and let

π : BP P and π≤p : B(P≤p) P≤p

denote the universal twisting morphisms. For each P≤p0-algebra A in nonpositive degrees
there is a natural square of chain complexes

colimp≥p0 D
poly
π≤p (A) Dpoly

π (A)

colimp≥p0 Dπ≤p(A) Dπ(A).

∼=

∼=

in which the two marked arrows are isomorphisms.

Proof. Recall that for every map of twisting morphisms ϕ −→ ϕ′, there is a natural map
of chain complexes Dϕ′(A) −→ Dϕ(A). When A is nilpotent, this restricts to polynomial
subalgebras. This gives the desired square. The vertical arrow is an isomorphism by Lemma
5.195.19 and the horizontal arrow is given without differentials by the map

⊕
q≥0

colimp≥p0

(
B(P≤p)(q)⊗Σq⋉k⊗q A

⊗q
)∨ ⊕

q≥0

(
BP(q)⊗Σq⋉k⊗q A

⊗q
)∨
.

This map is an isomorphism. Indeed, the tower

BP(q) . . . B(P≤p+1)(q) B(P≤p)(q) . . .

becomes stationary as soon as p ≥ q , so that the sequence obtained by tensoring with A⊗q

and taking k-linear duals becomes stationary for p ≥ q as well.
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Corollary 5.21. Let P be a 0-reduced k-operad in nonnegative degrees and let A be a
P≤p0-algebra in nonnegative degrees, for some p0. Let π : BP −→·· P be the universal twisting
morphism. Then the map of complexes

Dpoly
π (A) Dπ(A)

can be identified with the natural map

hocolimp≥p0 D
≤p(A) D(A)

where D≤p : AlgP≤p −→ AlgD(P≤p) and D : AlgP −→ AlgD(P).

In particular, Corollary 5.215.21 furnishes a homotopy-invariant characterization of the map
Dpoly
π (A) −→ Dπ(A), as long as we take all our operads and algebras to be nonpositively

graded: it no longer depends on the specific point-set models for the twisting morphism π or
A (as long as these models are nonpositively graded).

Proposition 5.22. Let k be a dg-category in degrees [−N, 0] and let P be a splendid, 0-
reduced k-operad, concentrated in degrees ≤ 0. Let A be a P≤p0-algebra which is freely
generated as a k-module by generators of degrees ≤ 0, with finitely many generators of degree
0. Then the map

hocolimp≥p0 D
≤p(A) D(A)

is an equivalence.

Proof. We can work at the level of chain complexes. Since D and D≤p are homotopy invariant,
we may resolve the tower P −→ . . . −→ P≤p −→ . . . by a tower of cofibrant k-operads

Q . . . Q(p) Q(p−1) . . .

with the properties described in Proposition A.43A.43. In particular, each Q(p) is a quasi-free
k-operad generated by a nonnegatively graded, cofibrant k-symmetric sequence V (p).

For each the quasi-free k-operad Q = Free(V ), the right Q-module k admits a cofibrant
resolution of the form

K = Cone
(
V ◦k Q −→ Q

)
.

By Remark A.31A.31, the underlying complex of D(A) can be identified with(
K ◦Q A

)∨ ∼=
((

1⊕ V [1]
)
◦k A

)∨

with some differential. Let us now decompose A = A0 ⊕ A, where A0 is the k-module
generated by the (finitely many) degree 0 generators and A is generated by elements of
degree < 0. By Proposition A.43A.43, V (p) is concentrated in increasingly negative degrees as its
arity increases. Using that A0 is free on finitely many generators, one then sees that(

K ◦Q(p) A
)∨ ∼=

∏
q,r≥0

M(q, r)

with some differential, where

M(q, r) :=
(
(1⊕ V [1]

)
(q + r)⊗Σq⋉k⊗q A

⊗q)∨
⊗Σr⋉k⊗r (A

∨
0 )

⊗r.
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Since A is concentrated in degrees ≤ −1 and k is concentrated in degrees [−N, 0], M(q, r) is
concentrated in degrees ≥ q−N . Consequently, in each fixed cohomological degree there are
only contributions of the M(q, r) for finitely many q.

Similarly, V is concentrated in increasingly negative degrees as the arity increases.
Consequently, in each fixed cohomological degree there are only contributions of the M(q, r)
for finitely many r. It follows that the above product over q and r is isomorphic to a direct
sum, so that

D(A) ≃
(
K ◦Q(p) A

)∨ ∼=
⊕
q,r≥0

M(q, r). (5.23)

The same analysis applies to each of the graded-free operads P̃(p) = Free(V (p)) with p ≥
p0. Consequently, one finds that the sequence of chain complexes . . . −→ D≤p(A) −→
D≤p+1(A) −→ . . . −→ D(A) is quasi-isomorphic to the sequence of sums

. . .
⊕
q,r≥0

M (p)(q, r)
⊕
q,r≥0

M (p+1)(q, r) . . .
⊕
q,r≥0

M(q, r) (5.24)

endowed with some differential. We claim that this sequence is a colimit sequence of
complexes. This means that it is also a homotopy colimit, which proves the proposition.

To see that (5.245.24) is a colimit sequence, it suffices to prove that for every fixed r, the
sequence of graded vector spaces⊕

q≥0

(
(1⊕ V (p)[1]

)
(q + r)⊗Σq⋉k⊗q A

⊗q)∨

is a colimit sequence. We claim that this sequence becomes stationary in every fixed
cohomological degree. Indeed, since the q-th summand is concentrated in degrees ≥ q (since
A is generated by elements of degree ≤ −1), only finitely many summands contribute to
each individual degree. It therefore suffices to verify that for each q and r, the sequence of
graded vector spaces (

(1⊕ V (p)[1]
)
(q + r)⊗Σq⋉k⊗q A

⊗q)∨

becomes stationary as p→∞. But this follows from the construction of Proposition A.43A.43,
which guaranteed that V (p)(q + r) is constant for p ≥ q + r.

To deduce Proposition 5.115.11 from Proposition 5.225.22, we now only have deal with the extra
operations in arity zero that obstruct the use of the tower of quotients P −→ P≤p. This is
done by a filtration argument:

Construction 5.25. Let P be a k-operad which is cofibrant as a left k-module and let
π : BP −→ P be the universal twisting morphism. For any P-algebra A which is cofibrant
as a k-module, we can filter the bar construction Bπ(A) = BP ◦k A by word length in the
nullary operations of P. This is an increasing filtration by left k-modules which preserves
the bar differential.

The associated graded can be described as follows: let P≥1 denote part of P in nonzero
arity and let π≥1 : B(P≥1) −→ P≥1 be the universal twisting morphism. Then we can
identify

gr
(
Bπ(A)

)
= Bπ≥1

(
A⊕ P(0)[1]

)
where A⊕ P(0)[1] is the product of A, considered as a P≥1-algebra by restriction, and the
trivial algebra P(0)[1]. Since all pieces are cofibrant as k-modules, dualizing yields a complete
Hausdorff filtration on Dπ(A) whose associated graded is

gr
(
Dπ(A)

)
= Dπ≥1

(
A⊕ P(0)[1]

)
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Lemma 5.26. Suppose that P is a k-operad in nonpositive degrees and let A be a P-algebra
which is strictly Artin and nilpotent. Then the complete Hausdorff filtration on Dπ(A) from
Construction 5.255.25 restricts to a complete Hausdorff filtration on Dpoly

π (A). Furthermore, the
map Dpoly

π (A) −→ Dπ(A) induces the obvious map

Dpoly
π≥1

(
A⊕ P(0)[1]

)
Dπ≥1

(
A⊕ P(0)[1]

)
at the level of the associated graded.

Proof. Let us first check that the induced filtration on Dpoly
π (A) is complete Hausdorff. By

Construction 5.255.25, we can write

Bπ(A) ∼=
⊕
q,r≥0

(
B(P≥1)(q + r)⊗Σq⋉k⊗q P(0)

⊗q
)
[q]⊗Σr⋉k⊗r A

⊗r

as left k-modules, with some differential. The filtration is indexed by q. Since A is finitely
generated quasi-free over k, the k-linear dual of each of summand is given by

N(q, r) :=
(
B(P≥1)(q + r)⊗Σq⋉k⊗q P(0)

⊗q
)∨

[−q]⊗Σr⋉(kop)⊗r (A
∨)⊗r

and we have that

Dπ(A) ∼=
∏
q,r≥0

N(q, r) and Dpoly
π (A) =

⊕
r

∏
q≥0

N(q, r).

Since k is concentrated in degrees [−N, 0] and both A and P are concentrated in nonpositive
degrees, we have that N(q, r) is concentrated in degrees ≥ q − N , for all values of r.
Consequently, the natural map

Dpoly
π (A) =

⊕
r

∏
q≥0N(q, r)

∏
q≥0

⊕
rN(q, r)

is an isomorphism in each cohomological degree. Now note that Dpoly
π (A) ∼=

∏
q≥0

⊕
rN(q, r)

is manifestly complete Hausdorff with respect to the filtration by q. Furthermore, we see
that, without differential, there is an inclusion

gr
(
Dpoly
π

)
⊆ gr

(
Dπ

)
given in degree q by the obvious inclusion

⊕
rN(q, r) −→

∏
rN(q, r). Since gr

(
Dπ(A)

) ∼=
Dπ≥1

(
A⊕ P(0)[1]

)
, the second part of the lemma then follows by unravelling the definitions.

Proof (of Proposition 5.115.11). Suppose that k is concentrated in degrees [−N, 0], that P is
concentrated in nonpositive degrees and that A is nilpotent and strictly Artin. In particular,
A is quasi-free and finitely generated over k (Remark 2.62.6). To see that Dpoly

π (A) −→ Dπ(A)
is a quasi-isomorphism, we can work at the level of the underlying k-modules.

Endow both Dpoly
π (A) and Dπ(A) with the filtration by the number of nullary operations

from P, as in Lemma 5.265.26. Since these filtrations are complete and Hausdorff, it suffices to
show that the induced map on the associated graded

Dpoly
π≥1

(
A⊕ P(0)[1]

)
Dπ≥1

(
A⊕ P(0)[1]

)
is a quasi-isomorphism, where π≥1 : B(P≥1) −→·· P≥1 is the universal twisting morphism.
Note that the P≥1-algebra A ⊕ P(0)[1] satisfies the conditions of Proposition 5.225.22: it is
quasi-free over k and it has finitely many generators in degree 0, all coming from A. The
result then follows from Corollary 5.215.21 and Proposition 5.225.22.
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6 Change of operads

In this section we describe the functoriality of the equivalence

MC: AlgD(P) FMPP

in the operad P and use it to give a modular interpretation of the category of Q-algebras for
any k-operad Q (Theorem 6.156.15). We will start by considering the functoriality of the adjoint
pair (Dϕ,D

′
ϕ) in the twisting morphism ϕ.

6.1 Naturality of weak Koszul duality

To study the dependence of the adjoint pair
(
Dϕ,D

′
ϕ

)
on the twisting morphism ϕ : C −→·· P,

let us consider the following category of twisting morphisms:

Definition 6.1. Let Koszul denote the category whose

• objects are weakly Koszul twisting morphisms ϕ : C −→·· P from a k-cooperad C to a
k-operad P. When considered as a left k-module, C is filtered-cofibrant and P is cofibrant
by assumption.

• morphisms consist of a k-operad map f : P −→ Q and a k-cooperad map g : C −→ D,
fitting into a commuting square

C P

D Q.

g

ϕ

f

ψ

(6.2)

A map between such twisting morphisms is a weak equivalence if f (and hence also g) is a
quasi-isomorphism.

Remark 6.3. There is an obvious projection map π : Koszul −→ Opdgk sending a twisting

morphism to its codomain. This projection admits a section σ : Opdgk −→ Koszul sending P

to the universal twisting morphism BP −→·· P. In addition to the isomorphism πσ ∼= id, there
is a natural weak equivalence id −→ σπ: every weakly Koszul twisting morphism ϕ : C −→·· P

admits a natural weak equivalence to the universal one BP −→·· P. It follows that π and σ
induce an equivalence of ∞-categories after inverting the weak equivalences.

Consider the following functors with values in the ∞-category of ∞-categories and left
adjoint functors between them

Alg : Koszul CatL∞ Algdual : Koszul CatL∞. (6.4)

These two functors send a map (6.26.2) to the left adjoint functors

f! : AlgP AlgQ (g∨)∗ : AlgopC∨ AlgopD∨ .

We then have the following homotopy coherent upgrade of Lemma 4.44.4:

Proposition 6.5. There is a natural transformation of functors

Koszul CatL∞

Alg

Algdual

D (6.6)
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whose value at a weakly Koszul twisting morphism ϕ : C −→·· P is given by

AlgP AlgopC∨ .
Dϕ

Note that the functors Alg and Algdual send weak equivalences between twisting mor-
phisms to equivalences of ∞-categories (Corollary A.8A.8), and hence descend to functors on
the ∞-categorical localizations. By Remark 6.36.3, we therefore obtain the following:

Corollary 6.7. Let Opk be the ∞-category of (augmented) k-operads. Then there is a
natural transformation of functors

Opk CatL∞

Alg

Algdual

D

given on objects by Alg(P) := AlgP AlgopD(P) =: Algdual(P).D

Recall from Lemma 4.44.4 that a single map of twisting morphisms induces a square of
∞-categories commuting up to natural equivalence. For this reason, it will be more convenient
to establish Proposition 6.56.5 in terms of fibrations.

Construction 6.8. Let Algdg denote the category whose

• objects are tuples (ϕ : C −→·· P, A) consisting of a weakly Koszul twisting morphism,
together with a cofibrant P-algebra A.

• morphisms (ϕ : C −→·· P, A) −→ (ψ : D −→·· Q, B) consist of a map (6.26.2) and a map of
P-algebras A −→ f∗B.

Similarly, let Algdual,dg denote the category whose

• objects are tuples (ϕ : C −→·· P, g) consisting of a weakly Koszul twisting morphism, together
with a C∨-algebra g.

• morphisms (ϕ : C −→·· P, g) −→ (ψ : D −→·· Q, h) consist of a map (6.26.2) and a map of
P-algebras (g∨)∗(g) −→ h.

There are obvious projections

Algdg Koszul Algdual,dg Koszul,

whose fibers over ϕ : C −→·· P are given by the categories of cofibrant P-algebras and of
C∨-algebras, respectively. We will say that a map in Algdg is a fiberwise weak equivalence if
it is a quasi-isomorphism of algebras that covers the identity in the base category Koszul.

Note that both projections are cocartesian fibrations: given a map (6.26.2) in the base
category Koszul, the induced functors between the fibers are given by f! and (g∨)∗. By
construction, these change-of-fiber functors preserve fiberwise weak equivalences, so that
inverting the fiberwise weak equivalences yields cocartesian fibrations [Hin16Hin16, Proposition
2.1.4]

Alg Koszul Algdual Koszul.

These are exactly the cocartesian fibrations classified by the functors Alg and Algdual from
(6.46.4). Since these functors take values in ∞-categories and left adjoint functors between
them, the projections are cartesian fibrations as well [Lur09Lur09, Corollary 5.2.2.5].
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Proof (of Proposition 6.56.5). Consider the commuting triangle

Algdg Algdual,dg

Koszul

B∨

where the vertical functors are the projections and the top horizontal functor is given by(
ϕ : C −→·· P, A

)
7−→

(
ϕ : C −→·· P, Bϕ(A)

∨
)
.

This functor sends fiberwise weak equivalences in Algdg to fiberwise weak equivalences in
Algdual,dg by Lemma A.33A.33. Consequently, it descends to a functor between the∞-categorical
localizations, which we will denote by

Alg Algdual

Koszul.

D

(6.9)

When restricted to the fiber over a weakly Koszul twisting morphism ϕ, this functor is
given by Dϕ and admits a right adjoint D′

ϕ by Lemma 4.14.1. Furthermore, the functor

D : Alg −→ Algdual preserves cocartesian edges. Indeed, unraveling the definitions, this is
exactly the assertion of Lemma 4.44.4. It follows from [Lur17Lur17, Proposition 7.3.2.6] (and its
dual) that the functor D has a right adjoint which commutes with the projections, preserves
cartesian edges and is given fiberwise by D′

ϕ. Under straightening, this means precisely that
D determines a natural transformation of the form (6.66.6).

6.2 Naturality of the main theorem

We will now use Corollary 6.76.7 to show that the equivalence between formal moduli problems
and algebras of Theorem 1.31.3 depends functorially on the operad:

Proposition 6.10. Let k be a bounded connective dg-category and let Op+k denote the
∞-category of splendid connective k-operads. There is a natural equivalence of functors

Op+k PrR

AlgD

FMP

MC

with values in the ∞-category of locally presentable ∞-categories and right adjoint functors.
The value of this natural equivalence at a map f : P −→ Q is given by the commuting square
of right adjoints

AlgD(P) FMPP

AlgD(Q) FMPQ.

MC
≃

D(f)∗ (f∗)∗

≃
MC

(6.11)

where the right vertical functor restricts a formal moduli problem along the forgetful functor
f∗ : ArtQ −→ ArtP.
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Lemma 6.12. Let k be a bounded connective dg-category and let Op+k denote the ∞-category
of splendid connective k-operads. Then there is a natural transformation of functors

(
Op+k

)op
Cat∞

Art

Algdual

D (6.13)

whose value on a map f : P −→ Q is given by

ArtQ AlgopD(Q)

ArtP AlgopD(P).

f∗

D

D(f)!

D

Proof. Recall the commuting triangle (6.96.9), where the vertical projections are cartesian
and cocartesian fibrations and the top horizontal functor D sends (ϕ : C −→·· P, A) to
(ϕ : C −→·· P,Dϕ(A)). Let us consider the following subcategories of the ∞-categories
appearing in that triangle:

• Let Koszul+ ⊆ Koszul denote the subcategory of universal twisting morphisms BP −→·· P

where P is a splendid connective k-operad, with maps between those given by tuples
f : P −→ Q and B(f) : BP −→ BQ. By Remark 6.36.3, inverting the weak equivalences in
Koszul+ yields the ∞-category Op+k .

• Let Alg+,dual =: Algdual ×Koszul Koszul+ be the restriction of Algdual to the category
Koszul+.

• Let Alg+,art ⊆ Alg ×Koszul Koszul+ be the full subcategory of tuples (ϕ : BP −→·· P, A)
with A an Artin P-algebra.

The functors appearing in (6.96.9) then restrict to

Alg+,art Alg+,dual

Koszul+.

D

Note that the projection Alg+,dual −→ Koszul+ is (the restriction of) a cocartesian and
cartesian fibration. Since the restriction of an Artin algebra along a map of operads P −→ Q

is again Artin, the projection Alg+,art −→ Koszul+ is a cartesian fibration as well. Recall
that D sends a tuple

(
ϕ : C −→·· P, A

)
to

(
ϕ : C −→·· P,Dϕ(A)

)
. In particular, Proposition

5.175.17 shows that it preserves cartesian edges, so that we obtain a natural transformation

Koszul+,op Cat∞.

Art

Algdual

D

The domain of this natural transformation is given by P 7−→ ArtP and the codomain is
given by P 7−→ AlgopD(P). Since these functors send quasi-isomorphisms to equivalences of

∞-categories, the natural transformation descends to the localization of Koszul+ at the
quasi-isomorphisms, yielding the desired natural transformation (6.136.13).
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Proof. Consider the natural transformation (6.136.13) from Lemma 6.126.12. Taking the opposites
of its values, one obtains a functor with values in ∞-categories sending a map f : P −→ Q to

ArtopQ AlgD(Q)

ArtopP AlgD(P).

f∗

D

D(f)!

D

By the universal property of presheaf categories [Lur09Lur09, Theorem 5.1.5.6], one obtains a
natural transformation of functors Op+k −→ PrR with values in presentable ∞-categories
and right adjoint functors, whose value on f is given by

AlgD(P) Fun
(
ArtP, S

)
AlgD(Q) Fun

(
ArtQ, S

)
.

D∗

D(f)∗ (f∗)∗

D∗

Here the functor (f∗)∗ restricts a (co)presheaf along f∗ and D∗ sends a D(P)-algebra g to the
functor A 7−→ MapD(P)

(
D(A), g

)
. By part (C)(C) of Theorem 5.15.1, the natural transformation

D∗ takes values in diagram of full subcategories P 7−→ FMPP. The result then follows from
the fact that

MC: AlgD(P) FMPP Fun
(
ArtP, S

)
agrees with D∗ by definition.

6.3 FMPs from algebras over operads

Since every Artin (augmented symmetric) k-operad Q is in particular concentrated in finitely
many arities, it is splendid. Proposition 6.106.10 and passing to opposite categories therefore
shows that there is a triangle

ArtopOp Op

PrL

D

FMP
AlgMC

commuting up to the natural equivalence MC: AlgD(Q) −→ FMPQ. Since PrL admits all
colimits, this induces a commuting diagram

Fun(ArtOp, S) Op

PrL

D!

FMP!

AlgMC

where D! and FMP! are the unique colimit-preserving extensions of D and FMP. The right
adjoint to D! sends an operad P to the functor MapOp(D(−),P). In other words, this right
adjoint is precisely the functor MC, composed with the inclusion FMPOp ↪→ Fun(ArtOp, S).
This implies that for a formal moduli problem F ,

D!(F ) ≃ MC−1(F ) = T (F )

is given by the tangent complex (by Theorem 4.184.18 the inverse of MC is the tangent complex).
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Definition 6.14. Let X : ArtOp −→ S be a functor. We define FMPX to be the value of
FMP! on X. One can identify FMPX with the limit of the diagram(

ArtopOp/X
)op

Cat∞

sending (
Q, x ∈ X(Q)

)
FMPQ

(
Q′, x′ ∈ X(Q′)

)
FMPQ′ .

f : Q−→Q′

f(x)
∼−→x′ F 7→F◦f∗

Theorem 6.15 (Theorem 1.61.6). For any formal moduli problem X : ArtOp −→ S, there is
an equivalence of ∞-categories

MC: AlgT (X) FMPX .

Lemma 6.16. The functor Alg : Op −→ PrL;P 7−→ AlgP preserves sifted colimits.

Proof. The functor Alg is classified by a cartesian and cocartesian fibration Alg −→ Op; in
fact, this is just the functor obtained by localizing the functor Algdg −→ Opdg of Construction
6.86.8. Note that Alg is itself the category of algebras over a coloured operad (namely, the
operad for operads with an algebra over them), and hence admits all limits and colimits.

We claim that the lemma follows from the following assertion: consider a cone diagram
F : K� −→ Alg such that

• the full subcategory K ⊆ K� is a sifted ∞-category.

• the composite K� −→ Alg −→ Op is a colimit diagram of operads.

• for each arrow in the subcategory K ⊆ K�, its image in Alg is a cartesian arrow.

Then the diagram F : K� −→ Alg is a colimit diagram if and only if for every arrow in K�,
its image in Alg is cartesian.

Indeed, let K� −→ Op be a colimit diagram and consider the functor

Map♭K�

(
(K�)♯,Alg♮

)
Map♭K

(
K♯,Alg♮

)
which restricts a lift K� −→ Alg with values in cartesian edges to the full subcategory
K ⊆ K�. By the assertion, this functor is an equivalence with inverse given by left
Kan extension (cf. [Lur09Lur09, Proposition 4.3.2.15]) and the lemma then follows from [Lur09Lur09,
Proposition 3.3.3.1].

To verify the assertion, note that the forgetful functor

Φ = (Φ1,Φ2) : Alg Op×Modk;
(
P, A ∈ AlgP

) (
P, A

)
arises from restriction along a map of operads, and hence detects sifted colimits [Lur17Lur17,
Corollary 3.2.3.2]. Furthermore, an arrow in Alg is cartesian if and only if its image under
Φ2 is essentially constant.

We now have a diagram F : K� −→ Alg such that Φ1(F ) is a colimit and diagram
and Φ2(F

∣∣K) is essentially constant. Then F is a colimit diagram iff Φ2(F ) is a colimit
diagram, which is equivalent to Φ2(F ) being essentially constant, i.e. F sends every arrow to
a cartesian arrow.
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Proof (of Theorem 6.156.15). By Lemma 6.166.16, we have sifted colimit-preserving functors that
send a diagram X : ArtOp −→ S to FMPX and AlgD!(X). Since MC defines a natural
equivalence between them on corepresentables, the same is true for all X : ArtOp −→ S that
can be written as sifted colimits of corepresentables. In particular, this holds when X is an
FMP [Lur11Lur11, Proposition 1.5.8]. The result then follows from the fact that T (X) = D!(X)
when X is an FMP.

7 Maurer–Cartan equation

In the previous sections we have discussed how – for a suitable augmented k-operad P –
every algebra g over the dual operad D(P) determines a formal moduli problem

MCg : ArtP S.

The formal moduli problem has been defined in ∞-categorical terms by the formula

MCg(A) = MapD(P)

(
D(A), g

)
.

The purpose of this section is to give a more explicit chain-level description of this functor
in terms of Maurer–Cartan elements of (nilpotent) L∞-algebras (see Theorem 7.187.18). In
particular, in the classical case where P = Com and g is a Lie algebra, we recover the usual
formula (see e.g. [Hin01Hin01])

MCg(A) = MC
(
A⊗ g⊗ Ω•

)
describing the formal moduli problem classified by g in terms of simplicial sets of Maurer–
Cartan elements (see Example 7.207.20).

We will start by recalling some models for ∞-categories of algebras by simplicially
enriched categories. Under certain finiteness conditions on the k-operad P (see Assumption
7.67.6), we can then present the ∞-functor D on Artin P-algebras by a simplicially enriched
functor that sends a strictly Artin P-algebra to the cobar construction of its linear dual. The
results of Section A.3A.3 then allow us to describe MCg in terms of Maurer–Cartan elements.

7.1 Simplicial categories of algebras

Recall that for any k-operad P, the∞-category of P-algebras is defined to be the∞-category
obtained from the model category of P-algebras by localizing at the quasi-isomorphisms.
Such localizations can be modelled by simplicially enriched categories, using the simplicial
localization of Dwyer and Kan, and often its mapping spaces can be computed using fibrant
resolutions [DK80DK80]:

Definition 7.1. Given a k-operad P, the naive simplicial category of P-algebras AlgP is
the following simplicially enriched category:

• objects are P-algebras.

• for two P-algebras A and B, the simplicial set Map∆P (A,B) of maps between them has
n-simplices given by maps of P-algebras

A B ⊗ Ωn

where Ωn = Ω[∆n] denotes the cdga of differential forms on the n-simplex. Equivalently,
these are maps of P⊗ Ωn-algebras A⊗ Ωn −→ B ⊗ Ωn.
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Furthermore, let Alg◦
P ⊆ AlgP denote the full simplicial subcategory on the cofibrant

P-algebras.

Let AlgdgP denote the (ordinary) category of P-algebras and let Algdg,◦P ⊆ AlgdgP denote
the subcategory of cofibrant P-algebras. We then have a commuting square of simplicial
categories

Algdg,◦P AlgdgP

Alg◦
P AlgP

i

where the vertical functors simply include the vertices of the mapping spaces.
After taking simplicial localizations at the quasi-isomorphisms, each of the above functors

yields a weak equivalence of simplicial categories. Indeed, taking cofibrant replacements
produces a functor Q : AlgdgP −→ Algdg,◦P such that Q ◦ i and i ◦ Q are naturally quasi-
isomorphic to the identity. It follows that i induces a weak equivalence after simplicial
localization at the quasi-isomorphisms, and similarly for the inclusion Alg◦

P −→ AlgP. The
right vertical functor induces an equivalence after localizations because for every P-algebra
A, the simplicial presheaf

Map∆P (−, A) : Alg
dg
P sSet

is representable by the simplicial diagram of P-algebras A ⊗ Ω[∆•], all of which are
quasi-isomorphic (see e.g. [DK87DK87] or [Nui16Nui16, Corollary 2.9]). Now note that every quasi-
isomorphism in Alg◦

P is already a homotopy equivalence [Hin97Hin97, Lemma 4.8.4]. Consequently,
Alg◦

P is weakly equivalent to its simplicial localization and we obtain the following:

Lemma 7.2. If P is a k-operad, then the ∞-category of P-algebras can be modelled by the
simplicial category Alg◦

P.

Recall that given a Koszul twisting morphism ϕ : C −→·· P, there is a more general notion
of∞-morphisms of P-algebras, given by maps between the respective bar constructions. This
recovers the classical examples of A∞- or L∞-morphisms. The ∞-categorical localization
can also be described using ∞-morphisms:

Definition 7.3. Given a Koszul twisting morphism ϕ : C −→·· P (Definition A.27A.27), we define
Alg∞

P to be the following simplicially enriched category:

• the objects of Alg∞
P are P-algebras which are cofibrant as k-modules.

• for two such P-algebras A and B, the simplicial set Map∞P (A,B) of maps between them
has n-simplices given by ∞-morphisms

A B ⊗ Ωn.

Equivalently, an n-simplex is a map of C⊗ Ωn-coalgebras

Bϕ(A)⊗ Ωn Bϕ(B)⊗ Ωn. (7.4)

Lemma 7.5. If ϕ : C −→·· P is a Koszul morphism over k, then the ∞-category of P-algebras
can be modelled by the simplicial category Alg∞

P .
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Proof. Including the strict morphisms into the ∞-morphisms and sending an ∞-morphism
A⇝ B to the strict morphism ΩϕBϕ(A) −→ ΩϕBϕ(B) induces simplicially enriched functors

j : Alg◦
P Alg∞

P ΩϕBϕ : Alg∞
P Alg◦

P.

The natural homotopy equivalences ΩϕBϕ(A) −→ A (Lemma A.34A.34) and A⇝ ΩϕBϕ(A) show
that j and Ω define a homotopy equivalence of simplicial categories.

7.2 Simplicial categories of Artin algebras

We will now specialize to the case where P = ΩC arises as the cobar construction of a
k-cooperad satisfying suitable finiteness hypotheses:

Assumption 7.6. For the remainder of this section, let us fix a dg-category k and a
k-cooperad C which is filtered-cofibrant as a left k-module, and let P = ΩC denote its cobar
construction. We will assume that k is concentrated in degrees [0, N ], for some N , and that
C satisfies the following conditions:

(1) for all colours c1, . . . , cp ∈ S, the left k-module C(c1, . . . , cp;−) is quasi-projective and
finitely generated.

(2) each C(p) is concentrated in degrees ≤ f(p), where f(p) tends to −∞ as the arity p
tends to ∞.

Example 7.7. Let C = coFree(E,R) be a quadratic cooperad over a field k, where E is finite
dimensional and in cohomological degrees ≤ 1. Then C satisfies the conditions of Assumption
7.67.6. In particular, this applies to the quadratic dual cooperads of classical quadratic operads
such as Com,As, Lie and Perm, as well as Osym (Definition 3.273.27).

Let us record the following immediate consequences of these assumptions:

Remark 7.8. The k-operad P = ΩC satisfies the conditions of Variant 5.185.18. In particular,
for degree reasons every Artin P-algebra A is automatically nilpotent and the inclusion
Dpoly
ϕ (A) ⊆ Dϕ(A) is the identity. Theorem 4.184.18 then provides an equivalence of∞-categories

between formal moduli problems over P and C∨-algebras.

Remark 7.9. There is a canonical map of k-operads P = ΩC −→ B(C∨)∨. Because each
C(p) is finitely generated over k, this map identifies B(C∨)∨ with the completion P∧ of P at
its augmentation ideal.

Note that a strictly Artin (hence nilpotent) P-algebra A has a canonical P∧-algebra
structure. Since such A is perfect over k, its linear dual A∨ has the canonical structure of
a B(C∨)-coalgebra. Unravelling the definitions, one then obtains a natural isomorphism of
C∨-algebras

Ωϕ†(A∨) Dpoly
ϕ (A) = Dϕ(A)

∼=

where ϕ† : B(C∨) −→·· C∨ is the canonical twisting morphism.

Definition 7.10 (Simplicial category of Artin P-algebras). For P = ΩC as in Assumption
7.67.6, let us define

Art∞P ⊆ Alg∞
P

to be the full simplicial subcategory on the P-algebras that are strictly Artin (Definition
2.52.5).
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Lemma 7.11. In the situation of Assumption 7.67.6, the ∞-category of Artin P-algebras can
be presented by the simplicial category Art∞P .

Proof. The simplicial category Art∞P presents a full subcategory of the ∞-category of P-
algebras by Lemma 7.57.5. It presents the subcategory of Artin P-algebras by Lemma 5.125.12,
which applies by Variant 5.185.18.

Assumption 7.67.6 now allows us to give a very simple description of the functor Dϕ on the
∞-category of Artin P-algebras:

Lemma 7.12. In the situation of Assumption 7.67.6, there is a (strictly) fully faithful functor
of simplicial categories

Dϕ : Art∞P Alg◦
C∨ ; A Dϕ(A) := Ωϕ†(A∨). (7.13)

This simplicial functor presents the functor of ∞-categories Dϕ : ArtP −→ AlgC∨ from
Section 4.14.1.

Proof. Let us start by defining the functor (7.137.13) more precisely. By Remark 7.97.9, we have

that Dϕ(A) = Dpoly
ϕ (A) ∼= Ωϕ†(A∨) is cofibrant whenever A is strictly Artin (and hence

nilpotent, cf. Remark 7.87.8). Let us now define the functor Dϕ on simplicial sets of morphisms

Dϕ : Map∞P (A,B) Map∆C∨

(
Dϕ(B),Dϕ(A)

)
.

To this end, recall that an n-simplex in Art∞P is given by a map of C⊗ Ωn-coalgebras

Bϕ(A)⊗ Ωn Bϕ(B)⊗ Ωn. (7.14)

Because C satisfies the conditions (1)(1) and (2)(2) of Assumption 7.67.6 and because A is perfect
over k, we have that Bϕ(A)⊗Ωn = C(A)⊗Ωn is quasi-projective and finitely generated as a
left k⊗ Ωn-module. The k⊗ Ωn-linear dual of Bϕ(A)⊗ Ωn is then given by

Homk⊗Ωn

(
Bϕ(A),k⊗ Ωn

) ∼= Dϕ(A)⊗ Ωn.

On (higher) morphisms, we can therefore simply define Dϕ to send (7.147.14) to its k ⊗ Ωn-
linear dual. The resulting map of simplicial sets is an isomorphism, with inverse taking the
kop ⊗ Ωn-linear dual of a map of C∨ ⊗ Ωn-algebras. We therefore obtain the desired fully
faithful functor (7.137.13).

To see that this enriched functor indeed presents the ∞-functor Dϕ defined in Section
4.14.1, consider the following commuting diagram:

Art∞P Alg∞
P Algdg,◦P

Alg◦,op
C∨ Algop

C∨ AlgdgP .

Dϕ

∼

Dϕ

∼ ∼

By Lemma 7.117.11, Art∞P −→ Alg∞
P models the inclusion of the Artin P-algebras in the

∞-category of all P-algebras. The assertion then follows by noting that the marked arrows
become equivalences after localizing at the quasi-isomorphisms.
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7.3 Formal moduli problems from the Maurer–Cartan equation

We will now describe the equivalence provided by Theorem 4.184.18

MC: AlgC∨ FMPP
∼

more concretely in terms of simplicial sets of Maurer–Cartan elements, at least for 1-reduced
cooperads C satisfying the finiteness hypotheses of Assumption 7.67.6. Let us start with the
following observation:

Lemma 7.15. Fix a dg-category k and a 1-reduced k-cooperad C as in Assumption 7.67.6. For
any twisting morphism ϕ : C −→·· P, there exists a functor

AlgdgC∨ ⊗AlgdgP AlgdgL∞{−1}; (g, A) g⊗k A

to the category of shifted L∞-algebras. When A or g is nilpotent, g⊗kA is a nilpotent shifted
L∞-algebra.

Construction 7.16 (Hadamard tensor product of k-operads). Let k be a dg-category with a
set of objects S. Given a kop-operad P and a k-operad Q, we can construct a (monochromatic)
operad P⊗H Q over the base field k, their (internal) Hadamard tensor product33, as follows.
For two tuples of objects c = (c1, . . . , cp) and d = (d1, . . . , dp) in k, consider the tensor
product

P(c)⊗k Q(d) := P(c;−)⊗k Q(d;−) =
(⊕

c0

P(c; c0)⊗ Q(d; c0)
)/
∼ .

Explicitly, the tensor product over k (see Section 1.21.2) is computed as the quotient by relations(
c
ϕ−→ c0

λ−→ d0
)
⊗
(
d
ψ−→ d0

)
∼

(
c
ϕ−→ c0

)
⊗
(
d
ψ−→ d0

λ−→ c0
)

where ϕ and ψ are operations in P and Q, λ is an arrow in k and λ denotes the corresponding
arrow in kop. We then define(

P⊗H Q
)
(p) := Homk⊗p⊗(kop)⊗p

(
k⊗p,P⊗k Q

)
⊆

∏
c=(c1,...,cp)

P(c)⊗k Q(c).

Explicitly, its elements are S×p-tuples of the form(∑
c0

c
ϕc−→ c0 ⊗ c

ψc−→ c0

)
c∈S×p

(7.17)

such that for every tuple of maps λi : di −→ ci in k∑
c0

(
c
λ1,...,λp−−−−−→ d

ϕd−→ c0
)
⊗ d

ψd−−→ c0 =
∑
c0

c
ϕc−→ c0 ⊗

(
d
λ1,...,λp−−−−−→ c

ψc−→ c0
)

in the complex P(c)⊗k Q(d). These equations guarantee that P⊗H Q carries a well-defined
operad structure determined by∑

c0

(
c
ϕ−→ c0 ⊗ c

ψ−→ c0
)
◦i

∑
d0

(
d
α−→ d0 ⊗ d

β−→ d0
)
=

∑
c0

∑
d0=ci

ϕ◦iα−−−→ ⊗ ψ◦iβ−−−→ .

3This construction differs from the (simpler) exterior Hadamard tensor product (A.9A.9).
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The operad P ⊗H Q is constructed in order for the following to hold: if A is a P-algebra
and B is a Q-algebra, then the chain complex A⊗k B is a P⊗H Q-algebra. Indeed, given p
elements in A⊗k B of the form

∑
ci
aci ⊗ bci with aci ∈ A(ci) and b ∈ B(ci), the operation

(7.177.17) sends it to ∑
c0

∑
c=(c1,...,cp)

ϕc(ac1 , . . . , acp)⊗ ψc(bc1 , . . . , bcp).

Proof (of Lemma 7.157.15). Note that for any k-cooperad C and any k-operad P, there is a
natural inclusion of operads over the ground field k

C∨ ⊗H P Conv(C,P).

Here C∨ ⊗H P is the Hadamard tensor product (Construction 7.167.16) and Conv(C,P) is the
convolution operad (Remark A.19A.19). Given an element in C∨ ⊗H P of the form (7.177.17), with
ϕ ∈ C∨ and ψ ∈ P, the corresponding map C(p) −→ P(p) is given by

C ∋
(
c
α−→ c

)
7−→

∑
c0

(
c
ψc−→ c0

⟨ϕc,α⟩−−−−→ c
)
.

The arrow
〈
ϕc, α

〉
is the natural value of ϕc ∈ C∨ on α ∈ C, cf. Equation (A.12A.12).

When C is 1-reduced, the twisting morphism ϕ : C −→·· P determines a map of operads
L∞{−1} −→ Conv(C,P) (Remark A.19A.19). When C satisfies the finiteness conditions of
Assumption 7.67.6, this maps factors as

L∞{−1} C∨ ⊗H P Conv(C,P).

Indeed, for every c = (c1, . . . , cp), Assumption 7.67.6 allows us to pick a finite basis ec,α ∈ C(c; cα)
for the left k-module C(c;−). Unravelling the definitions, one then sees that the generating
p-ary operation of L∞{−1} will be sent to the element(∑

α

e∨c,α ⊗ ϕ(ec,α)
)
c=(c1,...,cp)

∈ C∨ ⊗H P.

By Construction 7.167.16, g ⊗k A is a C∨ ⊗H P-algebra and hence an L∞{−1}-algebra by
restriction. Furthermore, if g is nilpotent, then there are only finitely many composites of
e∨c,α that act nontrivially on g. Consequently, only finitely many composites of the generating
operations in L∞{−1} act nontrivially on g ⊗k A. It follows that g ⊗k A is a nilpotent
L∞{−1}-algebra, and similarly if A is nilpotent.

Using the shifted L∞-structure from Lemma 7.157.15, we can now describe the formal moduli
problem associated to a C∨-algebra more precisely as follows:

Theorem 7.18. Consider a dg-category k and a 1-reduced k-cooperad C satisfying the
conditions from Assumption 7.67.6, and denote P = ΩC. For every C∨-algebra g, there is a
simplicially enriched functor

MCg : Art∞P sSet; A MC
(
g⊗k A⊗ Ω•

)
where g⊗k A carries the L∞{−1}-algebra structure from Lemma 7.157.15. This determines a
simplicially enriched functor

MC: Alg∆
C∨ Fun

(
Art∞P , sSet

)
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sending quasi-isomorphisms to pointwise homotopy equivalences. The associated functor
between ∞-categories presents the fully faithful functor of Theorem 4.184.18

MC: AlgD(P) Fun
(
ArtP, S

)
, (7.19)

whose essential image is the ∞-category of formal moduli problems over P.

Example 7.20. Let C = Lie∨{1} be the shifted coLie cooperad, so that ΩC = C∞ is a
resolution of the commutative operad. Suppose that g is a Lie algebra and that A is a
strict unital Artin dg-algebra, i.e. an augmented unital cdga whose augmentation ideal mA
is (strictly) finite dimensional and nilpotent. Theorem 7.187.18 then shows that

MCg(A) = MC
(
mA ⊗ g⊗ Ω•

)
.

In other words, the value on A of the formal moduli problem associated to g by the
equivalence of Lurie [Lur11Lur11, Theorem 2.0.2] coincides with the value of the deformation
functor considered e.g. by Hinich [Hin01Hin01] and Pridham [Pri10Pri10]. In addition, Theorem 7.187.18
shows that the full FMP associated to g can be described similarly, by allowing A to be a
strictly Artin C∞-algebra, in which case mA ⊗ g is an L∞-algebra.

Proof. Consider the simplicially enriched functor AlgC∨ −→ Fun(Art∞P , sSet) sending g to
the enriched functor

A 7−→ Map∆C∨

(
Dϕ(A), g

)
.

By Lemma 7.127.12, this enriched functor presents the functor of ∞-categories (7.197.19) after
inverting the weak equivalences. It therefore suffices to identify Map∆C∨

(
Dϕ(A), g

)
with a

simplicial set of Maurer–Cartan elements. But now recall that

Dϕ(A) = Ωϕ†(A∨)

is the cobar construction of the linear dual of A, which is a B(C∨)-coalgebra. By the universal
property of the cobar construction (Proposition A.20A.20), we then have that

Map∆C∨

(
Dϕ(A), g

) ∼= MC
(
Homkop(A

∨, g⊗ Ω•)
)

is given by the simplicial set of Maurer–Cartan elements in the convolution L∞{−1}-algebra
Homkop(A

∨, g⊗ Ω•) (Remark A.29A.29). The result now follows from the fact that the maps

A⊗k g A∨∨ ⊗k g Homkop(A
∨, g)

are isomorphisms of L∞{−1}-algebras, since A is quasi-free, finitely generated over k (Remark
2.62.6).

Remark 7.21. Suppose we are in the setting of Theorem 7.187.18 and fix a strictly Artin
P-algebra A. The above proof shows that the space

MCg(A) ≃ MapC∨(D(A), g) ≃ MapC∨

(
Ωϕ†(A∨), g

)
can be presented by the simplicial set

MC
(
Homkop(A

∨, g•)
) ∼= MC

(
A⊗k g•

)
for any choice of fibrant simplicial resolution g• of the C∨-algebra g. The additional feature
of the particular choice g• = g⊗ Ω• is that one obtains a simplicially enriched functor in A.
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Remark 7.22. Let C be a k-cooperad as in Assumption 7.67.6 with contributions in arity 0 or
1. Let us denote by Ωnc the cobar construction of non-coaugmented cooperads, i.e. Ωnc(C)
is by definition Ω(k ⊕ C). A twisting morphism ϕ : C −→·· P then determines an operad map

Ωnc(coCom
u) C∨ ⊗H P.

from the non-coaugmented cobar construction on the counital cocommutative cooperad.
This operad is freely generated by symmetric operations lp of degree 1, with p ≥ 0; the
operation l1 differs from the differential.

If A is a strictly Artin ΩC-algebra, then maps of C∨-algebras Ω(A∨) −→ g correspond
bijectively to Maurer–Cartan elements of the nilpotent Ωnc(coCom

u)-algebra A ⊗k g, i.e.
degree 0 elements satisfying

dx+
∑
p≥0

1

p!
lp(x, . . . , x) = 0.

One can then repeat the proof of Theorem 7.187.18 to show the following: the formal moduli
problem associated to a C∨-algebra g is represented by the simplicially enriched functor
A 7−→ MC

(
A⊗k g⊗ Ω•

)
on strictly Artin ΩC-algebras.

8 Relative Koszul duality

In this final section, we describe a somewhat simplified case of quadratic duality in the
setting of k-operads. This was already mentioned in our discussion of operadic deformation
problems (Section 3.33.3) and we will conclude this section by providing the leftover proofs of
Theorem 3.213.21 and Proposition 3.323.32 appearing there.

8.1 Distributive laws and quadratic duality

Recall that a k-operad P is said to be quadratic if it admits a presentation of the form
P = FreeOp(V )/(R), where V is a symmetric sequence of graded (but non-dg) k-vector
spaces and

R ⊆ V ◦(1) V = Free
(2)
Op(V )

is contained in the subspace spanned by V -labeled trees with two vertices [LV12LV12, Section 7.1].
In this section, let us fix a dg-category k with set of objects S and consider the following
generalization of this:

Definition 8.1. A k-operad P is called quadratic if it admits a quadratic presentation

P = Qk(V,R) := FreeOpk(V )/(R)

where V is a symmetric k-bimodule which is free (not quasi-free) as a left k-module and
R ⊆ V ◦(1) V . In this case, its Koszul dual cooperad P¡ = Qco

k (V [1], R[2]) is the conilpotent
quadratic k-cooperad cogenerated by V [1] with corelations R[2]. We denote its Koszul dual
operad (relative to k) by P! := (P¡{−1})∨.

There is a canonical k-twisting morphism P¡ −→·· P arising from the identity V → V [1]
on (co)generators. Indeed, such a canonical twisting morphism Qco

S (V [1], R[1]) −→·· QS(V,R)
exists at the level of S-coloured operads [VdL03VdL03, Section 3], and descends to the quotients
obtained by taking tensor products relative to k.
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Definition 8.2. A quadratic operad P = Qk(V,R) is said to be a weakly Koszul operad
(relative to k) if the induced map P¡ −→ BP is a quasi-isomorphism. In that case, the operad
P! is quasi-isomorphic to Dk(P){1}.

Observation 8.3. Suppose that k is concentrated in degrees ≤ 0 and that P = Q(V,R) is
Koszul relative to k with V concentrated in degrees ≥ 0 and finitely many arities. Then P is
a splendid operad and FMPP ≃ AlgP! (as in Observation 3.393.39).

A main source of quadratic k-operads arises from distributive laws. If V is an S-coloured
symmetric sequence, let us say that a k-law on V is a map of S-coloured symmetric sequences

Λ: V ◦ k k ◦ V

such that the following diagrams commute

V ◦ k ◦ k k ◦ V ◦ k k ◦ k ◦ V V ◦ k V ◦ k

V ◦ k k ◦ V k ◦ V k ◦ V.

Λ◦1

V ◦µ

1◦Λ

µ◦V ∼= Λ

Λ

Let Λ: V ◦ k −→ k ◦ V be a k-law on a symmetric sequence. Then k ◦ V has the natural
structure of a symmetric k-bimodule (free as a left k-module) via the maps

k ◦ (k ◦ V ) k ◦ V (k ◦ V ) ◦ k k ◦ k ◦ V V.
µ◦1 1◦Λ µ◦1

Any symmetric k-bimodule that is free as a left k-module arises in this way. If V = P is an
S-coloured operad (augmented, as always), then k ◦ P inherits a k-operad structure via

(k ◦ P) ◦k (k ◦ P) ∼= k ◦ (P ◦ P) k ◦ P

as long as the k-law is a distributive law in the sense of [LV12LV12, Section 8.6], i.e. it is also
right distributive:

P ◦ P ◦ k ◦ k P ◦ k ◦ P k ◦ P ◦ P k ◦ k P ◦ k k ◦ k

P ◦ k k ◦ P k ◦ k k ◦ P k ◦ k.

Λ◦1

µ◦1

1◦Λ

1◦µ ∼= Λ ∼=

Λ

Similarly, if V = C is an S-coloured cooperad, then

k ◦ C k ◦ C ◦ C ∼= (k ◦ C) ◦k (k ◦ C)k◦∆

endows k ◦C with the natural structure of a k-cooperad as long as the k-law is codistributive:

C ◦ k k ◦ C k ◦ k C ◦ k k ◦ k

C ◦ C ◦ k ◦ k C ◦ k ◦ C k ◦ C ◦ C k ◦ k k ◦ C k ◦ k.

Λ

∼= Λ ∼=

Λ◦1 1◦Λ

Example 8.4. Let Λ: V ◦ k −→ k ◦ V be a k-law. This induces a distributive law on the
free operad FreeOpS (V ) and a codistributive law on the cofree cooperad CofreeCoopS (V ).

Definition 8.5. Let ϕ : C −→·· P be a twisting morphism. We will say that a k-law on ϕ is
the data of:
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• a codistributive law ΛC on C.

• a distributive law ΛP on P.

such that ϕ intertwines ΛC and ΛP.

Lemma 8.6. If ϕ : C −→·· P is a twisting morphism and Λ is a distributive law on ϕ, then
k ◦ ϕ : k ◦ C −→·· k ◦ P is a k-twisting morphism (see Construction A.17A.17).

Proof. This follows from checking that given maps f, g : C −→ P such that f intertwines ΛC

and ΛP, the equation (k ◦ f) ⋆ (k ◦ g) = k ◦ (f ⋆ g) is satisfied.

Example 8.7. Let ΛP be a distributive law on an augmented k-operad P. This extends to
a canonical k-law on the universal twisting morphism π : B(P) −→·· P such that k ◦ π is the
universal twisting morphism of the k-operad k ◦ P. In particular, if P is splendid, then k ◦ P
is a splendid k-operad.

The following proposition shows that under good conditions, distributive laws are com-
patible with Koszul duality.

Proposition 8.8. Let P = Q(V,R) be an S-coloured quadratic operad and consider a k-law
Λ: V ◦ k −→ k ◦ V such that the induced distributive law on FreeOpS (V ) preserves the
quadratic relations R. In other words, Λ induces a distributive law on P. Then:

(1) Λ[1] : V [1] ◦ k −→ k ◦ V [1] induces a codistributive law on the quadratic dual P¡.

(2) Λ and Λ[1] together determine a k-law on the twisting morphism P¡ −→·· P.

(3) If P¡ −→·· P is weakly Koszul, then the induced twisting morphism k ◦ P¡ −→·· k ◦ P is
weakly Koszul over k.

Proof. For (1), one can check that Λ[1] preserves the quadratic relations. For (2), note that
the maps

Qco(V [1], R[2]) −→ V [1] −→ V −→ Q(V,R)

are all compatible with the distributive law by construction. Finally, for (3), the map of
cooperads ϕ′ : P¡ −→ B(P) is compatible with the codistributive law on P¡ and that of
Example 8.78.7 (both ultimately arise from Λ). Consequently, there is an induced map of
k-coalgebras

k ◦ ϕ′ : k ◦Qco(V [1], R[2]) k ◦ B(P).

Since the composition product (over k) preserves quasi-isomorphisms, the result follows.

8.2 Koszul self-duality of Osym and proof of Theorem 3.213.21

Let us now spell out how the operad Osym for nonunital symmetric operads, discussed in
Section 3.33.3, fits into the framework from the previous section. To this end, notice that the
presentation of the Z≥0-coloured operad of nonsymmetric operads Ons given in Definition
3.243.24 is quadratic and therefore fits the framework of (coloured) Koszul duality:

Proposition 8.9 ([VdL03VdL03, Theorem 4.3]). The quadratic Z≥0-coloured operad Ons is Koszul,

and it is isomorphic to its Koszul dual operad Ons! = Ons.

A priori a similar result is not expectable for the operad of symmetric operads since
the relations for the symmetric group are not quadratic. Dehling and Vallette [DV21DV21] used
curved Koszul duality theory to construct an appropriate cofibrant replacement functor over
any ring. Crucially, they observed that the symmetric group data could be obtained as a
distributive law.
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Proposition 8.10 ([DV21DV21, Proposition 1.9]). There is a k[Σ]-law on the quadratic data
generating Ons, such that

k[Σ] ◦ Ons ∼= Osym.

Following the previous section we can therefore interpret Osym as a quadratic k[Σ]-operad
which is Koszul. Using the canonical equivalence inv : Σ −→ Σop, sending a permutation
to its inverse, to identify k[Σ]-operads with k[Σop]-operads, the Koszul dual of Osym can be
viewed as a k[Σ]-operad as well.

Corollary 8.11 (The operad of symmetric operads is Koszul). The quadratic k[Σ]-operad
Osym is self-dual in the sense that

Dk[Σ](O
sym){1} ≃

(
Osym

)
! ∼= Osym.

Proof. Propositions 8.98.9 and 8.108.10, together with Proposition 8.88.8 imply that Osym is a (weakly)
Koszul operad with quadratic dual cooperad k[Σ] ◦ (Ons)¡. Since k[Σ] ≃ k[Σop] and using
Proposition 8.98.9 once more, one finds that the Koszul dual of Osym is k[Σ]◦(Ons)! ∼= Osym.

Proposition 8.12. Consider the k-twisting morphism
(
Osym

)¡ −→ Osym relative to k[Σ].
The induced bar-cobar adjunction can be identified with the usual bar-cobar adjunction

B: Opsym CoOpsym : Ω

between nonunital k-operads and k-cooperads.

Proof (sketch). Note that coalgebras for the k[Σ]-cooperad
(
Osym

)
¡ = k[Σ] ◦

(
Ons

)
¡ are sym-

metric sequences with a (conilpotent) non-counital cooperad structure. The bar construction
then takes the cofree

(
Osym

)
¡-coalgebra (in symmetric sequences) with some differential.

Unraveling the definitions, this is exactly the cofree cooperad with the bar differential.

8.3 Relating operads over k and k[Σ] and proof of Proposition 3.323.32

In this final section, we will describe a functor L : Opk −→ Opk[Σ] associating to each
k-operad a k[Σ]-operad, and show that L preserves Koszul operads (see Proposition 3.323.32).
This was already used in Section 3.33.3 to relate permutative algebras and nonunital operads
using a map of k[Σ]-operads Osym −→ L(Perm). It will be convenient to compare operads
over k and over k[Σ] in two steps, passing by the linear category kns with non-negative
integers as objects and morphisms given by multiples of the identities.

Construction 8.13. Consider the following two adjoint pairs of functors:

wt : Moddgk Moddgkns : Tot wt: BiModΣ,dgk BiModΣ,dgkns : Tot .

Here the first adjunction between categories of modules simply sends a k-module M to
wt(M)(n) =M and a kns-module N to Tot(N) =

∏
nN(n). The second adjunction, at the

level of symmetric bimodules, has left adjoint

wt(M)(n1, . . . , nk;n0) =

{
M(k) if n1 + · · ·+ nk = n0 + k − 1
0 otherwise

and right adjoint

Tot(N)(k) =
∏

n1,...,nk

N(n1, . . . , nk;n1 + · · ·+ nk + 1− k).
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Note that viewing a module as a symmetric bimodule concentrated in arity 0 does not
identify the two version of wt and Tot. All of these functors preserve quasi-isomorphisms.

The explicit description of the relative composition product shows that wt is a (strong)
monoidal functor which is (strongly) compatible with the action of symmetric bimodules on
left modules, i.e.

wt(k) = kns, wt(M ◦k N) ∼= wt(M) ◦kns wt(N), wt(M ◦k N) ∼= wt(M) ◦kns wt(N)

for symmetric sequences M and N and a k-module N . It follows that Tot is lax monoidal,
i.e. it preserves operads and algebras over them.

Remark 8.14. Let Q be a k-operad. Unraveling the definitions, wt(Q) is a kns-operad whose
algebras can be identified with Z≥0-graded Q-algebras, where each n-ary operation in Q has
weight 1− n. In this case, the adjoint pair wt: AlgQ ⇆ Algwt(Q) : Tot sends a Q-algebra A
to the Z≥0-graded algebra wt(A)(p) = A, and Tot(B) =

∏
nB(n).

Construction 8.15. Let π : k[Σ] −→ kns be the evident k-linear functor sending n to n and
all permutations to the identity. This induces restriction and (co)induction functors at the
level of modules, and similarly at the level of symmetric bimodules

π! : BiModΣ,dgk[Σ] BiModΣ,dgkns :π∗ π∗ : BiModΣ,dgkns BiModΣ,dgk[Σ] :π∗.

Explicitly, π∗M(n1, . . . , nk;n0) carries the trivial Σn1
× · · · ×Σn0

-action and π! and π∗ take
the coinvariants and invariants with respect to this action.

As is the case for any dg-functor, π! is strong monoidal for the relative composition
product (as follows from the explicit description in Section A.1A.1). Consequently, the fully
faithful functor π∗ is lax monoidal. In fact, the structure maps for the lax monoidal structure
on π∗ have the following additional property: the lax monoidality and lax unitality maps
induce isomorphisms

π∗M ◦k[Σ] π
∗N π∗(M ◦kns N)

π∗M ◦k[Σ]

(
k[Σ]⊕ π∗N

)
π∗M ◦k[Σ]

(
π∗kns ⊕ π∗N

)
.

∼=

∼=
(8.16)

Indeed, this follows from the explicit description of the relative tensor product and the fact
that trivial representations are closed under tensor products.

Now let us write X
dg
k[Σ] for the category of retract diagrams k[Σ] −→ M −→ k[Σ]

of symmetric k[Σ]-bimodules (and likewise for kns). The pointwise composition product
endows this category with a monoidal structure, such that associative algebras are precisely
(augmented) k[Σ]-operads. The adjoint pair (π∗, π∗) then induces an adjoint pair

π∗ : Xdg
kns X

dg
k[Σ] : π∗.

Explicitly, π∗(kns ⊕M) = k[Σ]⊕ π∗M and similarly for π∗. The two natural isomorphisms
(8.168.16) now imply that π∗ is strong monoidal. It follows that there are adjoint pairs

π∗ : Opkns Opk[Σ] : π∗ π∗ : AlgP Opπ∗P : π∗

between kns-operads and k[Σ]-operads, and between algebras over a kns-operad P and
algebras over π∗P.
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Remark 8.17. Given a kns-operad Q, an algebra over π∗Q is simply given by a symmetric
sequence A, together with operations A(n1) ⊗ · · · ⊗ A(nk) −→ A(n0) for each element of
Q(n1, . . . , nk;n0) that are invariant under pre- and postcomposition with some σ ∈ Σni .
This induces a P-algebra structure on the invariants of the Σn1

× · · · × Σn0
-action.

Combining Construction 8.138.13 and Construction 8.158.15 yields a (left adjoint) functor

L = π∗ ◦ wt: Opk −→ Opk[Σ].

Using this, we prove Proposition 3.323.32:

Proof of Proposition 3.323.32. Since both π∗ and wt are strong monoidal for the composition
product, they preserve quadratic presentations. Furthermore, the explicit formulas in
Construction 8.138.13 and 8.158.15 show that they commute with linear duality and preserve all
quasi-isomorphisms. It follows that for any Koszul binary quadratic operad Q, the k[Σ]-operad
L(Q) is Koszul and Koszul dual to L(Q!) (relative to k[Σ]).

Let us now compare algebras over a k-operad Q and over L(Q). Remarks 8.148.14 and 8.178.17
show that an L(Q)-algebra is given by a symmetric sequence A, together with an operation
q : A(n1) ⊗ · · · ⊗ A(nk) −→ A(n1 + · · · + nk − k + 1) for each q ∈ Q(k) which is invariant
under pre- and postcomposition with the symmetric group actions. Combining Constructions
8.138.13 and 8.158.15 then shows that for any k-operad Q, there is an adjoint pair

L : AlgdgQ AlgdgL(Q) : R

as announced in Proposition 3.323.32.

A Operadic toolkit

In this section we introduce the operadic homotopical algebra required for our purposes
throughout the text, notably in Section 88. The results from this section hold over a general
dg-category k but many of them are standard when the base k is the point and similar
statements can be found in [LV12LV12] or in [LH03LH03].

We recall that we work over a fixed field k, and we denote by S the set of objects of
the dg-category k. When we use the term operad (resp. cooperad) we always mean unital
augmented operad (resp. counital coaugmented cooperad) unless otherwise explicitly written.

A.1 Operads over a dg-category

A symmetric k-bimodule in S-coloured symmetric sequences is a family of chain complexes
over k

V (c; c0) := V (c1, . . . , cp; c0), ci ∈ S

together with maps

k(c0, d0)⊗ V (c; c0)⊗
⊗
i

k(dϕ−1(i), ci) −→ k(d1, . . . , dp; d0), di ∈ S

for every ϕ : {1, . . . , p} −→ {1, . . . , p} which satisfy natural associativity conditions.

Definition A.1. We denote by BiModΣ,dgk the category of symmetric k-bimodules.
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Note that a symmetric k-bimoduleM has an arity p partM(p), which is a k-k⊗p-bimodule
with a Σp-action that is compatible with the right k⊗p-structure. In arity 1 this is simply a
k-bimodule in the usual sense, i.e. a functor k⊗ kop −→ Chk, while a symmetric k-bimodule
in arity 0 is a left k-module k −→ Chk.

The category BiModΣ,dgk has a (nonsymmetric) monoidal structure given by the relative
composition product ◦k. An element in M ◦kN can be identified with a tree of height 2 with
root vertex labeled by ϕ ∈M(c1, . . . , cp; c0) and all other vertices labeled by ψ1, . . . , ψp ∈ N ,
with ψi having an output of color ci, subject to the relation that edges are k equivariant. In
other words, for all a ∈ k(ci, c′i),

labeling (ϕ ◦i a), ψ1, . . . , ψp ∼ labeling ϕ, ψ1, . . . , aψi, . . . , ψq.

Proposition A.2. The following categories carry model structures, in which the fibrations
are the surjections and the weak equivalences are the quasi-isomorphisms:

(1) The category of k-operads, defined to be the category of augmented unital associative
algebras in symmetric k-bimodules

Opdgk := Algaug
(
BiModΣ,dgk

)
.

(2) For any associative algebra P in symmetric k-bimodules, the categories of left and right
P-modules

LModdgP := LModP
(
BiModΣ,dgk

)
and RModdgP := RModP

(
BiModΣ,dgk

)
.

In particular, the category BiModΣ,dgk itself.

(3) For any k-operad P, the category of P-algebras, defined to be the category of left P-
modules that are concentrated in arity 0

AlgdgP := LModP
(
LModdgk

)
.

Proof. The proposition follows essentially from the fact that over a field of characteristic zero,
algebras over a coloured operad have a canonical model structure [Hin15Hin15]. For example, (1)(1)
the category of augmented unital k-operads can be identified with the category of nonunital
operads in symmetric k-bimodules; these are algebras over an operad with set of colours
given by

∐
n≥0 S

×n−1 (cf. Definition 3.273.27). Something similar holds for (2)(2) left and right
modules, and for (3)(3) it suffices to observe that an algebra over a k-operad is simply an
algebra over its underlying S-coloured operad.

Example A.3 (Free algebras). Let P be an k-operad and V a left k-module. Then the free
P-algebra on V is given by the usual formula

P(V ) := P ◦k V =
⊕
p

P(p)⊗Σp⋉k⊗p V
⊗p.

A symmetric k-bimodule that is cofibrant for the model structure from Proposition A.2A.2(2)(2)
is (in particular) given in each arity p by a quasi-projective k-k⊗p-bimodule. For many
practical purposes, it will suffice to impose a slightly weaker cofibrancy condition, concerning
only the left k-module structure:

Definition A.4. A symmetric k-bimodule M is cofibrant as a left k-module if for each tuple
of objects ci ∈ S, the left k-module M(c1, . . . , cp;−) is cofibrant. This holds in particular if
M is cofibrant in the model structure of Proposition A.2A.2. If M and N are cofibrant as left
k-modules, then M ◦k N is as well.
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Proposition A.5. Let P be a k-operad which is cofibrant as a left k-module. Then the
forgetful functor AlgdgP −→ LModdgk preserves cofibrant objects, i.e. every cofibrant P-algebra
is also cofibrant as a left k-module.

Proof. This follows from a variation of the argument from [BM03BM03, Appendix 5]. Let us
consider the following two conditions on a P-algebra A:

(1) for each cofibrant k-module W , the P-algebra coproduct A ⊔ P(W ) is cofibrant as a
k-module.

(2) A is cofibrant as a k-module and for each cofibration of k-modules V ↣W and a map
V → A, the map A→ A ⊔P(V ) P(W ) into the pushout of P-algebras is a cofibration of
k-modules.

Clearly (2) implies (1), and the converse implication holds as well. To see this, we claim that
there exists an increasing filtration on A⊔P(V )P(W ) whose associated graded is A⊔P(W/V ).
Assuming this, condition (1) implies that the cokernel of i : A ↪→ A ⊔P(V ) P(W ) admits
an increasing filtration whose associated graded is the cokernel of the summand inclusion
A ↪→ A⊔P(W/V ). The latter is cofibrant, so that the cokernel of i is cofibrant as well and i
is a cofibration of k-modules (cf. Remark 1.91.9).

For the desired filtration, we can filter the k-module W by F0(W ) = V and F1(W ) =W ,
put A and V in weight 0 and compute the pushout A⊔P(V )P(W ) in the category of P-algebras
in filtered k-modules. Since forgetting the filtration defines a symmetric monoidal left adjoint
functor from filtered k-modules to k-modules, this provides a filtration on A ⊔P(V ) P(W ).
Likewise, taking the associated graded is symmetric monoidal, so that the associated graded
can be identified with A ⊔P(V ) P(gr(W )). Since gr(W ) = V ⊕ (W/V ) (with W/V of weight
1), this coincides with the graded P-algebra A ⊔ P(W/V ).

Now let us say that a P-algebra A is adequate if it satisfies the equivalent conditions (1)
and (2). Our goal will be to show that all cofibrant P-algebras are adequate. To see this, note
that if A is adequate and V ′ −→W ′ is a cofibration of k-modules, then A ⊔P(V ′) P(W

′) is
adequate (one easily verifies (1) using condition (2) for A). The class of adequate P-algebras
is therefore closed under iterated pushouts along generating cofibrations and under retracts.
To conclude that it contains all cofibrant P-algebras, it remains to verify that the initial
P-algebra P(0) is adequate, i.e. that for any cofibrant left k-module V , the free P-algebra
P(V ) is cofibrant as a left k-module. This follows directly from the formula in Example A.3A.3
and the fact that P was cofibrant as a left k-module.

Given a k-operad P together with a right module M and a left module N , we denote by
M ◦P N the coequalizer of M ◦k P ◦k N ⇒M ◦k N .

Lemma A.6. Let P ∈ Opdgk and suppose that M ∈ RModdgP and N ∈ LModdgP are cofibrant.
Then the two functors

M ◦P (−) : LModdgP BiModΣ,dgk (−) ◦P N : RModdgP BiModΣ,dgk

both preserve quasi-isomorphisms.

Proof. We will only deal with the first functor, the other is similar. Consider the simplicial
resolution of M as a right P-module M ◦ P ◦ P⇒M ◦ P→M , where ◦ is the composition
product for S-coloured symmetric sequences of chain complexes. Since M is cofibrant, it is
quasi-free as a right P-module; in particular, without differentials this augmented simplicial
object has extra degeneracies. Taking the relative composition product over P with a
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quasi-isomorphism X −→ Y yields a map of augmented simplicial objects

M ◦P X M ◦X M ◦ P ◦X . . .

M ◦P Y M ◦ Y M ◦ P ◦X . . .

∼ ∼

Since the composition product ◦ preserves quasi-isomorphisms, all marked vertical maps are
quasi-isomorphisms. Without differentials, the rows are augmented simplicial objects with
(natural) extra degeneracies, so that the above diagram provides a simplicial resolution of
the map M ◦P X −→M ◦P Y and the result follows.

Remark A.7. Lemma A.6A.6 implies that the composition product has a left derived functor,
which we will denote by

M ◦hP N

and which can be computed by taking a cofibrant resolution of either M or N . A quasi-
isomorphism P −→ Q induces a quasi-isomorphismM ◦hPN −→M ◦hQN for anyM ∈ RModdgQ
and N ∈ LModdgQ .

Corollary A.8. Given a map f : P −→ Q in Opdgk , there are Quillen adjunctions

f! : AlgdgP AlgdgQ : f∗ f! : LModdgP LModdgQ : f∗

given by restriction and induction. When f is a quasi-isomorphism, these are Quillen
equivalences.

Proof. The functor f∗ clearly preserves (and detects) fibrations and quasi-isomorphisms.
When f is a quasi-isomorphism, (f!, f

∗) is a Quillen equivalence because the counit f!f
∗(M) =

Q ◦P M −→M is a quasi-isomorphism for all cofibrant M by Lemma A.6A.6.

Dualizing

Given two dg-categories k1 and k2, one can take the exterior Hadamard tensor product

BiModΣ,dgk1 × BiModΣ,dgk2 BiModΣ,dgk1⊗k2 ; (M1,M2) M1 ⊗M2 (A.9)

where for any ci ∈ k1 and di ∈ k2,(
M1 ⊗M2

)(
(c1, d1), . . . , (cp, dp); (c0, d0)

)
=M1(c1, . . . , cp; c0)⊗M2(d1, . . . , dp; d0).

From the description of the composition product, one sees that it is compatible with the
exterior Hadamard tensor product in the sense that there is a natural morphism(

M1 ◦k1 N1

)
⊗
(
M2 ◦k2 N2

) (
M1 ⊗M2

)
◦k1⊗k2

(
N1 ⊗N2

)
. (A.10)

An element in the domain can be represented by a tensor product of two trees of height two,
with vertices labeled by M1 and N1, resp. by M2 and N2. Such a tensor product is sent to
zero if the two trees are different and if the trees are the same, one labels its vertices by the
corresponding elements in M1 ⊗M2 and N1 ⊗N2.
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The exterior Hadamard tensor product preserves colimits in both of its variables. It
follows that there are functors

Homk1(−,−) :
(
BiModΣ,dgk1

)op

× BiModΣ,dgk1⊗k2 BiModΣ,dgk2

Homk2(−,−) :
(
BiModΣ,dgk2

)op

× BiModΣ,dgk1⊗k2 BiModΣ,dgk1

such that for M1 ∈ BiModΣ,dgk1 ,M2 ∈ BiModΣ,dgk2 and N ∈ BiModΣ,dgk1⊗k2 there are natural
bijections

Hom
(
M1,Homk2(M2, N)

) ∼= Hom
(
M1 ⊗M2, N

) ∼= Hom
(
M2,Homk1(M1, N)

)
.

We will be interested in applying this to the case where k1 = k and k2 = kop is its opposite.

Definition A.11. Let End(k) denote the endomorphism operad of k, considered as a left
k ⊗ kop-module. More precisely, End(k) has set of colours S × S and p-ary morphisms(
(c1, d1), . . . , (cp, dp)

)
−→ (c0, d0) given by k-linear maps

k(c1, d1)⊗ . . . k(cp, dp) k(c0, d0).

This is a (non-augmented) k⊗ kop-operad. We define the dual of a symmetric k-bimodule
M to be the symmetric kop-bimodule

M∨ := Homk
(
M,End(k)

)
.

Unravelling the definition, one sees that M∨ is given in arity p by the dual M∨(p) =
Homk(M(p),k) with respect to the left k-module structure on M(p). The right k-action on k
and the right k⊗p-action on M(p) endow M∨ with the structure of a symmetric kop-module.
Explicitly, we have

M∨(c1, . . . , cp; c0) = Homk
(
M(c1, . . . , cp;−),k(c0;−)

)
. (A.12)

Note that taking duals is only homotopically well-behaved on symmetric k-bimodules that
are cofibrant as left k-modules (Definition A.4A.4).

Cooperads over a dg-category

Definition A.13. A k-cooperad C is a coaugmented counital coalgebra in the category
BiModΣ,dgk . We will say that C is filtered-cofibrant as a left k-module if it admits an exhaustive
filtration

k = F0C ⊆ F1C ⊆ F2C ⊆ . . .

such that ∆(FrC) ⊆
⊕

p+q=r FpC ◦ FqC and each FrC is cofibrant as a left k-module. The
first condition implies that C is conilpotent and the second is equivalent to the associated
graded gr(C) being cofibrant as a left k-module.

Remark A.14. Recall that one can always endow a k-cooperad with its coradical filtration,
where FrC = k ⊕ ker(∆

r
). If C(0) = 0 and C(1) = k, then C is filtered-cofibrant as a left

k-module if and only if it is cofibrant as a left k-module, using the filtration by arity.

Proposition A.15. Let C be a k-cooperad and let C∨ be its (left) k-linear dual. Then C∨

has the natural structure of an operad. If C is a C-coalgebra, then the dual C∨ has a natural
C∨-algebra structure.
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Proof. It suffices to verify that the functor (−)∨ is lax monoidal, in the sense that there is a
natural map M∨ ◦kop N∨ −→ (M ◦k N)∨. This map is the adjoint of

(
M∨ ◦kop N∨)⊗ (

M ◦k N
) (

M∨ ⊗M
)
◦kop⊗k

(
N∨ ⊗N

)
End(k) ◦kop⊗k End(k) End(k),

(A.10A.10)

where the second map arises from the evaluation map Homk(M,End(k))⊗M −→ End(k)
and the last map uses that End(k) is a (non-augmented) kop ⊗ k-operad.

A.2 All we need about bar-cobar for operads

From now on, all k-objects (bimodules, operads) that we consider are assumed to be as in
Assumption 1.101.10: they are cofibrant as left k-modules, and filtered-cofibrant in the case of
cooperads.

Definition A.16 (Bar-cobar constructions, see [GK94GK94] and Section 6.5 of [LV12LV12]). Given a
k-operad P, its bar construction BP is the k-cooperad constructed as the cofree conilpotent
k-cooperad on the augmentation ideal P[1], i.e.

BP = T ck
(
P[1]

)
= k⊕ P[1]⊕ P[1] ◦k P[1]⊕ . . .

with an additional bar differential given by contraction of trees along inner edges.
Similarly, given a conilpotent k-cooperad C, its cobar construction ΩC is the free graded

k-operad on the coaugmentation coideal C[−1], i.e.

ΩC = Tk
(
C[−1]

)
= k⊕ C[−1]⊕ C[−1] ◦k C[−1]⊕ . . .

with an additional cobar differential given by decomposing trees along inner edges.

Construction A.17 (k-twisting morphisms). Let M and N be symmetric k-bimodules.
Their infinitesimal composition product M ◦(1) N is the subobject of M ◦k N given by trees
with 2 vertices, with root vertex labeled by M and the other vertex labeled by N . There is
a natural retraction

M ◦(1) N −→M ◦k N −→M ◦(1) N

where the projection quotients out trees labeled by M and N with more than two vertices.
Let P be a k-operad and C a conilpotent k-cooperad. A twisting morphism ϕ : C −→·· P

is a map of symmetric k-bimodules of cohomological degree 1, which vanishes both after
composing with the augmentation and coaugmentation map, such that:

dϕ+ ϕ ⋆ ϕ = 0 (A.18)

where ϕ ⋆ ϕ is the composite

C −→ C ◦k C −→ C ◦1 C
ϕ◦1ϕ−−−−→ P ◦1 P −→ P ◦k P −→ P,

and d denotes the commutator of differentials in HomBiModΣ,dg
k

(C,P). We denote by

Tw(C,P) ⊂ HomBiModΣ,dg
k

(C,P) the set of twisting morphisms.

Remark A.19. Similar to [LV12LV12, Proposition 6.4.3], one checks that the sequence of
complexes

Conv(C,P)(p) := Homk⊗(kop)⊗p
(
C(p),P(p)

)
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has the structure of an (ordinary) operad in chain complexes, called the convolution operad.
As in [LV12LV12, Proposition 6.4.5], it follows that

(
HomBiModΣ,dg

k
(C,P), ⋆, d

)
is a pre-Lie algebra

and the twisting morphisms are its Maurer–Cartan elements. If C or P is 1-reduced, i.e. zero
in arity 0 and k in arity 1, then [Wie19Wie19, Section 7] shows that such Maurer–Cartan elements
correspond bijectively to maps of operads

L∞{−1} Conv(C,P)

from the operadic suspension of the L∞-operad: the value on the generating p-ary operation
lp of L∞{−1} is given by ϕp : C(p) −→ P(p).

Proposition A.20. Let C be a conilpotent k-cooperad and P a k-operad. Then there are
natural bijections

HomCoOpdg
k

(
C,BP

) ∼= Tw(C,P) ∼= HomOpdg
k

(
ΩC,P

)
.

Proof. Maps of bimodules φ : C→ D which vanish both when composed with the augmenta-
tion and coaugmentation map are in one-to-one correspondence with maps of augmented
operads from the free operad generated by C to D. One can check that the compatibility
with the differentials is given exactly by equation (A.18A.18). A dual argument on the category
of conilpotent cooperads shows that HomCoOpdg

k

(
C,BP

) ∼= Tw(C,P), see [LV12LV12, Theorem

6.5.7] for the case k = k.

Lemma A.21. Let P→ Q be a quasi-isomorphism between two k-operads which are cofibrant
as left k-modules. Then the map BP −→ BQ is a quasi-isomorphism of k-cooperads, which
are filtered-cofibrant as left k-modules.

Proof. Endow both bar constructions with the (exhaustive) filtration by word length in P

and Q. The map on the associated graded is just the map T c(P[1]) −→ T c(Q[1]). When P

and Q are cofibrant as left k-modules, these associated gradeds are cofibrant as left k-modules,
so that BP and BQ are filtered-cofibrant. Using Lemma A.6A.6, we conclude that the map at
the level of the associated graded is a quasi-isomorphism.

Proposition A.22. Let P be a k-operad which is cofibrant as a left k-module. Then the
counit of the bar-cobar adjunction ΩBP −→ P is a quasi-isomorphism.

Proof. Ignoring degrees, elements of ΩBP can be seen as trees whose vertices are themselves
(“inner”) trees whose vertices are labeled by P. Filtering by the number of inner edges (bar
word length) and using the cofibrancy of P as a left k-module we recover at the level of the
associated graded only the piece of the differential corresponding to the one from P and a
second one making an inner edges into an outer edge.

One checks that the associated graded retracts into P by constructing a homotopy that
makes an outer edge into an inner edge.

Definition A.23 (Twisted composition products). Given a twisting morphism ϕ : C −→·· P,
the twisted composition product C ◦ϕ P [LV12LV12, Section 6.4.11] is the symmetric k-bimodule
C ◦k P, but with differential twisted by the map

C ◦k P
(
C ◦(1) C

)
◦k P C ◦k C ◦k P C ◦k P ◦k P C ◦k P.

∆(1)◦1 1◦ϕ◦1 1◦µ

Similarly, the twisted composition product P ◦ϕ C has differential twisted by

P ◦k C P ◦k C ◦k C P ◦k P ◦k C
(
P ◦(1) P

)
◦k C P ◦k C.1◦∆ 1◦ϕ◦1 µ(1)◦1

74



Example A.24. For the universal twisting morphism π : BP −→·· P, elements of BP ◦π P

can be identified with trees whose vertices are labeled by elements in P[1], or by elements
of P for (some of the) leaf vertices. The differential then has three parts: (a) applying the
differential of P to vertices, (b) contracting inner edges between P[1]-labeled trees and (c)
replacing an P[1]-labeled vertex with only P-labeled vertices above it by a P-labeled vertex
and contracting (at the same time) all inner edges above it.

Similarly, ΩC ◦ι C consists of trees with vertices labeled by C[−1], or by C for (some of
the) leaf vertices, with differential having three terms: (a) applying the differential of C, (b)
partially decomposing along inner edges between C[−1]-labeled vertices and (c) decomposing
a C-labeled leaf vertex into height 2 trees with root vertex labeled by C[−1].

Lemma A.25. Let ϕ : C −→·· P be a twisting morphism, where C and P are filtered-cofibrant,
resp. cofibrant as left k-modules.

(1) Let M −→ N be a quasi-isomorphism between left P-modules that are cofibrant as left
k-modules. Then (C ◦ϕ P) ◦P M −→ (C ◦ϕ P) ◦P N is a quasi-isomorphism between
filtered-cofibrant left k-modules.

(2) Let M −→ N be a quasi-isomorphism between right P-modules. Then M ◦P (P ◦ϕ C) −→
N ◦P (P ◦ϕ C) is a quasi-isomorphism.

(3) The maps BP ◦π P −→ k and ΩC ◦ι C −→ k are quasi-isomorphisms.

Proof. For (1)(1), filter C ◦ϕ P using the filtration on C. The associated graded is gr(C) ◦k P.
The map (C ◦ϕ P) ◦P M −→ (C ◦ϕ P) ◦P N preserves the induced filtrations and is given on
the associated graded by gr(C) ◦kM −→ gr(C) ◦k N . This is a quasi-isomorphism by Lemma
A.6A.6. The same argument applies to (2)(2).

For (3)(3), filter BP ◦π P by the number of inner edges. On the associated graded, one can
then construct a contracting homotopy replacing a P-labeled leaf vertex by a P[1]-labeled
leaf vertex.

Similarly, the filtration on C induces a total filtration on ΩC ◦ψ C. The associated graded
consists of trees with vertices labeled by the associated graded gr(C)[−1], or gr(C) for (some)
leaf vertices. Since the cocomposition vanishes on gr(C), the differential has two remaining
contributions: (a) the differential on gr(C) and its shift and (c)(c) sending a gr(C)-labeled leaf
vertex to the corresponding gr(C)[−1]-labeled vertex. This has a contracting homotopy by
replacing gr(C)[−1]-labeled leaf vertices by gr(C)-labeled leaf vertices.

Corollary A.26. Let P be a k-operad which is cofibrant as a left k-module. Then BP ≃ k◦hPk.

A.3 All we need about bar-cobar for algebras

Let C be a k-cooperad and P a k-operad, which are filtered-cofibrant, resp. cofibrant, as left
k-modules.

Definition A.27. A twisting morphism ϕ : C −→·· P is said to be Koszul if ϕ induces a
quasi-isomorphism ΩC −→ P.

We will say that it is weakly Koszul if instead the map C −→ BP is a quasi-isomorphism.
Since the bar construction preserves quasi-isomorphisms (Lemma A.21A.21), Koszul morphisms
induce a quasi-isomorphism BΩC

∼−→ BP and are therefore weakly Koszul.

Definition A.28. Let ϕ : C −→·· P be a twisting morphism, C a C-coalgebra (in left k-
modules) and A a P-algebra (in left k-modules). A twisting morphism f : C −→ A over ϕ is
a left k-linear map of degree 0 satisfying

df + ϕ ◦ f = 0
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where ϕ ◦ f : C −→ A is given by

C −→ C ◦k C
ϕ◦f−→ P ◦k A −→ A.

We denote by Twϕ(C,A) the set of twisting morphisms over ϕ.

Remark A.29. If C is a conilpotent C-coalgebra and A is a P-algebra, then one can check
that the complex Homk(C,A) has the structure of an algebra over the convolution operad
Conv(C,P) of Remark A.19A.19 [Wie19Wie19, Proposition 7.1].

If C or P is 1-reduced, then a twisting morphism ϕ determines a map L∞{−1} −→
Conv(C,P), so that Homk(C,A) has a shifted L∞-structure. As in loc. cit. the value
lp(f1, . . . , fp) of the generating p-ary operation lp in L∞{−1} is given by

C C(p)⊗k⊗p C
⊗p P(p)⊗k⊗p A

⊗p A,

∑
σ ϕ(p)⊗fσ(1)⊗···⊗fσ(p)

where the sum runs over σ ∈ Σp. The twisting morphisms f : C −→ A are exactly the degree
1 elements of this L∞-algebra satisfying the Maurer–Cartan equation

∑
n

1
n! ln(f, . . . , f) = 0

[Wie19Wie19, Theorem 7.1]. Note that the infinite sum becomes finite when evaluated at some
c ∈ C, because C is a conilpotent C-coalgebra.

Definition A.30 (Bar-cobar construction for algebras). Given a twisting morphism φ : C→
P and C a C-coalgebra, we define the cobar construction ΩϕC, to be the free P-algebra on C,
P ◦k C, with differential given on generators by d(c) = dC(c)+ δ(c) with δ : C −→ C ◦k C −→
P ◦k C.

Similarly, given A a P-algebra, its bar construction BϕA is the cofree C-coalgebra on A,
C◦kA, with differential given by dA+δ with δ onto generators given by C◦kA −→ P◦kA −→ A.

Remark A.31. One can also identify using twisted composition products (Definition A.23A.23)
as ΩϕC ∼=

(
P ◦ϕ C

)
◦C C and Bϕ =

(
C ◦ϕ P

)
◦P A. In particular, if π : BP −→ P is the

universal twisting morphism, then Lemma A.25A.25 shows that for every P-algebra which is
cofibrant as a left k-module,

BπA ∼=
(
BP ◦π P

)
◦P A ≃ k ◦hP A.

Proposition A.32. There are natural bijections

HomAlgdg
P

(
ΩϕC,A

) ∼= Twϕ(C,A) ∼= HomCoAlgdg
C

(
C,BϕA

)
.

Proof. The proof is similar to Proposition A.20A.20, see also [LV12LV12, Proposition 11.3.1].

Lemma A.33. Let ϕ : C −→·· P be a twisting morphism and A a P-algebra. Then:

(1) Bϕ preserves quasi-isomorphisms between P-algebras that are cofibrant as left k-modules.

(2) If A is cofibrant as a left k-module and C is filtered-cofibrant as a left k-module, then
Bϕ(A) is filtered-cofibrant as a left k-module.

(3) In the setting of (2)(2), ΩϕBϕ(A) is a cofibrant P-algebra.

Proof. The first two points follow from Lemma A.25A.25 and Remark A.31A.31. In particular, the
proof of Lemma A.25A.25 shows that Bϕ(A) = (C ◦k A, dA + dB) carries a filtration induced from
the filtration on C.

For the third point, note that ΩϕBϕ(A) inherits a filtration by subalgebras from the
filtration on Bϕ(A). Since gr(Bϕ(A)) is a trivial coalgebra, gr(ΩϕBϕ(A)) is the free P-algebra
on gr(C) ◦k A. Since gr(C) ◦k A is cofibrant as a graded left k-module, an inductive argument
shows that ΩϕBϕ(A) is cofibrant (see also [Val14Val14, Proposition 2.8]).
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Lemma A.34.

(1) Let C be filtered-cofibrant as a left k-module and let ι : C −→ ΩC be the universal twisting
morphism. Then the counit ΩιBιA −→ A is a quasi-isomorphism for all A ∈ AlgΩC

which are cofibrant as left k-modules.

(2) Let ϕ : C → P be a Koszul twisting morphism. Then ΩϕBϕB −→ B is a quasi-
isomorphism for all B ∈ AlgP which are cofibrant as left k-modules.

Proof. For (1)(1), note that ΩιBιA consists of trees with vertices labeled by C[−1] or by C for
(some of the) leaf vertices, and with leaves labeled by A. The differential has a contribution
from the differential on ΩC ◦ι C (Example A.24A.24) and a contribution by letting C-labeled leaf
vertices act on their leaves. Filtering ΩιBιA by the number of leaves, the associated graded
is

(
ΩC ◦ι C

)
◦k A. The result then follows from Lemma A.25A.25.

For (2)(2), let f : ΩC −→ P be the induced map and notice that ΩϕBϕB = f!
(
ΩιBι(f

∗B)
)
.

The result then follows from part (1)(1), (f!, f
∗) being a Quillen equivalence (Corollary A.8A.8)

and ΩιBι(f
∗B) being cofibrant (Lemma A.33A.33).

A.4 Free resolutions of operads

The remainder of this section is devoted to a proof of the following result, relating the
homotopy-invariant condition appearing in Theorem 1.31.3 to a more concrete condition in
terms of quasi-free resolutions:

Proposition A.35. Let P be a connective 0-reduced k-operad. Then the following are
equivalent:

(1) the symmetric sequence P≤1 ◦hP P≤1 is eventually highly connective.44

(2) P is quasi-isomorphic to a quasi-free, non-positively graded k-operad with higher arity
generators in increasingly negative degrees. More precisely, for every n ∈ Z, there exists
a p(n) ∈ N such that all generators of arity ≥ p(n) are in cohomological degrees < n.

Remark A.36. Recall that every cofibrant k-operad is the retract of an operad which is
quasi-freely generated by a (S-coloured) symmetric sequence of graded vector spaces (one
can take for instance its cobar-bar construction). Conversely, if P is quasi-freely generated
by a symmetric sequence of graded vector spaces in nonpositive degree, then P is cofibrant.55

For the remaining of the section, all (co)operads are 0-reduced (trivial in arity zero).
We will make use of the following Quillen adjunction between the categories of 0-reduced
(augmented) k-operads

skp : Opnu,dgk Opnu,dgk : (−)≤p

The right adjoint is the “truncation to arity at most p” functor that quotients an operad
P by the operadic ideal

⊕
k>p P(k). Its left adjoint is the “p-skeleton” functor that associates

to Q the operad skp(Q) which is given in arities ≤ p by Q, and which is freely generated by
this data.

Remark A.37. A map f : P −→ Q between cofibrant operads induces a quasi-isomorphism
skpP −→ skpQ as soon as it induces a quasi-isomorphism in arity ≤ p. Indeed, factor f as
an acyclic cofibration P −→ P′ followed by a fibration f : P′ −→ Q and use Lemma A.42A.42 to
resolve f ′ by a map which is an isomorphism in arities ≤ p. The result then follows from the
fact that skp is a left Quillen functor and which only depends on arity (≤ p)-parts.

4Here we use the natural left and right actions of P on its quotient P≤1.
5More generally, a triangulated quasi-free operad is cofibrant, see [LV12LV12, Proposition B.6.10].
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Lemma A.38. Let P be a cofibrant 0-reduced k-operad, let p ≥ 1 and consider the cofiber
sequences

skp(P) P X

P≤1 ◦hskp(P) P
≤1 P≤1 ◦hP P≤1 Y.

There is a natural map X −→ Y [−1], which is an equivalence in arity p+ 1. Furthermore,
the map P≤1 ◦hP P≤1 −→ Y is an equivalence in arity p+ 1 as well.

Proof. Let P≥2 denote the kernel of the quotient P −→ P≤1, so that there is a cofiber
sequence

P≥2 ◦hP P≤1 P≤1 P≤1 ◦hP P≤1. (A.39)

Using the same cofiber sequence for skp(P) and unraveling the definitions, one sees that
there is a natural cofiber sequence

skp(P)
≥2 ◦hskp(P) P

≤1 P≥2 ◦hP P≤1 Y [−1].

There is a natural map P −→ P≥2 −→ P≥2 ◦hP P≤1 (the first one quotients out the arity
1 part), and similarly for skp(P). The desired map X −→ Y [−1] is the induced map on
cofibers.

Now suppose that P =
(
FreeOpk(V ), d

)
is a cofibrant k-operad, quasi-freely generated by

a symmetric k-bimodule V . Then P≥2 is a cofibrant right P-module, given by P(1) ◦V ≥2 ◦P
(with some differential), where V ≥2 is the arity ≥ 2 piece of V . It follows that

P≥2 ◦P P≤1 ≃ P≤1 ◦ V ≥2 ◦ P≤1 (A.40)

with some differential. A similar equivalence holds for skp(P), which is a cofibrant suboperad
of P freely generated by V ≤p, the arity ≤ p piece of V . One then deduces that

Y [−1] ≃ P(1) ◦ V ≥p+1 ◦ P(1).

In particular, it agrees with P≥2◦hPP(1) in arity p+1. Note that the above symmetric sequence
consists exactly of the (p+ 1)-ary operations of P, modulo those that are compositions of
(≤ p)-ary operations. This is exactly the (p+ 1)-ary part of the cofiber X.

Corollary A.41. Let f : P −→ Q be a map of connective 0-reduced k-operads such that the
map of symmetric k-bimodules

P(1) ◦hP P(1) −→ Q(1) ◦hQ Q(1)

is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. We may assume that P and Q are cofibrant. In that case, the map f induces a
quasi-isomorphism in arity ≤ p if and only if the induced maps on p-skeleta skpP −→ skpQ
is a quasi-isomorphism (Remark A.37A.37). We check this for all p by induction. For p = 1, note
that P(1) ◦hP P(1) is given in arity 1 by P(1); this follows from the cofiber sequence A.39A.39 and
equation A.40A.40.

Next, notice that the arity (p+ 1)-part of P is quasi-isomorphic to the arity (p+ 1)-part
of the cofiber Y from Lemma A.38A.38. If f induces a quasi-isomorphism on p-skeleta, then this
cofiber is quasi-isomorphic to the corresponding cofiber for Q. It then follows that f also
induces a quasi-isomorphism on (p+ 1)-skeleta.
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Proof of Proposition A.35A.35. (2) ⇒ (1): follows from the cofiber sequence (A.39A.39) and the
identification (A.40A.40).

(1) ⇒ (2): we can assume that P is cofibrant to begin with. It then suffices to show that
P admits a free resolution with all generators in degrees ≤ 0 and with the following property
at each arity p ≥ 2:

If H∗(P≤1 ◦P P≤1
)
(p) is concentrated in degrees ≤ n(p), then the generators of arity p are

concentrated in degrees ≤ n(p) + 1.

We construct this resolution by induction on skeleta, using that

P≤1 ◦hskp(P) P
≤1 ≃

(
P≤1 ◦hP P≤1

)≤p
.

For the 1-skeleton P≤1 = sk1(P), there is no condition. Suppose we have found the desired
presentation for skp−1(P). It follows from Lemma A.38A.38 that in arity p, the cohomology of
the cofiber skpP/skp−1(P) is concentrated in degrees ≤ n(p) + 1 (and also in degrees ≤ 0).
This means that skpP can be obtained from skp−1(P) by adding arity p generators of degree
≤ n(p) + 1 (as well as generators of higher arity).

In Section 55, we will need a slight refinement of Proposition A.35A.35 which provides a
quasi-free resolution of the entire tower P −→ . . . −→ P≤n −→ . . . .

Lemma A.42. Let f : P −→ Q be a fibration of connective operads such that f induces a
trivial fibration in arities ≤ p. For any cofibrant resolution Q̃

∼−→ Q, there exists a cofibrant
resolution P̃ of P which fits into a diagram

P̃ Q̃

P Q

∼

f̃

∼

f

such that f̃ induces an isomorphism in arities ≤ p.

Proof. Since Q̃ is cofibrant, there exists a lift

(P×Q Q̃)≤p

Q̃ (Q̃)≤p

∼

and therefore, by adjuction we have a lift

P×Q Q̃

skpQ̃ Q̃.

g

We can now factor the map g into a cofibration followed by a weak equivalence skpQ̃ ↪→ P̃
∼
↠

P×Q Q̃.
Since all operads involved are connective, this can be done inductively by ‘adding cells

to kill a cycle’. As g is already a weak equivalence in arity ≤ p, it suffices to add cells in
arity ≥ p+ 1, which does not change the arity ≤ p part. In particular, the composite map
P̃ −→ Q̃ induces a weak equivalence in arities ≤ p.
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Proposition A.43. Let P be a connective k-operad and consider the tower of k-operads

P . . . P≤p P≤p−1 . . . P≤1.

Then there exists a resolution of this tower by a tower of quasi-free, non-positively graded
k-operads Q −→ . . . −→ Q(p) −→ . . . with the following properties:

(a) Each Q(p) −→ Q(p−1) induces an isomorphism in arity ≤ p− 1.

(b) Each Q(p) has higher arity generators in increasingly negative degrees (in the sense of
Proposition A.35A.35).

(c) Q is the limit of the tower.

(d) For each p ≥ 2, the generators of Q(p) in arity p are concentrated in degrees ≤ n(p) + 1,
where n(p) is such that

H∗(P≤1 ◦P P≤1
)
(p) = 0 ∗ > n(p).

In particular, Q is a graded-free resolution of P with higher arity generators in increasingly
negative degrees.

Proof. We can assume from the start that P is already cofibrant, and then construct such a
tower of free resolutions inductively, as in Lemma A.42A.42. In each inductive step, it suffices
to add generators of arity ≥ p to skp−1

(
Q(p−1)

)
. In particular, we can always arrange for

condition (a)(a).
To see what kind of generators have to be added in arity p, note that there is a quasi-

isomorphism

skp−1

(
Q(p−1)

)
skp−1(P

≤p) ∼= skp−1(P)

since both are quasi-isomorphic in arities ≤ p − 1 (Remark A.37A.37). One deduces that the
cofiber of skp−1

(
Q(p−1)

)
−→ P≤p is given in arity p by the arity p part of P≤1 ◦h

P≤p P
≤1.

Since

P≤1 ◦P P≤1 P≤1 ◦P≤p P≤1

is an equivalence in arity ≤ p, is follows that we only have to add arity p generators in
degrees ≤ n(p) + 1 (together with generators of higher arity). This makes sure that we can
arrange for condition (d)(d).

For the remaining generators that we have to add, note that P≤p satisfies the equivalent
conditions of Proposition A.35A.35, since it is zero in arities ≥ p+ 1. This implies that it suffices
to add higher arity generators in increasingly negative degrees, so that we can arrange for
(c)(c).

Finally, define Q to be the limit of the tower. Since the tower becomes stationary in every
fixed arity, it follows that Q is graded-free. Furthermore, one sees that the arity p generators
of Q are concentrated in degrees ≤ n(p) + 1, so they sit in increasingly negative degrees by
the assumption on P.
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related operads, pages 105–110. Berlin: Springer, 2001.

[CL01] Frédéric Chapoton and Muriel Livernet. Pre-Lie algebras and the rooted trees operad.
Int. Math. Res. Not., 2001(8):395–408, 2001.

[CPT+17] Damien Calaque, Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi.
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