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Chapter 1

Introduction

This thesis studies the role of Lie algebroids in deformation theory and derived differential
topology. More precisely, we discuss the homotopy theory of ‘derived Lie algebroids’ and
show that derived Lie algebroids arise naturally as the objects classifying formal deformation
problems. We use this to examine the relationship between higher stacks and their Lie
algebroids in the setting of (derived) differential topology, leading to a version of the Van
Est isomorphism.

A theorem of Van Est. A basic principle in Lie theory asserts that there is an intimate
relationship between Lie groups and their associated Lie algebras, especially when the Lie
groups in question are highly connected. For example, a classical result of Van Est [2828]
provides an isomorphism

Hn(G,R)
∼= // Hn(g,R)

between the cohomology of an n-connected Lie group G and the cohomology of its Lie algebra
g.

The Lie algebra g, and hence the Van Est isomorphism, can be thought of in two different
ways. On the one hand, we can identify g with the Lie algebra of left invariant vector fields
on the Lie group G. The cohomology of g can then be identified with the cohomology of the
G-invariant de Rham complex of G. This complex is equivalent to the (smooth) homotopy
G-invariant de Rham complex of G, which can be computed using a cosimplicial complex
given in degree k by the forms on Gk+1 that are tangent to the last copy of G.

The Van Est homomorphism then arises from the inclusion of the constant R-valued
functions on G into its de Rham complex, by passing to (smooth) homotopy G-invariants

RhG // Ω•(G)hG ' Ω•(G)G.

Alternatively, we can identify the Lie algebra g with the tangent space to G at the identity
and think of the Van Est map as differentiation. This point of view admits a natural
description in terms of classifying spaces: the cohomology groups of G can be identified with
the sets of homotopy classes of maps BG −→ K(R, n) from the classifying space of G into an
Eilenberg-Maclane space. In the present case, both G and R carry a differentiable structure,
which induces a differentiable structure on BG and K(R, n). This differentiable structure
can be made explicit by realizing both objects by (higher) stacks, or by presenting them by
simplicial manifolds.

For example, the classifying space BG can be presented by a simplicial manifold whose
only nontrivial simplicial homotopy group is π1(BG) = G, considered as a Lie group. The
nerve of G is the canonical choice for such a simplicial manifold. Similarly, K(R, n) can be
presented by a simplicial manifold whose only nontrivial homotopy group is πn(K(R, n)) = R.
Both of these simplicial manifolds admit a canonical basepoint and Hn(G,R) can be identified
with the set of pointed maps

α : BG // K(R, n)
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up to pointed simplicial homotopy. Similarly, the Lie algebra cohomology group Hn(g,R) can
be identified with the set of maps g −→ K(R, n− 1) in the homotopy category of simplicial
Lie algebras, where K(R, n− 1) has zero bracket (see e.g. [8181]). The Van Est homomorphism
therefore yields a map[

BG,K(R, n)
]
∗

//
[
g,K(R, n− 1)

] ∼= Hn(g,R) (1.0.1)

between (pointed) homotopy classes of maps. The Van Est homomorphism sends a map
α : BG −→ K(R, n), to an explicit Lie algebra cocycle, which only depends on the n-th
derivative of α at the basepoint of BG (see [2828, Section 11]). We can therefore think of
(1.0.11.0.1) as differentiating a map BG −→ K(R, n) at the basepoint and passing to loop spaces.

The purpose of this thesis is to describe an analogue of the Van Est theorem that applies not
only to the ‘classifying spaces’ BG and K(R, n), but also to homotopical variants thereof (see
Theorem IIII). For instance, the classifying space BGLn of vector bundles admits a natural
homotopical analogue, given by the classifying space for chain complexes of vector bundles
(or rather, perfect complexes [9696, 9797]).

Similarly, instead of the classifying space of a Lie group G, one can consider the classifying
space of its n-connective cover, or a geometric refinement thereof. Such a space classifies
principal G-bundles, equipped with trivializations of various of their characteristic classes.
For example, the classifying space of the String-group classifies oriented real vector bundles,
together with a trivialization of their second Stiefel-Whitney class and fractional first
Pontryagin class 1

2p1 (see e.g. [4444, 9393, 8484]).
In a different direction, one can replace Lie groups by Lie groupoids, for which there is

an analogue of the Van Est theorem [2020]. The classifying space of a Lie groupoid G ⇒ M
does not have a canonical basepoint, but an entire manifold M of basepoints.

Each of these ‘spaces’ is an example of a higher (geometric) stack [8989, 9797]. In various
recent works [3939, 105105, 7777, 88, 104104], such higher stacks have been studied in terms higher
Lie groupoids, simplicial manifolds satisfying a smooth variant of the usual Kan conditions
for simplicial sets. As a first result, let us mention that such higher stacks give rise to Lie
algebroids:

Theorem 0. Let f : M −→ X be a map from a manifold to a higher (derived) stack and
consider the canonical map

TM/X = HomOM (LM/X ,OM ) // TM

from the derived tangent bundle to the fibers of f . This map is the anchor map of a (derived)
Lie algebroid over M .

Theorem 00 is not as straightforward as the usual construction of Lie algebras out of
Lie groups (or Lie algebroids out of Lie groupoids). Indeed, suppose that ∗ −→ BG is the
basepoint of the classifying stack of a higher Lie group, i.e. a stack with a compatible group
structure. To mimic the first description of the Lie algebra g mentioned above, we would
have to provide a strict model for the Lie algebra of vector fields on the stack G. On the other
hand, the second description requires a strictly associative multiplication on G, providing a
(strict) adjoint representation on TeG.

Because of the homotopical natural of higher stacks, such strict structures are not readily
available. For example, higher Lie groupoids do not come with explicit multiplication
maps, but instead admit local lifts that guarantee the existence of a homotopically unique
composition. In fact, a map of stacks M −→ X need not even be representable by a map
from M to a higher Lie groupoid.

For these reasons, we will describe a more homotopy-theoretic method for constructing
Lie algebroids. This method is based on (derived) deformation theory.
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Deformation theory. Generally speaking, a formal deformation problem is a question
of the following form: if E0 is a certain mathematical object, what are the infinitesimal
families of such objects around E0? The study of such deformation problems has a long
history, originating (at least) in the work of Fröhlicher and Nijenhuis [3131] and Kodaira and
Spencer [5555] on the deformation theory of complex manifolds. It turns out that in many
situations, the possible infinitesimal deformations of E0 can be classified explicitly in terms
of Lie-algebraic data.

This has lead to the following principle, due to Deligne and Drinfeld (tracing back to
Quillen’s work on rational homotopy theory [8181]):

Any reasonable formal deformation problem over a field of characteristic zero is
controlled by a differential graded Lie algebra.

The Lie algebra of a Lie group arises naturally from this principle. Indeed, let G be a Lie
group and consider G as a G-torsor. All infinitesimal families of G-torsors around G are
trivial, but there are many infinitesimal families of automorphisms of the G-torsor G. For
example, a first order family of automorphisms

{φε}ε2=0 : G // G

is simply a left-invariant vector field on G. Because of this, the dg-Lie algebra that governs
the deformations of the G-torsor G is simply the Lie algebra of left invariant vector fields on
G (cf. Proposition 6.4.306.4.30).

The above principle has been developed further by Kontsevich [5656], Hinich [4040], Manetti
[6565], Pridham [7575] and Lurie [6161] (among many others), in terms of derived deformation
theory. In terms of algebra, the passage to derived deformation theory can be described
as follows. Consider an object E0 defined over a field k, such as a module, an algebra or a
variety. An infinitesimal deformation of E0 is given by an object E defined over a local Artin
k-algebra A, whose fiber of k is equivalent to E0. In addition to such deformations of E0
over Artin algebras, one can often study derived deformations of E0 along dg-Artin algebras
as well.

The collection of such derived deformations of E0 can be organized into a functor

dgArtk // S

sending each dg-Artin algebra A to the space of deformations of E over A. In this way,
‘reasonable’ deformation problems determine functors that satisfy a version of the Schlessinger
conditions [8383], called formal moduli problems. The above principle can then be formulated
more precisely as an equivalence between the ∞-category of formal moduli problems and the
∞-category of dg-Lie algebras [6161].

The first half of the thesis is devoted to an extension of the above result to the case where
the field k is replaced by a commutative dg-algebra A. There is a natural notion of a formal
moduli problem over such a dg-algebra A, given by a diagram of spaces satisfying a version of
the Schlessinger conditions. The indexing category of such a formal moduli problem consists
of certain derived nilpotent extensions A′ −→ A, which need not admit a section. The main
result is the following:

Theorem I. Let A be a cofibrant commutative dg-algebra over a field of characteristic
zero with the property that πi(A) = 0 for i� 0. Then there is an equivalence between the
∞-category of derived Lie algebroids over A and the ∞-category of formal moduli problems
over A.

Among other things, this requires a reasonable homotopy theory of derived Lie algebroids
over a commutative dg-algebra A. We provide such a homotopy theory by proving that the
category of (unbounded) dg-Lie algebroids over A admits a semi-model structure whose weak
equivalences are the quasi-isomorphisms.
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Derived differential topology. Although the formulation and proof of Theorem II are
essentially algebraic, it should be considered as a geometric statement: if E0 is a certain
mathematical object defined over a space Spec(A), then the (derived) infinitesimal families
of such objects around E0 are controlled by a Lie algebroid over Spec(A).

The object E0 is often classified by a map f : Spec(A) −→ X into a certain moduli space,
so that a family of objects around E0 is classified by a family of maps around f . For example,
the G-torsor G is classified by the basepoint ∗ −→ BG of the classfying space of G. One can
therefore rephrase Theorem II somewhat informally as follows:

Let A be as in Theorem II and let f : M = Spec(A) −→ X be a map to a moduli space
(over a field of characteristic zero). Then a formal neighbourhood of M in X is controlled
by a derived Lie algebroid over M .

This perspective also appears in [3333], where Lie algebroids are essentially defined as certain
formal (derived, stacky) nilpotent thickenings of Spec(A).

To make the above assertion more precise, the moduli space X has to be considered as
an object in derived geometry. In an algebro-geometric setting, this means that X should be
a derived (Artin) stack, for which there is a well-developed theory due to Toën and Vezzosi
(see e.g. [9797]) and Lurie [6363], among others. Given a map f : Spec(A) −→ X into a derived
Artin stack, the spaces of infinitesimal deformations

Spec(A) f
//

��

X

Spec(A′)

<<

can be organized into a formal moduli problem over A. This formal moduli problem is
classified by a derived Lie algebroid over A.

Theorem 00 is proven by adapting this simple argument to the setting of derived differential
topology. There are various approaches to derived differential topology, due to Spivak [9292],
Joyce [5151] and Borisov and Noel [1414], which are all based on the theory of C∞-rings (see
e.g. [6868]). These works mostly concentrate on applications of derived differential topology
to intersection theory, and therefore only consider ‘quasi-smooth’ spaces, arising as derived
intersections of two smooth manifolds.

To study deformation theory, we need to make use of spaces that are significantly more
singular than these derived intersections. For this reason, the second half of this thesis
contains a rather extensive account of derived differential topology: we extended the theory
from quasi-smooth derived manifolds to more general derived stacks, with emphasis on their
infinitesimal (deformation-theoretic) aspects. This follows the lines of the aforementioned
work of Toën, Vezzosi and Lurie in derived algebraic geometry.

The infinitesimal theory of stacks in derived differential topology is essentially the same as
in derived algebraic geometry. In particular, any map f : M −→ X from a (derived) manifold
to a derived stack gives rise to a formal moduli problem over M . Using a version of Theorem
II for C∞-rings, such a formal moduli problem determines a derived Lie algebroid over M .

With a reasonable theory of derived differential topology in place, we can address the
promised analogue of the Van Est theorem:

Theorem II. Let p : M −→ X be a smooth surjection from a smooth manifold to a smooth
(higher) stack and let M −→ Y be any map into a derived n-stack. If the fibers of p are
n-connected, then the map

MapM/(X,Y ) // MapLieAlgdM (TM/X , TM/Y )
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is an equivalence. In other words, any map of Lie algebroids TM/X −→ TM/Y integrates to a
map of stacks (under M).

When G ⇒M is an ordinary Lie groupoid and p : M −→ X = M/G is the induced map
to the quotient stack, the fibers of p can be identified with the source fibers of G. Taking
Y = K(R, n), the above result then reduces to the Van Est isomorphism.

To some extend, the methods leading to Theorem IIII are more interesting than the result
itself and make use of two particular (analytic) features of (derived) differential topology.
Because the Lie algebroid TM/X describes the formal neighbourhood of M inside X, the
problem of integrating a map between Lie algebroids comes down to an extension problem

M //

  

X∧M

��

// X

∃?
��

Y ∧M
// Y

where X∧M is the formal completion of X at M . This extension problem can be addressed
locally on M and X and then involves a descent argument to patch together various local
extensions. Finding a local extension essentially reduces to solving a parallel transport
equation; the analytical nature of differential topology ensures that such differential equations
have a solution.

The problem of patching together local extensions is greatly simplified by another property
of differential topology: the fibers of a smooth map are locally equivalent to Rn, and in
particular locally contractible. This implies that the fibers of the smooth map p : M −→ X
have a well-behaved theory of locally constant sheaves, which is controlled by their underlying
homotopy type.

The obstructions to patching together local extensions are therefore controlled by the
homotopy types of the fibers of p. Analyzing these obstructions leads to Theorem IIII. In fact,
we prove a variant of Theorem IIII where M is allowed to be more singular, e.g. a derived
intersection of two smooth manifolds.

Contents
This thesis is outlined as follows. Chapters 22 – 44 are essentially purely algebraic and discuss
the homotopy theory of Lie algebroids and its relation to deformation theory. Chapters 55 – 77
study the role of Lie algebroids in derived differential topology.

Chapter 22 provides some background material on the homotopical algebra that we will
employ throughout this thesis. We start by briefly recalling the language of abstract homotopy
theory, which involves ∞-categories and model categories. This is a vast subject that cannot
be done justice in such a short introductory paragraph, but we have nonetheless tried to
convey some of the basic ideas that we will use.

We then discuss the homotopy theory of (derived) C∞-rings, which provide the basic
objects on which derived differential topology is built. Most importantly, the actual derived
part of the theory of C∞-rings largely reduces to commutative algebra. We furthermore
review the theory of deformations of algebraic structures along square zero extensions, as
outlined for example in [6262, Section 7.4], and show that such deformation problems are
naturally organized into formal moduli problems.

Chapter 33 discusses the homotopy theory of Lie algebroids and their representations. Our
main result asserts that the category of differential graded Lie algebroids can be endowed
with a semi-model structure having good homotopical properties (Theorem 3.1.103.1.10 and
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Theorem 3.1.153.1.15). We also discuss an equivalent homotopy theory for L∞-algebroids and their
representations, which correspond to the representations up-to-homotopy of [33]. Although
we do not really need this from an abstract point of view, we included it since L∞-algebroids
arise frequently in the literature.

The main results of this thesis are contained in Chapter 44. The most important result
is Theorem II, reformulated slightly more explicitly as Theorem 4.2.14.2.1 in the setting of C∞-
rings. The proof is based on the proof for Lie algebras over a field due to Lurie [6161] and
uses a version of Koszul duality for Lie algebroids. We furthermore prove an equivalence
between the homotopy theories of connective representations of a Lie algebroid and connective
quasi-coherent modules over the corresponding formal moduli problem (Theorem 4.3.14.3.1).

By our discussion in Chapter 22, the deformation theory of algebras gives rise to examples
of formal moduli problems. We show that the corresponding Lie algebroids can be explicitly
identified as certain ‘Atiyah Lie algebroids’, consisting of differential operators acting by
derivations with respect to the algebra structure (Theorem 4.4.14.4.1).

In Chapter 55, we develop the basic theory of derived differential topology, i.e. the geometry
of derived C∞-rings. The main purpose of this chapter is to extend the theory of derived
intersections of smooth manifolds (studied in [9292], among others) to a theory that describes
more general kinds of singular spaces and stacks.

Our approach follows a general program for constructing geometric objects from algebraic
objects, such as C∞-rings, as outlined in [6060]. We start by studying spectra of (derived)
C∞-rings, which form the affine local models of derived manifolds, as well as module sheaves
over them. This requires some extra attention because different C∞-rings (and modules over
them) may have equivalent spectra (and associated sheaves). We then recall the general
notion of a higher Lie groupoid and a (geometric) stack in the particular setting of derived
manifolds. To make sure that there is a well-behaved theory of higher Lie groupoids and
stacks, we need to make use of a version of the inverse function theorem for derived manifolds,
which we prove in Chapter 66.

Finally, we show that in derived differential topology, there is a well-behaved theory
of locally constant sheaves along the fibers of a smooth map p : Y −→ X. This theory is
controlled by the homotopy types of the fibers of p (Theorem 5.3.195.3.19) and can be applied
to give a sheaf-theoretic construction of the ‘source n-connected cover’ of a Lie groupoid
(Example 5.3.275.3.27).

In Chapter 66 we discuss the infinitesimal structure of derived stacks. There is an extensive
treatment of infinitesimal properties of derived stacks in [9797, 6363, 3333], which can be carried
over directly to derived differential topology. Using this, together with a sheaf version of
Theorem 4.2.14.2.1 (Corollary 6.3.156.3.15), we show that any map M −→ X from a derived manifold
to a derived stack gives rise to a sheaf of Lie algebroids over M .

We also study some infinitesimal properties of the entire moduli space of derived stacks
(Theorem 6.4.36.4.3). These properties were also studied using a somewhat different method in
[7676]. In particular, we obtain that the deformations of a stack p : X −→M over a derived
manifold are controlled by a certain Lie algebroid over M . This Lie algebroid can informally
be thought of as the Lie algebroid of p-related vector fields on M and X.

Finally, Chapter 77 is devoted to a proof of Theorem IIII, appearing as Theorem 7.2.17.2.1. This
uses that the Lie algebroid TM/X of a map p : M −→ X is closely related to the formal
completion X∧M : when p is locally of finite presentation, we show that Lie algebroid maps
TM/X −→ TM/Y can equivalently be thought of as maps X∧M −→ Y from the formal
completion (Proposition 7.1.67.1.6). We conclude by sketching some simple applications of
Theorem IIII, for example to the integrability of L∞-algebras (Example 7.3.437.3.43).



Chapter 1. 7

Conventions
Most objects considered in this text are of a homotopical nature, which means that they are
naturally organized into ∞-categories. We will freely make use of the theory of ∞-categories,
as developed by Joyal [4747] and Lurie [5959].

The ∞-category S of spaces is the homotopy coherent nerve of the simplicially enriched
category of Kan complexes. For two objects x, y in an ∞-category C, we let MapC(x, y) ∈ S,
or simply Map(x, y), denote their mapping space (i.e. Kan complex). We will always refer to a
set equipped with a topology as a topological space, to avoid confusion with the interpretation
of ‘spaces’ in terms of Kan complexes.

For X ∈ C, we denote by C/X the ∞-category of objects in C over (i.e. with a map to)
X, as described e.g. in [5959, Section 1.2.9]. In particular, objects in CAlg/A are commutative
algebras over A, conflicting with the usual meaning of ‘algebras over A’ as A-algebras.

Many of the∞-categories considered in the text arise from model categories of differential
graded objects. To simplify the notation, the passage from such a model category to its
associated ∞-category is indicated by removing the mentioning of ‘dg-’. For example, the
model category Moddg

A of (unbounded) dg-modules over a dg-algebra A gives rise to an ∞-
category ModA of modules over the algebra A. This means that terms like ‘modules’, ‘algebras’
and ‘Lie algebroids’ generally refer to homotopical objects, while the non-homotopical variants
are referred to as ‘discrete algebras’.

We use chain conventions for differential graded objects, i.e. the differential ∂ has degree
−1. Homology groups are denoted by πn(−) and an object is n-(co)connective if its homology
groups vanish in degrees i < n (resp. i > n). The n-fold suspension V [n] of a chain complex
V is given by

V [n]m = Vm−n ∂V [n] = (−1)n∂V
an its cone is denoted V [n, n+ 1]. We use Hom(x, y) to denote mapping complexes, rather
than mapping spaces.

A stack will always mean a higher geometric (i.e. Artin) stack. A functor satisfying a
homotopical version of descent is referred to as a sheaf (with values in some ∞-category C).
By default, a sheaf is a sheaf of spaces, rather than a sheaf of sets.



Chapter 2

Preliminaries

The purpose of this section is to recall some of the algebraic and homotopy theoretic language
that will be employed throughout the text. Since we will be interested in (derived) differential
topology, the basic algebraic objects under consideration are C∞-rings, rather than ordinary
commutative rings. We will give a brief account of the theory of derived C∞-rings in Section
2.22.2, based on the homotopy theory of dg-C∞-rings described in [1818].

We will concentrate on algebraic aspects of derived C∞-rings and postpone the discussion
of geometry based on derived C∞-rings to Chapter 55. A particularly relevant part of this
algebraic story concerns deformations of algebraic structures along square zero extensions of
C∞-rings (Section 2.32.3). The abstract behaviour of such deformations can be axiomatized by
the notion of a formal moduli problem, which will play an important role in the rest of the
text.

Almost all of the objects considered in this thesis have a homotopy-theoretic flavour,
which means that they can be organized in terms of model categories [8080] or ∞-categories
[4747, 5959]. Section 2.12.1 is supposed to give a brief account of the homotopy-theoretic language
employed throughout the thesis.

2.1 Higher category theory
Categories provide a convenient way of organizing a collection of mathematical objects,
together with the structure-preserving morphisms between them. These morphisms can often
be used to study the mathematical objects themselves, and in particular allow us to decide
when two objects are isomorphic.

In homotopy theory, one usually classifies objects not up to isomorphism, but up to a
weaker notion of equivalence. For example, the category of topological spaces and continuous
maps between them is supplemented by homotopies between maps, allowing one to study
spaces up to homotopy equivalence, rather than homeomorphism. Similarly, chain complexes
are often studied up to chain homotopy equivalence or up to quasi-isomorphism.

The language of ∞-categories is intended to describe these kinds of situations. On the
one hand, one can think of an ∞-category as a category, together with a collection of ‘weak
equivalences’ between its objects [66]. On the other hand, one can think of an ∞-category as
a collection of objects, together with the data of maps between them, homotopies between
these maps and higher homotopies between these homotopies. This data of homotopies and
higher homotopies admits a simple combinatorial description using simplices, resulting in
the notion of a Kan complex.

2.1.1 Kan complexes. Recall that a simplicial set is a diagram X : ∆op −→ Set indexed
by the category of finite nonempty linear orders, which can be depicted as

X0 // X1oo

oo //

// X2

oo

oo

oo //

//

//

X3 · · · .
oo

oo

oo

oo
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For each k ≥ 0, the k-simplex ∆[k] is the simplicial set whose value on a linear order
[n] = {0 < · · · < n} is given by the set of order-preserving maps [n] −→ [k]. If X is a
simplicial set, then Xk can be identified with the set of maps ∆[k] −→ X, i.e. the set
of k-simplices of X. The k-simplex ∆[k] has a collection of horns Λi[k] ⊆ ∆[k] (for each
i = 0, . . . , k), whose n-simplices are the maps [n] −→ [k] whose image misses a vertex different
from i.

Definition 2.1.1. A simplicial set X : ∆op −→ Set is called a Kan complex if every horn in
X can be extended to a simplex, i.e. if each solid diagram

Λi[k]

��

// X

∆[k]

==

admits a dotted extension, as indicated. It is called an n-groupoid if this dotted extension is
unique for all k > n and all i = 0, . . . , k.

Remark 2.1.2. The notion of a Kan complex admits many variations, replacing sets by
other types of mathematical structures, like groups and rings. When one replaces sets by
geometric objects like smooth manifolds, it makes sense to require that there exist (at least
locally) smoothly varying choices of horn-fillers. We will come back to this in Section 5.25.2.

The horn-filling conditions provide rules for composing and inverting arrows and homo-
topies. For example, a horn Λ0[2] −→ X can be interpreted as a tuple of arrows f : x0 −→ x1
and h : x0 −→ x2, while an extension of this horn to a 2-simplex is given by an arrow
g : x1 −→ x2, together with a homotopy between gf and h. In particular, the horn-filling
conditions provide the existence of a composite (up to homotopy) hf−1.

Example 2.1.3. Let X be a Kan complex and K a simplicial set and consider the simplicial
set XK whose k-simplices are maps K ×∆[k] −→ X. Then XK is a Kan complex, which
is an n-groupoid if X was an n-groupoid. When X,Y and Z are Kan complexes, there is
an obvious composition map ZY × Y X −→ ZX . One can think of Y X as a combinatorial
model for the mapping space between two Kan complexes: its vertices are maps X −→ Y
and its 1-simplices are homotopies X ×∆[1] −→ Y between these maps.

Example 2.1.4. Recall that the singular complex Sing(T ) of a topological space T is the
simplicial set whose k-simplices are maps ∆k −→ T from the topological k-simplex into T .
This simplicial set is a Kan complex and any Kan complex is homotopy equivalent to the
singular complex of a topological space. Because of this, we will refer to Kan complexes
as spaces, to 0-simplices as points and 1-simplices as paths. The Kan complex Sing(T ) is
homotopy equivalent to an n-groupoid if and only if the homotopy groups of T vanish for all
m > n.

Example 2.1.5. Let X : I −→ Kan be a diagram of Kan complexes indexed by a category I.
The limit of X need not be a Kan complex and even if it is a Kan complex, the construction
need not be homotopy invariant. To see why the ordinary limit is usually ill-behaved, note
that a simplex x in the limit of X is given by a tuple of simplices xi ∈ Xi which are identified
by the structure maps of the diagram. Instead of requiring simplices to be equal, one should
ask them to be (coherently) homotopic.

This leads to a modification of the notion a limit, given by the homotopy limit of the
diagram X, whose vertices are given (for example) by the following data:

(0) for each i0 ∈ I, a vertex xi0 ∈ Xi0 .
(1) for each α : i0 −→ i1 in I, a path xα : ∆[1] −→ Xi1 from α(xi0) to xi1 .
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(n) for each sequence α : i0 −→ i1 −→ ... −→ in in I, an n-simplex xα : ∆[n] −→ Xin

whose faces are the images in Xin of the (n− 1)-simplices xα\ik .

There is a similar description of the higher simplices of the homotopy limit. For example,
the homotopy limit of a diagram ∗ x−→ X

y←− ∗ can be identified with the space of paths
from x to y in X.

2.1.2 ∞-categories. An ∞-category can be thought of as a category which is enriched
over spaces (i.e. Kan complexes) in a homotopy coherent way. In particular, categories
strictly enriched over Kan complexes give rise to ∞-categories. For example, the category of
Kan complexes itself determines an ∞-category S called the ∞-category of spaces.

Unfortunately, categories strictly enriched over Kan complexes tend to be too rigid to
efficiently perform categorical constructions. Because of this, one tends to work with more
flexible notions of ∞-categories like quasi-categories (originally due to Boardman and Vogt
[1313]):

Definition 2.1.6. By an ∞-category C we will mean a quasi-category C, i.e. a simplicial set
such that every horn Λi[k] −→ C with 0 < i < k admits an extension to a k-simplex in C. A
functor of ∞-categories C −→ D is simply a map of simplicial sets.

Where the horn-filling conditions for a Kan complex provide rules for composing and
inverting arrows, the horn-filling conditions for a quasi-category only provide rule for com-
posing arrows: for example, a horn Λ1[2] −→ C determines a tuple of arrows f : c −→ d and
g : d −→ e in C and an extension to the 2-simplex provides a map h : c −→ e, together with
a homotopy h ' gf .

Example 2.1.7. The nerve of a category C (whose n-simplices are the n-tuples of composable
arrows in C) is an ∞-category, which we identify with C.

Example 2.1.8. Let C be a quasi-category and K a simplicial set. Then there is a functor
∞-category Fun(K,C) whose k-simplices are maps ∆[k]×K −→ C.

Example 2.1.9. Let c0, . . . , cn be objects in an∞-category C and consider the sub-simplicial
set Map(c0, . . . , cn) ⊆ Fun(∆[n],C) whose k-simplices are maps ∆[k] ×∆[n] −→ C whose
restriction to ∆[k] × {i} is constant on ci. Then Map(c0, . . . , cn) turns out to be a Kan
complex (see [5959]). Restricting to various edges of ∆[n] determines a diagram of Kan
complexes

Map(c0, c1)× · · · ×Map(cn−1, cn) Map(c0, . . . , cn)oo // Map(c0, cn).

The left map turns out to be a homotopy equivalence, so that the above zig-zag yields a
composition map from the space of tuples of maps ci −→ ci+1 to the space of maps c0 −→ cn.
In this way, one obtains a category weakly enriched over Kan complexes (a Segal category
[8686, 2727]), from which C can be recovered up to equivalence (see e.g. [4949]).

There is a well-developed theory of ∞-categories due to Joyal [4747] and Lurie [5959], which
encompasses analogues of many constructions from category theory. For example, associated
to a functor f : D −→ C is an ∞-category C/f of cones over f , as well as the notion of a
limit of f (a homotopy terminal object in C/f).

Although constructions of ∞-categories are performed concretely at the level of simplicial
sets, they often have universal properties that can also be understood at the level of mapping
spaces. For example, given a diagram f : D −→ C, the limit and colimit of f can be
characterized by the universal property that for each c ∈ C, the maps

MapC(c, limD f(d)) ' // limD MapC(c, f(d))
MapC(colimD f(d), c) ' // limD MapC(f(d), c)
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are homotopy equivalences (see e.g. [5959, Proposition 5.1.3.2]). The latter limit is taken in the
∞-category of spaces and can be described concretely by the homotopy limit construction of
Example 2.1.52.1.5. For example, it follows from this that the colimit of a diagram ∗ ←− X −→ ∗
of spaces is just the suspension of X.

Similarly, one can use mapping spaces to characterize adjunctions between ∞-categories
(see [5959, Proposition 5.2.2.8]): given functors f : C −→ D and g : D −→ C, one may say that
g is right adjoint to f if there exists a natural equivalence of functors Cop ×D −→ S

MapD(f(c), d) ' // MapC(c, g(d)).

These characterizations in terms of mapping spaces imply that left adjoint functors preserve
colimits, while right adjoint functors preserve limits (see also [5959, Proposition 5.2.3.5] for a
more precise proof).

2.1.3 Fibrations. A piece of (∞-) category theory that we will repeatedly use concerns
families of ∞-categories indexed by another ∞-category. The basic example to keep in
mind is the category of modules over a ring A: each map φ : A −→ B induces a functor
φ∗ : ModA −→ ModB given by extension of scalars. A convenient way to organize this
functoriality is to consider the category Mod of all rings and modules: this category has objects
(A,M) consisting of a ring A and a module M over it, and morphisms (A,M) −→ (B,N)
given by a map of rings A −→ B and an A-linear map M −→ N . There is an obvious
projection functor

π : Mod // Rings; (A,M) � // A

whose fiber over A is the category of A-modules. For any map of rings φ : A −→ B and an
A-module M , the A-linear map M −→ φ∗M = B⊗AM gives a map (A,M) −→ (B,φ∗M) in
Mod with the following universal property: precomposition with this map induces a bijection{

(B,φ∗M) −→ (B,N) in π−1(B)
} ∼= //

{
(A,M) f−→ (B,N) s.t. π(f) = φ

}
.

The functor φ∗ can be completely recovered from the arrows (A,M) −→ (B,φ∗M): one uses
them to define the functor φ∗ on objects and invokes the universal property to define the
functor on morphisms.

Generally, a functor C −→ Cat∞ to (∞-) categories can be described equivalently by a
fibration X −→ C with ample supply of such ‘universal lifts’ of arrows in C, in the following
sense:

Definition 2.1.10 (informal). Let π : X −→ C be a functor of∞-categories. Given an arrow
α : c −→ d in C, we will say that an arrow α̃ : x −→ y in X is a locally cocartesian lift if
π(α̃) = α and precomposition with α̃ defines an equivalence on mapping spaces

α̃∗ : MapXd
(y, z) // MapX(x, z)×MapC(c,d) {α}.

whose domain is the mapping space in the fiber Xd over d.
The functor π is a locally cocartesian fibration if for any arrow α : c −→ d in C and any

x ∈ Xc, there exists a locally cocartesian lift α̃ : x −→ y. It is called a cocartesian fibration if
in addition, the locally cocartesian arrows are closed under composition.

If π : X −→ C is a locally cocartesian fibration, then every arrow α : c −→ d determines a
functor between the fibers α! : Xc −→ Xd. On objects, this sends x ∈ Xc to y, where x −→ y
is a locally cocartesian lift of α. To make sure that the resulting functors compose, i.e. that
α!β! ' (αβ)!, one needs the fact that locally cocartesian arrows compose. If this is the case
(i.e. if π is a cocartesian fibration), then this construction gives rise to a functor C −→ Cat∞.
For a more detailed and precise exposition, see [5959, Chapter 3].
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2.1.4 Relative categories and model categories. A useful method for producing ∞-
categories is by localizing a (∞−)category at a set of morphisms.

Definition 2.1.11. Let (C,W ) be a relative (∞−)category, i.e. a (∞−)category C together
with a set W of maps in C. The localization of C at W is a functor u : C −→ C[W−1] with
the universal property that for any ∞-category D, the functor

u∗ : Fun(C[W−1],D) // Fun(C,D)

is fully faithful, with essential image consisting of those functors f : C −→ D that send maps
in W to equivalences in D.

In other words, C[W−1] is the universal ∞-category in which the maps in W are turned
into homotopy equivalences. A functor C[W−1] −→ D[V −1] can be obtained from a functor
C −→ D sending W to V .

Remark 2.1.12. Any (small) relative ∞-category (C,W ) has a localization; in terms of
categories enriched over simplicial sets, this is the Dwyer-Kan simplicial localization [2525].

Remark 2.1.13. The universal property of localization implies that it is functorial. In
terms of cocartesian fibrations, this can be described more precisely by the following result
of Hinich [4242], which we will repeatedly use: let π : X −→ C be a cocartesian fibration of
∞-categories and let Wc be a collection of arrows in Xc for every c. Each map α : c −→ d
in C determines a functor α! : π−1(c) −→ π−1(d). If these functors send Wc to Wd, then
inverting the arrows in all Wc produces a map of cocartesian fibrations

X
f

//

π
��

X[∪W−1
c ]

zz
C.

The functor f preserves locally cocartesian lifts and is given on fibers by the localization map
Xc −→ Xc[W−1

c ]. Furthermore, if V is a set of arrows α in C for which α! : Xc[W−1
c ] −→

Xd[W−1
d ] is an equivalence, then there exists a cocartesian fibration Y −→ C[V −1] whose

restriction along C −→ C[V −1] is equivalent to X[∪W−1
c ] −→ C.

Given a relative category (C,W ), one can ask whether constructions in the underlying
∞-category C[W−1] can be performed at the level of C itself. A particularly structured
example where this is the case is provided by (Quillen) model categories [8080]. In fact, we will
need to make use of the following slight variant of the notion of a model category:

Definition 2.1.14 ([9191], [2929]). A (left) semi-model category is a bicomplete category M

equipped with wide subcategories of weak equivalences, cofibrations and fibrations, subject
to the following conditions:

(1) The weak equivalences have the two out of three property and the weak equivalences,
fibrations and cofibrations are stable under retracts.

(2) The cofibrations have the left lifting property with respect to the trivial fibrations.
The trivial cofibrations with cofibrant domain (i.e. with a domain X for which the map
∅ −→ X is a cofibration) have the left lifting property with respect to the fibrations.

(3) Every map can be factored functorially into a cofibration, followed by a trivial fibration.
Every map with cofibrant domain can be factored functorially into a trivial cofibration
followed by a fibration.
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(4) The fibrations and trivial fibrations are stable under transfinite composition, products
and base change.

An adjunction F : M � N : G between two semi-model categories is a Quillen adjunction
if the right adjoint G preserves fibrations and trivial fibrations. It is a Quillen equivalence
when a map X −→ G(Y ) is a weak equivalence if and only if its adjoint map F (X) −→ Y is
a weak equivalence, for any cofibrant X ∈M and fibrant Y ∈ N.

Remark 2.1.15. We refer to [9191, 2929] for the basic theory of semi-model categories. Let us
remark that in a semi-model category, only the cofibrations and trivial fibrations determine
each other via the lifting property; in particular, a semi-model structure is only determined
by its weak equivalences and fibrations.

One can use a semi-model structure on M to get a grasp on the associated ∞-category
M[W−1]. For example, the mapping spaces of M[W−1] can be computed in terms of fibrant
and cofibrant resolutions in M [9191], the homotopy limit and colimit of a diagram in M can
be used to compute the limit and colimit of its image in M[W−1] and Quillen adjunctions
(equivalences) induce adjunctions (equivalences) between ∞-categorical localizations [4242,
Proposition 1.5.1].

Many important examples of ∞-categories arise from localizing (semi-)model categories:

Example 2.1.16. The ∞-category S of spaces arises from the Kan-Quillen model structure
on simplicial sets and the ∞-category Cat∞ of ∞-categories arises from the Joyal model
structure on simplicial sets.

Example 2.1.17. If A is a ring, the category Moddg
A of unbounded chain complexes of

discrete A-modules can be endowed with the projective model structure, in which a map is a
weak equivalence (fibration) if it is a quasi-isomorphism (surjection). There is a similar model
structure for dg-modules over a dg-algebra A. We will refer to the associated ∞-category
ModA as the ∞-category of modules over A.

If A is a dg-algebra in non-negative degrees, then there is a similar projective model
structure on the category Moddg,≥0

A of non-negatively graded dg-A-modules. This models
the ∞-category Mod≥0

A of connective modules over A. The inclusion Moddg,≥0
A −→ Moddg

A is
a left Quillen functor. Its right adjoint τ≥0 sends an unbounded chain complex M to the
chain complex

Z0(M) M1oo M2oo . . .oo

with the zero-cycles in degree 0. We refer to τ≥0M as the connective cover of M .

A model structure on a category M can often be used to construct model structures on
categories constructed out of M by means of transfer. For example, the category of diagrams
F : I −→ M indexed by a small category I often carries the projective model structure, in
which a map F −→ G is an equivalence (resp. fibration) when the map F (i) −→ G(i) is a
weak equivalence (fibration) in M for every i ∈ I.

To show that this indeed defines a (semi-)model structure, one has to impose some
set-theoretic conditions on the model category M, which allow one to verify the factorization
axioms of Definition 2.1.142.1.14 by means of Quillen’s small object argument [8080].

Definition 2.1.18. A semi-model category M is called tractable if its underlying category
is locally presentable and if there exists sets of maps with cofibrant domain I and J (called
generating cofibrations and generating trivial cofibrations) such that a map has the right
lifting property against I (resp. J) if and only if it is a trivial fibration (resp. a fibration).

Lemma 2.1.19 (cf. [2929, Proposition 12.1.4]). Consider an adjunction between locally pre-
sentable categories

F : M //
N : Goo
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and suppose that M carries a tractable semi-model structure, with generating (trivial) cofibra-
tions I and J . Define a map in N to be a weak equivalence (fibration) if its image under G
is a weak equivalence (fibration) in M. It is a cofibration if it has the left lifting property
against the trivial fibrations.

This determines a tractable semi-model structure on N, whose generating (trivial) cofi-
brations are given by F (I) and F (J), as soon as the following condition holds:

(?) Let f : A −→ B be a map in N with cofibrant domain, obtained as a transfinite
composition of pushouts of maps in F (J). Then f is a weak equivalence.

Proof. The factorization axioms follow from the small object argument. The only nontrivial
thing to check is the lifting axiom for trivial cofibrations between cofibrant objects against
fibrations. If A −→ B is a trivial cofibration between cofibrant objects, we can factor
A −→ A′ −→ B as an iterated pushout of maps in F (J), followed by a fibration. By
condition (?), the map A −→ A′ is a weak equivalence, so that A′ −→ B is a trivial fibration
and the map A −→ B is a retract of the map A −→ A′. The latter has the lifting property
against the fibrations by definition.

Example 2.1.20. If M is a tractable semi-model category and C is a small category, then
the diagram category Fun(C,M) carries the projective semi-model structure, transferred
along the right (and left) adjoint functor ev : Fun(C,M) −→

∏
c∈C M.

Remark 2.1.21. Condition (?) automatically holds if every cofibration between cofibrant
objects A −→ B admits a natural weak equivalence to a fibration f ′ : A′ −→ B′. Indeed,
when f is a transfinite composition of maps in F (J), one can use the right lifting property
against the fibration f ′ to find a map r : B −→ Af such that rf and f ′r are both weak
equivalences. The 2-out-of-6 property of the weak equivalences then implies that f is a weak
equivalence.

Example 2.1.22. Suppose that P is a (coloured, symmetric) dg-operad over a field k of
characteristic zero and that A is a commutative dg-k-algebra. Let PAlgdg

A be the category of
dg-P-algebras in dg-A-modules. This carries a model structure, obtained from projective
model structure by transfer along the free-forgetful adjunction

Free : Moddg
A

//
PAlgdg

A : U.oo

Indeed, every dg-P-algebra B gives rise to a dg-P-algebra B[t, dt] of B-valued polynomial
differential forms on ∆[1]. The diagonal then factors as a weak equivalence, followed by
fibration [1515]

B
∼ // B[t, dt]

(evt=0,evt=1)
// B ×B.

Using this, one can factor every map of dg-P-algebras A −→ B as a weak equivalence
A −→ A×B B[t, dt], followed by a fibration A×B B[t, dt] −→ B. The associated ∞-category

PAlgA = PAlgdg
A [W−1]

is the ∞-category of unbounded P-algebras. For instance, there is a model structure on the
category CAlgdg

A of commutative dg-k-algebras whose underlying ∞-category CAlgA is the
∞-category of unbounded commutative A-algebras.

Example 2.1.23. Suppose that the dg-operad P and the commutative dg-algebra A are
concentrated in non-negative degrees. Then there is a similar model structure on the category
PAlg≥0,dg

A of non-negatively graded dg-P-algebras over A, which presents the ∞-category
PAlg≥0

A of connective P-algebras over A.

Let us conclude with the following property of a tractable semi-model category M, which
asserts that any diagram in the ∞-category M[W−1] can be studied at the level of M:
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Proposition 2.1.24 ([6262, Proposition 1.3.4.25]). Let f : I −→ J be a functor between two
small (ordinary) categories and let M be a tractable semi-model category. Consider the
commuting square of ∞-categories

Fun(J,M)[W−1] ∼ //

f∗

��

Fun(J,M[W−1])

f∗

��

Fun(I,M)[W−1] ∼
// Fun(I,M[W−1])

in which ∞-categories on the left are obtained by formally inverting the pointwise weak
equivalences between diagrams. Then the horizontal functors are equivalences of locally
presentable ∞-categories (see [5959, Chapter 5] for a definition).

In other words, any diagram in M[W−1] can be rectified (in a homotopically unique
way) to a diagram in M, so that statements about diagrams in M can always be checked for
rectified diagrams in the model category M itself. For example, the functor of ∞-categories

f∗ : Fun
(
J,M[W−1]

)
// Fun

(
I,M[W−1]

)
admits both a left and a right adjoint, which can be presented at the model-categorical
level by the derived functors of left and right Kan extension. To compute the (co)limit of a
diagram in M[W−1], it therefore suffices to rectify it to a diagram in M and compute the
homotopy (co)limit of this diagram.

Proposition 2.1.242.1.24 is proven in [6262] for combinatorial model categories, rather than semi-
model categories. The case of semi-model categories follows immediately from the fact that
Quillen equivalent semi-model categories give rise to Quillen equivalent semi-model categories
of diagrams, combined with following observation:

Lemma 2.1.25 ([2323]). Let M be a tractable semi-model category. Then there exists a left
proper, simplicial, combinatorial model category N and a Quillen equivalence

F : N //
M : G.oo

This follows from the following slightly more general statement:

Proposition 2.1.26 ([2323]). Let M(−) : C −→ ModCatL be a (small) diagram of tractable
semi-model categories. Then there exists the following data:

(1) A diagram of (small) categories G(−) : C −→ Cat. This determines a diagram of model
categories

Ĝ : C // ModCatL; c � // Ĝc := Fun
(
Gop
c , sSet

)
sending each c ∈ C to simplicial presheaves on Gc, equipped with the projective model
structure. An arrow α : c −→ d is sent to the Quillen pair taking left Kan extension
and restriction along Gop

c −→ G
op
d .

(2) A natural transformation of left Quillen functors γ! : Ĝ −→M.

(3) For each c ∈ C, a set of maps Wc in Ĝc such that γ! descends to a Quillen equivalence
from the left Bousfield localization at Wc

γ! : LWc
Ĝc −→Mc.

We therefore obtain a diagram C −→ ModCatL; c 7→ LWc
Fun

(
Gop
c , sSet

)
which is naturally

Quillen equivalent to M.
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Remark 2.1.27. Our proof makes extensive use of cosimplicial objects. To this end, let us
recall that if M is a tractable semi-model category, then the category M∆ = Fun(∆,M) of
cosimplicial objects in M comes endowed with the Reedy model structure. We will denote
the constant diagram on an object Y ∈M by cst(Y ).

Note that a cosimplicial object X : ∆ −→ M can equivalently be considered as a left
adjoint functor X(−) : sSet −→Mop. This left adjoint functor is left Quillen if and only the
cosimplicial object X is a cosimplicial resolution: it is Reedy cofibrant and weakly equivalent
to a constant diagram.

If X ∈ M∆ is a cosimplicial resolution, we will denote by X(n) ∈ M∆ the cosimplicial
object corresponding to the left adjoint functor sSet −→ Mop;K 7→ X(K × ∆[n]). This
determines a cosimplicial object X(•) : ∆ −→M∆, which is itself a cosimplicial resolution of
X.

Proof. Given the data (1) - (3), the conclusion follows as soon as we know that for each map
α : c −→ d, the right Quillen functor Ĝd −→ Ĝc sends Wd-local objects to Wc-local objects.
This follows from the commuting square of homotopy categories and right adjoint functors

ho(Md) �
�

//

��

ho(Ĝd)

��

ho(Mc) �
�

// ho(Ĝc)

and the fact that the horizontal functors are fully faithful inclusions whose essential images
consist precisely of Wd-local objects and Wc-local objects.

Data (1). Since each Mc is tractable, one can use the small object argument to show that
there is a regular cardinal κc with the following properties [2323, Proposition 2.3]:

• every object of M is the κc-filtered colimit of κc-small objects.
• all functorial factorizations preserve κc-filtered colimits and factor a map between κc-small

objects into maps between κc-small objects.
• if X(−) −→ Y (−) is a natural weak equivalence (fibration) between κc-filtered diagrams,

then the map colimiX(i) −→ colimi Y (i) is a weak equivalence (fibration) as well.

The last condition implies that κc-filtered colimits are already homotopy colimits. Since C

is a small category, we can find a regular cardinal κ larger than all κc, with the additional
property that for every c −→ d in C, the left adjoint Mc −→Md preserves κ-small objects.

Now let Gc denote the full subcategory of M∆
c consisting of cosimplicial resolutions that

take values in κ-small objects of Mc. By construction, this has has the following properties:

(a) the categories Gc assemble into a diagram G(−) : C −→ Cat, consisting of full subcate-
gories of M∆

(−).

(b) any map in Gc can be factored functorially (inside Gc ⊆ M∆
c ) into a Reedy (trivial)

cofibration followed by Reedy (trivial) fibration. Every κ-small object in Mc admits a
cofibrant resolution in Gc.

(c) for every object X ∈ Gc ⊆M∆
c , the functor

Mfib // sSet; Y � // MapM∆
(
X(•), cst(Y )

)
.

preserves homotopy colimits of κ-filtered diagrams. In fact, the n-simplices are simply
given by maps X([n]) −→ Y in M; this shows that the above functor preserves κ-filtered
colimits, which are also homotopy colimits.
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Data (2). There is a canonical natural transformation

γ : G(−) ×∆ // M(−)

sending a tuple (X, [n]) in Gc ×∆ to the object X([n]) in Mc. Because each X ∈ Gc is a
cosimplicial resolution, it follows from [2424, Proposition 3.4] that this induces a family of
Quillen pairs

γ! : Fun(Gop
c , sSet) //

Mc : γ∗oo (2.1.28)

depending functorially on c ∈ C. Here the left hand side is endowed with the projective
model structure. Unraveling the definitions, for any Y ∈Mc, the simplicial presheaf γ∗(Y )
is given by the functor X 7→ MapM∆

(
X(•), cst(Y )

)
(see Remark 2.1.272.1.27 for the notation).

Data (3). Fix an object c ∈ C. We claim that the derived counit map of (2.1.282.1.28) is a weak
equivalence. Assuming this, it follows from [2323, Proposition 3.2] that there exists a set of
maps Wc in Fun(Gop

c , sSet) such that (2.1.282.1.28) becomes a Quillen equivalence after taking the
left Bousfield localization of Fun(Gop

c , sSet) at Wc.
Let us denote by K the class of (weak equivalence classes of) objects Y ∈Mc for which the

derived counit map Lγ!Rγ∗(Y ) −→ Y is a weak equivalence. Since Rγ∗ preserves κ-filtered
homotopy colimits by point (c) above, the class K is closed under κ-filtered homotopy colimits.
Every object in Mc is a κ-filtered (homotopy) colimit of a diagram of κ-small fibrant-cofibrant
objects. It therefore suffices to show that K contains all κ-small Y .

Let Y ∈Mc be a κ-small fibrant-cofibrant object. Then cst(Y ) ∈M∆
c is Reedy fibrant

and there exists a Reedy trivial fibration Ỹ −→ cst(Y ) with Reedy fibrant-cofibrant domain.
Let Ỹ ∆[•] : ∆op −→M∆

c be a fibrant-cofibrant simplicial resolution of Ỹ . By point (b) above,
we can assume that every Ỹ ∆[n] is an object in Gc ⊆M∆

c .
Now consider the diagram of presheaves Gop

c −→ sSet whose value on (X, [n]) ∈ Gc ×∆ is
given by

MapM∆
c

(
X, Ỹ

)
��

// MapM∆
c

(
X, Ỹ ∆[n])
∼
��

MapM∆
c

(
X(n), cst(Y )

)
MapM∆

c

(
X(n), Ỹ

)∼oo
∼
// MapM∆

c

(
X(n), Ỹ ∆[n]) (2.1.29)

The maps labeled by ∼ are pointwise weak equivalences of simplicial presheaves on Gc.
Indeed, this follows because mapping out of X(•) preserves weak equivalences between fibrant
objects and mapping into Ỹ ∆[•] preserves weak equivalences between cofibrant objects in
M∆
c .
The simplicial presheaf X 7→ MapM∆

c

(
X, Ỹ ∆[•]) is weakly equivalent to the homotopy

colimit of representable presheaves

hocolim
[n]∈∆op

MapM∆
c

(
−, Ỹ ∆[n]).

Applying the left adjoint γ! to Diagram (2.1.292.1.29), we can identify the derived counit map
Lγ!Rγ∗(Y ) −→ Y with the zig-zag of maps

hocolim[n]∈∆op Ỹ ([n]) Ỹ ([0])∼oo // Y.

The first map is a weak equivalence since the cosimplicial object Ỹ is homotopically constant
and the second map is a weak equivalence since Ỹ was a resolution of Y . We conclude that
the derived counit is an equivalence for all κ-compact Y .
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2.2 Derived C∞-rings
In this section we collect some basic algebraic results about derived C∞-rings. Our preferred
model for derived C∞-rings is given by dg-C∞-rings (due to Carchedi-Roytenberg [1818]), which
emphasizes the close connection to (derived) commutative algebra.

2.2.1 DG-C∞-rings. Recall that a C∞-ring (in sets) is a set A together with an operation
φ∗ : A×k −→ A×m for every C∞-function φ : Rk −→ Rm, such that for any further C∞-
function ψ : Rm −→ Rn, the diagram

A×k

φ∗
��

(ψ◦φ)∗

((
A×m

ψ∗

// A×n

commutes. Alternatively, a C∞-ring in sets is a product preserving functor from the category
of smooth manifolds Rn (for n ≥ 0) to the category of sets (see e.g. [6868] for a textbook
account). Any C∞-ring has an underlying R-algebra structure, which is determined by the
maps φ∗ where φ is a polynomial function.

Definition 2.2.1 ([1818]). A dg-C∞-ring A is a non-negatively graded commutative dg-algebra
over R, together with a compatible structure of a C∞-ring on the set A0. A map of dg-C∞-
rings A −→ B is a map of dg-algebras such that A0 −→ B0 is a map of C∞-rings in sets. Let
C∞Algdg denote the category of dg-C∞-rings.

Example 2.2.2. Let M be a smooth manifold and let f1, ..., fn : M −→ R be C∞-functions
on M . Then there is a dg-C∞-ring A = C∞(M)[η1, ..., ηn], given by the polynomial algebra
over C∞(M) with generators η1, ..., ηn of degree 1, satisfying ∂ηi = fi. The dg-C∞-ring A
serves as a model for the derived zero locus of the function f : M −→ Rn. In particular,
π0(A) is given by the C∞-ring C∞(M)/(f1, ..., fn) and A is quasi-isomorphic to C∞(f−1(0))
when 0 is a regular value of f .

Remark 2.2.3. The work [1818] also defines a non-connective version of the notion of a
dg-C∞-ring. We will make no use of this notion, and always use ‘dg-C∞-ring’ to refer to a
dg-C∞-ring in the sense of Definition 2.2.12.2.1.

Proposition 2.2.4 ([1818]). The category C∞Algdg carries a tractable model structure, in
which a map is a weak equivalence (resp. a fibration) if it is a quasi-isomorphism (resp. a
surjection in all nonzero degrees).

Definition 2.2.5. The ∞-category of C∞-rings is the ∞-category underlying the model
category C∞Algdg

C∞Alg := C∞Algdg[W−1].

We will refer to objects of C∞Alg simply as (derived) C∞-rings. To avoid confusion, we will
always refer to a C∞-ring in sets as a discrete C∞-ring.

Remark 2.2.6. The inclusion C∞Algdisc −→ C∞Algdg of the discrete C∞-rings into the dg-
C∞-rings is a right Quillen functor, where C∞Algdisc carries the model structure whose weak
equivalences are the isomorphisms. This induces a fully faithful functor C∞Algdisc −→ C∞Alg,
with left adjoint given by the functor taking π0.

The model structure on C∞Algdg is defined by transfer along the free-forgetful adjunction

Free : Mod≥0,dg
R

// C∞Algdg : Uoo
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to non-negatively graded chain complexes of vector spaces. Consequently, the generating
cofibrations of C∞Algdg are of the form

Free(0) // Free(R) Free(R[k]) // Free(R[k, k + 1]).

The first map can be identified with the map R −→ C∞(R) and the second map is given (for
k ≥ 1) by the map of polynomial algebras R[x] −→ R[x, ξ], where x is a generator of degree
k and ξ is a generator of degree k + 1 satisfying ∂ξ = x. When k = 0, the second map is
given by the inclusion C∞(R) −→ C∞(R)[ξ] where ∂ξ is the identity function on R.

Lemma 2.2.7. The forgetful functor C∞Algdg −→ CAlg≥0,dg
R to connective commutative

dg-algebras over R is a right Quillen functor. The induced right adjoint functor C∞Alg −→
CAlg≥0

R preserves pushouts along maps of C∞-rings that induce a surjection on π0.

Proof. Clearly the forgetful functor is right Quillen. Let A −→ B and A −→ C be maps
between cofibrant objects of C∞Algdg and suppose that A −→ B induces a surjection on π0.
To compute the homotopy pushout B

∐h
A C, it suffices to replace the map A −→ B by a

cofibration A −→ B̃, followed by a weak equivalence B̃ −→ B. Such a cofibration may be
constructed by means of ‘adding cells to kill a cycle’: we construct a sequence of cofibrations
A = A(−1) −→ A(0) −→ A(1) −→ · · · −→ B such that the map A(n) −→ B induces an
isomorphism on homotopy groups in degree < n and a surjection on homotopy groups in
degree n. Given A(n) −→ B, we define A(n+1) as the pushout

Free(
⊕

α R[n])

��

// A(n)

��

Free(
⊕

α R[n, n+ 1]) // A(n+1) // B

where the sum runs over all classes α ∈ πn+1(B,A(n)). Such classes can be represented by a
cycle R[n] −→ A(n) together with a null-homotopy R[n, n+ 1] −→ B of its image in B. One
can easily verify that A(n+1) has the desired property, so that the map B̃ := colimA(n) −→ B
is a weak equivalence while A −→ B̃ is a cofibration.

When the map π0(A) −→ π0(B) is surjective, we may assume that A(0) = A. In that
case, the cofibration A −→ B̃ is given by a map of the form A −→ A[xi], where the variables
xi are concentrated in degrees ≥ 1. In particular, the map A −→ B̃ induces an isomorphism
of C∞-rings in degree 0, so that the pushout B̃

∐
A C is given by the usual tensor product

B̃ ⊗A C. Since the map A −→ B̃ is also a cofibration of commutative dg-algebras it follows
that

B

h∐
A

C ' B̃
∐
A

C ∼= B̃ ⊗A C ∼= B ⊗hA C.

where the last equivalence uses that CAlg≥0,dg
R is left proper.

Remark 2.2.8. Let B ←− A −→ C be a diagram in C∞Algdg and assume that A −→ B
induces a surjection on π0. Lemma 2.2.72.2.7 implies that the homotopy pushout B

∐h
A C can be

computed as the usual pushout after replacing the map A −→ B by an equivalent cofibration
which induces an isomorphism in degree 0. In particular, one does not have to replace A and
C by cofibrant objects.

Corollary 2.2.9. The forgetful functor of ∞-categories U : C∞Alg −→ CAlg≥0
R preserves all

colimits of diagrams indexed by filtered categories and ∆op.
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Proof. The right Quillen functor C∞Algdg −→ CAlg≥0,dg
R preserves filtered colimits. Since the

quasi-isomorphisms are closed under filtered colimits, it follows that the functor U preserves
all filtered (homotopy) colimits.

To see that U preserves colimits of simplicial diagrams, let us start by considering some
special cases. For each B ∈ C∞Alg and each simplicial set K, let B ⊗K : ∆op −→ C∞Alg be
the simplicial object given in degree k by a coproduct of copies of B indexed by Kk. The
functor U preserves the colimits of B⊗∆[n] and B⊗Λ0[n]: indeed, these diagrams extend to
augmented simplicial diagrams (given in degree −1 by B) with extra degeneracies (provided
by a contracting homotopy of ∆[n] and Λ0[n]). It follows that the colimits of these diagrams
are just B and are preserved by any functor (see [5959, Lemma 6.1.3.16]).

Next, let us show by induction that U preserves the colimits of all simplicial objects
B ⊗ ∂∆[n + 1] for n ≥ 0. This is clear for n = 0, in which case it is simply the constant
diagram on B

∐
B. Note that we are not asserting that U(B ⊗K) is given in degree k by a

coproduct of commutative algebras.
For higher n, consider the two pushout squares of simplicial objects in C∞Alg

B ⊗ Λ0[n+ 1] //

��

B ⊗∆[0]

��

B ⊗ ∂∆[n] //

��

B ⊗∆[0]

��

B ⊗ ∂∆[n+ 1] // B ⊗ (∆[n]/∂∆[n]) B ⊗∆[n] // B ⊗ (∆[n]/∂∆[n])

The top horizontal arrows induce (degreewise) surjections on π0, so the induced maps on
colimits also induce surjections on π0. By Lemma 2.2.72.2.7, the above squares, as well as the
induced square of colimits, remain pushout squares after applying U .

The map B ⊗ Λ0[n + 1] −→ B ⊗∆[0] induces an equivalence on colimits, both before
and after applying U . It follows that U preserves the colimit of B ⊗ ∂∆[n+ 1] if and only if
it preserves the colimit of B ⊗ (∆[n]/∂∆[n]). In turn, it follows from the second square that
U preserves the colimit of B ⊗ (∆[n]/∂∆[n]) if it preserves the colimit of B ⊗ ∂∆[n]. One
can therefore proceed by induction.

Finally, let A : ∆op −→ C∞Alg be an arbitrary diagram. The simplex category ∆op has
a cofinal subcategory ∆op

inj, consisting of only the injective maps between linear orders [5959,
Lemma 6.5.3.7]. It therefore suffices to prove that the forgetful functor U preserves the
colimit of the underlying semisimplicial diagram A of A. This diagram can be obtained as
the colimit of a sequence of skeleta sk0(A) −→ sk1(A) −→ · · · −→ A, where skn(A) is the
left Kan extension of the restriction A

∣∣∆op
inj,≤n. Each map skn(A) −→ skn+1(A) fits into a

pushout diagram of semisimplicial diagrams

An+1⊗∂∆[n+ 1] //

��

skn(A)

��

An+1⊗∆[n+ 1] // skn+1(A).

Here An+1⊗K is the semisimplicial object given in degree k by a coproduct of An+1 indexed by
the nondegenerate k-simplices of K. In particular, its left Kan extension along ∆op

inj −→∆op

is just An+1⊗K. The top horizontal map induces surjections on π0 in each degree: indeed, the
map is given by equivalences in degrees > n and in degrees k ≤ n, the map

∐
An+1 −→ Ak

admits a section, provided by a choice of degeneracy. Consequently, the above square remains
a pushout of semisimplicial objects after applying U .

Since U preserves the above pushout square, as well as the colimits of three of its
constituents, it follows that it also preserves the colimit of skn+1(A). Finally, we conclude
that U preserves the colimit of A since it preserves colimits of sequences.
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Corollary 2.2.10. Let T ⊆ C∞Alg be the full (discrete) subcategory on the C∞-rings C∞(Rn)
for n ≥ 0. Then T provides a set of compact projective generators for the ∞-category C∞Alg
(in the sense of [5959, Definition 5.5.8.23]). In particular, the ∞-category C∞Alg is equivalent
to the ∞-category of functors Top −→ S that preserve finite products.

Proof. There is a Quillen equivalence between the model category CAlg≥0,dg of non-negatively
graded dg-R-algebras and the model category of simplicial R-algebras, via the Dold-Kan
correspondence (see [8181] or [3030, Chapter 6]). This implies that the ∞-category CAlg≥0

R has a
set of compact projective generators, given by the discrete polynomial algebras R[x1, ..., xn]
with n ≥ 0 (see [5959, Proposition 5.5.8.25]). Since the forgetful functor C∞Alg −→ CAlg≥0

R
detects equivalences and preserves sifted (homotopy) colimits (by Corollary 2.2.92.2.9), its left
adjoint sends a set of compact projective generators to a set of compact projective generators.
The result now follows from the fact that this left adjoint sends a polynomial algebra
R[x1, ..., xn] to C∞(Rn).

Remark 2.2.11. Corollary 2.2.102.2.10 implies that the homotopy theory of dg-C∞-rings is
equivalent to the homotopy theory of C∞-rings in simplicial sets. Indeed, by [5959, Corollary
5.5.9.3], the model structure on C∞-rings in simplicial sets is also a model for the ∞-category
of product-preserving functors Top −→ S. In particular, our differential graded approach to
‘derived C∞-rings’ is equivalent to the simplicial approach from [9292, 1414].

Remark 2.2.12. The conclusions of Corollary 2.2.102.2.10 and Remark 2.2.112.2.11 apply to more
general types of algebraic theories T. If T is a Fermat theory [2121] extending the theory
of commutative Q-algebras, then the ∞-category of T-algebras in spaces can be presented
by a (transferred) model structure on non-negatively graded dg-algebras A endowed with
a compatible T-algebra structure on A0. The only nontrivial thing to check is that this
transferred model structure exists; all proofs in this section then carry over. To construct
the model structure, one uses that for any dg-T-algebra A, the free dg-T-algebra A{t} with
an extra generator has t as a regular element.

2.2.2 Cotangent complex. A module over a C∞-ring is simply a module over its under-
lying commutative R-algebra. If A is a dg-C∞-ring, we define Moddg

A to be the category of
(unbounded) dg-modules over A, with the usual projective model structure, and ModA to be
its associated ∞-category. A map f : A −→ B of dg-C∞-rings induces a Quillen adjunction

f∗ : Moddg
A

// Moddg
B : f∗oo

where f∗ is given by restriction of scalars and f∗(E) = B⊗AE. The notation follows geometric
conventions: we think of f∗(E) as the restriction of E along f : Spec(B) −→ Spec(A). When
f is a weak equivalence, the above adjunction is a Quillen equivalence.

Recall that any unbounded module E over a commutative dg-algebra A gives rise to a split
square zero extension A⊕ τ≥0E of A by the connective cover of E. When A is a dg-C∞-ring,
the degree zero part A0 ⊕ Z0(E) of this square zero extension carries the canonical structure
of a C∞-ring, depending functorially on A and E [1919, Proposition 2.42]. We therefore obtain
a functor

A⊕ τ≥0(−) : Moddg
A

// C∞Algdg/A (2.2.13)

depending naturally on A. This functor is easily seen to be a right Quillen functor.

Remark 2.2.14. The right Quillen functor (2.2.132.2.13) induces a right adjoint functor of ∞-
categories ModA −→ C∞Alg/A. This right adjoint can be characterized by a universal
property: it realizes ModA as the universal stable ∞-category equipped with a right adjoint
functor to C∞Alg/A (see e.g. [6262, Section 7.3] for a discussion). Indeed, ModA has a similar
universal property with respect to the ∞-category CAlg≥0

R /A of commutative algebras over
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A. The result then follows from the fact that the functor C∞Alg/A −→ CAlg≥0
R /A induces an

equivalence between suspensions A
∐
B A of C∞-rings over A and suspensions of commutative

algebras over A (by an argument analogous to Lemma 2.2.72.2.7).

Explicitly, the left adjoint of (2.2.132.2.13) sends a map of dg-C∞-rings B −→ A to A⊗B ΩB ,
where ΩB is the dg-module of C∞-algebraic Kähler differentials of B. This is simply the
quotient of the free dg-B-module generated by elements ddRb for b ∈ B, subject to relations
of the form

ddR(a · b) = (−1)abb · ddRa+ a · ddRb

ddR
(
φ∗(b1, ..., bn)

)
=
∑
i

(
∂φ

∂xi

)
∗

(b1, ..., bn) · ddR(bi)

ddR(∂a) = ∂(ddRa)

where φ : Rn −→ R is a smooth function and bi ∈ B0.

Definition 2.2.15. Let A be a C∞-ring. The cotangent complex LA of A is the value on A
of the derived functor of the left Quillen functor

[
B −→ A

]
7→ A⊗B ΩB . More generally, if

φ : A −→ B is a map of dg-C∞-rings, the relative cotangent complex LB/A of φ is the cofiber
of the natural map of B-modules B ⊗A LA −→ LB .

Remark 2.2.16. Alternatively, the relative cotangent complex LB/A can be characterized by
the following universal property: for every B-module M , the space of maps MapB(LB/A,M)
is naturally equivalent to the space of dotted sections

A
(φ,0)

//

φ

��

B ⊕M

��

B

;;

=
// B.

Example 2.2.17. Let U ⊆ Rn be the open subset and consider the map of C∞-rings
f : C∞(Rn) −→ C∞(U). Then LC∞(U)/C∞(Rn) ' 0. Indeed, let χ be a characteristic function
for U , i.e. U = χ−1(R \ {0}). Then the map f can be presented by the cofibration

C∞(Rn) // C∞(Rn+1)[η]

with ∂η = χ(x1, . . . , xn) · y − 1, which is a regular element of C∞(Rn+1). Since C∞(Rn+1)[η]
is free, its cotangent complex is a free dg-module on generators ddR(xi), ddR(y) and ddR(η),
with

∂(ddRη) = ddR(χ(x)y − 1) = χ · ddRy + y · ddRχ.

The map C∞(Rn+1)[η]⊗C∞(Rn) LC∞(Rn) −→ LC∞(Rn+1)[η] is the inclusion of the free module
on ddRxi. The second term of the above formula vanishes in the quotient and one finds that
LC∞(U)/C∞(Rn) ' 0.

Example 2.2.18. Let M be a smooth manifold. Then the cotangent complex of C∞(M) is
equivalent the module Ω1(M) of 1-forms on M . Indeed, for any open subspace U ⊆ Rn, it
follows from Example 2.2.172.2.17 that LU ' Ω1(U). A general manifold M can be realized as a
retract of an open subspace U of some Rn. It follows that the natural map LC∞(M) −→ Ω1(M)
is a retract of the map

C∞(M)⊗C∞(U) LC∞(U) −→ C∞(M)⊗C∞(U) Ω1(U).

But this map is a weak equivalence, so the map LC∞(M) −→ Ω1(M) is a weak equivalence as
well.
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Similarly, suppose that p : N −→M is a surjective submersion. Then

LC∞(N)/C∞(M) ' Ω1(N/M)

is equivalent to the module of smooth 1-forms along the fibers of p.

Example 2.2.19. Let f = (f1, . . . , fn) : M −→ Rn be any C∞-function and consider the
dg-C∞-ring A = C∞(M)[η1, . . . , ηn] of Example 2.2.22.2.2. Then the cotangent complex LA is
given by

Ω1(M)[η1, . . . , ηn]⊕A
〈
ddRη1, . . . , ddRηn

〉
∂(ddRηi) = ddR(fi) ∈ Ω1(M).

In particular, the relative cotangent complex LA/C∞(M) is given by the free A-module
A
〈
ddRη1, . . . , ddRηn

〉
. This witnesses the fact that the derived zero locus of f is of codimension

n inside M .

Classically, the cotangent complex of a discrete ring A plays an important role in the
classification of square-zero extensions of A: for every discrete A-module I, there is a bijection
between the set of square-zero extensions of A by I and the first Ext-group Ext1(LA, I).
When trying to generalize this correspondence to the derived setting, one runs into the
problem of giving a rigorous definition of a square zero extension p : A′ −→ A: rather than
saying that two elements in the kernel of p multiply to zero, one needs to provide (coherent)
homotopies that witness this. For this reason, one usually defines square zero extensions in
terms the cotangent complex. In the setting of C∞-rings, this leads to the following definition:

Definition 2.2.20 ([9797, Definition 1.2.1.6], [6262, Definition 7.4.1.6]). Let A ∈ C∞Alg and let
I ∈ Mod≥0

A . We will say that a map p : A′ −→ A in C∞Alg is a square zero extension of A
by I if it fits into a pullback square in C∞Alg/A of the form

A′

p

��

// A

0
��

A
η
// A⊕ I[1].

Here the map 0 is the image of 0 −→ I[1] under the functor (2.2.132.2.13) and η is any section of
the structure map A⊕ I[1] −→ A.

Any map of A-modules η : LA −→ I[1] determines a map η : A −→ A ⊕ I[1]. In turn,
this yields a square zero extension Aη −→ A of A by I, given by the pullback A×A⊕I[1] A.
Conversely, any square zero extension p : A′ −→ A is classified by some η : LA −→ fib(p).
However, this map η is not determined uniquely by the map p (in fact, there is no canonical
way to make fib(p) into an A-module).

Because of this, it is not so clear how to recognize square zero extensions. The following
result gives a model-categorical method for producing square zero extensions:

Lemma 2.2.21. Let p : A′ −→ A be a strict square zero extension of dg-C∞-rings, i.e. p is
surjective and elements in the kernel of p square to zero. Then p determines a square zero
extension in the ∞-category C∞Alg.

Proof. By pulling back p along a trivial fibration, we may assume that the dg-C∞-ring A
is freely generated (without differential) by a set of generators {xi}. Since p : A′ −→ A is
a square zero extension in the usual (non-homotopical) sense, the kernel I = ker(p) has
the structure of a dg-A-module. Since A is free, the map p : A′ −→ A admits a section
s : A −→ A′ at the level of graded objects, so that A′ ∼= A⊕ I without the differential. The
differential takes the form ∂(a, v) = (∂Aa, ∂Iv + η(a)), for some C∞-derivation η : A −→ I[1].
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A straightforward computation now shows that p : A′ −→ A fits into a pullback square of
the form

A′

��

// A⊕ I[0, 1]

q

��

A
η
// A⊕ I[1]

(2.2.22)

where the bottom map arises from the derivation η and the right vertical map is induced
by the surjective map I[0, 1] −→ I[1] from the path space of I[1]. It follows that the above
square is a homotopy pullback square, which realizes A′ as a square zero extension of A.

Remark 2.2.23. Let p : A′ −→ A be square zero extension in C∞Alg, classified by a map
η : A −→ A ⊕ I[1]. One can choose a cofibrant dg-C∞-ring presenting A, together with a
dg-module over it that presents I. In that case, the map η arises from a map of dg-C∞-rings,
so that the map p can be modeled by the (homotopy) pullback of η along the path fibration
q as in (2.2.222.2.22). It follows that any square zero extension in the ∞-category C∞Alg can be
modeled by a strict square zero extension of dg-C∞-rings.

Corollary 2.2.24. Let p : A′ −→ A be a map of k-truncated objects in C∞Alg such that p
induces an isomorphism πm(A′) −→ πm(A) for all m < k and a surjection πk(A′) −→ πk(A)
with kernel I. Then p is a square zero extension if k > 0 or if k = 0 and I2 = 0 in the
C∞-ring π0(A′).

Proof. We can model the map p by a map between dg-C∞-rings which are concentrated
in degrees [0, k]. In that case, I ⊆ πk(A′) ∼= Zk(A′) is just an ideal in A′ and the map
A′/I −→ A is a weak equivalence. But then the map A′ −→ A is just modeled by the map
A′ −→ A′/I, which is a strict square zero extension under the given conditions.

In particular, it follows that for any A ∈ C∞Alg, the maps in the Postnikov tower
τ≤nA −→ τ≤n−1A are square zero extensions for n ≥ 1. A simple inductive argument now
shows:

Corollary 2.2.25. A map f : A −→ B in C∞Alg is an equivalence if and only if π0(A) −→
π0(B) is an isomorphism of discrete C∞-rings and LA/B ' 0.

As another example of the power of the cotangent complex, one can observe that the
cotangent complex largely controls the finiteness properties of C∞-rings:

Definition 2.2.26. A connective module E over a C∞-ring A is finitely presented if it is
contained in the smallest subcategory of Mod≥0

A which contains the free A-module A and is
closed under finite colimits.

A map of C∞-rings f : A −→ B is finitely presented if it is contained in the smallest
subcategory of A/C∞Alg which contains the free C∞-ring A{t} = A

∐
C∞(R) and is closed

under finite colimits.

Remark 2.2.27. Let A be a cofibrant object of C∞Algdg and let B = A{xi} be a dg-C∞-ring
which is obtained by freely adding generators xi of degrees ≥ 0, with possibly nontrivial
differential. Then the map A −→ B is a cofibration, whose associated map in C∞Alg is
finitely presented if there are only finitely many generators. Conversely, any finitely presented
map in C∞Alg can be modeled by such a map. A similar remark applies to finitely presented
A-modules.

Lemma 2.2.28 ([6262, Theorem 7.4.3.18]). Let f : A −→ B be a map of C∞-rings. Then the
following two assertions are equivalent:

(1) f is finitely presented.
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(2) The map of discrete C∞-rings π0(A) −→ π0(B) is finitely presented in the usual sense
and LB/A is an finitely presented B-module.

Proof. Using Remark 2.2.272.2.27, one easily sees that (1) implies (2). For the converse, we reduce
to the case of commutative algebras proven in [6262] (see also [9797, Proposition 2.2.2.4]) as
follows: since π0(A) −→ π0(B) is finitely presented, there exists a factorization

A // A{x1, . . . , xn}
f̃
// B

where f̃ induces a surjection on π0. It suffices to show that f̃ is finitely presented. Since
f̃ induces a surjection on π0, it can be modeled by a cofibration given by only adding
polynomial generator in degrees ≥ 1. This implies that the C∞-algebraic cotangent complex
LB/A{x1,...,xn} is equivalent to the usual cotangent complex in the sense of algebra.

Since LB/A{x1,...,xn} is finitely presented, the proof in loc. cit. shows that f̃ can be
obtained by adding finitely many generators in degrees ≥ 1. This means that f̃ is finitely
presented as a map of C∞-rings.

2.3 Deformation theory

Square zero extensions play an important role in deformation theory, tracing back at least
to the work of Kodaira and Spencer [5555]. As a motivating example, let us recall the
classical theory of deformations of modules over square zero extensions. If A is a (discrete)
commutative algebra and E is a (discrete) A-module, then a deformation of E along a map
of commutative algebras A′ −→ A is an A′-module E′, together with an isomorphism

E′ ⊗A′ A
∼= // E.

For a general map of rings A′ −→ A, there is no way to classify deformations of M , since A′
may be much bigger than A.

However, if A′ −→ A is a square zero extension of A by an A-module I (i.e. an infinitesimal
thickening in terms of geometry), then deformations of E over A′ can be classified concretely
in terms of cohomological data: there is an obstruction class [ob] ∈ Ext2

A(E,E ⊗A I), which
vanishes if and only if there exists a deformation of E. In that case, the set of isomorphism
classes of such deformations is a torsor over Ext1

A(E,E ⊗A I) (see e.g. [4646, Chapitre IV] for
a textbook account).

This kind of cohomological classification of deformations admits a particularly useful and
natural description in the derived setting of Definition 2.2.202.2.20 (see e.g. [6262, Section 7.4.2] for
deformations of commutative algebras). The aim of this section is to recall this description
and to recall how formal deformation theory, i.e. the theory of deformations along nilpotent
extensions, can be organized conveniently in terms of so-called formal moduli problems.
For more discussion, we refer to [6161], which we follow closely. For later applications, we
will phrase everything in terms of extensions of C∞-rings, although the C∞-structure plays
essentially no role.

2.3.1 Deformations of modules. Let us start by giving an account of the deformation
theory of modules in terms of derived C∞-rings.

Definition 2.3.1. Let p : A′ −→ A be a map of C∞-rings and let E be a connective A-
module. A deformation of E along p is a connective A′-module E′, together with the data of
an A-linear equivalence

p∗E′ := A⊗A′ E′
∼ // E.
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Given a deformation E′ of E over A′ and a map of C∞-rings over A

A′
f
// A′′

p
// A

the A′′-module f∗E′ is a deformation of E over A′′. It follows that the possible deformations
of E over A′ depend functorially on A′. To make this a bit more precise, let us consider the
following construction:

Construction 2.3.2. Consider the (pseudo-)functor

C∞Algdg //ModCatL; A � //Mod≥0,dg
A

sending each dg-C∞-ring A to the category of connective dg-A-modules, equipped with
the projective model structure. A map f : A −→ B is sent to the left Quillen functor
f∗ = B ⊗A (−).

Since a weak equivalence of dg-C∞-rings induces a Quillen equivalence between module
categories, we obtain a functor of ∞-categories

Mod≥0 : C∞Alg //PrL; A � //Mod≥0
A

after formally inverting the quasi-isomorphisms. If E is a connective A-module, let

DefE : C∞Alg/A // Ĉat∞; A′ � // Mod≥0
A′ ×ModA {E} (2.3.3)

be the fiber over E of the canonical map from the restriction of the diagram Mod≥0 along
C∞Alg/A −→ C∞Alg and the constant diagram with value ModA. For each A′, the (locally
small) ∞-category DefE(A′) is the ∞-category of deformations of E over A′.

In terms of the functor DefE (2.3.32.3.3), the classification of deformations of an A-module E
along a square zero extension arises from the following observation:

Proposition 2.3.4. Consider a pullback square of C∞-rings over A

A′η

p

��

f
// A

0
��

A′
η
// A⊕ I[1].

(2.3.5)

describing A′η as a square zero extension of A′ by an A-module I. Then the images of this
square

Mod≥0
A′η

p∗

��

// Mod≥0
A

0∗

��

DefE(A′η)

p∗

��

// DefE(A)

0∗

��

Mod≥0
A′ η∗

// Mod≥0
A⊕I[1] DefE(A′)

η∗
// DefE(A⊕ I[1]).

are pullback diagrams of ∞-categories.

Remark 2.3.6. In particular, it follows that for every square zero extension p : Aη −→ A,
the functor p∗ : Mod≥0

Aη
−→ Mod≥0

A detects equivalences. Indeed, it is the pullback of the
functor

0∗ : Mod≥0
A

// Mod≥0
A⊕I[1]

which detects equivalences because it admits a retraction.
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Corollary 2.3.7. Let A be a C∞-ring and E be a connective A-module. Let η : A −→ A⊕I[1]
classify a square zero extension p : Aη −→ A of A by a connective A-module I. Then the
∞-category DefE(Aη) of deformations of E is equivalent to the space of sections of the
natural map of A-modules

r : η∗
(
E ⊗A (A⊕ I[1])

)
// η∗(E ⊗A (A⊕ 0)) = E. (2.3.8)

Proof. Let q : A⊕ I[1] −→ A be the obvious projection, so that q ◦ η = q ◦ 0 = idA. Since
DefE(A) ' {E} is contractible, Proposition 2.3.42.3.4 identifies DefE(Aη) with the space of
equivalences η∗E ∼−→ 0∗E in DefE(A⊕ I[1]). This space of equivalences can be identified
with the fiber of the map

MapA⊕I[1](η∗E, 0∗E) q∗
// MapA(q∗η∗E, q∗0∗E) ' MapA(E,E)

over the identity of E. Indeed, any map η∗E −→ 0∗E in this fiber is automatically an
equivalence, by Remark 2.3.62.3.6. Using that the functors η∗ and 0∗ admit right adjoints (given
by restriction of scalars), one can then identify DefE(A′η) with the fiber of the map

MapA(E, η∗0∗E) // MapA(E, η∗q∗q∗0∗E) ' MapA(E,E)

over the identitity of E. In other words, DefE(Aη) is given by the space of sections of the
map

r : η∗0∗E // η∗q∗q
∗0∗E

obtained by applying η∗ to the unit map of the adjoint pair (q∗, q∗). Unraveling the definitions,
the unit map 0∗E −→ q∗q

∗E is the canonical A⊕ I[1]-linear map

0∗E = E ⊗A (A⊕ I[1]) // q∗q
∗0∗E = q∗E = E

which takes the quotient by the submodule E ⊗A I[1].

Remark 2.3.9. The map q : A⊕I[1] −→ A fits into a commuting diagram of A⊕I[1]-modules

A⊕ I[1]

q

��

// A

0
��

// 0

��

A // A⊕ I[2] // I[2].

The left square is a pullback square of commutative algebras and the right square is a
pullback square of A ⊕ I[1]-modules. The bottom A ⊕ I[1]-linear map θ : A −→ I[2]
is not null-homotopic, but it does admit a null-homotopy after restricting scalars along
0: A −→ A⊕ I[1].

Taking the tensor product with 0∗E, we obtain a fiber sequence of A⊕ I[1]-modules of
the form

0∗E = E ⊗A (A⊕ I[1]) // E
E⊗Aθ // E ⊗A I[2].

Restricting scalars along η, we find that the space of A-sections of the map r (2.3.82.3.8) is
equivalent to the space of null-homotopies of the A-linear map

θE := η∗(E ⊗A θ) : E // E ⊗A I[2].

In particular, the homotopy class of θE determines an obstruction class ob := [θE ] in
Ext2

A(E,E ⊗A I), which vanishes if and only if there exists a section of r, or equivalently, if
there exists a deformation of E along Aη −→ A. If the map θE is null-homotopic, then the
space of null-homotopies is a torsor over the loop space of Map(E,E⊗A I[2]). But this is just
the space Map(E,E ⊗A I[1]), whose zeroth homotopy group is Ext1

A(E,E ⊗A I). Corollary
2.3.82.3.8 therefore reproduces the standard cohomological classification of deformations of E
along square zero extensions.
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To prove Proposition 2.3.42.3.4, note that the functor Mod≥0 factors as

C∞Alg // CAlg≥0
R

Mod≥0
// PrL.

The image of the pullback square (2.3.52.3.5) under the forgetful functor to commutative R-
algebras is a pullback square of (connective) commutative algebras over A, which realizes A′η
as a square zero extension of A′ in commutative algebras as well. We can therefore forget
about C∞-ring structures and work at the level of commutative algebras.

Construction 2.3.10. Let Mod≥0,dg the category with

• objects given by tuples (A,M) where A is a connective commutative dg-algebra and
M is a connective A-module.

• morphisms (A,M) −→ (B,N) given by a map of dg-algebras A −→ B and an A-linear
map M −→ N .

This category carries a model structure, in which a map is a weak equivalence (fibra-
tion) if it is a quasi-isomorphism (surjection in degrees > 0). The obvious projection
π : Mod≥0,dg −→ CAlg≥0,dg

R is a cocartesian fibration which preserves weak equivalences,
fibrations and cofibrations.

Remark 2.3.11. In fact, the projection π : Mod≥0,dg −→ CAlg≥0,dg
R is a model fibration in

the sense of [3737], which is classified by the (pseudo-)functor

CAlg≥0,dg
R

// ModCatL; A � // Mod≥0,dg
A .

This functor sends weak equivalences of commutative dg-algebras to Quillen equivalences.
By [3737, Proposition 3.1.2], the associated functor of ∞-categories

π : Mod≥0 = Mod≥0,dg[W−1] // CAlg≥0,dg
R = CAlg≥0

R

is a cartesian and cocartesian fibration, classified by the functor CAlg≥0
R −→ PrL sending

A 7→ Mod≥0
A .

Lemma 2.3.12. Consider a square ∆[1]×∆[1] −→ Mod≥0 and its image in CAlg≥0
R , which

we may depict as

E′ //

��

E

0̃
��

A′η
f

//

p

��

A

0
��

� π //

F ′
η̃

// F A′
η

// A⊕ I[1]

(2.3.13)

Suppose that the square in CAlg≥0
R is cartesian, realizing A′η as a square zero extension of A′

by the A-module I. If η̃ and 0̃ are π-cocartesian arrows in Mod≥0, then the following are
equivalent:

(1) The left square is cartesian in Mod≥0. In other words, the A′η-module E′ is the pullback
F ′ ×F E, all of whose constituents are considered as A′η-modules by restriction of
scalars.

(2) All edges in the left square are π-cocartesian.

Proof. The map 0̃ is cocartesian, so that its underlying map of chain complexes is given by
E −→ E ⊗A (A ⊕ I[1]) = F . This map induces a surjection on π0, so that the square of
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modules (2.3.132.3.13) is cartesian in Mod≥0 if and only if it is cartesian in the ∞-category Mod
of unbounded modules.

Let us now assume (2). Then the square (2.3.132.3.13) is equivalent to the square of modules

E′ = E′ ⊗A′η A
′
η

//

��

E′ ⊗A′η A = f∗E′

��

p∗E′ = E′ ⊗A′η A
′ // E′ ⊗A′η (A⊕ E[1]) = 0∗f∗E′.

(2.3.14)

Since the functor E′⊗A′η (−) preserves homotopy pullback squares of unbounded A′η-modules,
(1) follows.

Conversely, suppose that (1) holds, so that the square (2.3.132.3.13) is a pullback square of
(unbounded) chain complexes. The square (2.3.142.3.14) maps naturally to the original square
(2.3.132.3.13) and assertion (2) asserts that this natural transformation is a natural equivalence.
Taking the pointwise cofiber of this natural transformation yields another cartesian (and
cocartesian) square of chain complexes

0 //

��

E/f∗E′ = C

��

C ′ = F ′/p∗E′ // F/0∗f∗E′ = C ′′.

Each of these complexes is connective, being a cofiber of connective modules. There are
equivalences C ′′ ' η∗(C ′), C ′′ ' 0∗(C) and C ′′ ' C ⊕C ′. By the last equivalence, it suffices
to show that C ′′ ' 0.

Suppose that C ′′ is nonzero and let k be the smallest integer such that πk(C ′′) 6= 0. In
this case, C and C ′ are k-connective and the map C −→ C ′′ = 0∗(C) induces an isomorphism
on homotopy groups

πk(C)
∼= // πk(C)⊗π0(A) π0(A⊕ I[1])

∼= // πk(C ′′).

It follows that πk(C ′) = πk(C ′′)/πk(C) = 0. But since C ′′ ' η∗(C ′), this implies that

0 = πk(C ′)⊗π0(A′) π0(A⊕ I[1]) ∼= πk(C ′′)

so that C ′′ is indeed null-homotopic.

Proof (of Proposition 2.3.42.3.4). The assertion about DefE follows from the assertion about the
functor Mod≥0, since DefE is the pullback (2.3.32.3.3) of Mod≥0 along a map between constant
diagrams of ∞-categories. Let π : Mod≥0 −→ CAlg≥0

R be the cocartesian fibration classifying
the functor

Mod≥0 : CAlg≥0
R

// Cat∞

and let χ : ∆[1]×∆[1] −→ CAlg≥0
R classify the image of the pullback square (2.3.52.3.5) under

the forgetful functor from C∞-rings.
We have to verify that the image of χ under Mod≥0 is a cartesian square of ∞-categories.

To see this, let us consider Mod≥0 as a marked simplicial set over CAlg≥0
R , whose marked

edges are the π-cocartesian edges. There is a zig-zag of marked simplicial sets over CAlg≥0
R(

Λ2[2]
)]

//

χ0
((

(
∆[1]×∆[1]

)]
χ
��

{0, 0}∼oo

A′ηvv

CAlg≥0
R

(2.3.15)
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where χ0 classifies the restriction A′ −→ A ⊕ I[1] ←− A of (2.3.32.3.3) and the right map is
marked anodyne. Let E and D be the ∞-categories of cocartesian sections of π over χ and
χ0. In other words, a map of simplicial sets K −→ E corresponds to a diagram of marked
simplicial sets

Mod≥0

π

��

K[ ×
(
∆[1]×∆[1]

)]
//

χ̃
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(
∆[1]×∆[1]

)]
χ
// CAlg≥0

R .

Restriction of sections along the horizontal maps from (2.3.152.3.15) produces functors

D Eoo // ModA′η (2.3.16)

The right restriction functor is a trivial fibration because the right map in (2.3.152.3.15) was
marked anodyne. On the other hand, Lemma 2.3.122.3.12 shows that a cocartesian section over
the square is exactly a functor χ̃ : ∆[1]×∆[1] −→ Mod≥0 such that

(a) χ̃ is a right Kan extension of its restriction to Λ2[2].

(b) the restriction of χ̃ to Λ2[2] is a cocartesian lift.

It then follows from [5959, Proposition 4.3.2.15] that the restriction functor E −→ D is a trivial
fibration as well.

The diagram of marked simplicial sets (2.3.152.3.15) presents the natural map of corepresentable
functors

hA
∐
hA[εn]

hA′ // hA′η (2.3.17)

in the ∞-category of functors CAlg≥0
R −→ Cat∞. Under this identification, the zig-zag of

restriction functors (2.3.162.3.16) is the image of (2.3.172.3.17) upon taking mapping categories into
Mod≥0 : CAlg≥0

R −→ Cat∞. It follows that the natural map

Mod≥0
A′η

// Mod≥0
A′ ×Mod≥0

A⊕I[1]
Mod≥0

A

is an equivalence, which concludes the proof.

2.3.2 Deformations of algebras. The deformation theory of modules serves as the basis
for the deformation theory of other algebraic objects, like algebras over (dg-)operads. For
our purposes, it will be important to understand the deformation theory of C∞-rings as well.

Definition 2.3.18. Let A be a dg-C∞-ring. A connective dg-P-algebra R over A is one of
the following three examples:

(a) A connective algebra over a connective (I-coloured, symmetric) dg-operad P over R
(see Example 2.1.232.1.23).

(b) A diagram of dg-C∞-rings A −→ R• indexed by a category I.

(c) A diagram of C∞-rings A −→ R• −→ A equipped with a retraction, indexed by a
category I.

In other words, we slightly expand the notion of algebras over operads to also include the
last two C∞-algebraic examples.



Deformation theory 31

For each of the above three examples, let PAlg≥0,dg
A denote the category of (non-negatively

graded) dg-P-algebras over A. This category comes equipped with a model structure whose
weak equivalences (resp. fibrations) are the quasi-isomorphisms (resp. surjections in degrees
> 0). In the C∞-algebraic cases this arises from the model structure on C∞-rings. Every
map f : A −→ B of C∞-rings induces a commuting square of right Quillen functors

PAlg≥0,dg
B

f∗ //

forget
��

PAlg≥0,dg
A

forget
��∏

I

Mod≥0,dg
B f∗

//
∏
I

Mod≥0,dg
A .

(2.3.19)

The top functor is part of a Quillen pair f∗ : PAlg≥0,dg
A � PAlg≥0,dg

B : f∗, given by

(a) f∗(R) = R and f∗(R) = B ⊗A R for algebras over operads.

(b) f∗(R•) = R• and f∗(R•) = B qA R• for C∞-rings under A.

(c) f∗(R• → A) = R• ×A B and f∗(A→ R• → A) = (B → B qA R• → B) for augmented
C∞-rings.

The vertical functors in (2.3.192.3.19) send a P-algebra to the underlying collection of modules,
indexed by the set I of colours of the operad P, resp. the set of objects of the category I. In
case (c), the forgetful functor sends a retract diagram A −→ R• −→ A to the collection of
kernels Ri ×A {0}. In all cases, the forgetful functors detect weak equivalences.

Let P :
∏

Mod≥0,dg
A −→ PAlg≥0,dg

A denote the left adjoint to the forgetful functor, taking
free P-algebras. The various commuting squares (2.3.192.3.19) determine a natural transformation

C∞Algdg,cof

∏
Mod≥0,dg

&&

PAlg≥0,dg

99ModCatL
P

��

between diagrams of (combinatorial) model categories and left Quillen functors. The diagram
PAlg≥0,dg sends weak equivalences between cofibrant dg-C∞-rings to Quillen equivalences,
so that we obtain a natural transformation between diagrams of presentable ∞-categories
and left adjoint functors

C∞Alg

∏
Mod≥0

%%

PAlg≥0

;;PrL.P

��
(2.3.20)

Our goal is to prove the following analogue of Proposition 2.3.42.3.4:

Proposition 2.3.21. Let η : A′ −→ A⊕ I[1] classify a square zero extension A′η −→ A′ by
an A-module I, so that we have a pullback square of the form (2.3.52.3.5). If the map η induces a
surjection

π0(A′) // π0(A⊕ I[1]) ∼= π0(A)
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then PAlg≥0 sends the pullback square (2.3.52.3.5) to a pullback square of ∞-categories

PAlg≥0
A′η

��

// PAlg≥0
A

��

PAlg≥0
A′

// PAlg≥0
A⊕I[1].

To prove Proposition 2.3.212.3.21, let us recall the following from [6262, Definition 4.7.5.16]:

Definition 2.3.22. A commuting square of ∞-categories

C
F //

G
��

D

G′

��

C′
F ′
// D′

(2.3.23)

is called right adjointable if the functors F and F ′ admit right adjoints U and U ′, and the
Beck-Chevalley map

G ◦ U // U ′ ◦G

is an equivalence. It is left adjointable if the square of opposite categories is right adjointable.
Let us denote by FunRAd(∆[1],Cat∞) ⊆ Fun(∆[1],Cat∞) be the subcategory whose

objects are the left adjoint functors F : C −→ D, with maps between them given by those
squares (2.3.232.3.23) that are right adjointable.

Remark 2.3.24. Suppose that (2.3.232.3.23) is a square of left adjoint functors. Then (2.3.232.3.23) is
right adjointable if and only if the square of right adjoint functors

D′
H′ //

U ′

��

D

U
��

C′
H
// C

is left adjointable. If this is the case, then U and U ′ intertwine the adjoint pair (G,H) and
the adjoint pair (G′, H ′), in the sense that GU ' U ′G and HU ′ ' UH ′.

It follows that the (co)units of (G′, H ′) and (G,H) are related by

U ′(ε′) ' ε ◦ U ′ and U(η′) ' η ◦ U.

When U and U ′ detect equivalences, it follows that (G′, H ′) is an equivalence if (G,H) is an
equivalence.

Lemma 2.3.25. Let f : A −→ B be a map of C∞-rings which induces a surjection on π0.
Then the square of left adjoints

∏
Mod≥0

A

f∗

��

P // PAlg≥0
A

f∗

��∏
Mod≥0

B P
// PAlg≥0

B

is right adjointable.
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Proof. Let us write R = forget(R) for the image of a P-algebra under the forgetful functor.
We have to show that for any R ∈ PAlg≥0

A , the natural B-linear map

β : B ⊗A R −→ f∗(R)

is an equivalence. This is immediate for algebras over operads, since f∗(R) = B ⊗A R,
endowed with its natural P-algebra structure.

For a diagram A −→ R• of C∞-rings under A, β is the natural B-linear map B⊗ARi −→
B
∐
ARi. This map is a weak equivalence by Lemma 2.2.72.2.7. For a diagram A −→ R• −→ A

of augmented C∞-rings, the map β arises from the maps B ⊗A Ri −→ B
∐
ARi by taking

fibers over 0 ∈ B, and is hence an equivalence as well.

Proof (of Proposition 2.3.212.3.21). Let χ : ∆[1]×∆[1] −→ C∞Alg denote the pullback square of
C∞-rings

A′η //

��

A

0
��

A′
η
// A⊕ I[1].

By assumption, every map in this square induces a surjection on π0. Lemma 2.3.252.3.25 then
implies that the restriction of the natural transformation (2.3.202.3.20) to the square χ gives rise
to a functor

∆[1]×∆[1] // FunRAd(∆[1],Cat∞); B � //

(
P :
∏

Mod≥0
B −→ PAlg≥0

B

)
.

The inclusion FunRAd(∆[1],Cat∞) ⊆ Fun(∆[1],Cat∞) preserves limits by [6262, Corollary
4.7.4.18]. This means that the natural square of ∞-categories∏

Mod≥0
A′η

P //

��

PAlg≥0
A′η

��∏(
Mod≥0

A′ ×Mod≥0
A⊕I[1]

Mod≥0
A

)
P
// PAlg≥0

A′ ×PAlg≥0
A⊕I[1]

PAlg≥0
A

is right adjointable. The left vertical functor is a product of equivalences by Proposition 2.3.42.3.4.
The right adjoint of the free functor P is just the forgetful functor, which detects equivalences.
It then follows from Remark 2.3.242.3.24 that the right vertical functor is an equivalence as well.

Proposition 2.3.212.3.21 can be used to classify deformations of algebras along square zero
extensions. To see this, let R be a P-algebra over a C∞-ring A and consider the functor

DefR : C∞Alg/A // Ĉat∞; A′ � // PAlg≥0
A′ ×PAlg≥0

A

{R} (2.3.26)

sending each A′ −→ A to the ∞-category of deformations of R to a P-algebra over A′. It
follows immediately from Proposition 2.3.212.3.21 that for any η : A′ −→ A⊕ I[1] which induces a
surjection on π0, there is an equivalence

DefR(A′η) ∼ // DefR(A′)×DefR(A⊕I[1]) {R}.

In the special case where η : A −→ A⊕ I[1] classifies a square zero extension of A itself, the
argument of Corollary 2.3.72.3.7 provides a simple description of DefR(Aη): it is equivalent to
the space of sections of the canonical map

r : η∗0∗(R) // R (2.3.27)

in the category of P-algebras over A.
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Example 2.3.28. Suppose that R is an algebra over a dg-operad P. As in Remark 2.3.92.3.9,
one sees that the P-algebra 0∗(R) = R⊗A (A⊕ I[1]) is a (non-split) square zero extension of
R by the R-module R⊗A I[1]. It follows that the restriction η∗0∗(R) −→ R is a square zero
extension of P-algebras over A, which is classified by a certain map of operadic R-modules

θR : LR // R⊗A I[2].

Here LR denotes the (operadic) cotangent complex of R, which corepresents the functor
DerPA(R,−) sending an R-module E to the space of (A-linear) P-algebra derivations with
coefficients in E.

The space of sections of r (2.3.272.3.27) can therefore be identified with the space of null-
homotopies of the map θR. In particular, the homotopy class of θR determines an obstruction
class

ob = [θ] ∈ Ext2
R(LR, R⊗A I)

which vanishes if and only if there exists a deformation of R over Aη.

Example 2.3.29 (cf. [6262, Section 7.4.2]). Let A −→ R be a map of C∞-rings. Unwinding
the definitions, the functor DefR sends f : A′ −→ A to the ∞-category of pushout squares of
C∞-rings

A′
f
//

��

// A

��

R′ // R.

In this case, the C∞-ring 0∗(R) ' R⊕R⊗A I[1] is a square zero extension of R by R⊗A I[1].
The space of sections of r (2.3.272.3.27) can then be identified with the space of sections in C∞Alg

A

��

η
// A⊕ I[1] //

��

A

��

R 77// R⊕ (R⊗A I[1]) // R

making the entire diagram commute. This can be identified further as follows: the composite
map A

η−→ A⊕ I[1] −→ R⊕ (R⊗A I[1]) is classified by a map of R-modules R⊗A LA −→
R⊗A I[1]. Using this, one finds that the space of dotted sections is equivalent to the space
of dotted lifts in the ∞-category of R-modules

LR/A[−1] //

��

R⊗A LA

��

// R⊗A I[1].

0 // LR

88

Using the left pushout square, the space of such dotted lifts is equivalent to the space of null-
homotopies of the total horizontal map θ : LR/A[−1] −→ R⊗A I[1]. Again, the obstruction
to finding a deformation of A −→ R along Aη −→ A is then given by a class

ob = [θ] ∈ Ext2(LR/A, R⊗A I).

If this class vanishes, the space of such deformations is a torsor over the loop space of
Map(LR/A[−1], R⊗A I[1]), which is equivalent to Map(LR/A, R⊗A I[1]). This retrieves (a
C∞-algebraic version of) the usual first order obstruction to extending a commutative algebra
(see e.g. [4646, Chapitre III] or [5555] for the original analytic analogue).
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2.3.3 Axiomatic approach: formal moduli problems. The examples from the previ-
ous sections show how the usual cohomological classification of deformations over a square
zero extension A′η arises naturally from the equivalence

DefR(A′η) ' DefR(A′)×DefR(A⊕I[1]) {R}

between the ∞-category of deformations of R over A′η and the ∞-category of deformations
R′ over A′, together with an equivalence between η∗(R′) and the trivial deformation 0∗(R)
over A⊕ I[1]. This behaviour of deformations with respect to square zero extensions can be
axiomatized in terms of so-called formal moduli problems, which describe deformations over
small (or ‘nilpotent’) extensions of A.

Remark 2.3.30. The description of deformation problems in terms of functors on nilpotent
dg-extensions of algebras has a long history with many contributors (see e.g. [5656], [6565], [7575]).
Our presentation closely follows the recent discussion in [6161] (which treats the case where A
is a field), which is closely related to the work of Hinich in [4040].

Definition 2.3.31. If A is a C∞-ring, we let A[εn] be the C∞-ring A{xn}/(x2
n), where xn

has degree n. Equivalently, A[εn] is the split square zero extension A⊕A[n].

Definition 2.3.32. The ∞-category C∞Algsm/A of small extensions of A is the smallest
full subcategory of C∞Alg/A which contains A and is stable under homotopy pullbacks along
the maps 0: A −→ A[εn] for n ≥ 1. In other words, B −→ A is a small extension if it factors
as finite composition of maps (over A)

B = Bn // Bn−1 // ... // B0 = A

where each Bi −→ Bi−1 is a square zero extension of Bi−1 by a shifted copy of A (Definition
2.2.202.2.20).

Example 2.3.33. Let K be a local Artin algebra over R with residue field R. Then
the tensor product A ⊗R K −→ A determines a small extension of A. Indeed, using
Artinian induction, one finds that B −→ A factors as a finite composition of surjective maps
A⊗R Ki −→ A⊗R Ki−1, whose kernel A⊗R mi is a free A-module of rank 1, which squares
to zero in A⊗R Ki. Any such strict square zero extension fits into a homotopy diagram

A⊗R Ki

��

// A

��

A⊗R Ki−1 // A⊕A[1]

In fact, the same argument shows that A ⊗R K is a small algebra over A when K is a
(connective) dg-Artin algebra, since the Postnikov tower of K can be refined by a tower of
small extensions of the field R by copies of R[n] (see Section 2.2.22.2.2 or [6161]). For example, the
C∞-rings A{xi}/(xni ), where xi has degree i ≥ 0, are small extensions of A.

Definition 2.3.34. Let A be a C∞-ring. A functor X : C∞Algsm/A −→ S is said to be a
formal moduli problem if

(a) X sends every pullback square

A′η //

��

A

0
��

A′
η
// A[εn]

with n ≥ 1 to a pullback square of spaces.
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(b) X(A) is contractible.

Let FMPA ⊆ Fun(C∞Algsm/A, S) be the full subcategory of formal moduli problems.

Condition (b) asserts that there is a unique way of deforming an object over the identity
map A −→ A. Axiom (a) can be thought of as a version of the Schlessinger conditions [8383],
and encodes the behaviour of deformations encountered in the previous sections.
Example 2.3.35. Let R be a (connective) P-algebra over A. The restriction of the functor
(2.3.262.3.26) to the small extensions of A defines a functor

DefR : C∞Algsm/A // S

A priori, the functor DefR from (2.3.262.3.26) takes values in locally small ∞-categories. Using
that DefR

(
A[εn]

)
' ΩDefR

(
A[εn+1]

)
is a (small) space, it follows from Artinian induction

that the above functor takes values in spaces. By Proposition 2.3.212.3.21 (see also the discussion
above Example 2.3.282.3.28), the functor DefR is a formal moduli problem.
Example 2.3.36. Let B −→ A be a map of C∞-rings and consider the functor

Spf(B) : C∞Algsm/A // S; A′ � // Map/A(B,A′).

This functor preserves all limits of C∞-rings over A and therefore determines a formal moduli
problem, which we will call the formal spectrum of B. This determines a right adjoint functor

Spf :
(
C∞Alg/A

)op
// FMPA. (2.3.37)

Similarly, any unbounded commutative dg-algebra B determines a formal moduli problem
Spf(B) = MapCAlgR/A

(B,−). The construction of the formal spectrum fits into an adjunction

O : FMPA
// (CAlgR/A

)op : Spf.oo

The left adjoint functor O sends a formal moduli problem to its ‘function algebra’. The
connective cover τ≥0O(X) has the structure of a C∞-ring over A; this C∞-ring is just the
value on X of the left adjoint to (2.3.372.3.37).

The last example illustrates that formal moduli problems can be considered as (formal)
geometric objects, which behave dual to commutative rings (or C∞-rings). On the other
hand, we will see in Chapter 44 that formal moduli problems can also be considered as (Lie)
algebraic objects. As preliminary evidence for this, let us give the following example:
Example 2.3.38. Let X be a formal moduli problem and consider the spaces X

(
A[εn]

)
for

n ≥ 0. Since A[εn] ' A×A[εn+1] A, it follows that X
(
A[εn]

)
' ΩX

(
A[εn+1]

)
. In other words,

the spaces X(A[εn]) form an Ω-spectrum, called the tangent complex of X and denoted by
TX . More precisely, consider the composite functor

Sfin
∗

A⊕C∗(−,A)
// C∞Algsm/A

X // S.

sending a finite pointed space K to the square zero extension of A by the reduced chains
C∗(K,A) with coefficients in A. This is a reduced excisive functor, which is classified by
the spectrum TX . For example, TSpf(B) ' MapB(LB , A) is the spectrum underlying the
(derived) module of derivations of B with values in A.

In fact, the above functor can be refined by a reduced excisive functor

Modf.p.,≥0
A

A⊕(−)
// C∞Algsm/A

X // S

from the ∞-category of finitely presented (connective) A-modules (Definition 2.2.262.2.26). This
functor is classified by an A-module TX (cf. Example 4.2.104.2.10), whose underlying spectrum is
the tangent complex.
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Remark 2.3.39. A simple inductive argument shows that a map X −→ Y of formal moduli
problems is an equivalence if and only X(A[εn]) −→ Y (A[εn]) is an equivalence for all n ≥ 0.
Equivalently, this means that the map of tangent complexes TX −→ TY is an equivalence.
In other words, the assignment X 7→ TX behaves like a forgetful functor.

Example 2.3.40. Consider the C∞-ring

B = A[x, y]/(x2, y2, xy) = A[εm]×A A[εn]

with x of degree m and y of degree n. Geometrically, one can think of Spec(B) as the wedge
sum of two (derived) infinitesimal lines, parametrized by Spec(A). The C∞-ring B admits
a square zero extension Bη = A[x, y]/(x2, y2), which one can think of as the infinitesimal
square spanned by these two lines. This extension is classified by a map

η : B // A[εm+n+1].

The value of a formal moduli problem X on η gives a certain operation

X(η) : π−m(TX)× π−n(TX) ∼= π0X(B) // π0X(A[εm+n+1]) ∼= π−m−n−1(TX)

which describes the obstructions to extending a deformation from the wedge of two (infinites-
imal) lines to the infinitesimal square spanned by them. We will see in Example 4.2.254.2.25 that
this operation defines a Lie algebra structure on the homotopy groups π∗+1(TX).



Chapter 3

Homotopical algebra for
Lie algebroids

This chapter treats the homotopy theory of Lie algebroids over a (derived) C∞-ring. More
precisely, we will show that the categories of (unbounded) dg-Lie algebroids and L∞-algebroids
over a dg-C∞-ring admit Quillen equivalent semi-model structures. Furthermore, we show
that these semi-model structures have a rather ‘algebraic’ behaviour, in the sense that certain
types of homotopy colimits can be computed at the level of chain complexes.

We discuss some elementary properties of these model structures in Section 3.13.1 and
verify the existence of the semi-model structures in Section 3.23.2. Most importantly, we
provide an explicit cofibrant replacement of a dg-Lie algebroid in Section 3.1.33.1.3, which can
be used to describe the space of maps between two dg-Lie algebroids in terms of ‘nonlinear
maps’ between them. Section 3.33.3 contains a brief discussion of the homotopy theory of
representations over Lie algebroids.

3.1 Homotopy theories of Lie algebroids

3.1.1 DG-Lie algebroids and L∞-algebroids. Let A be a dg-C∞-ring and let TA :=
HomA(ΩA, A) be the chain complex of C∞- derivations of A, i.e. of derivations v : A −→ A
of commutative dg-algebras with the property that

v(φ(a1, . . . , an)) =
∑
i

∂φ

∂xi
(a1, . . . , an) · v(ai)

for any C∞-function φ : Rn −→ R and any ai ∈ A0. Recall that TA has the structure
of a dg-A-module, given by pointwise multiplication in A, as well as the structure of a
dg-Lie-algebra over R, with Lie bracket given by the commutator bracket.

Definition 3.1.1. A dg-Lie algebroid g over A is an (unbounded) dg-A-module g, equipped
with a (R-linear) dg-Lie algebra structure and an anchor map ρ : g −→ TA such that

(1) ρ is both a map of dg-A-modules and dg-Lie algebras.

(2) the failure of the Lie bracket to be A-bilinear is governed by the Leibniz rule

[X, a · Y ] = (−1)Xaa[X,Y ] + ρ(X)(a) · Y.

Let LieAlgddg
A be the category of dg-Lie algebroids over A, with maps between them given

by A-linear maps over TA that preserve the Lie bracket.

Example 3.1.2. Given a (possibly unbounded) dg-A-module E, there is an Atiyah dg-Lie
algebroid At(E) over A, which can be described as follows: an element of At(E) (of degree
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n) is a tuple (v,∇v) consisting of a derivation v : A −→ A (of degree n), together with a
R-linear map ∇v : E −→ E (of degree n) such that

∇v(a · e) = v(a) · e+ (−1)|a|·na · ∇v(e)

for all a ∈ A and e ∈ E. This becomes a dg-A-module under pointwise multiplication and a
dg-Lie algebra under the commutator bracket. The anchor map is the obvious projection
At(E) −→ TA sending (v,∇v) to v.

Example 3.1.3. Suppose that R is a P-algebra in Mod≥0,dg
A , in the sense of Definition

2.3.182.3.18. Then there is a sub dg-Lie algebroid

AtP(R) ⊆ At(R)

consisting of the tuples (v,∇v) where∇v is a P-algebra derivation. For example, if φ : A −→ R
is a map of dg-C∞-rings, this produces a dg-Lie algebroid whose elements are tuples (v, w) of
derivations v : A −→ A and w : R −→ R which are compatible, in the sense that φ◦v = w ◦φ.

Example 3.1.4. Let p : N −→ M be a surjective submersion and let A = C∞(M) −→
C∞(N) = R be the induced diagram of discrete C∞-rings. Then AtC∞(R) is the usual
Atiyah Lie algebroid of p, which has the property that Lie algebroid maps TM −→ AtC∞(R)
correspond to flat connections on p.

Similarly, suppose that the map p admits a section s : M −→ N , yielding a retraction
R −→ A. Then the associated Lie algebroid AtC∞(R) has the property that Lie algebroid
maps TM −→ AtC∞(R) are flat connections on N for which the section s is horizontal.

In certain situations, it can be convenient to slightly weaken the Lie algebra structure
of a dg-Lie algebroid to an L∞-structure. Recall that an L∞-structure on a chain complex
g is given by a collection of maps [−, ...,−] : g⊗n −→ g of graded anti-symmetric maps of
(homological) degree n− 2, one for each n ≥ 2. These maps have to satisfy a sequence of
Jacobi identities

Jk(X1, · · · , Xk) = 0,

one for each k ≥ 2, where Jk(X1, · · · , Xk) is the R-th Jacobiator :∑
i+j=k

(−1)ij
∑

σ∈UnSh(i,j)

(−1)σ ±
[[
Xσ(1), · · · , Xσ(i)

]
, Xσ(i+1), · · · , Xσ(i+j)

]
. (3.1.5)

Here ± denotes the usual Koszul sign due to the permutation of the variables Xi and the
1-ary bracket [−] : g −→ g is given by [X] = −∂X.

There is a map of operads L∞ −→ Lie, realizing a Lie algebra as an L∞-algebra whose
n-ary brackets vanish for n ≥ 3. In particular, TA can be considered as an L∞-algebra.

Definition 3.1.6. An L∞-algebroid over A is a dg-A-module g, equipped with the structure
of a (R-linear) L∞-algebra and an anchor map ρ : g −→ TA, such that

(1) ρ is both a map of dg-A-modules and of L∞-algebras.

(2) the brackets satisfy the Leibniz rules

[X, a · Y ] = (−1)aXa[X,Y ] + ρ(X)(a) · Y
[X1, ..., a ·Xn] = (−1)an(−1)a(X1+...+Xn−1)a[X1, ..., Xn] n ≥ 3.

Let L∞Algddg
A be the category of L∞-algebroids over A, with maps between them given by

A-linear maps over TA that preserve the L∞-structure.
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Remark 3.1.7. There is a more general notion of L∞-algebroid in the literature (see [4545,
5454, 103103]), which allows the anchor map to be a nonlinear map of L∞-algebras. We will not
use this generalization.

Example 3.1.8. Let g is an L∞-algebroid and let

α ∈ C∗(g) = HomA(Sym≥1
A g, A)

be a cycle in its reduced Chevalley-Eilenberg complex (see Definition 4.1.164.1.16) of (homological)
degree −n. Then g⊕A[n− 2] −→ g is a map of L∞-algebroids, where the nontrivial brackets
of the domain are

[X, a] = X(a) [X1, . . . , Xk] =
(
[X1, . . . , Xk]g, α(X1, . . . , Xk)

)
.

For example, let A = C∞(M) be the ring of smooth functions on a smooth manifold and let
ω ∈ Ωn

cl(M) be a closed n-form, for n ≥ 3. Then the chain complex TA ⊕ A[n− 2] carries
an L∞-algebroid structure with binary bracket given by [X, f ] = X(f) for X ∈ TA and
f ∈ A[n− 2] and n-ary bracket given by [X1, ..., Xn] = ω(X1, ..., Xn) for X1, ..., Xn ∈ TA.

Example 3.1.9 (Action L∞-algebroids). Let ρ : g −→ TA be a map of L∞-algebras over R.
Then A⊗ g has the structure of an L∞-algebroid, with anchor map given by the A-linear
extension of ρ and with brackets given by

[a⊗X, b⊗ Y ] = ±ab⊗ [X,Y ] + a · ρ(X)(b)⊗ Y − (±)b · ρ(Y )(a)⊗X
[a1 ⊗X1, ..., an ⊗Xn] = ±a1...an ⊗ [X1, ..., Xn].

where ± is the usual Koszul sign. The only nontrivial condition to verify is the Jacobi
identity: by an explicit computation, one can show that the Jacobiators Jn(X1, . . . , Xn)
depend A-multilinearly on Xi ∈ A⊗ g. One can therefore reduce to the case where all Xi

are contained in g, where the Jacobi identities hold by assumption (cf. Lemma 3.1.403.1.40).
By construction, maps of L∞-algebroids A⊗ g −→ h are in bijective correspondence to

L∞-algebra maps g −→ h over TA. Furthermore, A⊗ g is a dg-Lie algebroid whenever g is a
dg-Lie algebra.

The categories of dg-Lie algebroids and L∞-algebroids over A fit into a commuting
diagram

LieAlgddg
A

��

// L∞Algddg
A

//

��

Moddg
A /TA

��

Liedg
R /TA

// L∞Algdg
R /TA

// Moddg
R /TA.

The vertical functors forget the A-module structure, the left two horizontal functors are
inclusions and the right two horizontal functors forget the L∞-structure. Each of these
forgetful functors admits a left adjoint. The left adjoint to LieAlgddg

A −→ Moddg
A /TA is

described in [5353] and the left adjoints to the forgetful functors

LieAlgddg
A

// Liedg
R /TA L∞Algddg

A
// L∞Algdg

R /TA

are both given by the ‘action Lie algebroid’ construction of Example 3.1.93.1.9.

Theorem 3.1.10. The following two categories admit a right proper, tractable semi-model
structure, in which a map is a weak equivalence (resp. a fibration) if and only if it is a
quasi-isomorphism (a degreewise surjection):

(a) the category LieAlgddg
A of dg-Lie algebroids over A.
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(b) the category L∞Algddg
A of L∞-algebroids over A.

Example 3.1.11. Let R be a fibrant-cofibrant P-algebra in the sense of Definition 2.3.182.3.18.
Then the Atiyah Lie algebroid AtP(R) of Example 3.1.33.1.3 is a fibrant dg-Lie algebroid. Indeed, if
R is a cofibrant algebra over a dg-operad, then R is (up to a retraction) free on a graded vector
space V , so that there is an isomorphism of graded vector spaces At(R) ∼= TA ⊕Homk(V,R).

Similarly, if R is a diagram of C∞-rings under A (resp. with a retraction R −→ A), the
anchor maps of the associated Atiyah Lie algebroids are base changes of the maps

Der(R,R) // Der(A,R) Der(R,R) // Der(A,R)×Der(A,A) Der(R,A).

These maps are fibrations when A −→ R is a (projective) cofibration and when furthermore
the retraction R −→ A is a projective fibration.

The quasi-isomorphisms and surjections do not define a genuine model structure on dg-Lie
algebroids. Indeed, the following example demonstrates that dg-Lie algebroids may fail to
have a fibrant replacement:
Example 3.1.12. In general, there is no genuine model structure on dg-Lie algebroids with
the above weak equivalences and fibrations. For example, consider the free C∞-rings

A = R{x, y} = C∞(R2) B = A/(x− y) ∼= R{x}.

Let g be the free A-linear Lie algebra generated by the A-module B⊕2. Equivalently, g is
the free B-linear Lie algebra on two generators e1, e2, considered as a Lie algebra over A.
Suppose that the zero map g −→ TA factors over a transitive dg-Lie algebroid

g
ι // h

ρ
// // TA.

We claim that ι can never be a quasi-isomorphism. To see this, let v ∈ h be an element in h
and consider the following two equalities in h:

[x · ι(e1), [y · ι(e2), v]] = xy · [ι(e1), [ι(e2), v]]− xv(y) · ι
(
[e1, e2]

)
[y · ι(e1), [x · ι(e2), v]] = xy · [ι(e1), [ι(e2), v]]− yv(x) · ι

(
[e1, e2]

)
The left hand sides agree by definition of g. If we let v be an element such that ρ(v) = ∂/∂y,
then

ι
(
x · [e1, e2]

)
= 0.

This means that the kernel of π0(ι) : π0(g) −→ π0(h) always contains the (nonzero) element
x · [e1, e2].
Definition 3.1.13. Let A be a dg-C∞-ring or a commutative dg-R-algebra. The∞-category
of Lie algebroids over A

LieAlgdA = LieAlgddg
Ac [W

−1]
is the ∞-category associated to the semi-model category of dg-Lie algebroids over a cofibrant
replacement Ac of A. By Proposition 3.1.203.1.20, one may equivalently model LieAlgdA by the
semi-model category of L∞-algebroids over Ac.
Remark 3.1.14. In the above definition, we need to replace A by a cofibrant dg-C∞-ring
because the tangent bundle TA is only homotopy invariant when A is cofibrant (see also
Section 3.1.43.1.4).

Rather than invoking Quillen’s path object argument, our proof of Theorem 3.1.103.1.10
depends on an analysis of pushouts along generating trivial cofibrations. Such pushouts of
dg-Lie algebroids (and L∞-algebroids) have a similar structure as pushouts of algebras over
an operad, but require some extra care because one may add generators that act nontrivially
on A. For this reason, we postpone the proof of Theorem 3.1.103.1.10 to Section 3.23.2, where we
will also prove the following result:
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Theorem 3.1.15. The forgetful functors

U : LieAlgddg
A

// Moddg
A /TA U : L∞Algddg

A
// Moddg

A /TA

are right Quillen functors with the following two properties:

(a) they preserve cofibrant objects, i.e. any cofibrant dg-Lie-algebroid is cofibrant as a
dg-A-module.

(b) they preserve sifted homotopy colimits. More precisely, for any homotopy sifted category
J and any projectively cofibrant diagram g : J −→ LieAlgddg

A , the natural map

hocolimJ U(g) // U(colimJ g)

is a weak equivalence of dg-A-modules over TA.

Remark 3.1.16. Recall that a category J is said to be homotopy sifted if it is non-empty
and if the diagonal functor ∆: J −→ J × J is homotopy cofinal, i.e. for each (i, j) ∈ J the
comma category (i, j)/∆ is weakly contractible. Examples of homotopy sifted categories are
filtered categories and ∆op.

The fact that the functor U : LieAlgddg
A −→ Moddg

A /TA forgets certain algebraic structure
(the Lie bracket) is encoded categorically in the fact that U detects isomorphisms and
preserves all ordinary colimits indexed by sifted categories (like filtered colimits and reflexive
coequalizers). Part (b) of Theorem 3.1.153.1.15 asserts that this point of view persists at the
homotopical level. In particular, the ∞-category LieAlgdA is locally presentable and the
forgetful functor

LieAlgdA // ModR/TA

preserves limits and sifted colimits (and detect equivalences).

3.1.2 Immediate properties. As an application of Theorem 3.1.153.1.15, let us consider the
inclusion

i : Liedg
A

// LieAlgddg
A ; g

� //
(
g

0−→ TA
)
.

of the category of dg-Lie algebras over A into the category of dg-Lie algebroids.

Proposition 3.1.17. Endow the category Liedg
A of dg-Lie algebras over A with the model

structure transferred from Moddg
A . Then the above inclusion functor is part of a Quillen

adjunction
i : Liedg

A

// LieAlgddg
A : keroo

whose right adjoint sends a dg-Lie-algebroid to the kernel of its anchor map. The induced right
adjoint functor of ∞-categories ker : LieAlgdA −→ LieA detects equivalences and preserves
sifted colimits.

Proof. One easily verifies that the functor ker is right Quillen and fits into a commuting
diagram of right Quillen functors

LieAlgddg
A

ker //

U

��

Liedg
A

U

��

Moddg
A /TA ker

// Moddg
A
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Since the vertical forgetful functors detect equivalences and preserve sifted homotopy colimits
(see [7474, Proposition 7.8] for the case of Lie algebras), it suffices to check the right derived
functor of ker : Moddg

A /TA −→ Moddg
A has these properties as well. But it follows immediately

from the fact that Moddg
A is a stable model category that taking homotopy pullbacks along

0 −→ TA detects equivalences and preserves all homotopy colimits indexed by contractible
categories.

Remark 3.1.18. The above proposition asserts that LieAlgdA is monadic over the ∞-
category LieA. This point of view is used extensively in [3333] (where the monad is not
described algebraically, however). In particular, even though the functor Liedg

A −→ LieAlgddg
A

is fully faithful, its derived functor is not fully faithful; the derived counit map is given at
the level of A-modules by a map g⊕ TA[−1] −→ g.

Corollary 3.1.19. Any dg-Lie algebroid g is equivalent to the homotopy colimit of a simplicial
diagram in LieAlgddg

A whose objects are equivalent to Lie algebras over A.

Proof. Such a simplicial diagram is provided by the bar resolution associated to the Quillen
adjunction Liedg

A � LieAlgddg
A [1212], or associated to the induced monadic adjunction of

∞-categories [6262, Proposition 4.7.4.14].

The above results have obvious analogues for L∞-algebroids and L∞-algebras over A.
Using these, we obtain the following:

Proposition 3.1.20. The inclusion j : LieAlgddg
A −→ L∞Algddg

A is the right adjoint of a
Quillen equivalence.

Proof. The functor j fits into a commuting diagram of right Quillen functors

LieAlgddg
A

j
//

ker
��

L∞Algddg
A

ker
��

Liedg
A w∗

// L∞Algdg
A

where w∗ is the forgetful functor associated to the map of operads w : L∞ −→ Lie. This
functor is part of a Quillen equivalence because w is a weak equivalence between Σ-cofibrant
operads. Since w∗ and the vertical functors have right derived functors that detect equiv-
alences and preserve all sifted homotopy colimits, it follows that j has these properties as
well.

Let L be the left adjoint to the right Quillen functor j. Because j detects weak equivalences,
it suffices to show that the derived unit map η : g −→ RjL(g) is a weak equivalence for each
cofibrant L∞-algebroid g. Both Rj and L preserve homotopy colimits indexed by ∆op and
each L∞-algebroid is the homotopy colimit of a simplicial diagram of L∞-algebras (by the
variant of Corollary 3.1.193.1.19 in the L∞-case). It therefore suffices to show that η is a weak
equivalence when g is a cofibrant L∞-algebra over A. In that case, the (derived) unit map
agrees with the derived unit map g −→ Rw∗Lw!g, which is a weak equivalence.

3.1.3 Nonlinear maps and cofibrant resolutions. There is no straightforward way to
replace a dg-Lie algebroid or L∞-algebroid by a fibrant dg-Lie algebroid; this is the main
reason for the non-existence of a genuine model structure on dg-Lie algebroids. The purpose
of this section is to provide a reasonably concrete cofibrant replacement for dg-Lie algebroids
and L∞-algebroids, which is analogous to the cobar resolution for algebras over reduced
operads.



44 Section 3.1

Let us start by briefly recalling the relation between L∞-algebras and cocommutative
dg-coalgebras (over R). All cocommutative coalgebras are assumed to be without counit and
conilpotent (every element is annihilated by some n-fold composite of the comultiplication).
For any cocommutative coalgebra C and an L∞-algebra h, the chain complex Hom(C, h) has
the structure of an L∞-algebra, with differential given by ∂τ = ∂h ◦ τ − τ ◦ ∂C and n-ary
bracket given by composing the n-ary bracket in h with the n-fold comultiplication in C. A
twisting cochain is a Maurer-Cartan element of this L∞-algebra, i.e. a map C −→ h[1] which
satisfies the Maurer-Cartan equation

∂τ +
∑
j≥2

1
j! [τ, ..., τ ]j = 0. (3.1.21)

The infinite sum is well-defined because C is conilpotent. There are natural bijections

HomL∞Algdg
R

(ΩC, g) ∼= Twist(C, g) ∼= HomCoAlgdg
R

(
C,C∗(g)

)
(3.1.22)

between the set of twisting cochains C −→ g[1], the set of maps of L∞-algebras ΩC −→ g from
the cobar construction of C and the set of maps of cocommutative coalgebras C −→ C∗(g)
to the reduced (homological) Chevalley-Eilenberg complex of g. The latter is the cofree
(conilpotent, non-counital) graded-cocommutative coalgebra

C∗(g) := Sym≥1
R g[1]

endowed with the unique differential extending the map∑
n≥1[−, . . . ,−]n : Sym≥1

R g[1] // g[1].

The natural isomorphisms (3.1.223.1.22) realize the cobar functor Ω as a left adjoint to C∗.
A nonlinear map of L∞-algebras g ; h is simply a twisting cochain C∗(g) −→ h[1], or

equivalently, a map of cocommutative dg-coalgebras C∗(g) −→ C∗(h).

Definition 3.1.23. Let g and h be L∞-algebroids over A. A nonlinear map g ; h of
L∞-algebroids is a nonlinear map of L∞-algebras g ; h, such that

(i) the composite map ρh(τ) : C∗(g) −→ h[1] −→ TA[1] takes the quotient by Sym≥2
R g[1] ⊆

C∗(g) and applies the anchor of g to the remaining g[1].

(ii) the map of graded vector spaces τ : Sym≥1
R (g[1]) −→ h[1] descends to a graded A-linear

map Sym≥1
A (g[1]) −→ h[1].

Let L∞Algdnonlin
A be the category of L∞-algebroids and nonlinear maps between them.

Remark 3.1.24. The category of L∞-algebras and nonlinear maps between them is a full
subcategory of the category of cocommutative dg-coalgebras (on the fibrant objects in the
model structure from [4040]). We do not know if L∞Algdnonlin can be embedded into such a
category of coalgebraic objects.

Remark 3.1.25. More generally, let C≤n(g) ⊆ C∗(g) be the sub-dg-coalgebra on the
polynomials in g[1] of order ≤ n. Let us say that an n-th order map g ; h of L∞-algebroids
is a twisting cochain C≤n(g) −→ h[1] satisfying the obvious analogues of (i) and (ii).

For each L∞-algebroid g and each n, the functor

L∞Algddg
A

// Set; h
� //

{
n− th order maps g ; h

}
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can be corepresented by an L∞-algebroid Q(n)(g), depending functorially on g. The L∞-
algebroid Q(1)(g) is simply the free L∞-algebroid generated by the map of A-modules
ρg : g −→ TA.

An (n+ 1)-st order map g ; h restricts to an n-th order linear map, so that there is a
sequence of L∞-algebroids (depending functorially on g)

Q(1)(g) = Free(g) // Q(2)(g) // . . . // Q(g) (3.1.26)

whose colimit Q(g) corepresents nonlinear maps g ; h. Our first aim will be to prove that
Q(g) is often a cofibrant L∞-algebroid.

Definition 3.1.27. An dg-Lie algebroid or L∞-algebroid g is A-cofibrant if its underlying
dg-A-module is cofibrant.

Lemma 3.1.28. The maps in Diagram 3.1.263.1.26 fit into a pushout square (depending functori-
ally on g)

F
((

Symn+1
A g[1]

)
[−2]

)
��

κ // Q(n)(g)

��

F
((

Symn+1
A g[1]

)
[−2,−1]

)
// Q(n+1)(g).

(3.1.29)

Here the left two L∞-algebroids are freely generated by the twofold desuspension of the dg-
A-module Symn+1

A g[1] and its cone, both equipped with the zero anchor map. Consequently,
Q(g) is cofibrant if g ∈ L∞Algddg

A is A-cofibrant.

Proof. The left map in Diagram (3.1.293.1.29) is a cofibration when g is cofibrant as a dg-A-module.
It follows that the sequence (3.1.263.1.26) consists of cofibrations, so that Q(g) is cofibrant.

To produce the pushout square (3.1.293.1.29), observe that without the differential, the map
Q(n)(g) −→ Q(n+1)(g) is given by the obvious map of free graded L∞-algebroids

F
((

Sym1≤•≤n
A g[1]

)
[−1]

)
// F
((

Sym1≤•≤n+1
A g[1]

)
[−1]

)
.

To obtain a pushout of the form (3.1.293.1.29), it suffices to check that for every new generator
τ ∈ Symn+1

A g[1], its differential ∂τ is contained in Q(n)(g). To see this, let

Ω(n)(g) := Ω
(
C≤n(g)

)
denote the n-th stage of the operadic bar-cobar resolution of g, thought of as an L∞-algebra
over R. By its universal property, Q(n)(g) is a quotient of the free L∞-algebroid A⊗ Ω(n)(g)
generated by this L∞-algebra (which has a natural map to TA). We therefore obtain a
commuting diagram of the form

A⊗ Ω(n)(g) // //

��

Q(n)(g)

��

A⊗ Ω(n+1)(g) // // Q(n+1)(g)

in which the horizontal maps are surjective. Any new generator τ of Q(n+1)(g) is the image of
a new generator τ̃ ∈ Symn+1

R g[1] of Ω(n+1)(g). It is well-known that ∂τ̃ is contained in Ω(n)(g)
(see e.g. [100100, Proposition 2.8 and Section 4.3] for a detailed discussion). Consequently, its
image ∂τ is contained in Q(n)(g).
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By construction, the functor Q is the left adjoint of the obvious inclusion ι : L∞Algddg
A −→

L∞Algdnonlin
A . The induced (linear) map Q(g) −→ g of L∞-algebroids is often an equivalence:

Lemma 3.1.30. The functor Q : L∞Algdnonlin
A −→ L∞Algddg

A enjoys the following proper-
ties:

(a) let g ; h be a nonlinear map between A-cofibrant L∞-algebroids. If the linear part
g −→ h is a weak equivalence, then Q(g) −→ Q(h) is a weak equivalence.

(b) the composite functor from the category of A-cofibrant L∞-algebroids

Q ◦ ι : L∞Algddg,A−cof
A

// L∞Algddg,cof
A

is a relative functor that preserves ∆op-indexed homotopy colimits.

(c) the counit map q : Q(g) −→ g is a weak equivalence whenever g is A-cofibrant.

Proof. Assertion (a) follows by induction along the filtration (3.1.263.1.26), using the pushout
square (3.1.293.1.29) and the fact that each

Free
((

Symn+1
A g[1]

)
[−2]

)
// Free

((
Symn+1

A h[1]
)
[−2]

)
is a weak equivalence whenever g −→ h is a weak equivalence of cofibrant dg-A-modules (and
similarly for the cones).

For (b), note that each functor Q(n) : L∞Algddg
A −→ L∞Algddg

A preserves strict colimits
of diagrams indexed by ∆op, which can be computed at the level of the underlying chain
complexes. Suppose that g• : ∆op −→ L∞Algddg

A is a projectively cofibrant diagram. Then g
takes values in A-cofibrant L∞-algebroids (by Theorem 3.1.153.1.15) and colim(g•) is a cofibrant
model for the homotopy colimit of the underlying simplicial diagram of dg-A-modules. We
have to check that the natural map

hocolim(Q(g•)) // Q(colim g•)

is an equivalence. Applying the filtration (3.1.263.1.26), we obtain a sequence of ∆op-diagrams
Q(n)(g•) of dg-Lie-algebroids, which fit into pushout diagrams of the form (3.1.293.1.29). We will
prove by induction on n that the map

hocolim
(
Q(n)(g•)

)
// colim

(
Q(n)(g•)

)
= Q(n)( colim g•

)
is a weak equivalence whose codomain is cofibrant. For n = 1 the statement is trivial. For
each n ≥ 1, we obtain a diagram of L∞-algebroids

colimF
((

Symn+1
A g•[1]

)
[−2]

)
��

// colim
(
Q(n)(g•)

)
��

colimF
((

Symn+1
A g•[1]

)
[−2,−1]

)
// colim

(
Q(n+1)(g•)

)
.

The free functor and the symmetric power functor commute with sifted colimits and preserve
cofibrations between cofibrant objects. Since colim(g•) is a cofibrant dg-A-module (by
Theorem 3.1.153.1.15), the left vertical map is a cofibration between cofibrant L∞-algebroids.
Since colim

(
Q(n)(g•)

)
is cofibrant by inductive assumption, the above square is a homotopy

pushout square and colim
(
Q(n+1)(g•)

)
is cofibrant.
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The above homotopy pushout square is weakly equivalent to the corresponding square of
homotopy colimits. Indeed, for the top right colimit this holds by assumption, while the left
two colimits are equivalent to the corresponding homotopy colimits because the free functor
and the symmetric power functor commute with ∆op-indexed homotopy colimits. It follows
that the map on homotopy pushouts is a weak equivalence as well.

For part (c), note that by parts (a) and (b), together with Corollary 3.1.193.1.19, it suffices
to prove this when g = A⊗R h is just the A-linear extension of an ordinary L∞-algebra h
over R. In that case, the map Q(g) −→ g is just the A-linear extension of the usual map
Ω(C∗(h)) −→ h of L∞-algebras from the operadic cobar construction of h. This map is a
weak equivalence (see e.g. [5858] for a textbook account).

As usual, the derived mapping space between two L∞-algebroids can be described by
the simplicial set of maps from a cofibrant replacement of the domain to a fibrant simplicial
resolution of the codomain. Such a simplicial resolution of fibrant L∞-algebroids has been
described in [101101]:

Construction 3.1.31 ([101101]). Let g be an L∞-algebroid over A and let B be any (possibly
unbounded) commutative dg-algebra over R. Then g⊗B has the structure of an A-module
and an L∞-algebra and the anchor map extends to a B-linear map g⊗B −→ TA ⊗B. Let
g�B be the pullback

g�B

ρ

��

// g⊗B

��

TA // TA ⊗B.

All maps in this diagram are A-linear and preserve L∞-structures, and one can verify that
the induced L∞-structure on g � B turns it into an L∞-algebroid over A (see [101101]). We
therefore obtain a functor

g� (−) : CAlgdg
R

// L∞AlgdA

which preserves pullbacks and fibrations, and weak equivalences when g is fibrant. Further-
more, there are natural isomorphisms g� (B ⊗ C) ∼=

(
g�B

)
� C.

For any finite simplicial set K, let gK = g� Ω[K] be the dg-Lie algebroid obtained by
applying this functor to the polynomial differential forms on K.

Lemma 3.1.32. Let K −→ L be a cofibration between finite simplicial sets and let g −→ h
be a fibration. Then gL −→ gK ×hK hL is a fibration, which is a weak equivalence if g −→ h
or K −→ L is a weak equivalence.

Proof. It is well-known that the map g⊗Ω[L] −→ g⊗Ω[K]×h⊗Ω[K] h⊗Ω[L] is a surjection
and a quasi-isomorphism whenever g −→ h or K −→ L is a weak equivalence (cf. [1515]). The
assertion now follows by considering the two pullback squares

gL //

��

gK ×hK hL

��

// TA

��

g⊗ Ω[L] // g⊗ Ω[K]×h⊗Ω[K] h⊗ Ω[L] // TA ⊗ Ω[L]

and using that (acyclic) fibrations are stable under base change.

Corollary 3.1.33. Let g be an A-cofibrant L∞-algebroid and let h be fibrant. Then a model
for the derived mapping space MapR(g, h) is the simplicial set given in degree n by the
nonlinear maps g ; h∆[n].
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Remark 3.1.34. When the L∞-algebroids g and h are concentrated in nonnegative degrees,
one can also compute the mapping space using a semi-model structure on connective dg-Lie
algebroids. In this case, one just has to assume that the map h −→ τ≥0TA is a surjection in
degrees > 0; this becomes particularly easy when A is discrete (so that TA is concentrated in
degree 0).

Remark 3.1.35. The simplicial sets of maps HomL∞Algdnonlin(g, h∆[•]) equip the category
L∞Algdnonlin with an enrichment over simplicial sets. Corollary 3.1.333.1.33 shows that the ∞-
categorical localization of the semi-model category of L∞-algebroids can be modeled by
the full simplicial subcategory of L∞Algdnonlin on the L∞-algebroids which are fibrant and
A-cofibrant.

Remark 3.1.36. Nonlinear maps of L∞-algebroids are frequently used in the litera-
ture, where (in the finite rank case) they are often identified with maps of so-called NQ-
supermanifolds (originating in [11]). For example, they naturally arise when studying homotopy
transfer of L∞-algebroid structures (see [7979]).

3.1.4 Naturality. The semi-model category of dg-Lie algebroids over A depends on A in a
somewhat delicate way. Indeed, a map of dg-C∞-rings f : A −→ B does not induce a Quillen
pair between the categories of dg-Lie algebroids over A and B because there is no direct way
to compare the tangent modules TA and TB . To adress this issue, let us make the following
definition:

Definition 3.1.37. Let f : A −→ B be a map of dg-C∞-rings, g be a dg-Lie algebroid over
A and h be a dg-Lie algebroid over B. A map of dg-Lie algebroids over f is an A-linear map

φ : g // h

which preserves the Lie bracket and intertwines the actions on A and B, in the sense that

ρh
(
φ(X))(f(a)

)
= f

(
ρg(X)(a)

)
.

Example 3.1.38. Suppose that f : A = C∞(M) −→ C∞(U) = B is induced by restriction
along an open inclusion U ⊆M of smooth manifolds. Then there is a map TA −→ TB over
f which restricts a vector field on M to the open U .

Example 3.1.39. Let f : A −→ B be any map of dg-C∞-rings and let h be a dg-Lie algebroid
over B. Consider the dg-A-module

f](h) := f∗(h)×Der(A,B) TA

consisting of tuples (X, v) with X ∈ h and v ∈ TA such that

ρh(X)(f(a)) = f(v(a)).

Then f](h) has the structure of a dg-Lie algebroid over A, with bracket given by the bracket
on h and TA and the anchor given by the projection to TA. The projection f](h) −→ h is a
map of dg-Lie algebroids over f .

Lemma 3.1.40. Let f : A −→ B be a map of dg-C∞-rings and let φ : g −→ h be a map of
dg-Lie algebroids over f . Then the following holds:

(1) If g′ −→ g is a map of dg-Lie algebroids over A, then the B-linear map

p : f∗(g′) = B ⊗A g′ // h

is a map of dg-Lie algebroids over B.
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(2) If h′ −→ h is a map of dg-Lie algebroids over B, then the A-linear projection map

q : f](h′) := f∗(h′)×f∗(h) g // g

is a map of dg-Lie algebroids over A.

Proof. For (1), let us denote the representation of X ∈ h on b ∈ B by ∇X(b). We can endow
f∗(g′) = B ⊗A g′ with the bracket (without Koszul signs)

[b1 ⊗X1, b2 ⊗X2] = b1b2 ⊗ [X1, X2]
+∇p(b1⊗X1)(b2)⊗X2 −∇p(b2⊗X2)(b1)⊗X1.

This is well defined because the composite map g′ −→ g −→ h is a map of dg-Lie algebroids
over f . Furthermore, the B-linear map p : f∗(g′) −→ h preserves the bracket by construction.

It remains to verify that f∗(g′) is indeed a dg-Lie algebroid over B. Note that the Leibniz
rule holds by construction and that the Jacobi identity holds for all elements of the form
1 ⊗X. More generally, if the Jacobi identity holds for elements X1, X2, X3 in f∗(g′) and
b ∈ B, then [

[X1, X2], bX3

]
= b ·

[
[X1, X2], X3

]
+∇p([X1,X2])(b)⊗X3

= b ·
[
X1, [X2, X3]

]
+
(
∇p(X1)∇p(X2)(b)

)
X3

− b ·
[
X2, [X1, X3]

]
−
(
∇p(X2)∇p(X1)(b)

)
X3

=
[
X1, [X2, bX2]

]
−
[
X2, [X1, bX3]

]
.

Here the first and last equation follow from the Leibniz rule. The second equation follows
from the Jacobi identity for X1, X2, X3 and the fact that p preserves the bracket. It follows
that the Jacobi identity holds for X1, X2 and bX3. By symmetry and additivity we deduce
that the Jacobi identity holds for all elements in f∗(g′), so that f∗(g′) is indeed a dg-Lie
algebroid.

For (2), we can endow f](h′) with the bracket[
(X, v), (Y,w)

]
=
(

[X,Y ]h′ , [v, w]g
)
.

This is well-defined because h′ −→ h is a map of dg-Lie algebroids over B and g −→ h is
a map of dg-Lie algebroids over f . One easily verifies that this makes the projection map
f](h′) −→ g a map of dg-Lie algebroids over A.

Lemma 3.1.41. Let f : A −→ B be a map of dg-C∞-rings and let φ : g −→ h be a map of
dg-Lie algebroids over f . Then there is a Quillen pair (depending on the map φ)

f∗ : LieAlgddg
A /g

// LieAlgddg
B /h : f].oo

This Quillen pair is a Quillen equivalence if f and φ are both quasi-isomorphisms.

Proof. One can easily verify that the functors f∗ and f] from Lemma 3.1.403.1.40 are adjoints.
The functor f] preserves fibrations and trivial fibrations since it is given at the level of chain
complexes by (

h′ −→ h) � // h′ ×h g.

Given a cofibrant object g′ in LieAlgddg
A /g, the derived unit map can be identified at the

level of chain complexes with the natural map

g′ // B ⊗A g′ ×hh g
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into the homotopy pullback. On the other hand, for any fibrant object h′ in LieAlgddg
A /h, the

derived counit map can be identified at the level of chain complexes with the natural map

B ⊗A
(
g×hh h′

)
// h′.

When f : A −→ B and φ : g −→ h are quasi-isomorphism, each of these two maps is a
quasi-isomorphism. It follows that (f∗, f]) is a Quillen equivalence.

Example 3.1.42. Given a map f : A −→ B of dg-C∞-rings, Example 3.1.393.1.39 provides a map
f](TB) −→ TB of dg-Lie algebroids over f , where f](TB) is the dg-Lie algebroid over A of
compatible C∞-derivations v : A −→ A and w : B −→ B. There is a zig-zag of right Quillen
functors

LieAlgddg
A

(−)×TAf](TB)
// LieAlgddg

A /f](TB) LieAlgddg
B .

f]
oo

Both of the maps f](TB) −→ TA and f](TB) −→ TB are quasi-isomorphisms as soon as f is
either a trivial cofibration or a trivial fibration between cofibrant dg-C∞-rings. In this case,
Lemma 3.1.413.1.41 implies that the above functors are right Quillen equivalences. In particular,
when A and B are weakly equivalent cofibrant dg-C∞-rings, there is a zig-zag of Quillen
equivalences

LieAlgddg
A

∼ // . . . LieAlgddg
B .

∼oo

In fact, the same argument applies as soon as ΩA is a cofibrant dg-A-module and LA −→ ΩA
is a weak equivalence, and similarly for B: in this case, the module TA is a model for the
derived A-linear dual of LA. For instance, the function ring C∞(M) of a smooth manifold
has this property, by Example 2.2.182.2.18. It follows that dg-Lie algebroids over C∞(M) provide
a model for the ∞-category LieAlgdC∞(M).

3.2 Technicalities on the semi-model structure
This section is devoted to the proofs of Theorem 3.1.103.1.10 and Theorem 3.1.153.1.15. Just like for
algebras over an operad, these proofs rely on an analysis of the pushout of a diagram of
dg-Lie algebroids (and L∞-algebroids) of the form

F (V )
F (i)
//

��

F (W )

��

g // h

(3.2.1)

where F : Moddg
R /TA −→ L∞Algddg

A denotes the free functor. We will show that the map
g −→ h can be decomposed into a sequence of maps g(p) −→ g(p+1), whose associated graded
is controlled by the reduced enveloping operad of the dg-Lie algebroid g. The difference from
the case of operadic algebras is that the maps g(p) −→ g(p+1) need not be injective in general.

Throughout, we will only treat L∞-algebroids; the case of dg-Lie algebroids proceeds in
exactly the same manner, replacing all appearances of the L∞-operad by the Lie operad.

3.2.1 Filtrations. Let ModN,dg
R be the category of sequences of chain complexes

V (0) // V (1) // V (2) // . . . (3.2.2)

endowed with the Reedy model structure. We will refer to an object V of ModN,dg
R as a

weakly filtered chain complex. An object is Reedy cofibrant if and only if (3.2.23.2.2) consists of
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monomorphisms, in which case it can be interpreted as a genuine filtration on colimV . We
will say that an element in V (p) is of weight ≤ p and an element of V (p)/V (p−1) is of weight
p, so that degrees always indicate homological degrees.

The category of weakly filtered chain complexes has a closed symmetric monoidal structure,
given by

(V ⊗W )(n) = colimV (p) ⊗W (q).

The colimit is taken over the full subcategory of (p, q) ∈ N × N for which p + q ≤ n. The
symmetry isomorphism given by the symmetry isomorphisms of chain complexes V (p) ⊗
W (q) −→W (q) ⊗ V (p), i.e. there are no extra signs depending on p and q.

There are two Quillen pairs

colim: ModN,dg
R

// Moddg
R : ioo gr : ModN,dg

R
// Modgr,dg

R : j.oo

Here i sends a chain complex to the constant diagram on V (and will be omitted from the
notation) and ‘gr’ sends a sequence V to the N-graded chain complex V (•)/V (•−1), with
right adjoint sending a graded chain complex W to the sequence consisting of zero maps.
Each of the above functors is symmetric monoidal.

Remark 3.2.3. The functor gr : ModN,dg
R −→ Modgr,dg

R detects weak equivalences between
cofibrant objects: this is just the well-known fact that weak equivalences of filtered chain
complexes are detected on the associated graded.

The notions of L∞-algebras and L∞-algebroids over A have obvious weakly filtered and
graded analogues (A is always of weight ≤ 0). For example, a weakly filtered L∞-algebroid
over A is an object g in ModN,dg

R together with

(1) the structure of an A-module, i.e. natural chain maps A⊗ g(i) −→ g(i).

(2) an L∞-algebra structure in ModN,dg
R , i.e. for each p ≥ 0 a matching family of n-ary

maps [−, · · · ,−] : g(i1) ⊗ · · · ⊗ g(in) −→ g(p), for all i1 + · · ·+ in ≤ p.

(3) a map g −→ TA of L∞-algebras and A-modules in ModN,dg
R , where TA has weight ≤ 0.

When g is Reedy cofibrant (i.e. a filtered chain complex), this is simply the structure of an
L∞-algebroid on colim(g) whose entire structure respects the filtration. Let us denote the
categories of weakly filtered and graded L∞-algebroids over A by

L∞AlgdN,dg
A and L∞Algdgr,dg

A .

The description of the free L∞-algebroid on a chain complex over TA also applies to the weakly
filtered and graded settings: one first takes the free (weakly filtered, graded) L∞-algebra
over TA and then takes the associated action L∞-algebroid (Example 3.1.93.1.9). This yields a
commuting diagram of left adjoints

ModN,dg
R /TA

Free
��

Moddg
R /TA

Free
��

ioo ModN,dg
R /TA

colimoo

Free
��

gr
// Modgr,dg

R /TA

Free
��

L∞AlgdN,dg
A L∞Algddg

Ai
oo L∞AlgdN,dg

A gr
//

colim
oo L∞Algdgr,dg

A

where the vertical functors are the free functors, sending a (weakly filtered, graded) chain
complex V over TA to A⊗ L∞(V ). All horizontal functors can be computed at the level of
chain complexes. For example, the colimit of a weakly filtered L∞-algebroid is simply the
colimit of the underlying sequence of chain complexes, together with a certain L∞-algebroid
structure on it.
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3.2.2 Coproducts with L∞-algebras. In this section we will study the simplest type of
pushout diagram (3.2.13.2.1): the case of a coproduct of a (weakly filtered) L∞-algebroid g over
A with the free L∞-algebroid generated by a (weakly filtered) chain complex V , equipped
with the zero map to TA.

Such coproducts are much easier to describe than coproducts for nonzero maps V −→ TA.
Indeed, the coproduct gq F

(
V

0−→ TA
)

fits into a retract diagram

g = gq F (0) // gq F
(
V

0−→ TA
)

// g.

This construction is the left adjoint in an adjunction

gq F
(
(−) 0−→ TA

)
: ModN,dg

R
//
g/L∞AlgdN,dg

A /g : keroo

where the right adjoint sends a retract diagram g −→ h −→ g to the kernel of h −→ g. The
category of retract diagrams of (weakly filtered) L∞-algebroids

g // h = g⊕m // g

can be identified with the category of algebras over an operad in (weakly filtered) chain
complexes over R. Indeed, such a retract diagram can equivalently be encoded by the
following kind of algebraic structure on m:

• m has the structure of a (weakly filtered) A-module.
• m comes equipped with an A-linear L∞-structure, since the anchor map vanishes on m.
• for each set of elements ξ1, . . . , ξn ∈ g, the (n+ k)-ary bracket on g⊕m determines a
k-ary operation [ξ1, . . . , ξn, (−)] : m⊗k −→ m of degree k − 2, for each k ≥ 1.

These operations have to satisfy equations stating that certain sums of their composites are
zero. This type of algebraic structure can precisely be encoded by means of an operad, which
has no nullary operations (as one sees from the above description).

Definition 3.2.4. The reduced enveloping operad Envg of a weakly filtered L∞-algebroid g
is the (reduced) weakly filtered dg-operad over R whose algebras m are retract diagrams of
L∞-algebroids g −→ h = g⊕m −→ g.

Remark 3.2.5. The above definition is somewhat imprecise. More accurately, one can
construct the operad Envg in terms of generators of the form

• µa for a ∈ A (left multiplication by a)
• [−, . . . ,−] (the L∞-structure on m)
• [ξ1, . . . , ξn,−, . . . ,−] for elements ξ1, . . . , ξn in g.

These generators have to satisfy an obvious list of equations. For example, there are equations
expressing the anti-symmetry and Jacobi identities for the various brackets. Furthermore,
the brackets [ξ1, . . . , ξn,−, . . . ,−] depend A-multilinearly on the elements ξi and are mostly
A-multilinear operations themselves, i.e.

[a · ξ1, . . . , ξn,−, . . . ,−] = µa ◦ [ξ1, . . . , ξn,−, . . . ,−]
[ξ,−] ◦ µa = µa ◦ [ξ,−] + µξ(a)

[ξ1, . . . , ξn,−, . . . ,−] ◦i µa = µa ◦ [ξ1, . . . , ξn,−, . . . ,−].

Example 3.2.6. Suppose that g is an A-linear L∞-algebra. Then the reduced enveloping
operad of g is simply the arity ≥ 1 part of the usual enveloping operad of g.
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Remark 3.2.7. A map of L∞-algebroids f : g −→ h induces a map of reduced enveloping
operads f : Envg −→ Envh, which sends a generator [ξ1, . . . , ξn,−, . . . ,−] to the generator
[f(ξ1), . . . , f(ξn),−, . . . ,−]. The corresponding restriction functor between categories of
algebras can be identified with the functor

f∗ : h
/

L∞Algddg
A

/
h // g

/
L∞Algddg

A

/
g

sending h −→ h⊕m −→ h to the pullback g −→ (h⊕m)×h g −→ g.

The operad structure on Envg is not A-linear, but there is a canonical map of operads
µ : A −→ Envg. Here we consider A as an operad with only unary operations. In particular,
for every (weakly filtered) chain complex V , there is an isomorphism of left A-modules

g
∐

F
(
V

0−→ TA
) ∼= g⊕

(
Envg ◦ V

)
= g⊕

⊕
p≥1

Envg(p)⊗Σp V
⊗p

Here ◦ denotes the usual composition product of symmetric sequences. To simplify the above
formulas, let us make the following definition:

Definition 3.2.8. For any (weakly filtered) L∞-algebroid g, let Envg be the symmetric
sequence of (weakly filtered) chain complexes given by Envg(0) = g and Envg(p) = Envg(p)
for p ≥ 1. This determines a functor

Env: L∞Algddg,N
A

//
(
Moddg,N

A

)Σ
to the category of (weakly filtered) symmetric sequences of left A-modules.

Remark 3.2.9. The symmetric sequence Envg has no natural operad structure.

Remark 3.2.10. Let g be a weakly filtered L∞-algebroid of weight ≤ 0, i.e. an ordinary
L∞-algebroid. Then Envg is of weight ≤ 0 as well. Similarly, if g is a graded L∞-algebroid,
then Envg is a symmetric sequence of graded complexes. In other words, there is a commuting
diagram

L∞Algddg
A

Env(−)

��

// L∞AlgdN,dg
A

Env(−)

��

L∞Algdgr,dg
A

Env(−)

��

oo

ModΣ,dg
A

// ModΣ,N,dg
A ModΣ,gr,dg

A
oo

where the horizontal functors are the obvious inclusions.

Lemma 3.2.11. The functor Env: L∞AlgdN,dg
A −→ ModΣ,N,dg

A has the following properties:

(1) It preserves all filtered colimits and reflexive coequalizers.
(2) Suppose that g −→ TA is a map of weakly filtered R-linear L∞-algebras and let A⊗g −→

TA be the associated action L∞-algebroid. Then there is a natural isomorphism of
symmetric A-bimodules

EnvA⊗g ∼= A⊗ (L∞)g
where (L∞)g denotes the enveloping operad of the L∞-algebra g (see e.g. [1010]).

(3) If g is a weakly filtered L∞-algebroid and V is a weakly filtered chain complex, then
there is an isomorphism of symmetric A-modules

Env
g
∐

F
(
V

0−→TA
)(p) ∼= Envg((−) + p) ◦ V.
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(4) The functor Env(−) commutes with taking the colimit and associated graded of a weakly
filtered L∞-algebroid. In other words, there is a commuting diagram

L∞Algddg
A

Env(−)

��

L∞AlgdN,dg
A

Env(−)

��

colimoo
gr
// L∞Algdgr,dg

A

Env(−)

��

ModΣ,dg
A ModΣ,N,dg

Acolim
oo

gr
// ModΣ,gr,dg

A .

Proof. Since filtered colimits and reflexive coequalizers of L∞-algebroids are computed at
the level of the underlying complexes, part (1) follows either from the explicit description of
Envg in terms of generators and relations (Remark 3.2.53.2.5) or from the fact that for any such
diagram g•, there is an isomorphism

Envcolim(g•) ◦ V ∼=
(

colim g•
)
q F

(
V

0−→ TA
)

∼= colim
(
g• q F

(
V

0−→ TA
)) ∼= colim

(
Envg•

)
◦ V.

For (2), consider an action L∞-algebroid A⊗ g and let V be a chain complex. The free L∞-
algebroid on 0: V −→ TA is the A-linear extension of the free L∞-algebra L∞(V ) generated
by V . It follows that (

A⊗ g
)
q F

(
V

0−→ TA
) ∼= A⊗

(
g ∪ L∞(V )

)
is the A-linear extension of the coproduct of L∞-algebras g ∪ L∞(V ). Using the description
of this coproduct of L∞-algebras in terms of the enveloping operad (L∞)g, one obtains a
natural isomorphism

EnvA⊗g ◦ V ∼=
(
A⊗ (L∞)g

)
◦ V.

This induces an isomorphism of symmetric sequences EnvA⊗g ∼= A⊗ (L∞)g.
For (3), observe that for any chain complex W , there are natural isomorphisms

Env
gqF (V 0−→TA)

◦W ∼= gq F (V 0−→ TA)q F (W 0−→ TA)

∼= gq F (V ⊕W 0−→ TA)
∼= Envg ◦ (V ⊕W )

∼=
⊕
p≥0

⊕
q≥0

Envg(q + p)⊗Σq V
⊗q

⊗Σp W
⊗p.

This induces the desired isomorphism of symmetric sequences.
For (4), recall that Env commutes with the inclusions of objects of weight ≤ 0 (resp.

graded objects) into weakly filtered objects (Remark 3.2.103.2.10). This implies that there is a
natural transformation

ν : colim ◦Env // Env ◦ colim

and similarly for the functor taking the associated graded. Any weakly filtered L∞-algebroid
can be obtained as a reflexive coequalizer of free L∞-algebroids generated by weakly filtered
chain complexes over TA. Since the functors colim and Env preserve reflexive coequalizers,
it suffices to check that ν induces an isomorphism for such a free L∞-algebroid.

For a free L∞-algebroid F (ρ : V −→ TA), we can use part (2) and the description of the
enveloping operad of a free L∞-algebra to see that the map

ν : colim
(

EnvF (V )(p)
)

// Envcolim(F (V ))(p)
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is the A-linear extension of the map

colim
(⊕

q≥0 L∞(p+−)⊗Σq V
⊗q
)

//
⊕

q≥0 L∞(p+ q)⊗Σq
(

colimV
)⊗q

.

This map is an isomorphism for any N-diagram V . The same argument applies to the functor
taking the associated graded.

3.2.3 Pushouts along free maps. Let us now consider more general pushout diagrams
of L∞-algebroids of the form

F (W −→ TA)
F (i)

//

��

F (V −→ TA)

��

g // g
∐
F (W ) F (V ).

(3.2.12)

Here i : V −→ W is any monomorphism of chain complexes over TA; the maps V −→ TA
and W −→ TA need not be zero.

We can realize Diagram (3.2.123.2.12) as the colimit of a pushout diagram of weakly filtered
L∞-algebroids. More precisely, we endow the objects appearing in the above square with the
following filtrations:

• give g and W the filtration where everything has weight ≤ 0, i.e. take the constant
N-diagrams on g and W .

• let Ṽ be the filtered complex

W
f
// V

= // V // V // · · · .

together with the obvious map to TA (which has weight ≤ 0).

Diagram (3.2.123.2.12) is the colimit over N of the pushout square of weakly filtered L∞-algebroids

F (W )
F (f)

//

��

F (Ṽ )

��

g // g
∐
F (W ) F (Ṽ ) =: h.

(3.2.13)

Indeed, the colimit of Ṽ is simply V and taking colimits over N commutes with all colimits
and free functors. On the other hand, the associated graded of (3.2.133.2.13) is given by

gr
(
g
∐
F (W )

F (Ṽ )
)
∼= g

∐
F (W )

F
(
gr(Ṽ )

) ∼= gq F
(
V/W

)
. (3.2.14)

The last isomorphism uses that the associated graded of Ṽ is W ⊕ V/W , with W of weight 0
and V/W of weight 1. In particular, the map V/W −→ TA is the zero map, since TA has
weight 0.

Proposition 3.2.15. Let i : W −→ V be a monomorphism of chain complexes over TA and
suppose that g is a cofibrant L∞-algebroid, i.e. the map 0 −→ g is contained in the weakly
saturated class generated by the maps F (j), where j is a monomorphism of chain complexes.

Then the weakly filtered L∞-algebroid h := g
∐
F (W ) F (Ṽ ) from (3.2.133.2.13) has the following

two properties:
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(1) the symmetric sequence of weakly filtered dg-A-modules Envh is filtered: in other words,
for each p, there is a sequence of injections

Envh(p)(0) −→ Envh(p)(1) −→ Envh(p)(2) −→ · · · .

(2) the filtration on Envh has associated graded

gr
(
Envh(p)

) ∼= Envg((−) + p) ◦ (W/V )

where W/V has weight 1.

Proof. Let us start by verifying part (2): recall from Lemma 3.2.113.2.11 that Env commutes with
taking the associated graded. We then find that

gr(Envh(p)) ∼= Envg
∐

F (V/W )(p) ∼= Envg((−) + p) ◦ (W/V )

using the isomorphism (3.2.143.2.14) and Lemma 3.2.113.2.11.
To verify assertion (1), we can forget about all differentials. Since g is cofibrant, it is the

retract of an L∞-algebroid which is freely generated (without differentials) by a certain map
M −→ TA of graded vector spaces. Similarly, without differentials we can split Ṽ as a direct
sum

Ṽ ∼= W ⊕W⊥ // TA.

Here W⊥ has weight 1 and comes equipped with a nontrivial map to TA. The map
F (W ) −→ F (Ṽ ) can then be identified with the inclusion

F (W ) // F (W )q F (W⊥)

into the coproduct with the free L∞-algebroid on the filtered R-module W⊥. It follows that
the weakly filtered L∞-algebroid h is a retract of the free L∞-algebroid (without differentials)

F (M)
∐
F (W )

F (Ṽ ) ∼= F (M ⊕W⊥ −→ TA).

Here M has weight 0 and W⊥ has weight 1. By Lemma 3.2.113.2.11, each Envh(p) is (without
differentials) the retract of

EnvF(M⊕W⊥)(p) ∼=
⊕
q≥0

A⊗ L∞(p+ q)⊗Σq (M ⊕W⊥)⊗q.

Since M ⊕W⊥ is filtered, the above symmetric sequence is filtered and the retract Envh is
filtered as well.

3.2.4 Proof of Theorem 3.1.103.1.10. We have to prove that the free-forgetful adjunction

F : Moddg
R /TA

// L∞Algddg
A : U.oo

satisfies the conditions of Lemma 2.1.192.1.19, guaranteeing the existence of a transferred semi-
model structure on L∞-algebroids. Since the forgetful functor U preserves filtered colimits,
it suffices to show that for any cofibrant L∞-algebroid g and any generating cofibration
0 −→ R[n, n+ 1] in Moddg

R /TA, the map

g // gq F (R[n, n+ 1] −→ TA)
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is a trivial cofibration of chain complexes.
By Proposition 3.2.153.2.15, this map is the inclusion of the weight 0 part of a filtration on

F (R[n, n+ 1]) whose associated graded is

Envg ◦ R[n, n+ 1].

Since R[n, n+1] is acyclic, the associated graded is acyclic as well, so that g −→ gqF (R[n, n+
1]) is a trivial cofibration of chain complexes.

Remark 3.2.16. The same argument shows that the map of symmetric sequences Envg −→
Envg

∐
F (R[n,n+1]) is a trivial cofibration in each degree. This implies that the functor Env

preserves weak equivalences between cofibrant L∞-algebroids.

3.2.5 Proof of Theorem 3.1.153.1.15. We have to prove that the forgetful functor

U : L∞Algddg
A

// Moddg
A /TA

preserves cofibrant objects and sifted homotopy colimits. Our proof will follow the lines of
e.g. [6262, Lemma 4.5.4.12]:

Definition 3.2.17. Let M be a (semi-) model category and let X : J −→M be a diagram.
We will say that X is good if it satisfies the following conditions:

• each object X(j) is cofibrant.
• the colimit colimX is cofibrant.
• the map hocolimX −→ colimX is a weak equivalence.

More generally, we say that a map of J-diagrams X −→ Y in M is good if

(i) X and Y are both good diagrams.
(ii) each X(j) −→ Y (j) is a cofibration in M.
(iii) colimX −→ colimY is a cofibration in M.

With these definitions, observe that Theorem 3.1.153.1.15 follows from the following assertion
by taking p = 0:

Theorem 3.2.18. Let J be a homotopy sifted category. If g : J −→ L∞Algddg
A is a projectively

cofibrant diagram, then each diagram Envg(p) : J −→ Moddg
A is a good diagram of dg-A-

modules.

We will prove Theorem 3.2.183.2.18 by ‘induction on cells’, using the following simple stability
properties of good maps:

Lemma 3.2.19. Let J be a homotopy sifted category. We have the following properties of
good maps between J-indexed diagrams in M:

(1) every projectively cofibrant diagram X : J −→M is good and every projective cofibration
between projectively cofibrant diagrams in M is good.

(2) good morphisms are closed under transfinite composition and retracts.

(3) given a pushout diagram

X
f
//

��

Y

��

X ′
f ′
// Y ′

in which f is good and X ′ is good, we have that f ′ is good.
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When M = Moddg
A is the model category of dg-A-modules, we furthermore have:

(4) if X and Y are good, then X ⊗A Y is good.

(5) if X is a good diagram with a Σn-action, then X/Σn is good.

(6) let f : X −→ Y be a natural monomorphism with a good domain and a good cokernel,
such that the map colimX −→ colimY is a monomorphism. Then f is good.

Proof. The first three properties are easily verified. For (4), it is clear that each X ⊗A Y (j)
is cofibrant. Since J is sifted and ⊗A is a Quillen bifunctor, there is a commuting diagram of
(homotopy) colimits

hocolim
n

Xn ⊗ Yn
∼ //

��

hocolim
i,j

Xi ⊗ Yj
∼ //

��

(
hocolim

i
Xi

)
⊗
(

hocolim
j

Yj
)

∼

��

colim
n

Xn ⊗ Yn ∼=
// colim
i,j

Xi ⊗ Yj ∼=
//
(

colim
i

Xi

)
⊗
(

colim
j

Yj
)

It follows that X ⊗A Y is good as well.
Assertion (5) follows from the fact that we are working in characteristic zero, so that

colim: Moddg,Σn
A −→ Moddg

A is left Quillen for the injective model structure.
Finally, for (6) we use that a map of dg-A-modules is a cofibration if and only if it is

a monomorphism with cofibrant cokernel. This implies that the maps X(i) −→ Y (i) and
colimX −→ colimY are cofibrations, so that all Y (i) and colimY are cofibrant. Furthermore,
we obtain a commuting diagram

hocolimX

∼
��

// hocolimY //

��

hocolimY/X

∼
��

colimX // colimY // colimY/X

Both horizontal sequences are cofiber sequences of dg-A-modules, so the map hocolimY −→
colimY is a weak equivalence.

Lemma 3.2.20. Let J be a homotopy sifted category and consider a pushout square

F (W )
Free(i)

//

��

F (V )

��

g // h

where i is a projective cofibration of J-diagrams of chain complexes and g is a projectively
cofibrant diagram of L∞-algebroids. If each Envg(p) is good, then each Envg(p) −→ Envh(p)
is good.

Proof. Since each L∞-algebroid g(j) is cofibrant, Proposition 3.2.153.2.15 provides a natural
filtration

Envg(p) = Envh(p)(0) // Envh(p)(1) // · · · // Envh(p)

on Envh(p). There is a similar filtration on the colimit, because colim(g) is a cofibrant
L∞-algebroid as well. By parts (2) and (6) of Lemma 3.2.193.2.19, it then suffices to verify that
the associated graded ⊕

q≥0
Envg(p+ q)⊗Σq (V/W )⊗q
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consists of good J-diagrams of dg-A-modules. This follows from parts (4) and (5) of Lemma
3.2.193.2.19.

Proof (of Theorem 3.2.183.2.18). Let K be the subcategory of g : J −→ L∞Algddg
A for which each

diagram of dg-A-modules Envg(p) is good. By part (2) of Lemma 3.2.193.2.19, K is closed under
retracts and contains the colimit of a transfinite sequence g• for which each Envgα(p) −→
Envgβ (p) is good. It therefore suffices to show that K is closed under pushouts along
generating cofibrations, which is Lemma 3.2.203.2.20.

3.3 Representations

In this section we will recall the basic theory of (left) representations of dg-Lie algebroids.

Definition 3.3.1. Let g be a dg-Lie algebroid over A. A g-representation is a dg-A-module
E, together with a Lie algebra representation

∇ : g⊗R E // E

such that ∇aXs = a∇Xs and ∇X(as) = X(a)s + (−1)aXa∇Xs for all a ∈ A, X ∈ g, and
s ∈ E. Let Repdg

g be the category of g-representations, whose maps are maps of chain
complexes that preserve the actions of A and g.

Example 3.3.2. Every dg-Lie algebroid has a natural representation on A (via the anchor)
and on the kernel of its anchor map (via the Lie bracket).

Example 3.3.3. The category Repdg
g has a closed symmetric monoidal structure, given by

E ⊗A F endowed with the g-representation

∇X(e⊗ f) = ∇X(e)⊗ f + (−1)Xee⊗∇X(f).

The internal hom is given by the mapping complex HomA(E,F ), equipped with the conjugate
representation of g.

There are at least two other equivalent ways of describing a g-representation on a
dg-A-module E:

(1) Let At(E) be the Atiyah Lie algebroid of E, as in Example 3.1.23.1.2. Then a representation
of g is just a map of dg-Lie algebroids

g // At(E).

(2) If E is a g-representation, then g ⊕ E has the structure of a dg-Lie algebroid, with
anchor map (ρ, 0) : g⊕ E −→ TA and bracket

[(X, s), (Y, t)] = ([X,Y ],∇Xt−∇Y s).

There is an obvious inclusion and retraction g −→ g⊕E −→ g. Using these maps, one
can realize the category of g-representations as the full subcategory of g

/
LieAlgddg

A

/
g

on those retract diagrams g −→ g ⊕ m −→ g for which the Lie bracket vanishes on
m⊗m.

Remark 3.3.4. Recall that the category g
/

LieAlgddg
A

/
g can be identified with the category

of algebras over the reduced enveloping operad Envg of g (Definition 3.2.43.2.4). It is well-known
(see e.g. [1010]) that the following categories are equivalent:

• the category of abelian group objects in LieAlgddg
A

/
g.
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• the full subcategory of g
/

LieAlgddg
A

/
g on the g⊕m such that the Lie bracket vanishes

on m⊗m.
• the category of left modules over Envg(1), the dg-algebra of unary operations in the

reduced enveloping operad (the analogue of Definition 3.2.43.2.4 for dg-Lie algebroids).

By Remark 3.3.43.3.4, the category of g-representations is equivalent to the category of (left)
modules over the associative dg-algebra Envg(1). Unwinding the definitions, this associative
dg-algebra can be identified with the enveloping algebra U(g) of the dg-Lie algebroid g, as
described originally in [8282]. Recall that U(g) is the initial associative dg-algebra over R
equipped with the data of

• a map of dg-algebras κA : A −→ B
• a map of dg-Lie algebras κg : g −→ B

such that κA(a)κg(X) = κg(aX) and κg(X)κA(a) = κA(a)κg(X) + κA(ρ(X)a) without
Koszul signs. Explicitly, U(g) is generated freely by elements from A and g, subject to
conditions as in Remark 3.2.53.2.5.

Remark 3.3.5. Geometrically, U(g) can be thought of as the algebra of differential operators
generated by g (where elements in A are differential operators of degree zero and elements in
g are differential operators of degree 1).

Example 3.3.6. When g is a Lie algebra over A, the map A −→ U(g) realizes U(g) as an
algebra in Moddg

A , which is simply the enveloping algebra of the Lie algebra g over A.

Recall that the behaviour of the enveloping algebra is described concisely by the Poincaré-
Birkhoff-Witt theorem (as described in [8282]). More precisely, the map of algebras A −→ U(g)
realizes U(g) as a bimodule over A. There is a natural filtration of A-bimodules

U (0)(g) ⊆ U (1)(g) ⊆ · · · ⊆ U(g)

on U(g) by declaring generators from A to be of filtration weight 0 and generators from g to
be of weight 1. Each U (n)(g) is the left dg-A-submodule of U(g) generated by the unit and
all products of ≤ n elements in g. In particular, U (0)(g) = A and the associated graded

gr
(
U(g)

)
=
⊕
n

U (n)(g)/U (n−1)(g)

has the structure of a dg-bimodule over A. For all u ∈ U (n)(g) and a ∈ A, we have that
au − (−1)uaua ∈ U (n−1)(g), so that the left and right A-module structure on gr

(
U(g)

)
agree. In fact, gr

(
U(g)

)
has the natural structure of a (graded) dg-algebra over A, which is

commutative because for all u ∈ U (n)(g) and v ∈ U (m)(g), the graded commutator lies in
U (n+m−1)(g).

The canonical map of dg-A-modules g −→ U(g) therefore induces a map of (graded)
commutative dg-algebras over A

SymA(g) // gr
(
U(g)

)
.

This map is always surjective, since every object in U(g) can be written as a finite sum of
products of elements in A and g. The PBW-theorem asserts that it is injective for sufficiently
nice dg-Lie algebroids g:

Proposition 3.3.7 (PBW, [8282]). Let A be a non-negatively graded commutative dg-algebra
and let g be an A-cofibrant dg-Lie algebroid over A (Definition 3.1.273.1.27). Then the map
SymA(g) −→ gr(U(g)) is an isomorphism.
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Proof. We can forget about the differential, in which case g is a projective graded module
over the graded-commutative algebra underlying A. The result now follows from (a graded
analogue of) [8282].

Corollary 3.3.8. The category Repdg
g of representations of a dg-Lie algebroid g carries

the projective model structure, in which a map is a weak equivalence (fibration) if it is a
quasi-isomorphism (surjection). Each map of dg-Lie algebroids f : g −→ h induces a Quillen
adjunction

f∗ = U(h)⊗U(g) (−) : Repdg
g

// Repdg
h : f !

oo

whose right adjoint f ! restricts a representation of h along f . When f is a weak equivalence
between A-cofibrant dg-Lie algebroids, this is a Quillen equivalence.

Proof. The category Repdg
g can be identified with the category of left dg-U(g)-modules, which

clearly admits the projective model structure. Every map f : g −→ h of dg-Lie algebroids
induces a map U(f) : U(g) −→ U(h) of enveloping algebras. The Quillen pair (f∗, f !) is then
identified with the Quillen pair given by restriction and induction along U(f).

When g and h are A-cofibrant dg-Lie algebroids, their enveloping algebras carry the
PBW-filtration, which is preserved by U(f). The associated map on the associated graded
agrees with SymA(f) : SymA(g) −→ SymA(h) by the PBW theorem. This map is a quasi-
isomorphism if f is a quasi-isomorphism, so that U(f) is a quasi-isomorphism as well. This
implies that the Quillen pair (f∗, f !) is a Quillen equivalence.

Variant 3.3.9. Let g be an A-cofibrant dg-Lie algebroid. Then the category Repdg
g carries

a second model structure, which we will refer to as the A-model structure, in which a map is
a weak equivalence (cofibration) if and only if the underlying map of dg-A-modules is a weak
equivalence (cofibration) in the projective model structure.

Indeed, the forgetful functor Repdg
g −→ Moddg

A is a left adjoint and the projective model
structure on Moddg

A transfers along this left adjoint once the following condition is satisfied
(see [77]): if a map p : F −→ E in Repdg

g has the right lifting property against all A-cofibrations,
then its underlying map of dg-A-modules is a weak equivalence. Because g is A-cofibrant,
the generating cofibrations of the projective model structure

U(g)[n] // U(g)[n, n+ 1]

are all A-cofibrations by the PBW theorem 3.3.73.3.7. Any p with the right lifting property
against the A-cofibrations is therefore a projective trivial fibration, so in particular a weak
equivalence. It follows that the A-model structure on dg-representations exists and that the
identity functor

id :
(
Repdg

g

)
proj

//
(
Repdg

g

)
A

is a left Quillen equivalence from the projective to the A-model structure. For every map
f : g −→ h of A-cofibrant dg-Lie algebroids, the restriction functor f ! is the left adjoint in a
Quillen pair

f ! :
(
Repdg

g

)
A

// (Repdg
g

)
: f!oo

with right adjoint f! given the coinduction functor HomU(g)(U(h),−).

Variant 3.3.10. Let g be an A-cofibrant dg-Lie algebroid. By the same argument, the
category Rep≥0,dg

g of connective g-representations carries a model structure, in which a map
is a weak equivalence (cofibration) if the underlying map in Mod≥0,dg

A is a weak equivalence
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(cofibration) in the projective model structure. Any map f : g −→ h between A-cofibrant
dg-Lie algebroids induces a Quillen adjunction

f ! :
(
Repdg

g

)
A

// (Repdg
g

)
: τ≥0f!oo

where the right adjoint takes the connective cover of the coinduced representation. Unless
g is connective, there is no analogue of the projective model structure on connective dg-
representations

Definition 3.3.11. For any A-cofibrant dg-Lie algebroid g, let

Repg = Repdg
g [W−1]

be the (locally presentable) ∞-category of g-representations. If g is not A-cofibrant, then
one should take representations over some cofibrant replacement.

Lemma 3.3.12. When g is A-cofibrant, the closed symmetric monoidal structure on Repdg
g

from Example 3.3.33.3.3 endows the ∞-category Repg with a closed symmetric monoidal structure.

Proof. The tensor product from Example 3.3.33.3.3 makes Repdg
g a monoidal model category

with respect to the A-model structure of Variant 3.3.93.3.9. The localization Repg is a closed
symmetric monoidal ∞-category by [6262, Example 4.1.7.6, Lemma 4.1.8.8].

Remark 3.3.13. When g is A-cofibrant, the inclusion Rep≥0,dg
g −→ Repdg

g is a symmetric
monoidal left Quillen functor, which induces a fully faithful, symmetric monoidal functor of
∞-categories Rep≥0

g −→ Repg.

Remark 3.3.14. Let P be an operad enriched over chain complexes. Then a P-algebra in
Repdg

g is simply given by an P-algebra in Moddg
A which carries a representation of g such

that each map ∇ = [X1, . . . , Xk,−] : B −→ B is a derivation for the P-algebra structure on
B, in the sense that

∇(φ(b1, . . . , bn)) =
n∑
i=1

φ(b1, . . . ,∇(bi), . . . , bn) n ≥ 1

∇(φ(a)) = 0 n = 0, k ≥ 2
∇(φ(a)) = X1(a) · φ(1) n = 0, k = 1

for all bi ∈ B, a ∈ A and φ ∈ P (the last two equations describe the behaviour on nullary
operations).

Remark 3.3.15. Similarly, let A −→ B be a map of dg-C∞-rings. We will say that g acts
on B by C∞-derivations if

∇(φ(b1, . . . , bn)) =
∑ ∂φ

∂xi
(b1, . . . , bn) · ∇(bi)

for every φ ∈ C∞(Rn,R) and ∇ = [X1, . . . , Xk,−] : B −→ B. For example, g acts by
C∞-derivations on A itself via the anchor map.

Variant 3.3.16. Similar observations can be made about representations of L∞-algebroids.
More precisely, if E is a dg-A-module, then a representation of an L∞-algebroid g on E is
one of the following equivalent pieces of data (see [7171] for more details):

(1) an abelian group in the category g/L∞Algddg
A /g, whose underlying dg-A-module is

g⊕ E.
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(2) an object of the form A⊕ E in g/L∞Algddg
A /g which is square zero, i.e. all brackets

vanish when evaluated on at least two element from E.

(3) the compatible structure of a left Envg(1)-module on E, where Envg(1) is the associative
dg-algebra of unary operations in the reduced enveloping operad of g (Definition 3.2.43.2.4).

(4) a collection of operations [X1, . . . , Xn,−] : E −→ E of degree |X1|+ . . .+ |Xn|+ n− 2
for every X1, . . . , Xn ∈ g, such that (ignoring all Koszul signs due to permutations of
variables)

[Xσ(1), ..., Xσ(n), v] = (−1)σ[X1, ..., Xn, v] σ ∈ Σn
[a ·X1, ..., Xn, v] = (−1)(n−1)aa · [X1, ..., Xn, v]
[X1, ..., Xn, a · v] = (−1)(n−1)aa · [X1, ..., Xn, v] n ≥ 2

[X1, a · v] = a · [X1, v] +X1(a) · v

and such that the brackets determine an the structure of a module over the L∞-algebra
g, i.e.

Jn+1(X1, . . . , Xn, v) = 0

for all n ≥ 0, where Jn+1 is the Jacobiator from 3.1.53.1.5, Xi ∈ g and v ∈ E.

(5) a nonlinear map of L∞-algebroids g ; At(E).

The equivalence between (1), (2) and (3) follows as in Remark 3.3.43.3.4. Given an L∞-algebroid
g⊕ E as in (2), the brackets of elements in g with an element in E exactly determine the
data of (4). The equivalence of (4) and (5) follows from the description of L∞-algebra
representations given in [4343] (see [7171] for more details).

Let g be an L∞-algebroid and let g̃ be the dg-Lie algebroid obtained by applying the left
Quillen equivalence of Proposition 3.1.203.1.20 to its cobar resolution Q(g) (3.1.263.1.26). In light of
(5), the category of representations of g is equivalent to the category of representations of
the dg-Lie algebroid g̃ in the sense of Definition 3.3.13.3.1.

In particular, the category of L∞-algebroid representations of g is symmetric monoidal,
with tensor product given by E ⊗A F , and can be endowed with the projective and A-
model structure. A weak equivalence between A-cofibrant L∞-algebroids induces a Quillen
equivalence between the model categories of representations.

Remark 3.3.17. A dg-Lie algebroid g now gives rise to two (model) categories of ‘represen-
tations’:

(1) the model category Repdg
g from Definition 3.3.13.3.1.

(2) a model category RepL∞g of L∞-algebroid representations of g.

The objects of the latter category are exactly the representations up to homotopy from [33].
There is an obvious fully faithful inclusion

Repdg
g

// RepL∞g (3.3.18)

of the category of ‘strict’ representations of g into the category of L∞-algebroid representations
of g. Unwinding the definitions (see [7171]), one can identify this inclusion with the right
Quillen functor that restricts a representation of g along the canonical map q : Q(g) −→ g
from its cobar resolution (taken in the category of dg-Lie algebroids). When g is A-cofibrant,
the map q is a quasi-isomorphism (Lemma 3.1.303.1.30). Corollary 3.3.83.3.8 then implies that the
inclusion (3.3.183.3.18) is the right adjoint of a Quillen equivalence.



Chapter 4

Formal moduli problems and
Lie algebroids

The aim of this section is to relate the theory of Lie algebroids over a C∞-ring A to formal
deformation theory over A, in the sense of Section 2.3.32.3.3. More precisely, our aim will be to
prove the following:

Theorem 4.2.14.2.1. Let A be a C∞-ring which is eventually coconnective, i.e. such that πn(A) =
0 for n� 0. Then there is an equivalence of ∞-categories

FMPA ' LieAlgdA

between the ∞-category of Lie algebroids over A (Definition 3.1.133.1.13) and the ∞-category of
formal moduli problems under A (Definition 2.3.342.3.34).

Remark 4.0.1. The idea that Lie algebroids can equivalently be considered as formal
moduli problems also appears in [3333], where Lie algebroids are essentially defined to be formal
moduli problems (indexed by a slightly larger category of small extensions). Theorem 4.2.14.2.1
can be viewed as a rectification result supporting this idea. A similar result was obtained
independently by Calaque and Grivaux [1717].

Remark 4.0.2. As we asserted in the introduction (see Theorem II), there is a similar
equivalence when A is a connective commutative algebra over a field of characteristic zero.
Our proof of Theorem 4.2.14.2.1 applies essentially verbatim in this case; we refer to [7272] for
details.

Geometrically, Theorem 4.2.14.2.1 asserts that the deformation theory of a map from Spec(A)
to some moduli space is controlled by a Lie algebroid over A. When Spec(A) is a point, i.e.
when A = R, this reproduces the well-known relation between Lie algebras and deformation
problems, originating in the work of Deligne and Drinfeld, developed by many others (among
which Kontsevich, Soibelman, Hinich and Manetti) and culminating in the recent work of
Pridham [7575] and Lurie [6161]. Our proof of the above result is follows the method described
in [6161] and its exposition in the work of Hennion [3838], which discusses Lie algebras over a
nontrivial base.

The core of the proof of Theorem 4.2.14.2.1 consists of an identification of the ∞-category of
small extensions A′ −→ A with a certain category of Lie algebroids that are obtained from
finitely many ‘cell attachments’. This identification is treated in Section 4.14.1 and the proof of
Theorem 4.2.14.2.1 is then completed in Section 4.24.2.

In Section 4.34.3 we consider the behaviour of representations of Lie algebroids under this
equivalence. We show (Theorem 4.3.14.3.1) that connective representations of a Lie algebroid g can
equivalently be described as quasi-coherent modules on the associated formal moduli problem
MCg. Finally, Section 4.44.4 considers the formal moduli problems arising from deformations
of connective algebras (as in Example 2.3.352.3.35). We show that these formal moduli problems
are classified by the explicit ‘Atiyah Lie algebroids’ from Example 3.1.33.1.3.
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Assumption 4.0.3. Throughout, we assume that A is a cofibrant dg-C∞-ring and only
use the presentation of the ∞-category LieAlgdA presented by the semi-model category
LieAlgddg

A of dg-Lie algebroids over A.

4.1 Lie algebroid cohomology
The aim of this section is to prove the following result:

Proposition 4.1.1. Let A be a C∞-ring A. Then there is an adjunction of ∞-categories

c∗ : LieAlgdA
// (C∞Alg/A

)op : D.oo

Here c∗(g) is the connective cover of the Lie algebroid cohomology of g and the anchor map
of D(B −→ A) is the A-linear dual of the map between cotangent complexes LA −→ LA/B.

Proposition 4.1.2. Suppose that A is eventually coconnective. Then the unit map g −→
Dc∗(g) is an equivalence for every dg-Lie algebroid g satisfying the following two conditions:

(i) g is cofibrant as a dg-A-module and is freely generated as a graded A-module by a set
{xi}.

(ii) There are finitely many xi in each single degree, and no generators of (homological)
degree ≥ 0.

As we will see (Remark 4.1.194.1.19), the functor c∗ sends every Lie algebroid g to the limit of
a tower of nilpotent extensions of A. Proposition 4.1.24.1.2 asserts that this operation is not too
far from being an equivalence: sufficiently finite-dimensional Lie algebroids can be recovered
from the corresponding pro-nilpotent extensions of A.

In Section 4.1.14.1.1, we will begin our discussion of the above results by describing the functor
c∗ in more detail. In particular, we show that c∗(g) essentially computes (the connective
cover of) the dual of the cotangent complex of the Lie algebroid g, just like its right adjoint
D takes the dual of the C∞-algebraic cotangent complex. We will use this in Section 4.1.24.1.2 to
prove Proposition 4.1.14.1.1. Section 4.1.34.1.3 is devoted to a proof of Proposition 4.1.24.1.2.

4.1.1 The cotangent complex of a Lie algebroid. Recall from Section 3.33.3 that for
each dg-Lie algebroid g, there is a right Quillen functor

g⊕ (−) : Repdg
g

// LieAlgddg
A /g

taking the split square zero extension of g by a (strict) g-representation. Using that that this
right adjoint functor depends naturally on g, one sees that that its left adjoint is given by

(
h

f−→ g
) � // f∗Υh = U(g)⊗U(h) Υh. (4.1.3)

Here Υh is the value of the left adjoint to h⊕ (−) on h itself.

Definition 4.1.4. Let g be anA-cofibrant dg-Lie algebroid (Definition 3.1.273.1.27). The cotangent
complex Lg of g is the value of the left derived functor of (4.1.34.1.3) on the identity map of g.

Example 4.1.5. Let ρ : V −→ TA be a map of dg-A-modules and let g = F (V ) be the free
dg-Lie algebroid associated to it. If E is a g-representation, then maps of dg-Lie algebroids
g = F (V ) −→ g⊕ E over g are in natural bijection with maps of dg-A-modules V −→ E. It
follows that ΥF (V ) = U(g)⊗A V is the free g-representation generated by the dg-A-module
V .
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One can compute the cotangent complex Lg using the explicit cofibrant replacement
q : Q(g) −→ g from Section 3.1.33.1.3. The datum of a map

(q, α) : Q(g) // g⊕ E

is equivalent to the datum of a graded A-linear map

(q, α) : Sym≥1
A g[1] // g[1]⊕ E[1]

satisfying the Maurer-Cartan equation (3.1.213.1.21), where q is the obvious projection onto g[1].
Since q already satisfies the Maurer-Cartan equation and there are no nontrivial brackets
between elements in E, the Maurer-Cartan equation reduces to the following linear equation
for α:

∂CEα := ∂E ◦ α− α ◦ ∂C∗(g) + [q, α] = 0. (4.1.6)

Remark 4.1.7. Formula (4.1.64.1.6) determines a graded R-linear map

∂CE : HomA(Sym≥1
A g[1], E[1]) // HomR(Sym≥1

R g[1], E[1])

of degree −1. To analyze this map ∂CE a bit further, let us replace E by its cone E[0, 1].
Unraveling the above definitions, one can see that a map Q(g) −→ g ⊕ E[0, 1] over g is
determined uniquely by a pair of maps

α : Sym≥1
A g[1] // E[1] β : Sym≥1

A g[1] // E[2]

subject to the condition that ∂CEα = β and ∂CEβ = 0.
On the other hand, a map Q(g) −→ g⊕ E[0, 1] over g is determined uniquely by a map

Q(g) −→ g⊕ E of dg-Lie algebroids without differential over g. But without the differential,
Q(g) is just freely generated by the graded A-module

(
Sym≥1

A g[1]
)
[−1]. This means that

every map α : Sym≥1
A g[1] −→ E[1] determines a map Q(g) −→ g⊕ E.

In other words, it follows that for any α there exists a map β satisfying the above two
conditions. This means that the map ∂CE preserves A-multilinear maps and squares to zero.

Definition 4.1.8. The reduced Chevalley-Eilenberg complex of g with coefficients in E is
the chain complex

C
∗(g, E) = HomA(Sym≥1

A g[1], E)

equipped with the differential ∂CE given by formula 4.1.64.1.6.

Remark 4.1.9. The differential ∂CE can be computed explicitly (without Koszul signs due
to the ordering of variables) as the usual Chevalley-Eilenberg differential

(∂CEα)(X1, ..., Xn) = ∂E
(
α(X1, ..., Xn)

)
+
∑
i

∇Xiα(. . . , X̂i, . . . ) (4.1.10)

−
∑
i

α(. . . , ∂Xi, . . . )−
∑
i<j

α
(

[Xi, Xj ], X1, . . . , Xn

)

It follows that HomU(g)(Lg, E) can be modeled by C∗(g, E[−1]). Dually, this given the
following description of the cotangent complex Lg itself:

Corollary 4.1.11. Let g be a dg-Lie algebroid whose underlying dg-A-module is cofibrant.
Then

Lg = U(g)⊗A
(
Sym≥1

A g[1]
)
[−1] (4.1.12)
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with differential given (modulo Koszul signs) by

∂(u⊗X1 . . . Xn) = (∂u)⊗X1 . . . Xn +
∑
i

u⊗X1 . . . ∂(Xi) . . . Xn (4.1.13)

(n>1)
+

∑
i

u ·Xk ⊗X1 . . . Xn +
∑
i<j

u⊗ [Xi, Xj ]X1 . . . Xn.

The first term in the second row only applies when n > 1.

Definition 4.1.14. The cotangent complex (4.1.124.1.12) comes with a U(g)-linear map

Lg = U(g)⊗A
(
Sym≥1

A g[1]
)
[−1] // U(g)

sending u⊗X1 . . . Xn to zero when n > 1 and to u ·X1 when n = 1. The Koszul complex
K(g) of g is the cofiber

Lg
// U(g) // K(g).

Explicitly, K(g) can be identified with U(g) ⊗A SymAg with the same differential as in
(4.1.134.1.13), where the first term in the second row is also included when n = 1.

Remark 4.1.15. The composite map

Lg = U(g)⊗A
(
Sym≥1

A g[1]
)
[−1] // U(g) u7→u·1 // A

is equal to zero, so that there is a U(g)-linear map K(g) −→ A. When g is A-cofibrant, this
map is a weak equivalence. Indeed, the PBW filtration on U(g) (Proposition 3.3.73.3.7) and
the filtration on SymAg[1] by polynomial degree determine a total filtration on the Koszul
complex K(g). The map on the associated graded is the obvious projection

SymA(g[0, 1]) = SymAg⊗A SymAg[1] // A

from the symmetric algebra on the cone g[0, 1], which is a weak equivalence.

Definition 4.1.16. The Chevalley-Eilenberg complex is the mapping complex

C∗(g, E) := HomU(g)(K(g), E) ∼= HomA(SymAg[1], E)

where the latter is equipped with the Chevalley-Eilenberg differential (4.1.104.1.10) . When E = A
is the canonical g-representation, we will write C∗(g) = C∗(g, A).

The upshot of our discussion is that A-cofibrant dg-Lie algebroids have a fiber sequence

C
∗(g, E) = HomU(g)(Lg, E)[−1] // C∗(g, E) = HomU(g)(A,E) // E. (4.1.17)

We will refer to the canonical map C∗(g, E) −→ E as the augmentation of the Chevalley-
Eilenberg complex.

Remark 4.1.18. Since A is the unit of the symmetric monoidal structure on Repg provided
by Example 3.3.33.3.3, it has a canonical cocommutative coalgebra structure. This coalgebra
structure on A induces a lax symmetric monoidal structure on the functor HomU(g)(A,−),
which can be described by means of the shuffle product of forms.

Recall that for α ∈ C∗(g, E) and β ∈ C∗(g, F ), their shuffle product in C∗(g, E ⊗A F ) is
given by

(α× β)(X1, ..., Xn) =
∑

k,σ∈Sh(k,n−k)

α(Xσ(1), . . . , Xσ(k))⊗ β(Xσ(k+1), . . . , Xσ(n)).
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This endows C∗(g,−) : Repdg
g −→ Moddg

R with a lax symmetric monoidal structure, which is
compatible with the augmentation in the sense that there is a commuting square

C∗(g, E)⊗R C
∗(g, F ) ×

//

��

C∗(g, E ⊗A F )

��

E ⊗k F // E ⊗A F.

In particular, taking coefficients with values in the commutative algebra A, one obtains a
functor with values in commutative dg-algebras over A

C∗ : LieAlgddg
A

//

(
CAlgdg

R /A
)op

; g
� // C∗(g) := C∗(g, A).

Furthermore, for every dg-Lie algebroid g, there is a lax symmetric monoidal functor
C∗(g,−) : Repdg

g −→ Moddg
C∗(g). In particular, this functor preserves algebras over dg-

operads.

Remark 4.1.19. Each C∗(g, E) arises naturally as the limit of a tower

. . . // C≤2(g, E) // C≤1(g, E) // E

where C≤n(g, E) is the quotient of C∗(g, E) given by Hom(Sym≥n+1
A g[1], E). This filtration

is simply induced by the filtration of Lemma 3.1.283.1.28 on the cobar resolution of g. There are
natural multiplication maps C≤m(g, A)⊗ C≤n(g, E) −→ C≤m+n(g, E). In particular, C∗(g)
arises as the limit of a tower of (strict) square zero extensions of commutative dg-algebras.

Lemma 4.1.20. Suppose that A −→ B is a map of dg-C∞-rings and that the dg-Lie algebroid
g acts on B by C∞-derivations (Remark 3.3.153.3.15). Then the connective cover τ≥0C

∗(g, B) has
the natural structure of a dg-C∞-ring and the map τ≥0C

∗(g) −→ B is a map of dg-C∞-rings.

Proof. Note that C∗(g)0 arises as the limit of a tower of nilpotent extensions C≤n(g)0 −→ B0
and admits a natural section B0 −→ C∗(g). It follows from [1919, Proposition 3.22] that each
C≤n(g, B)0 carries a unique C∞-ring structure compatible with the projection to B0 and this
splitting, which induces a C∞-ring structure on the limit C∗(g)0.

We have to show that these C∞-ring structures restrict to zero cycles. For this, it suffices
to verify that the R-algebra derivation ∂CE : C≤n(g, B)0 −→ C≤n(g, B)−1 is a C∞-derivation.
Invoking [1919, Proposition 3.22] once more, it suffices to show that the composite map

B0 // C≤n(g, B)0
∂CE // C≤n(g, B)−1

is C∞-derivation. For every b ∈ B0, ∂CE(b) can be identified with the map

g0[1] // B0; X � // ∇Xb.

Since g acts on B by C∞-derivations, the map b 7→ ∂CE(b) is a C∞-derivation. We conclude
that τ≥0C

∗(g, B) has the natural structure of a dg-C∞-ring.

Definition 4.1.21. The connective cover of the Chevalley-Eilenberg complex C∗(g, E) will
be denoted by

c∗(g, E) := τ≥0C
∗(g, E)

Each c∗(g, E) is a module over the dg-C∞-ring c∗(g) = c∗(g, A).

With these definitions, we can already address half of Proposition 4.1.14.1.1:
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Lemma 4.1.22. Let A be a dg-C∞-ring. Then the functor c∗ induces an adjunction of
∞-categories

c∗ : LieAlgdA
// (C∞Alg/A

)op : D.oo

Proof. By Lemma 4.1.204.1.20, there is a functor

c∗ : LieAlgddg
A

//
(
C∞Algdg/A

)op
.

The fiber sequence (4.1.174.1.17) shows that c∗ preserves weak equivalences between A-cofibrant
dg-Lie algebroids. Every cofibrant dg-Lie algebroid is A-cofibrant (Theorem 3.1.153.1.15), so
that c∗ induces a functor between ∞-categories. Since LieAlgdA is a locally presentable
∞-category (because it arises from a tractable semi-model category, by Proposition 2.1.242.1.24),
c∗ admits a right adjoint as soon as it preserves all (homotopy) colimits.

Limits of C∞-rings are computed at the level of the underlying chain complexes, so it
suffices to check that the functor

c∗ : LieAlgdA
C∗ //

(
ModR/A

)op τ≥0
//
(
Mod≥0

R /A
)op

preserves all colimits. Taking connective covers preserves limits, so it suffices to show that C∗
preserves colimits. Furthermore, taking kernels provides a functor ker : ModR/A −→ ModR
that preserves and detects all limits. It therefore suffices to show that ker ◦ C∗ sends colimits
of dg-Lie algebroids to limits of chain complexes. By the fiber sequence (4.1.174.1.17), this functor
just sends g to the mapping complex HomU(g)(Lg, A[−1]). Since the cotangent complex
functor preserves colimits, the result follows.

4.1.2 The cotangent complex for free Lie algebroids. When g = F (V ) is the free
dg-Lie algebroid generated by a cofibrant dg-A-module over TA, we now have two different
(but weakly equivalent) descriptions of the cotangent complex Lg: Example 4.1.54.1.5 simply
evaluates the left Quillen functor (4.1.34.1.3) on g itself, while Corollary 4.1.114.1.11 computes the
value of (4.1.34.1.3) on the ‘cobar’ resolution Q(g). Of course, the first description is significantly
smaller than the second.

When g = F (V ) is a free Lie algebroid, there is a canonical section of the map Q(g) ∼−→ g,
induced by the canonical inclusion

V �
�

// g //

(
SymAg[1]

)
[−1] ⊆ Q(g).

Applying (4.1.34.1.3) to this section produces a weak equivalence between the two models for the
cotangent complex Lg, given by the U(g)-linear extension of the above inclusion

U(g)⊗A V
∼ // U(g)⊗A

(
Sym≥1

A g[1]
)

[−1].

Mapping into A and taking connective covers, one obtains a weak equivalence to a significantly
smaller complex

κ : c∗(g, A) ' // AV = A⊕ρ∨ τ≥0HomA

(
V [1], A

)
; α � //

(
α(1), α

∣∣
V [1]

)
.

This map is a map of dg-C∞-rings, where the codomain AV almost has the structure of a
square zero extension of A: it fits into a (homotopy) pullback square of dg-C∞-rings

AV = A⊕ρ∨ τ≥0(V [1]∨) //

��

A⊕ τ≥0(V [0, 1]∨)

��

A
ρ∨

// A⊕ τ≥0(V ∨).

(4.1.23)
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where the bottom map is classified by the map

ρ∨ : ΩA // V ∨; ddRa
� //

(
v 7→ ρ(v)(a)

)
.

Using this pullback square, one can easily check that the functor

A(−) : Moddg
A /TA

//
(
C∞Algdg/A

)op;V � // AV = A⊕ρ∨ τ≥0
(
V [1]∨

)
.

is a left Quillen functor, whose right adjoint sends B −→ A to the mapping fiber TA/B of

TA = Der(A,A) // Der(B,A),

together with its natural projection to TA. We may therefore summarize the previous
discussion by the following result:

Corollary 4.1.24. There is a natural transformation to a left Quillen functor

Moddg
A /TA

c∗◦F
((

A(−)

66
κ

��

(
C∞Algdg/A

)op

which is a weak equivalence when restricted to cofibrant dg-A-modules over TA.

Let us finally turn to the proof of Proposition 4.1.14.1.1:

Proof (of Proposition 4.1.14.1.1). We have already seen in Lemma 4.1.224.1.22 that the functor c∗
admits a right adjoint D. It remains to show that the underlying anchor map of the Lie
algebroid is indeed the A-linear dual of the map LA −→ LB/A. To see this, note that the
composition of D with the forgetful functor LieAlgdA −→ ModA/TA is the right adjoint of
the composite

ModA/TA
F // LieAlgdA

c∗ //
(
C∞Alg/A

)op
.

The natural equivalence κ from (4.1.244.1.24) identifies this functor with the left derived functor
of the left Quillen functor A(−). It follows that the underlying anchor map of D(B −→ A)
can be computed by the right derived functor of the right adjoint to A(−). By the above
discussion and the fact that A is cofibrant, this is exactly the functor taking the A-linear
dual of LA −→ LA/B .

Remark 4.1.25. Suppose that φ : B −→ A is a cofibration between cofibrant dg-C∞-
rings. The map of A-modules Der(A,A) −→ Der(B,A) is already a fibration and its kernel
g ⊆ TA = Der(A,A) is a model for the A-linear dual of LA/B. The latter is clearly closed
under the commutator bracket and forms a dg-Lie algebroid over A. This dg-Lie algebroid
represents D(B −→ A).

Indeed, there is a natural diagram of dg-C∞-rings

B
f
//

φ
!!

c∗(g) //

��

c∗(g̃)

{{
A

where g̃ −→ g is a cofibrant replacement of g and the map f sends b ∈ B to the map
SymAg[1] −→ A whose value on 1 is φ(b) and which vanishes on powers of g[1]. This is a map
of dg-C∞-rings since all derivations in g annihilate φ(b). The composite map B −→ c∗(g̃) is
adjoint to a map g̃ −→ D(B −→ A). This map induces an equivalence on the underlying
anchor map by Proposition 4.1.14.1.1, so that g̃ and g are equivalent to D(B −→ A).
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4.1.3 Koszul duality. The goal of this section is to give a proof of Proposition 4.1.24.1.2. In
fact, Proposition 4.1.24.1.2 follows immediately from the following, slightly simpler, assertion:

Proposition 4.1.26. Let A be a cofibrant dg-C∞-ring and suppose that g is a dg-Lie algebroid
satisfying the following conditions:

(i) g is cofibrant as a dg-A-module and is freely generated as a graded A-module by a set
{xi}.

(ii) There are finitely many xi in each single degree, and no generators of (homological)
degree ≥ 0.

Then the (derived) unit map g −→ Dc∗(g) can be identified at the level of dg-A-modules with
the canonical map g −→ g∨∨ from g into its A-linear bidual.

Proof (of Proposition 4.1.24.1.2). By Proposition 4.1.264.1.26, the unit map g −→ Dc∗(g) is equivalent
to the canonical map g −→ g∨∨ from g into its bidual. By the conditions on g, both g and g∨

are cofibrant dg-A-modules (the latter is free on a set of generators of degree ≥0). It follows
that g∨∨ is a model for the derived bidual of g. To see that this map is an equivalence, we
may therefore replace A by a weakly equivalent dg-algebra, so that we can assume that A is
concentrated in degrees [0, n].

By the conditions on g, we can write g =
⊕

i<0A
⊕ki [i] at the level of graded A-modules.

The map g −→ g∨∨ can then be identified with the natural map of graded A-modules⊕
i<0A

⊕ki [i] //
∏
i<0A

×ki [i].

Since A is bounded, this map is an isomorphism.

Remark 4.1.27. Let g be a dg-Lie algebroid satisfying conditions (i) and (ii) of Proposition
4.1.264.1.26. Then C∗(g) is concentrated in nonnegative degrees so that c∗(g) = C∗(g). We will
therefore simply write C∗(g) instead of c∗(g) throughout this section.

The remainder of this section is devoted to a proof of Proposition 4.1.264.1.26. let us start by
considering the map of commutative dg-algebras over A

c : C∗(g) // Ag = A⊕ρ∨ g[1]∨ (4.1.28)

which sends α : SymAg[1] −→ A to
(
α(1), α

∣∣
g[1]

)
. In the proof of Proposition 4.1.14.1.1, we have

seen that the functor V 7→ AV was a right Quillen functor, whose derived left adjoint sent(
B −→ A

) � //
(
L∨A/B −→ L∨A = TA

)
.

Lemma 4.1.29. Let g be a cofibrant dg-Lie algebroid over A satisfying conditions (i) and
(ii) from Proposition 4.1.264.1.26. Then the A-linear map g −→ L∨A/C∗(g) adjoint to (4.1.284.1.28) is
equivalent to the A-linear map underlying the unit map g −→ DC∗(g).

Proof. Let F : ModA/TA � LieAlgdA : U be the free-forgetful adjunction. The A-linear map
U(g) −→ UDC∗(g) in ModA/TA corresponds by adjunction to the map

C∗(g) // C∗(F (g))

in CAlg≥0/A. The composition of this map with the equivalence κ : C∗(F (g)) −→ Ag from
Corollary 4.1.244.1.24 is exactly the map (4.1.284.1.28). This means that the maps

g −→ L∨A/C∗(g) and U(g) −→ UDC∗(g)

are identified under the adjoint equivalence between UD and the functor sending B −→ A
to L∨A/B .



72 Section 4.1

To use Lemma 4.1.294.1.29, we will have to compute the relative cotangent complex of the
map C∗(g) −→ A. Unfortunately, C∗(g) has the structure of a power series algebra, which
means that C∗(g) is not cofibrant and computing its cotangent complex requires some effort.
Let us therefore introduce the following ‘global’ variant of the Chevalley-Eilenberg complex:

Construction 4.1.30. Let g be a dg-Lie algebroid over a cofibrant dg-C∞-ring A satisfying
conditions (i) and (ii) from Proposition 4.1.264.1.26. Consider the graded-commutative algebra

C∗poly(g) := SymA

(
g[1]∨

)
⊆ C∗(g)

consisting of graded A-linear maps SymAg[1] −→ A that vanish on some power Sym≥nA g[1].
This graded subalgebra of C∗(g) is closed under the differential of C∗(g), since this differential
sends a function vanishing on Sym≥nA g[1] to a function vanishing on Sym≥n+1

A g[1].
The degree zero part of C∗poly(g) is given by a polynomial algebra A0[xi], where the xi

are the duals of the degree −1 generators of g. Consider the dg-C∞-ring

C∗sm(g) = A0{xi} ⊗A0[xi] C
∗
poly(g)

where A0{xi} is the free discrete C∞-ring on A0 and the generators xi. There is a natural
map of dg-C∞-rings C∗sm(g) −→ C∗(g) obtained by sending the generators xi in degree zero
to their image in C∗(g).

Example 4.1.31. Let g = A⊕n[−1] be the trivial dg-Lie algebroid on n generators of degree
−1. Then C∗(g) is isomorphic to the ring of power-series A[[x1, ..., xn]] and the inclusion
C∗poly(g) ⊆ C∗(g) is the inclusion of the polynomial algebra A[x1, ..., xn] ⊆ A[[x1, ..., xn]].
The map C∗sm(g) −→ C∗(g) is the map A{x1, . . . , xn} −→ A[[x1, . . . , xn]] taking Taylor
expansions at xi = 0.

Warning 4.1.32. The commutative dg-algebras C∗poly(g) and C∗sm(g) are not homotopy
invariant.

Lemma 4.1.33. Let A ∈ C∞Algdg be cofibrant and let g be a dg-Lie algebroid over A such
that g ∼=

⊕
i<0A

⊕ki [i] as a graded A-module. Then the following hold:

(1) the dg-C∞-ring C∗sm(g) is cofibrant.

(2) the map ΩC∗sm(g)⊗C∗sm(g)A −→ ΩA of C∞-algebraic Kähler differentials can be identified
with the projection map ΩA ⊕ g[1]∨ −→ ΩA. Here ΩA ⊕ g[1]∨ has differential given by

∂(ddR(a), α) =
(
ddR(∂Aa), ∂g[1]∨(α) + ρ∨(ddRa)

)
where ρ∨ : ΩA −→ g∨ is the adjoint of the anchor map g −→ TA.

Proof. Since g is given as a graded A-module by
⊕

i<0A
⊕ki [i], it follows that C∗poly(g) is

given without the differential by a polynomial algebra over A, generated by the free module
g[1]∨. Consequently, C∗sm(g) is freely generated over A if we forget the differential. In
addition, A is cofibrant, so that it is the retract of a dg-C∞-ring which is freely generated
without the differential. This implies that C∗sm(g) is also a retract of a dg-C∞-ring which is
freely generated without differential, so that C∗sm(g) is cofibrant.

For the second assertion, observe that without differentials, C∗sm(g) is freely generated
over A by the A-module g[1]∨. It follows that

ΩC∗sm(g) ⊗C∗sm(g) A ∼= ΩA ⊕ g[1]∨

as a graded A-module. To identify the differential, observe that the Chevalley-Eilenberg
differential sends an element a ∈ A ⊆ C∗sm(g) to the element ∂Aa+ ρ∨(ddRa) and an element
α ∈ g[1]∨ ⊆ C∗sm(g) to ∂g[1]∨α, modulo higher order terms in the generators g[1]∨.
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Lemma 4.1.34. Let A be a nonnegatively graded commutative algebra over R, let V be a
finite-dimensional R-vector space and let W be a degreewise finite-dimensional graded R-vector
space, in strictly negative degrees. Then there is a natural isomorphism of graded-commutative
A-algebras

Hom
(
SymRV,A

)
⊗R SymR(W∨) // Hom

(
SymR(V ⊕W ), A

)
where Hom is the internal hom in graded vector spaces and SymRW

∨ is the graded polynomial
algebra on the dual vector space of W .

Proof. Observe that there is an isomorphism of graded cocommutative coalgebras SymR(V ⊕
W ) ∼= SymRV ⊗R SymRW . There is a natural map of graded-commutative algebras

Hom
(
SymRV,A

)
⊗Hom(SymRW,R) µ

// Hom
(
SymRV ⊗R SymRW,A

)
.

sending two maps α : SymRV −→ A and β : SymRW −→ R to α⊗ β. Using that SymRW is
degreewise finite dimensional, one can identify SymR(W∨) ' Hom(SymRW,R) and see that
the map µ is an isomorphism.

Lemma 4.1.35. Let A ∈ C∞Algdg be cofibrant and let g be as in Proposition 4.1.264.1.26. Then
the map C∗sm(g) −→ C∗(g) of commutative dg-algebras over A induces an equivalence

LC∗sm(g) ⊗C∗sm(g) A
' // LC∗(g) ⊗C∗(g) A.

Proof. Consider the trivial cofibration, followed by a fibration

0 ∼ // h = F (g[0,−1]) // // g

where h is the free dg-Lie algebroid on the map g[0,−1] −→ g −→ TA from the path space
of g. Let V be the free graded R-vector space spanned by the generators xi of g, so that
g = A⊗R V . As a graded Lie algebroid, h is then freely generated by the graded R-vector
space V [0,−1]. Consequently, the map h −→ g is given without differentials by the A-linear
extenion of a map from the free Lie algebra

h = A⊗ Lie
(
V [0,−1]

)
// A⊗ V = g

which sends V to the generators of g and V [−1] to zero. This map has a splitting, induced
by the inclusion V −→ Lie(V [0,−1]), so that h −→ g can be identified with

h = A⊗ (V ⊕W )
(id,0)

// A⊗ V = g.

Here W is a graded R-vector space isomorphic to Lie(V [0,−1])/V , which is degreewise finite
dimensional and concentrated in degrees < −1.

Let us now consider the commutative diagram of cdgas associated to h −→ g

C∗poly(g)

��

// C∗poly(h)

��

// A

��

C∗(g) // C∗(h) ∼
// A.

(4.1.36)

The right bottom map is a weak equivalence since h is cofibrant and weakly contractible.
The map C∗poly(g) −→ C∗poly(h) can be identified with a map of polynomial algebras

A⊗R SymR(V [1]∨) // A⊗R SymR
(
(V ⊕W )[1]∨).
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It follows that C∗poly(h) is freely generated over C∗poly(g) by W [1]∨, which is degreewise
finite dimensional and concentrated in degrees ≥ 1. In particular, C∗poly(g) −→ C∗poly(h) is a
cofibration of cdgas.

On the other hand, the map C∗(g) −→ C∗(h) is given without differentials by the natural
map

HomR

(
SymRV [1], A

)
// HomR

(
SymR(V [1]⊕W [1]), A

)
.

It now follows from Lemma 4.1.344.1.34 that the left square in (4.1.364.1.36) is a (homotopy) pushout
square of cdgas. Its image under L(−) ⊗(−) A

LC∗poly(g) ⊗C∗poly(g) A

��

// LC∗poly(h) ⊗C∗poly(h) A

��

LC∗(g) ⊗C∗(g) A // LC∗(h) ⊗C∗(h) A

(4.1.37)

is a homotopy pushout square as well. Since C∗(h) −→ A is a weak equivalence, the map
LC∗(h) −→ LA is a weak equivalence. On the other hand, the map LC∗poly(h)⊗C∗poly(h)A −→ LA
is identified with the projection map

ΩA ⊕ h[1]∨ // ΩA

by Lemma 4.1.334.1.33. The kernel of this map is contractible, since h is a cofibrant contractible
dg-A-module. It follows that the right vertical map in Diagram (4.1.374.1.37) is an equivalence, so
that the left map is an equivalence as well.

Proof (of Proposition 4.1.264.1.26). By Lemma 4.1.294.1.29, it suffices to show that the map g −→
L∨A/C∗ is adjoint to a weak equivalence LA/C∗(g) −→ g∨. This map fits into a sequence of
maps

LA/C∗sm(g) // LA/C∗(g) // g∨

classifying the composite map of commutative dg-algebras over A

C∗sm(g) // C∗(g) c // Ag

where c is as in (4.1.284.1.28). The map LA/C∗sm(g) −→ LA/C∗(g) is an equivalence by Lemma
4.1.354.1.35, so it suffices to show that LA/C∗sm(g) −→ g∨ is an equivalence. This map can be
computed explicitly: the map

C∗sm(g) // Ag = A⊕ρ∨ g[1]∨

is simply the quotient of C∗sm(g) by the augmentation ideal (g[1]∨)2. Unwinding the definitions,
e.g. using the pullback square (4.1.234.1.23), one finds the following description of the classifying
map LA/C∗sm(g) −→ g∨: it is the canonical map from the mapping cone of

ΩC∗sm(g) ⊗C∗sm(g) A ∼= ΩA ⊕ g[1]∨ // ΩA

to g∨. This map is a weak equivalence, which concludes the proof.

4.2 Koszul duality
In this section we will use the results of Section 4.14.1 to establish equivalences between Lie
algebroids and formal moduli problems (Definition 2.3.342.3.34):
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Theorem 4.2.1. For any C∞-ring A, there is an adjunction of ∞-categories

MC: LieAlgdA
// FMPA : TA/.oo

This adjunction is an equivalence when A is eventually coconnective.

Remark 4.2.2. The above adjunction induces an adjunction

MC: LieA
// FMPaug

A : TA/oo (4.2.3)

between the ∞-category of A-linear Lie algebras (i.e. Lie algebroids over the zero Lie
algebroid) and the category FMPaug

A of augmented formal moduli problems, i.e. objects
over the functor Spf(A) corepresented by A. This category can also be identified with
the ∞-category of functors F : A/C∞Algsm/A −→ S from the ∞-category of ‘split’ small
extensions A −→ A′ −→ A, such that F (A) ' ∗ and such that F preserves pullbacks along
the maps A −→ A[εn]. In these terms, the equivalence (4.2.34.2.3) is established in [3838].

These theorems follow formally from Proposition 4.1.24.1.2, by means of a general procedure
due to Lurie [6161] that we will briefly recall. We will then prove Theorem 4.2.14.2.1 in Section
4.2.24.2.2.

4.2.1 Generating the category of Lie algebroids. Categories of chain complexes or
spectra endowed with a certain algebraic structure often admit a presentation in terms of
generators and relations.

Definition 4.2.4. Let Ξ be a locally presentable ∞-category equipped with a collection of
right adjoint functors

eα : Ξ // Sp

to the ∞-category of spectra. The left adjoint to eα sends the canonical map Sn −→ 0 in Sp
to a map in Ξ that we will denote by Kα,n −→ ∅. We will say that an object V ∈ Ξ is good
if it admits a finite filtration

∅ = V (0) // V (1) // . . . // V (n) (4.2.5)

where each i admits an α and n ≤ −2 such that V (i−1) −→ V (i) fits into a pushout square

Kα,n
//

��

V (i−1)

��

∅ // V (i).

(4.2.6)

Let Ξgood ⊆ Ξ be the full subcategory on the good objects; it is the smallest subcategory of
Ξ which contains ∅ and is closed under pushouts along the maps Kα,n −→ ∅ with n ≤ −2.

Proposition 4.2.7 ([6161, Theorem 1.3.12]). Let (Ξ, eα) be as in Definition 4.2.44.2.4. Suppose
that each eα preserves small sifted homotopy colimits and that a map f in Ξ is an equivalence
if and only if each eα(f) is an equivalence of spectra. Then the right adjoint functor

j∗ : Ξ // PSh(Ξgood); V � // MapΞ(−, V ) (4.2.8)

is fully faithful, with essential image consisting of those (space-valued) presheaves F satisfying
the following two conditions:

(a) F (∅) is contractible.
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(b) For any α and n < 0, F sends a pushout square of the form (4.2.64.2.6) to a pullback square
of spaces.

Remark 4.2.9. One can think of Proposition (4.2.74.2.7) as a version of Brown representability:
the pushout diagram (4.2.64.2.6) describes the process of attaching a cell and the proposition
asserts that a functor on finite cell complexes is representable, as soon as it respects all cell
attachments.

Example 4.2.10. Let A be a connective commutative dg-algebra (over a field of characteristic
zero) and let ModA be the ∞-category of A-modules. The single functor e : ModA −→ Sp,
forgetting the A-module structure, satisfies the conditions of Proposition 4.2.74.2.7. In this
case, the good A-modules can be presented by the dg-A-modules whose underlying graded
A-module is free on finitely many generators xi of degree < 0. There is a natural equivalence
of ∞-categories

Modgood,op
A

// Modf.p.,≥0
A ; E // E[1]∨

to the ∞-category of finitely presented connective A-modules, i.e. dg-A-modules generated
by finitely many generators of degree ≥ 0. Combining this equivalence with Proposition
4.2.74.2.7, one finds that ModA is equivalent to the ∞-category of functors

F : Modf.p.,≥0
A

// S

that send 0 to a contractible space and preserve pullbacks along the maps 0 −→ A[n] with
n ≥ 1.

Proposition 4.2.74.2.7 is exactly [6161, Theorem 1.3.12], replacing the category Υsm from loc.
cit. by the opposite of Ξgood. For completeness, we have included a brief recollection of the
main ingredients of the proof (as given in [6161]) at the end of this section, in Section 4.2.34.2.3.

Let us first discuss how Proposition 4.2.74.2.7 can be applied when Ξ = LieAlgdA is the
∞-category of Lie algebroids over a C∞-ring A. In this case, there is a composite forgetful
functor

LieAlgdA
U // ModA/TA

ker // ModA
e // Sp

which preserves small limits and detects equivalences. The corresponding notion of a good
Lie algebroid then unwinds as follows:

Definition 4.2.11. Let sn := F (0 : A[n] −→ TA) be the free Lie algebroid generated by a
null-homotopic map from A[n] to TA.

Definition 4.2.12. A Lie algebroid g ∈ LieAlgdA over A is called good if there exists a
finite sequence of maps

0 = g(0) // g(1) // · · · // g(n) = g

in LieAlgdA such that each map g(i) −→ g(i+1) fits into a pushout square

sni
//

��

g(i)

��

0 // g(i+1)

where ni ≤ −2. Let LieAlgdgood
A ⊆ LieAlgdA be the full sub-∞-category on the good Lie

algebroids.
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Remark 4.2.13. The good Lie algebroids form the smallest subcategory of LieAlgdA which
contains the zero Lie algebroid 0 and which is closed under pushouts along all possible map
sn −→ 0 where n ≤ −2. Note that there are many inequivalent maps sn −→ 0, corresponding
to the various null-homotopies of the map 0: A[n] −→ TA (which is null-homotopic by
assumption). In particular, an object of LieAlgdgood

A need not admit a map to the zero Lie
algebroid.

Remark 4.2.14. The good Lie algebroids admit the following description in terms of the
model structure on dg-Lie algebroids: let us say that a dg-Lie algebroid g is very good if it
allows for a finite sequence of cofibrations

0 = g(0) // · · · // g(n) = g,

each of which is the pushout of a (generating) cofibration with ni ≤ −2

Free
(
∂φ : A[ni] −→ TA

)
// Free

(
φ : A[ni, ni + 1] −→ TA

)
. (4.2.15)

Here φ is a map from the cone of A[ni] to TA, which is determined uniquely by a degree
(ni + 1) element of TA. Then the good Lie algebroids can be presented by the very good
dg-Lie algebroids over A.

Corollary 4.2.16. Let A be a C∞-ring. Then there is an equivalence between the∞-category
LieAlgdA of Lie algebroids over A and the ∞-category of functors

X : LieAlgdgood,op
A

// S

satisfying condition (a) and (b) of Proposition 4.2.74.2.7.

4.2.2 Proof of Theorem 4.2.14.2.1. We will now deduce Theorem 4.2.14.2.1 from Proposition
4.1.24.1.2 and Corollary 4.2.164.2.16.

Lemma 4.2.17. Let g be a very good dg-Lie algebroid over A. Then the following hold:

(1) g has a cofibrant underlying dg-A-module.

(2) Without the differential, g is freely generated by a negatively graded finite-dimensional
vector space over TA.

(3) g is isomorphic as a graded A-module to
⊕

n<0A
⊕kn [n] for some sequence of kn ∈ N≥0.

Proof. Assertion (1) is obvious and (3) follows immediately from (2). For (2), note that each
pushout along a map (4.2.154.2.15) freely adds a single generator of degree < 0 at the level of
graded Lie algebroids.

Corollary 4.2.18. The functor c : LieAlgdA −→
(
C∞Alg/A

)op restricts to a functor

c∗ : LieAlgdgood
A

//
(
C∞Algsm/A

)op (4.2.19)

between the full subcategories of good Lie algebroids over A and small extensions of A. When
A is an eventually coconnective C∞-ring, this functor is an equivalence.

Proof. For any n ≤ −1, Corollary 4.1.244.1.24 identifies the image of the free Lie algebroid
sn = F (A[n]) with

c∗(sn) ' A⊕A[−n− 1].
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The ∞-category LieAlgdgood
A is generated by pushouts along maps sn −→ 0 for n ≤ −2,

while the∞-category C∞Algsm/A is generated by pullbacks along A −→ A⊕A[n] with n ≥ 1.
Since c is a left adjoint, good Lie algebroids are sent to small extensions of A.

Now suppose that A is eventually coconnective. By Lemma 4.2.174.2.17, every good Lie
algebroid satisfies the conditions of Proposition 4.1.24.1.2, so that (4.2.194.2.19) is fully faithful. It
remains to show that it is essentially surjective.

To see this, note that the essential image of (4.2.194.2.19) is closed under pullbacks along maps
0: A −→ A⊕A[n] with n ≥ 1. Indeed, these maps are contained in the essential image of
c∗, so that the pullback along them can equivalently be computed as the pushout along
s−n−1 −→ 0 in Lie algebroids. Since LieAlgdgood

A was designed to be closed under such
pushouts, its image under c∗ is closed under pullbacks along A −→ A ⊕ A[n]. The small
extensions form the smallest subcategory of C∞Alg/A which is closed under pullbacks along
these maps, so that the result follows.

Proof (of Theorem 4.2.14.2.1). Let us denote the ∞-category of presheaves satisfying conditions
(a) and (b) of Proposition 4.2.74.2.7 by

E ⊆ PSh(LieAlgdgood
A ).

Corollary 4.2.164.2.16 provides an equivalence LieAlgdA ' E, so that it suffices to produce the
required adjunction (equivalence) between E and the ∞-category of formal moduli problems.
By Corollary 4.2.184.2.18, the functor c∗ induces a functor (4.2.194.2.19) from good Lie algebroids to
small extensions. The restriction of a formal moduli problem along c∗ is a presheaf contained
in E. We therefore obtain a right adjoint functor

TA/ : FMPA
(c∗)∗

// E
' // LieAlgdA.

By Corollary 4.2.184.2.18, this right adjoint is an equivalence whenever A is eventually connective.

Let us conclude with some remarks about the equivalence of Theorem 4.2.14.2.1:

Remark 4.2.20. If A is eventually coconnective, the functor c∗ has inverse given by the
functor

D : C∞Algsm/A // LieAlgdgood,op
A . (4.2.21)

It follows that for every Lie algebroid g, the functor MCg can be identified with the functor

MCg(A′) = Map(D(A′), g).

By Remark 4.1.254.1.25, one can identify D(A′) with the Lie algebroid of derivations of A
along the fibers of Spec(A) −→ Spec(A′). One can therefore think of MCg as sending
every small extension A′ of A to the space of flat g-valued connections along the fibers of
Spec(A) −→ Spec(A′).

Remark 4.2.22. Recall from Example 2.3.362.3.36 that there is an adjoint pair

O : FMPA
// (CAlg/A

)op : Spf.oo

The composite functor O◦MC: LieAlgdA −→
(
CAlg/A

)op preserves colimits and sends each
good Lie algebroid to the commutative algebra C∗(g). It follows that for every Lie algebroid
g, there is a natural equivalence of commutative algebras

C∗(g) ' O(MCg)

between the Chevalley-Eilenberg complex of g and the function algebra of the formal moduli
problem MCg. On connective covers, this equivalence identifies the C∞-ring structures on
both sides.
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Example 4.2.23. The previous remark shows by adjunction that for any C∞-ring B over
A, the Lie algebroid associated to Spf(B) (Example 2.3.362.3.36) is given by the Lie algebroid
D(B −→ A), i.e. the linear dual TA/B = MapA(LA/B , A) with the Lie algebroid structure
presented by Remark 4.1.254.1.25.

Example 4.2.24. If X : C∞Algsm/A −→ S is a formal moduli problem, the (unique) base-
point ∗ ∈ X(A) corresponds to a map of formal moduli problems

x : Spf(A) // X.

This induces a map of tangent complexes (see Example 2.3.382.3.38) TSpf(A) −→ TX , whose
domain TSpf(A) can be identified with (the underlying spectrum of) the tangent module
TA = Hom(LA, A). Using that MCsn ' Spf(A⊕A[−n− 1]), one finds that the anchor map
of TA/X fits into a fiber sequence

TA/X // TA = TSpf(A)
x // TX .

Alternatively, the anchor map can be described by the functor it represents. More precisely,
Example 4.2.104.2.10 identifies the ∞-category ModA/TA with the ∞-category of reduced excisive
functors

LA/Modf.p.,≥1
A

// S

from the ∞-category of finitely presented, 1-connective A-modules under LA. Under this
equivalence, an object V −→ TA of ModA/TA represents the functor(

LA −→ E
) � // Map/TA(E∨, V ).

The anchor map TA/X −→ TA associated to the formal moduli problem X then represents
the functor

LA/Modf.p.,≥1
A

// S;
(
LA

η−→ E
) � // X(Aη).

Example 4.2.25. Recall from Example 2.3.402.3.40 that for each m,n ≥ 0, there is a map

η : A[εm]×A A[εn] // A[εm+n+1]

which classifies the square zero extension A[εm, εn]/(ε2m, ε2n) of A[εm]×A A[εn]. This map is
the image under c∗ of a certain map between free A-linear Lie algebras

f : F (w) // F (u, v).

The generators u, v, w have degrees −(n + 1),−(m + 2) and −(n + m + 2), respectively.
Unwinding the definitions, one finds that f(w) = [u, v]. The map X(η) of Example 2.3.402.3.40
can therefore be identified with the Lie bracket

[−,−] : π−m−1 ker(TA/X)× π−n−1 ker(TA/X) // π−m−n−2 ker(TA/X)

restricted to the kernel of the anchor map TA/X −→ TA. Note that this kernel coincides
with the desuspension of the tangent complex TX from Example 2.3.382.3.38. In other words, the
Lie bracket of TA/X controls the obstructions to extending a deformation from the wedge of
two infinitesimal lines to the infinitesimal square spanned by them.

4.2.3 Proof of Proposition 4.2.74.2.7. This section gives a brief recollection of the ideas
going into the ingredients of the proof of Proposition 4.2.74.2.7, mainly so that we can refer to
some of them later; all results can be found in [6161, Section 1].



80 Section 4.2

Lemma 4.2.26 ([6161, Proposition 1.2.10, 1.5.5]). Let X and Y be two functors Ξgood,op −→ S

satisfying conditions (a) and (b) of Proposition 4.2.74.2.7 and let f : X −→ Y be a natural
transformation between them. Then the following assertions hold:

(1) Suppose that f induces equivalences X(Kα,n) −→ Y (Kα,n) for all α and n ≤ −2. Then
f is a natural equivalence.

(2) Suppose that the fiber of the map f : X(Kα,n) −→ Y (Kα,n) over the point Y (0) −→
Y (Kα,n) is connected for each α and n ≤ −2. Then each map X(h) −→ Y (h) induces
a surjection on π0.

Proof. Induction along the filtration (4.2.54.2.5).

Remark 4.2.27. For each α, the spaces X(Kn,α) can be organized into a spectrum Tα(X),
the tangent complex at K−1,α. In terms of reduced excisive functors, the spectrum Tα(X)
classifies the functor

Sfin
∗

S 7→(Kα,−1)S
// Ξgood,op X // S.

Conditions (a) and (b) of Proposition 4.2.74.2.7 guarantee that this is indeed a reduced excisive
functor. The conditions of (1) and (2) of Lemma 4.2.264.2.26 are the equivalent to the conditions

(1’) f induces an equivalence of spectra Tα(X) −→ Tα(Y ) for each α.
(2’) the map f induces a map of spectra Tα(X) −→ Tα(Y ) whose fiber is connective.

When X = j∗(V ) is representable by an object V ∈ Ξ, the spectrum Tα(X) is equivalent to
the suspension eα(V )[1].

Lemma 4.2.28 ([6161, Remark 1.5.4]). Let j! denote the left adjoint of the functor j∗ (4.2.84.2.8).
If X : Ξgood,op −→ S is an ind-representable presheaf, then the unit map X −→ j∗j!X is an
equivalence.

Proof. Each object Kα,n ∈ Ξ is compact, so that Ξgood consists of compact objects. It
follows that j∗ preserves filtered colimits, so that the result follows from the case where X is
representable.

Lemma 4.2.29 ([6161, Proposition 1.5.8]). Let X : Ξgood,op −→ S be a presheaf satisfying
conditions (a) and (b) of Proposition 4.2.74.2.7. Then there exists a simplicial object U• : ∆op −→
PSh(Ξgood)/X such that

(a) each Uk with k ≥ 0 is ind-representable.

(b) for each matching map Uk −→Mk(U), computed in PSh(Ξgood)/X, the induced map
on tangent complexes has a connective fiber.

In particular, X is equivalent to the colimit colimU• in PSh(Ξgood).

Proof. This follows from an application of the small object argument, see [6161, Section 1.4].

Proof sketch of Proposition 4.2.74.2.7. It is clear that for each V ∈ Ξ, the presheaf j∗(V ) =
MapΞ(−, V ) satisfies conditions (a) and (b) of Proposition 4.2.74.2.7. Furthermore, the functor
j∗ detects equivalences by Remark 4.2.274.2.27.

It therefore suffices to prove that for any presheaf X satisfying conditions (a) and (b), the
associated unit map η : X −→ j∗j!X is an equivalence. When X is ind-representable, this
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is Lemma 4.2.284.2.28. For a general X, let U• −→ X be a resolution of X by ind-representable
presheaves as in Lemma 4.2.294.2.29. The unit map η determines a diagram of presheaves

colimU•

∼
��

colim η

∼
// colim(j∗j!U•)

��

X
η

// j∗j!X

The top map is the colimit of a natural equivalence and therefore an equivalence. In particular,
it follows that the functor colim(j∗j!U•) satisfies conditions (a) and (b). To see that the
right vertical map is an equivalence, it suffices to show that it induces an equivalence on
tangent complexes. The description of the tangent complex from Remark 4.2.274.2.27 shows that
there is an equivalence of spectra

colimTα(j∗j!U•)
∼ // Tα

(
colim j∗j!U•

)
.

In fact, both colimits can be computed pointwise in the category of functors Sfin
∗ −→ S; the

result is automatically reduced excisive. Using that Tα(j∗V ) ' eα(V )[1], it then suffices to
show that the natural map

colim
(
eα(j!U•)[1]

)
// eα(j!X)

is an equivalence. This follows from the fact that j! preserves sifted colimits, since it is a left
adjoint, while eα preserves sifted colimits by assumption.

4.3 Quasi-coherent modules

Let X : C∞Algsm/A −→ S be a formal moduli problem. Informally, a quasi-coherent module
F on X is given by a collection of B-modules Fy for every B ∈ C∞Algsm/A and every
y ∈ X(B), together with a coherent family of equivalences

f∗Fy = B′ ⊗B Fy
∼ // Ff(y)

for every f : B −→ B′ in C∞Algsm/A. In particular, a quasi-coherent module F on X
determines an A-module F∗, by restricting to the canonical point ∗ ∈ X(A). We will see that
F∗ carries a representation of TA/X . In fact, we will prove the following:

Theorem 4.3.1. Let A be an eventually coconnective C∞-ring and consider a formal moduli
problem X : C∞Algsm/A −→ S with associated Lie algebroid TA/X . Then there is a fully
faithful left adjoint functor

ΨX : Mod(X) // RepTA/X .

from the ∞-category of quasi-coherent modules over X to the ∞-category of representations
of TA/X . The underlying A-module of ΨX(F ) is naturally equivalent to the restriction F∗ to
the canonical basepoint ∗ ∈ X(A). Furthermore, the functor ΨX induces an equivalence

Mod(X)≥0 ' Rep≥0
TA/X

between the connective quasi-coherent modules (i.e. those F for which each Fy is a connective
chain complex) and the TA/X-representations whose underlying chain complex is connective.
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Remark 4.3.2. In general, the functor ΨX realizes Mod(X) as a proper subcategory of the
∞-category of TA/X -representations . In algebro-geometric situations, one can often identify
RepTA/X geometrically with the ∞-category of Ind-coherent sheaves on X in the sense of
[3232]. We refer to [7272] for further details (see [5252] for a related discussion).

Our proof of the above theorem closely follows the discussion in [6161, Section 2.4]: we first
consider the behaviour of representations of good Lie algebroids (Section 4.3.14.3.1) and then
extend our analysis to arbitrary Lie algebroids by a gluing construction in Section 4.3.34.3.3.

4.3.1 Koszul duality for modules. Recall that for any representation of an dg-Lie
algebroid, the Chevalley-Eilenberg complex C∗(g, E) (Definition 4.1.164.1.16) is a module over
C∗(g).

Lemma 4.3.3. Let g be an A-cofibrant dg-Lie algebroid. Then there is a Quillen adjunction
between the projective model structures

K(g)⊗C∗(g) (−) : Moddg
C∗(g)

// Repdg
g : C∗(g,−)oo

where K(g) is the Koszul complex of g (Definition 4.1.144.1.14).

Proof. Recall that C∗(g, E) ∼= HomU(g)(K(g), E). When g is A-cofibrant, the Koszul complex
K(g) is a cofibrant U(g)-module and the result follows.

Let Φg : ModC∗(g) −→ Repg be the left derived functor, sending a C∗(g)-module V to
the derived tensor product A ⊗C∗(g) V . We will analyze the behaviour of the adjunction
Φg : ModC∗(g) � Repg : C∗(g,−) in the case where g is a good Lie algebroid over A.

Lemma 4.3.4. If g is a very good dg-Lie algebroid over A, then

Φg = A⊗C∗(g) (−) : ModC∗(g) −→ Repg (4.3.5)

is fully faithful.

Proof. Let K be the class of objects in ModC∗(g) for which the derived unit map is an
equivalence. Then K is closed under finite colimits and retracts and contains C∗(g) by
construction. It follows that the unit map is an equivalence for all compact C∗(g)-modules.
To prove that Φg is fully faithful, observe that ModC∗(g) ' Ind(ModωC∗(g)) is the ind-
completion of the category of compact C∗(g)-modules. It therefore suffices to show that
the right adjoint C∗(g,−) preserves filtered colimits or equivalently, that the left adjoint
Φg preserves compact objects. In fact, it suffices to show that Φg(C∗(g)) ' A is a compact
g-representation.

Recall from Remark 4.1.154.1.15 that A fits into a cofiber sequence of U(g)-modules

Lg
// U(g) // A.

It therefore suffices to prove that Lg is a compact object. But g is a compact object in the
∞-category of Lie algebroids (over A) and the cotangent complex functor preserves compact
objects, since its right adjoint (taking square zero extensions) preserves filtered colimits.

Lemma 4.3.6. Let g be a very good dg-Lie algebroid over A and let E be a left U(g)-module
whose underlying chain complex is connective. Then there exists a map

⊕
αA −→ E in the

∞-category Repg which induces a surjection on π0.
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Proof. Pick representatives eα ∈ E for the generators of π0(E) and consider the associated
map of g-representations

⊕
α U(g) −→ E. This map is clearly surjective on π0, so it suffices

to prove that it factors (up to homotopy) as⊕
U(g) //

⊕
αA

// E.

Using the cofiber sequence Lg −→ U(g) −→ A, we therefore have to provide a null-homotopy
of each composite map

Lg
// U(g) eα // E.

Since g is good, it admits a filtration 0 = g(0) −→ . . . −→ g(n) = g where each g(i−1) −→ g(i)

is a pushout of ski −→ 0, for some ki ≤ −2. Consequently, its cotangent complex Lg admits
a filtration by U(g)-modules

0 = L
(0)
g

// . . . // L
(n)
g = Lg.

where each L(i−1)
g −→ L

(i)
g has cofiber of the form U(g)⊗A A[ki + 1]. An inductive argument

now shows that any map Lg −→ E to a connective g-representation is null-homotopic, which
concludes the proof.

Corollary 4.3.7. Let g be a very good dg-Lie algebroid over A. Then the fully faithful left
adjoint Φg from (4.3.54.3.5) induces an equivalence of ∞-categories

Φg : Mod≥0
C∗(g)

// Rep≥0
g

between the full subcategories consisting of modules and representations whose underlying
chain complex is connective.

Proof. Mod≥0
C∗(g) is the smallest subcategory of ModC∗(g) which is closed under colimits and

extensions and which contains C∗(g). As a consequence, the essential image of Mod≥0
C∗(g)

under Φg is the smallest subcategory of Repg which is closed under colimits and extensions
and which contains A. Let us denote this subcategory by C. Clearly C is contained in Rep≥0

g ,
so it suffices to prove the reverse inclusion.

To this end, let E be a left U(g)-module whose underlying chain complex is connective. We
will inductively construct a sequence of left U(g)-modules 0 = E(−1) −→ E(0) −→ · · · −→ E
with the properties that each E(n) ∈ C and that each map E(n) −→ E induces an isomorphism
on homotopy groups in degrees < n and a surjection on πn. It follows that the map
colimE(n) −→ E is a weak equivalence, so that E ∈ C.

To construct this sequence, suppose we have constructed E(n−1) and let F be the fiber of
the map E(n−1) −→ E. Then F is a left U(g)-module whose underlying chain complex is
(n− 2)-connective. In particular, it follows from (a shift of) Lemma 4.3.64.3.6 that there exists a
map

⊕
αA[n− 2] −→ F which induces a surjection on πn−2. Now let E(n) be the cofiber of

the map
⊕

αA[n− 2] −→ F −→ E(n−1). This cofiber is contained in C and it follows from
the five lemma that the map E(n) −→ E induces an isomorphism on homotopy groups in
degrees < n and a surjection on πn.

4.3.2 Naturality. To deal with representations of general Lie algebroids, we will need to
know that the functor Φg (4.3.54.3.5) depends on the Lie algebroid g in a suitably functorial
fashion. Unfortunately, this is not quite true at the point-set level: the adjunction

K(g)⊗C∗(g) (−) : Moddg
C∗(g)

// Repdg
g : C∗(g,−)oo
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does not strictly intertwine restriction of g-representations with induction of C∗(g)-modules.
However, this does become true at the level of ∞-categories. To see this, we describe
the dependence of the categories Moddg

C∗(g) and Repdg
g on the Lie algebroid g in terms of

fibrations.

Construction 4.3.8. Let Moddg be the category with

• objects given by tuples (A,M) where A is a commutative dg-algebra and M is an
A-module.

• morphisms (A,M) −→ (B,N) given by a map of dg-algebras A −→ B and an A-linear
map M −→ N .

The obvious projection π : Moddg −→ CAlgdg is a cocartesian fibration.

Construction 4.3.9. Fix a dg-C∞-ring A. Let Repdg be the category with

• objects given by tuples (g, E) where g is an A-cofibrant dg-Lie-algebroid and E is a
g-representation.

• a morphism (g, E) −→ (h, F ) is a map of dg-Lie algebroids f : h −→ g and a map
f !E −→ F of h-representations.

The obvious projection π : Repdg −→ LieAlgddg
A is a cocartesian fibration.

These two cocartesian fibrations are intertwined by the Chevalley-Eilenberg functor: there
is a commuting diagram

Repdg

π
��

C∗ // Moddg

��

LieAlgddg,op
A C∗

// CAlgdg

where the top functor sends (g, E) to (C∗(g), C∗(g, E)).
It follows from [4242, Proposition 2.1.4] that inverting the quasi-isomorphisms yields a

commuting square of cocartesian fibrations (see also Lemma 4.4.104.4.10)

Rep C∗ //

��

Mod

��

LieAlgdop
A C∗

// CAlg.

Let ModC∗ −→ LieAlgdop
A be the base change of Mod −→ CAlg along the functor C∗, so

that we obtain a map of cocartesian fibrations over LieAlgdop
A

Rep C∗ //

%%

ModC∗

xx

LieAlgdop
A .

Lemma 4.3.10. The functor C∗ : Rep −→ ModC∗ admits a left adjoint Φ. Furthermore,
this left adjoint Φ preserves cocartesian edges.

In other words, this lemma asserts that the functors Φg determine a natural transformation
ModC∗(−) −→ Rep(−) between diagrams of ∞-categories.
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Proof. For each Lie algebroid g, the functor C∗ : Repg −→ ModC∗(g) admits a left adjoint Φg

(4.3.54.3.5). By [6262, Proposition 7.3.2.11], the existence of the global left adjoint Φ: ModC∗ −→
Rep (as well as the fact that it preserves cocartesian edges) follows once we know that for
any map of dg-Lie algebroids φ : g −→ h and any C∗(h)-module M , the natural map

Φg

(
C∗(g)⊗C∗(h) M

)
// Φh(M)

is an equivalence. Since both functors preserve colimits of modules, we can reduce to the
case where M is equivalent to C∗(h). In that case, the map can be identified with the map

K(g) // K(h)

between Koszul complexes. But both K(g) and K(h) were resolutions of the canonical
representation A, so the result follows.

Corollary 4.3.11. Let A be a C∞-ring and consider the restriction

Repgood,≥0 C∗ //

''

Modgood,≥0
C∗

ww

LieAlgdgood,op
A

of the functor C∗ to the full subcategory of good Lie algebroids and connective modules over
them (resp. over their Chevalley-Eilenberg complex). Then C∗ is an equivalence and in
particular preserves cocartesian edges.

Proof. Note that both C∗ and its left adjoint Φ send the given subcategories to each other.
The left adjoint Φ preserves cocartesian edges and gives a fiberwise equivalence of∞-categories
by Corollary 4.3.74.3.7, so that it is an equivalence [5959, Proposition 3.1.3.5]. This implies that
C∗ is an equivalence as well.

Remark 4.3.12. The above discussion can be extended to show that Φ determines a natural
transformation between diagrams of symmetric monoidal ∞-categories. To this end, one
extends the above fibrations to fibrations Rep⊗ −→ Γop×LieAlgdop

A encoding the symmetric
monoidal structure. For more details, see [6161].

4.3.3 Quasi-coherent modules. We can summarize the situation of Lemma 4.3.104.3.10 in
terms of functors, rather than fibrations, as follows. Lemma 4.3.104.3.10 gives a natural transfor-
mation of between functors

LieAlgdop
A

ModC∗

$$

Rep

<<PrLΦ
��

taking values in presentable∞-categories and left adjoint functors between them. The natural
transformation Φ is given pointwise by the functor Φg of (4.3.54.3.5), which is fully faithful for
good Lie algebroids (Lemma 4.3.44.3.4) and induces an equivalence between connective modules
and representations (Corollary 4.3.74.3.7).

When A is eventually coconnective, we can precompose with the functor D (4.2.214.2.21) and
we obtain a natural transformation of functors

C∞Algsm/A

��

forget
//

��

CAlg≥0

Mod
��

Fun(C∞Algsm/A, S)op
D!

// LieAlgdop
A Rep

// PrL

Ψow (4.3.13)
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Here the left vertical functor is the inclusion of the corepresentable functors, so that the
composite functor C∞Algsm/A −→ LieAlgdop

A is just D. The functor Ψ is induced by the
natural transformation Φ: for each A′ in C∞Algsm/A, it is given by the composite functor

ΨA′ : ModA′ // ModC∗D(A′)
ΦD(A′)

// RepD(A′) (4.3.14)

where the first functor arises from the algebra map A′ −→ C∗D(A′).
Since the ∞-category PrL admits small limits, we can form the right Kan extension of

the functor Mod along the Yoneda embedding (see [5959, Lemma 5.1.5.5])

C∞Algsm/A
Mod //

��

PrL

Fun(C∞Algsm/A, S)op.

66

Definition 4.3.15. Let X : C∞Algsm/A −→ S be a functor. The ∞-category Mod(X) of
quasi-coherent modules on X is the value of the above right Kan extension on X.

By its universal property, we obtain a natural transformation

Fun
(
C∞Algsm/A, S

)op

Mod

%%

RepD!

::PrLΨ
��

which restricts to Ψ (4.3.134.3.13) on the corepresentable functors.

Remark 4.3.16. The ∞-category Mod(X) can be computed as a homotopy limit

Mod(X) = lim
B→A,y∈X(B)

ModB .

In other words, an object of Mod(X) is given informally by a family of B-modules Fy for
each y ∈ X(B), together with a coherent family of equivalences f∗(Fy) −→ Ff(y) for each
map f : B −→ B′.

Remark 4.3.17. Each ∞-category ModB is locally presentable and any map f : B −→ B′

in C∞Algsm/A induces a left adjoint functor f∗ : ModB −→ ModB′ . It follows from [5959,
Proposition 5.5.3.13] that the ∞-category Mod(X) is locally presentable for any functor
X : C∞Algsm/A −→ S.

By construction, the functor Ψ determines a (left adjoint) functor

ΨX : Mod(X) // RepD!(X).

When X is a formal moduli problem, the Lie algebroid D!(X) is naturally equivalent to the
Lie algebroid TA/X (by Remark 4.2.204.2.20). To understand the functor ΨX , we use the following
lemma:

Lemma 4.3.18. Consider the functor Rep: LieAlgdop
A −→ Cat∞ sending g to the ∞-

category of g-representations. This functor sends a sifted colimit diagram in LieAlgdA to a
limit diagram in Cat∞.

Proof. The functor Rep decomposes as the composite functor

LieAlgdop
A

U // AssAlgop LMod // Ĉat∞.
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where U takes the enveloping algebra of a Lie algebroid and LMod takes ∞-categories of left
modules. Recall that the enveloping algebra U(g) was just the algebra of unary operations of
the reduced enveloping operad Envg (Definition 3.2.43.2.4). It follows from Theorem 3.2.183.2.18 that
U : LieAlgdA −→ AssAlg preserves sifted colimits. The functor LMod sends a sifted colimit
of algebras to a limit in Ĉat∞ by [6161, Lemma 2.4.32].

Proof (of Theorem 4.3.14.3.1). When X is representable by a small extension A′, the functor
Mod(X) −→ RepTA/X is given by the composite (4.3.144.3.14). The first functor is an equivalence
by Proposition 4.1.24.1.2 and Theorem 4.3.14.3.1 reduces to Lemma 4.3.44.3.4 and Corollary 4.3.74.3.7.

The functor Mod: Fun(C∞Algsm/A, S)op −→ Ĉat∞ preserves limits by construction.
Similarly, the functor X 7→ RepD!(X) preserves sifted limits, by Lemma 4.3.184.3.18. Since every
formal moduli problem is a sifted colimit of representable functors (Lemma 4.2.294.2.29), it follows
that ΨX : Mod(X) −→ RepTA/X is fully faithful (being a limit of fully faithful functors).

To identify the essential image of Mod(X)≥0, let E ∈ Mod(X). Then E is connective if
and only if each y∗E ∈ ModB is connective. In terms of its image ΨX(E), this means that
for each D(B) −→ TA/X , the restricted representation ΨX(E) ∈ RepD(B) is contained in
the essential image of Mod≥0

B −→ RepD(B). By Corollary 4.3.74.3.7, this is equivalent to ΨX(E)
being a connective representation of TA/X .

Theorem 4.3.14.3.1 does not quite give an equivalence of categories: the free g-representation
U(g) is usually not contained in the essential image of ΨX . However, we do have the following:
Corollary 4.3.19. Let A ∈ C∞Alg≥0 be eventually coconnective and let X be a formal
moduli problem such that TA/X is connective. Then the functor

ΨX : Mod(X) // RepTA/X
is an equivalence.

Proof. Since TA/X is connective, its enveloping algebra U(TA/X) is connective as well. It
follows (see e.g. [6262, Example 2.2.1.3]) that the stable ∞-category RepTA/X carries a right
complete t-structure, where Rep≥0

TA/X
consists of those representations whose underlying

chain complex is connective. Analogously, Mod(X) carries a right complete t-structure where
F ∈ Mod(X)≥0 if and only if y∗F is a connective chain complex for all y ∈ X(B).

The functor ΨX fits into a sequence of locally presentable ∞-categories and left adjoint
functors between them

Mod(X)≥0

Ψ≥0
X

��

// Mod(X)≥−1 //

Ψ≥−1
X

��

. . . // Mod(X)

ΨX
��

Rep≥0
TA/X

// Rep≥−1
TA/X

// . . . // RepTA/X .

where the horizontal functors are the obvious inclusions. The horizontal sequences are
(homotopy) colimit diagrams of locally presentable ∞-categories by right t-completeness;
this means that the associated diagrams of right adjoint functors are limit diagrams of
∞-categories [5959, Theorem 5.5.3.18]. Since the vertical functors Φ≥−i are equivalences by
Theorem 4.3.14.3.1, the result follows.

4.4 Quasi-coherent algebras

We have seen in Section 2.3.32.3.3 that for any connective P-algebra R over a C∞-ring A (in the
sense of Definition 2.3.182.3.18), there is a formal moduli problem

DefR : C∞Alg // S; A′ � // PAlg≥0
A′ ×PAlg≥0

A

{R}
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sending a small extension A′ to the space of deformations of R to a P-algebra over A′. The
goal of this section is to show that the associated Lie algebroid is precisely the Atiyah Lie
algebroid AtP(R) of Example 3.1.33.1.3. More precisely, we will prove the following (folklore)
result (cf. [4141, 9595] for a discussion of the case where A is a field):

Theorem 4.4.1. Let A be a cofibrant dg-C∞-ring and let R be a fibrant-cofibrant connective
P-algebra over A, as in Definition 2.3.182.3.18. Then there is an equivalence of Lie algebroids

θ : AtP(R) ∼ // TA/DefR .

Remark 4.4.2. For simplicity, we will assume all P-algebras to be connective by definition
throughout the rest of this section.

Remark 4.4.3. In many cases, one can also use Theorem 4.4.14.4.1 when R only has a cofibrant
underlying A-module, using an operadic bar-cobar construction. For example, suppose that
R is a non-unital associative algebra in Mod≥0,dg

A and let bar(R) = TA(R[1]) be its bar
construction, which is a non-counital coalgebra. Let HHAt(R,R)[1] be the graded A-module
of tuples (

v,∆v : bar(R) −→ bar(R)
)

where ∆v is a both a connection and a coderivation on bar(R). The commutator bracket
and the obvious projection make HHAt(R,R)[1] a (fibrant) dg-Lie algebroid over TA.

Every such coderivation (v,∆v) determines a derivation (v,∇v) on the cobar construction
Rcof = Ω(bar(R)). When the underlying dg-A-module of R is cofibrant, the latter provides a
cofibrant replacement of R and one obtains a map of transitive Lie algebroids

HHAt(R,R)[1] // At(Rcof).

One can show that this map is a weak equivalence, since it induces a weak equivalence
between the fibers over TA. The latter are just the ordinary reduced Hochschild complex
of R (no quotient by inner derivations) and the complex of A-linear derivations of Rcof .
In particular, the ‘Lie algebroid version’ HHAt(R,R)[1] of the reduced Hochschild complex
governs the (derived) deformation theory of the associative algebra R.

The proof of Theorem 4.4.14.4.1 is given in Section 4.4.34.4.3 and relies on an identification between
quasi-coherent P-algebras over a formal moduli problem X, and P-algebras over A endowed
with an action of the Lie algebroid TA/X (Theorem 4.4.164.4.16). This does not follow immediately
from Theorem 4.3.14.3.1, or a monoidal refinement thereof: our notion of a P-algebra also includes
(diagrams of) C∞-rings, which are not quite algebras over an operad and therefore require
special care.

In Section 4.4.14.4.1, we will start by discussing the homotopy theory of P-algebras in ModA
endowed with an action of a dg-Lie algebroid. In Section 4.4.24.4.2, we then relate quasi-coherent
P-algebras over X to P-algebras with an action by TA/X .

4.4.1 Lie algebroid actions on algebras. Recall from Variant 3.3.103.3.10 that for any A-
cofibrant dg-Lie algebroid g, the category Rep≥0,dg

g carries the A-model structure, in which a
map is a weak equivalence (cofibration) if the underlying map of connective dg-A-modules
is a weak equivalence (cofibration) in the projective model structure. This model structure
makes Rep≥0,dg

g a monoidal model category for the tensor product of Lemma 3.3.123.3.12. Let

PRep≥0,dg
g := PAlg(Rep≥0,dg

g )

denote the category of connective dg-P-algebras with an action of g. More precisely, PRep≥0,dg
g

consists of one of the following three types of objects, as in Definition 2.3.182.3.18:
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(a) a connective algebra R over a dg-operad P with respect to the monoidal structure on
Repdg

g , as in Remark 3.3.143.3.14.

(b) a J-indexed diagram of C∞-rings A −→ R•, equipped with an action of g on R• by
natural C∞-derivations, as in Remark 3.3.153.3.15.

(c) a J-indexed diagram of augmented C∞-rings A −→ R• −→ A, equipped with an action
of g on R• by natural C∞-derivations, as in Remark 3.3.153.3.15.

For any map of dg-Lie algebroids f : g −→ h, the restriction functor f ! preserves P-algebras
and fits into commuting squares

PRep≥0,dg
h

f !

��

forget
//
∏

Rep≥0,dg
h

f !

��

∏
Rep≥0,dg

h

f !

��

P // PRep≥0,dg
h

f !

��

PRep≥0,dg
g forget

//
∏

Rep≥0,dg
g

∏
Rep≥0,dg

g P
// PRep≥0,dg

g

(4.4.4)

Here P takes the free P-algebra on a family of g-representations, indexed by the colours
of the operad P or the objects of J. To see that the right square commutes, let E be a
collection of g-representations and let P(E) be the free P-algebra on the underlying collection
of dg-A-modules. There is a canonical action of g on P(E) by derivations, determined
uniquely by the condition that for any X ∈ g, the P-algebra derivation

∇X : P(E) // P(E)

is given on generators by the g-representation on E. It follows that free algebras can be
computed at the level of the underlying dg-A-modules, which implies that the right square
commutes.

A similar argument shows that f ! preserves limits and colimits of P-algebras in Rep≥0,dg
g ,

since these can be computed at the level of P-algebras in dg-A-modules. Indeed, let {Ri} be
a diagram of P-algebras over A, equipped with compatible derivations ∇X,i : Ri −→ Ri for
each X ∈ g. These derivations determine unique derivations

colimi(∇X,i) : colimiRi // colimiRi

on the colimit of the diagram {Ri} in the category of dg-P-algebras over A.

Lemma 4.4.5. The category PRep≥0,dg
g carries a model structure, in which a map is a weak

equivalence (fibration) if the underlying map in PRep≥0,dg
g is a weak equivalence (fibration) in

the A-model structure. For any map f : g −→ h of A-cofibrant dg-Lie algebroids, restriction
and coinduction along f give rise to a Quillen adjunction

f ! : PRep≥0,dg
h

//
PRep≥0,dg

g : f!oo

which is a Quillen equivalence if f is a weak equivalence.

Proof. In order to transfer the A-model structure along the (right adjoint) forgetful functor
PRep≥0,dg

g −→
∏

Rep≥0,dg
g , we have to verify the following: each transfinite composition of

pushouts of maps
P(i) : P(E) // P(F )

with i : E −→ F a trivial cofibration in Rep≥0,dg
g , is a quasi-isomorphism. Since free P-

algebras and colimits can be computed at the level of dg-A-modules, we can reduce to
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case where g = 0. In other words, it suffices to show that PRep≥0,dg
0 = PAlg≥0,dg

A carries a
transferred model structure, which is obvious.

The restriction functor f ! : Rep≥0,dg
h −→ Rep≥0,dg

g is left Quillen functor and commutes
with the free P-algebra functor. It follows that it induces a left Quillen functor at the level
of P-algebras in g-representations, with right adjoint given by the coinduction functor f!.
The derived unit and counit of the resulting Quillen pair can be computed at the level of the
underlying representations, which implies that (f !, f!) is a Quillen equivalence whenever f is
a weak equivalence.

Let PRep≥0
g denote the ∞-category associated to this model structure, consisting of

connective P-algebras with a g-action. It follows from Lemma 4.4.54.4.5 that there is a functor

PRep≥0 : LieAlgdop
A

// PrL; g
� // PRep≥0

g (4.4.6)

sending a map f : g −→ h to the left adjoint functor f !.

Corollary 4.4.7. The functor (4.4.64.4.6) sends sifted colimits of Lie algebroids to sifted limits
of ∞-categories.

Proof. Consider the functor

χ : LieAlgdop
A

// Fun(∆[1],PrL); g
� //

(
P :
∏

Rep≥0
g −→ PRep≥0

g

)
whose value on an arrow f : g −→ h is given by the commuting square of left adjoints

∏
Rep≥0

h

f !

��

P // PRep≥0
h

f !

��∏
Rep≥0

g P
// PRep≥0

g .

The commuting diagrams (4.4.44.4.4) show that the forgetful functor commutes with f ! as well,
so that the above square is right adjointable in the sense of Definition 2.3.222.3.22. We therefore
obtain a functor

χ : LieAlgdop
A

// FunRAd(∆[1],Cat∞) ⊆ Fun(∆[1],Cat∞)

with values in the subcategory from Definition 2.3.222.3.22.
Now let g : I −→ LieAlgdA be a sifted diagram of Lie algebroids over A with colimit

g∞ = colimi gi and let fi : gi −→ g∞ be the universal maps. By [6262, Corollary 4.7.4.18],
the canonical map χ(g∞) −→ limi χ(gi) corresponds to the right adjointable square of
∞-categories ∏

Rep≥0
g∞

��

P // PRep≥0
g∞

��

lim
i

∏
Rep≥0

gi P
// lim
i

PRep≥0
gi .

The right adjoints of the horizontal functors are the forgetful functors, which detect equiva-
lences. Remark 2.3.242.3.24 now implies that the right vertical functor is an equivalence whenever
the left vertical functor is an equivalence. But the left vertical functor is a product of
equivalences by Lemma 4.3.184.3.18.
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4.4.2 Quasi-coherent algebras. Let E be a representation of an (A-cofibrant) dg-Lie
algebroid g and let

c∗(g, E) := τ≥0C
∗(g, E)

be the connective cover of its Chevalley-Eilenberg complex. Remark 4.1.184.1.18 and Lemma
4.1.204.1.20 imply that c∗(g, E) is a P-algebra whenever E is a P-algebra. In other words, we
obtain a functor

c∗(g,−) : PRep≥0,dg
g

// PAlg≥0,dg
c∗(g) .

To study the naturality of this functor in g, let us consider the following constructions:

Construction 4.4.8. Let PAlg≥0,dg be the category whose

• objects are given by tuples (B,R) where B ∈ C∞Algdg is a cofibrant dg-C∞-ring and
R is a dg-P-algebra over B.

• morphisms (B,R) −→ (C, S) are maps of cofibrant dg-C∞-rings f : B −→ C, together
with a map R −→ f∗(S) of dg-P-algebras over B.

Similarly, let PRep≥0,dg be the category whose

• objects are given by tuples (g, R), where g is an A-cofibrant dg-Lie algebroid and R is
a P-algebra with an action of g.

• morphisms (g, R) −→ (h, S) are maps of dg-Lie algebroids f : h −→ g, together with a
map f !R −→ S of P-algebras in Rep≥0,dg

h .

Let us fix a cofibrant replacement functor Q for dg-C∞-rings (over A) and let c̃∗ denote the
composition Q ◦ c∗. If R is a dg-P-algebra with an action of g, then the Chevalley-Eilenberg
complex c∗(g, E) has the natural structure of a P-algebra over c̃∗(g) by restriction. We
therefore obtain a commuting diagram

PRep≥0,dg

��

c∗ // PAlg≥0,dg

��(
LieAlgddg,A−cof

A

)op

c̃∗
// C∞Algdg,cof

(4.4.9)

where the top functor sends (g, R) to (c̃∗(g), c∗(g, E)) and the vertical functors are the
obvious projections.

Lemma 4.4.10. After inverting the quasi-isomorphisms, the square (4.4.94.4.9) induces a com-
muting square of ∞-categories

PRep≥0

p

��

c∗ // PAlg≥0

q

��

LieAlgdop
A c∗

// C∞Alg

(4.4.11)

in which the vertical functors are cartesian and cocartesian fibrations.

Proof. Every functor in (4.4.94.4.9) preserves weak equivalences, so we indeed obtain a diagram
of ∞-categories as asserted. To see that p is a cocartesian fibration, note that the functor

PRep≥0,dg //

(
LieAlgddg,A−cof

A

)op
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is a cocartesian fibration classified by the functor(
LieAlgddg,A−cof

A

)op
// ModCatL; g

� // PRep≥0,dg
g .

The left Quillen functor f ! associated to a map f : g −→ h preserves all weak equivalences,
and is a weak equivalence between relative categories whenever f is a weak equivalence,
by Lemma 4.4.54.4.5. It follows from [4242, Proposition 2.1.4] that PRep≥0 −→ LieAlgdop

A is a
cocartesian fibration. For every arrow f : g −→ h, the restriction functor

f ! : PRep≥0
h

// PRep≥0
g

admits a right adjoint f!, given by the right derived functor of the right Quillen functor f!.
It follows that p : PRep≥0 −→ LieAlgdop

A is a cartesian fibration as well.
A similar argument applies to q: the functor PAlg≥0,dg −→ C∞Algdg,cof is a cartesian

fibration, classified by the functor(
C∞Algdg,cof)op

// ModCatR; B � // PAlg≥0,dg
B .

The right Quillen functor f∗ associated to a map f : B −→ C preserves all weak equivalences,
and is a weak equivalence between relative categories whenever f is a weak equivalence,
by the discussion above Proposition 2.3.212.3.21. It follows from [4242, Proposition 2.1.4] that the
functor between localizations PAlg≥0 −→ C∞Alg is a cartesian fibration. For every map f in
C∞Alg, the functor between the fibers admits a left adjoint, given by the left derived functor
of f∗.

Proposition 4.4.12. The restriction of (4.4.114.4.11) to good Lie algebroids over A

PRep≥0×LieAlgdop
A

(
LieAlgdgood

A

)op

((

c∗ // PAlg≥0×C∞Alg
(
LieAlgdgood

A

)op

vv(
LieAlgdgood

A

)op

is an equivalence of cartesian and cocartesian fibrations.

Proof. Let C =
(
LieAlgdgood

A

)op and note that there is a commuting square

PRep≥0 ×LieAlgdop
A

C
c∗ //

forget
��

PAlg≥0 ×C∞Alg C

forget
��∏

Rep≥0 ×LieAlgdop
A

C
c∗
//
∏

Mod≥0 ×C∞Alg C

where the vertical functors forget the P-algebra structure. The bottom functor is a product
of equivalences, by Corollary 4.3.114.3.11.

For each of the above ∞-categories, the projection to
(
LieAlgdgood

A

)op is a cartesian
fibration. Furthermore, the vertical functors preserve and detect cartesian edges. Indeed, let
f : g −→ h be a map of good Lie algebroids. A map (h, F ) −→ (g, E) in PRep≥0 covering f
is cartesian if and only if F ' f!E. Such maps are detected by the forgetful functor by the
commuting square of right Quillen functors adjoint to the right square in (4.4.44.4.4).

On the other hand, consider a map φ : (c∗(h), F ) −→ (c∗(g), E) in PAlg≥0 covering the
image of f under c∗. Then φ is a cartesian edge if and only if F ' c∗(f)∗E is obtained
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from E by restriction of scalars along c∗(f). Again, such maps are detected by the forgetful
functor because of the commuting square (2.3.192.3.19). We conclude that the functor

PRep≥0 ×LieAlgdop
A

C
c∗ // PAlg≥0 ×C∞Alg C (4.4.13)

preserves cartesian edges. It therefore suffices to verify that c∗ induces equivalences between
fibers [5959, Proposition 2.4.4.4].

To see this, let g be a good Lie algebroid and let f : 0 −→ g be the canonical map. The
vertical functors, forgetting the P-algebra structure, also preserve and detect cocartesian
edges that cover f . Indeed, an edge (g, F ) −→ (0, E) in PRep≥0 covering f is cocartesian if
and only if E ' f !F , which can be checked at the level of the underlying representations by
the commuting square (4.4.44.4.4).

On the other hand, let (c∗(g), F ) −→ (A,E) be an arrow in PAlg≥0 covering the image
of f under c∗. Such an arrow is cocartesian if and only if E ' c∗(f)∗F . Since the map
c∗(f) : c∗(g) −→ A induces a surjection on π0, Lemma 2.3.252.3.25 implies from such arrows are
detected by the functor forgetting P-algebra structures.

It follows that the functor c∗ (4.4.134.4.13) preserves all cartesian and cocartesian edges that
cover the map f : 0 −→ g, since it does so after forgetting P-algebra structures. This means
that for every good Lie algebroid g, the commuting square of right adjoints

PRep≥0
0

c∗
��

f! // PRep≥0
g

c∗
��

PAlg≥0
A c∗(f)∗

// PAlg≥0
c∗(g)

is left adjointable (Definition 2.3.222.3.22). The left functor c∗ is clearly an equivalence and the
horizontal functors have left adjoints that detect equivalences, since they do at the level
of representations and modules. It follows from Remark 2.3.242.3.24 (after passing to opposite
categories) that the right functor c∗ is an equivalence as well.

Let Φ denote the inverse of the equivalence of Proposition 4.4.124.4.12. Under straightening,
this determines a natural equivalence of diagrams of locally presentable ∞-categories

LieAlgdgood,op
A

PAlg≥0◦ c∗

&&

PRep≥0

99PrL.Φ∼

��

We can now repeat the argument of Section 4.3.34.3.3: when A is eventually coconnective, we
can precompose with the functor D (4.2.214.2.21) and we obtain a natural equivalence of functors

C∞Algsm/A

��

forget
//

��

CAlg≥0

PAlg≥0

��

Fun(C∞Algsm/A, S)op
D!

// LieAlgdop
A

PRep≥0
// PrL

Ψnv

where D! is the unique colimit-preserving functor whose restriction to the corepresentable
functors is D. The functor Ψ is induced by the natural transformation Φ: for each A′ in
C∞Algsm/A, it is given by the composite functor

ΨA′ : PAlg≥0
A′

// PAlg≥0
C∗D(A′)

ΦD(A′)
// PRep≥0

D(A′)
(4.4.14)

where the first functor arises from the map A′ −→ C∗D(A′).
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Definition 4.4.15. Let X : C∞Algsm/A −→ S be a functor. The locally presentable ∞-
category PAlg≥0(X) of connective quasi-coherent P-algebras over X is the value on X of the
right Kan extension χ

C∞Algsm/A
PAlg≥0

//

��

PrL

Fun(C∞Algsm/A, S)op

χ

66

Informally, a quasi-coherent P-algebra over X is a family of P-algebras Ry ∈ PAlg≥0
B for

every y ∈ X(B), together with a coherent family of equivalences

f∗Ry
' // Rf(y)

for every f : B −→ B′.

By the universal property of PAlg≥0(X), the functor Ψ determines a natural left adjoint
functor

ΨX : PAlg≥0(X) // PRep≥0
D!(X).

When X is a formal moduli problem, the Lie algebroid D!(X) is naturally equivalent to the
Lie algebroid TA/X (by Remark 4.2.204.2.20).

Theorem 4.4.16. Let A be an eventually coconnective C∞-ring and let X be a formal moduli
problem under A. Then the natural functor

ΨX : PAlg≥0(X) // PRep≥0
TA/X

is an equivalence of ∞-categories.

Proof. This is exactly as the proof of Theorem 4.3.14.3.1: when X is corepresentable by A′ ∈
C∞Algsm/A, the functor ΨX is the composite (4.4.144.4.14) of two equivalences, by Theorem 4.1.24.1.2
and Proposition 4.4.124.4.12.

The functor PAlg≥0(−) sends sifted colimits of functors to limits of ∞-categories by
construction. Similarly, the composite X 7→ PRep≥0

D!(X) sends sifted colimits to ∞-categories
by Corollary 4.4.74.4.7.

4.4.3 Deformations of algebras. We will now use the results of the previous section to
study the formal deformations of a (connective) P-algebra R over A and to prove Theorem
4.4.14.4.1. More precisely, consider the formal moduli problem from Example 2.3.352.3.35

DefR : C∞Algsm/A // S; A′ � // PAlg≥0
A′ ×PAlg≥0

A

{R}. (4.4.17)

This functor sends each small extension of A to the space of P-algebras R′ over A′, endowed
with an equivalence of P-algebras R′ ⊗A′ A ' R. On the other hand, let us consider the
functor

ActR : LieAlgdop
A

// Ŝ; g
� // PRep≥0

g ×PAlg≥0
A

{R}

sending each Lie algebroid g to the ∞-category of P-algebras R̃ with an action of g by
derivations, together with an equivalence R̃ ' R of P-algebras over A. Maps between objects
are necessarily equivalences, so that ActR takes values in (locally small) spaces. In other
words, one can think of ActR(g) as the space of g-actions on R by derivations.

It follows from Corollary 4.4.74.4.7 that the functor ActR sends colimits of Lie algebroids to
limits of (locally small) spaces. For example, the value on each free Lie algebroid sn = F (A[n])
(Definition 4.2.114.2.11) is given by

ActR(sn) ' Ω0ActR(sn−1)
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Because every Lie algebroid is a (small) colimit of sn, it follows that ActR does not only take
values in locally small spaces, but in small spaces.

Lemma 4.4.18. The limit-preserving functor ActR : LieAlgdop
A −→ S is represented by the

Lie algebroid TA/DefR associated to the formal moduli problem (4.4.174.4.17).

Proof. By Proposition 4.4.124.4.12, the restriction of ActR to the good Lie algebroids is naturally
equivalent to the functor

LieAlgdgood,op
A

// S; g
� // DefR(c∗(g)).

By construction, this functor is represented by TA/DefR (see Section 4.2.24.2.2).

Now suppose that A is a cofibrant dg-C∞-ring and that R is presented by a cofibrant dg-
P-algebra over A. Recall from Example 3.1.33.1.3 that the Atiyah Lie algebroid AtP(R) consists
of tuples (v,∇v) consisting of an element v in TA , together with an R-linear P-algebra
derivation ∇v : R −→ R such that

∇v(a · r) = v(a) · r + a · ∇v(r)

for all a ∈ A and r ∈ R. In particular, there is a canonical action of AtP(R) on R by
P-algebra derivations. This determines a point

Rcan ∈ ActR
(
AtP(R)

)
which is classified by a map

θ : AtP(R) // TA/DefR (4.4.19)

in the ∞-category of Lie algebroids over A. Theorem 4.4.14.4.1 asserts that the map (4.4.194.4.19) is
an equivalence. To prove this, let us start with a few observations:

Lemma 4.4.20. Let V be a chain complex of R-vector spaces, let g = F (V ) be the free
dg-Lie algebroid on 0: V −→ TA and let r : g −→ 0 be the canonical map. The right Quillen
functor of Lemma 4.4.54.4.5

r! : PRep≥0,dg
g

// PRep≥0,dg
0 = PAlg≥0,dg

A

has a right derived functor sending a P-algebra R with a g-action to the square zero extension

R⊕∇∨ τ≥0HomR(V [1], R) (4.4.21)

with differential ∂(r, α) = (∂r, ∂(α) +∇(−)r).

Proof. The functor r! sends a P-algebra R with an action of g to the subalgebra of r ∈ R
such that ∇vr = 0 for all v ∈ V . For any such dg-P-algebra R with a g-action, there is a
weak equivalence

R ∼
(id,0,0)

// Rinj := R⊕ τ≥0Hom(V [0, 1], R) (4.4.22)

to the (split) square zero extension of R by the connective cover of the contractible R-module
Hom(V [0, 1], R). This inclusion becomes g-equivariant if we endow Rinj with the action of g
determined on generators v ∈ V ⊆ g by

∇v
(
r, α
)

=
(
∇v(r) + α(v), 0

)
.

Unraveling the definitions, one sees that the V -fixed points r!(Rinj) are isomorphic to the
(non-split) square zero extension (4.4.214.4.21). In particular, the functor R 7→ r!(Rinj) preserves
weak equivalences, so that it indeed describes the right derived functor of r!.



96 Section 4.4

Lemma 4.4.23. Let R be a cofibrant dg-P-algebra over A and let sn = F (R[n]) be the free
Lie algebroid. Then there is an isomorphism

π0ActR(sn) ∼= πnDerPA(R,R). (4.4.24)

Proof. Consider the pushout square in the ∞-category LieAlgdA

sn−1
r //

r

��

0

i

��
0

i
// sn

(4.4.25)

We will use i to denote the map from the initial Lie algebroid 0. The functor ActR sends
colimits of Lie algebroids to limits of spaces, so that there is an equivalence

σ : ActR(sn)
∼= // ΩActR(sn−1).

The loop space of ActR(sn−1) is taken at r!R, which is simply the zero action of sn−1 on R.
The loop space ΩActR(sn−1) can be identified with the fiber of

Map
(
r!R, r!R

) i! // Map
(
i!r!R, i!r!R

)
over the identity map of i!r!R = R. The restriction functors r! and i! have right adjoint
coinduction functors r!, i! satisfying r!i! ' id. Using this, one can identify ΩActR(sn−1) with
the space of dotted sections

R //

'
##

r!r
!R

r!(η)
��

r!i!i
!r!R

in PRep≥0
0 ' PAlg≥0

A . By Lemma 4.4.204.4.20, we can identify r!(η) with the projection

R⊕ τ≥0(R[−n]) // R.

The space of dotted sections is therefore equivalent to the space of A-linear P-algebra
derivations of R with coefficients in R[−n], so that we obtain the desired isomorphism
(4.4.244.4.24).

Lemma 4.4.26. Under the isomorphism (4.4.244.4.24), an element v ∈ πnDerPA(R,R) corresponds
to (the equivalence class of) the sn-action on R where the generator of sn acts by v.

Proof. The pushout (4.4.254.4.25) can be modeled by the homotopy pushout square of dg-Lie
algebroids over A

sn−1 = F
(
R[n− 1]

)
r

��

// sn−1,n = F
(
R[n− 1, n]

)
��

0 // sn = F
(
R[n]

)
.

(4.4.27)

Let h be the generator of sn and let z be the generator of sn−1, so that ∂h = z in sn−1,n. Let
us use Rv,w to denote the action of sn−1,n on R where the generator h acts by v : R −→ R[−n]
and z acts by w = ∂(v) : R −→ R[1−n]. Similarly, we will use Rv to denote the representation
of sn where h acts by v : R −→ R[−n].
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Let us fix an element v ∈ πnDerPA(R,R) and let Rv be the associated action of sn. We
then have a commuting square in the category PRep≥0,dg (see Construction 4.4.84.4.8) of the
form

(R0)inj (R0,0)injidoo

R

(id,v,0)

OO

Rvid
oo

(id,v,0)

OO

(4.4.28)

whose image under the cocartesian fibration p : Repdg −→ LieAlgddg,op
A is the pushout square

(4.4.274.4.27). The left hand side of (4.4.284.4.28) is simply obtained from the right hand side by
forgetting the action of the generator h. Let us therefore describe the right vertical map.

The sn−1,n-representation
(
R0,0

)inj is the resolution of the trivial representation on R
provided by (4.4.224.4.22). Unraveling the definitions, this resolution is given by R⊕τ≥0R[−n, 1−n],
where the generators h and z of sn−1,n act by the derivations

∇h(r0, r1, r2) = (r2, 0, 0) ∇z(r0, r1, r2) = (r1, 0, 0).

The restriction of the representation Rv along sn−1,n −→ sn is given by Rv,0. The right
vertical map in (4.4.284.4.28) then arises from the map of sn−1,n-representations

(id, v, 0) : Rv,0 // R⊕
(
τ≥0R[−n]

)
⊕
(
τ≥0R[1− n]

)
=
(
R0,0

)inj
.

This map is an sn−1,n-equivariant weak equivalence. It follows that
(
R0,0

)inj is a model for
the (derived) restriction of Rv along sn−1,n −→ sn. In other words, the right vertical map
in (4.4.284.4.28) determines a p-cocartesian edge in the ∞-category PRep≥0. Similarly, the left
vertical map determines a p-cocartesian edge, so that the entire square (4.4.284.4.28) consists of
p-cocartesian arrows.

The left vertical map R −→ (R0)inj is adjoint to a map of P-algebras over A, which is
just

(id, v) : R // r!

(
Rinj

0

)
= R⊕ τ≥0R[−n] (4.4.29)

Because (4.4.284.4.28) consists of p-cocartesian edges, unwinding the definitions from Lemma 4.4.234.4.23
shows that the image of Rv ∈ π0ActR(sn) under the isomorphism (4.4.244.4.24) is the derivation
classifying (4.4.294.4.29). This derivation is exactly v, which proves the assertion.

Proof (of Theorem 4.4.14.4.1). To show that the map θ (4.4.194.4.19) is an equivalence, it suffices to
show that for any n ∈ Z, the map

[sn,AtP(R)] θ∗ // [sn, TA/DefR ]
∼= // π0ActR(sn) (4.4.30)

is an isomorphism. Since R is a cofibrant dg-P-algebra over A, AtP(R) is a fibrant dg-Lie
algebroid (Example 3.1.113.1.11). Evaluation on the generator then defines an isomorphism[

sn,AtP(R)
] ∼= //

[
R[n],DerPA(R,R)

] ∼= πnDerPA(R,R).

The map θ∗ (4.4.304.4.30) sends f : sn −→ AtP(R) to the restriction f !(Rcan) of the canonical
AtP(R)-action on R. For the map associated to an element v ∈ πnDerPA(R,R), this is
precisely the action of sn on R where the generator acts by v. Lemma 4.4.264.4.26 now shows that
θ∗ is an isomorphism.



Chapter 5

Derived differential topology

The aim of the next chapters is to study the relation between Lie algebroids and the global
geometry of moduli spaces. The equivalence between Lie algebroids and formal moduli
problems already takes a step in this direction: we can think of formal moduli problems as
formal moduli spaces, built out of nilpotent extensions of C∞-rings. To compare these objects
to geometric objects like smooth manifolds, it will be convenient to work in a setting where
manifolds and (derived) infinitesimal extensions thereof are treated on an equal footing. One
of the purposes of derived differential topology is to provide such a setting.

There are various treatments of derived differential topology in the literature [9292, 1414, 5151],
which emphasize the importance of derived geometry to intersection theory. In this chapter,
we further develop the theory of derived differential topology, so that it also incorporates
some of the nilpotent aspects relevant for deformation theory (see Chapter 66). Our treatment
is based on the discussion of C∞-rings in Chapter 22 and closely follows the algebro-geometric
work of Toën and Vezzosi [9797] and Lurie [6060].

Section 5.15.1 discusses the basic geometric objects in derived differential topology: derived
manifolds. For us, a derived manifold will simply be a topological space equipped with a
structure sheaf that is locally equivalent to the spectrum of a (derived) C∞-ring, i.e. we
impose no a priori finiteness conditions. A large part of Section 5.15.1 studies the relation
between C∞-rings and their associated spectra, which differs from its algebro-geometric
analogue: a general C∞-ring A cannot be retrieved from Spec(A) and a general A-module
cannot be retrieved from the associated sheaf on Spec(A).

Many moduli spaces are not quite derived manifolds, but instead arise as singular quotients
of derived manifolds. Such quotients still exhibit good geometric behaviour, which can be
described concretely in terms of stacks. Section 5.25.2 recalls the language of higher (derived)
Lie groupoids and their associated stacks, following [9797].

From the perspective of homotopy theory, smooth manifolds are very well-behaved because
their local topology is very simple: they are locally just given by the contractible space
Rn. In particular, it follows that smooth manifolds have a good theory of locally constant
sheaves (and the associated sheaf cohomology), which is controlled by their homotopy type.
In Section 5.35.3, we will study a relative version of this for smooth maps between derived
stacks. As an application, we show that any (higher, derived) Lie groupoid admits a ‘source
n-connected cover’.

5.1 Derived manifolds

Somewhat informally, derived manifolds are structured spaces that are locally equivalent to
the spectrum of a C∞-ring. The main purpose of this section is to recall the construction
of the (Archimedean) spectrum of a (derived) C∞-ring, due to [2222, 6666]. Following [5050], we
show that taking spectra of C∞-rings behaves like a localization functor on C∞-rings. In
particular, different C∞-rings can have equivalent spectra and among all C∞-rings with
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the same spectrum, there is a terminal one. Furthermore, we discuss the relation between
modules over C∞-rings and module sheaves over their spectrum.

5.1.1 Locally C∞-ringed spaces. Let us start by recalling the theory of structured spaces
in higher category theory, as developed in [6060] and [6363].

Definition 5.1.1. Let D be a locally presentable∞-category and let C be a small∞-category
with finite limits, equipped with a basis for a Grothendieck topology in the following sense:
each object U ∈ C comes equipped with a collection of covers {Ui −→ U}, such that for any
map f : V −→ U , the pullbacks f∗Ui −→ V form a cover of V .

A D-valued sheaf on C is a functor F : Cop −→ D with the property that for any open
cover {Ui −→ U}, the augmented cosimplicial diagram in D

F (U) //
∏
i F (Ui)

//

//

∏
i,j F

(
Ui ×U Uj

)
//
//

//

∏
i,j,k F

(
Ui ×U Uj ×U Uk

)
. . .

is a limit diagram. Let Sh(C;D) ⊆ Fun(Cop,D) be the full subcategory of D-valued sheaves
on C. The inclusion of D-valued sheaves into D-valued presheaves admits a left adjoint (by
the adjoint functor theorem [5959, Corollary 5.5.2.9]), which takes the associated sheaf.

Example 5.1.2. Let X be a topological space and let C be the poset Op(X) of open
subspaces of X. In this case, Definition 5.1.15.1.1 reproduces the usual notion of a sheaf on X.
More generally, let B(X) ⊆ Op(X) be a base for X which is closed under finite intersections.
Then the ∞-category of D-valued sheaves on X is equivalent to the ∞-category of D-valued
sheaves on B(X), with the induced topology (see [5959, Warning 7.1.1.4] and the discussion
above it).

Remark 5.1.3. A continuous function f : X −→ Y induces an adjunction between categories
of sheaves

f−1 : Sh(Y ;D) // Sh(X;D) : f∗.oo (5.1.4)

The right adjoint f∗ sends a sheaf to its restriction along f−1 : Op(Y ) −→ Op(X). Alter-
natively, f∗ can be described by restriction along f−1 : B(Y ) −→ B(X) if X and Y come
equipped with a compatible basis of open subsets (closed under finite intersections).

If M is a combinatorial model category presenting the ∞-category D, then Sh(X;D)
can be modeled by a certain left Bousfield localization of the projective model structure
on Fun(Op(X)op,M). The adjunction (5.1.45.1.4) arises from the Quillen pair which restricts
and takes left Kan extension along f−1 : Op(Y ) −→ Op(X). In particular, this shows
that the ∞-category Sh(X;D) depends on X in a functorial way, since it does so at the
model-categorical level.

Construction 5.1.5. Let Top be the category of topological spaces and let D be a locally
presentable ∞-category. In light of Remark 5.1.35.1.3, there is a functor Sh(−;D)op : Top −→
Cat∞, sending a continuous function f to the functor f∗ between the opposites of the
categories of sheaves. This functor classifies a cocartesian fibration

π : TopD
// Top

whose domain is the ∞-category of ‘D-structured spaces’: an object (X,OX) is a space,
equipped with a D-valued sheaf and a map (X,OX) −→ (Y,OY ) consists of a continuous
function f : X −→ Y , together with a map of D-valued sheaves OY −→ f∗OX .

Consider the inclusion Sh(∗;D)op −→ TopD of the fiber over the terminal object of Top.
Since π is a cocartesian fibration, this functor admits a left adjoint [55, Lemma 2.20]

O : TopD
// Sh(∗;D)op = Dop

sending a D-structured space (X,OX) to the global sections OX(X).
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Definition 5.1.6 (cf. [6363, Definition 1.1.5.3]). Let Toploc
C∞ ⊆ TopC∞ be the subcategory of

the ∞-category of C∞-ringed spaces whose

• objects are locally C∞-ringed spaces (X,OX), i.e. for each point x ∈ X, the stalk
π0(OX)x is a local discrete C∞-ring with residue field R.

• morphisms are the morphisms (X,OX) −→ (Y,OY ) of locally C∞-ringed spaces, i.e.
maps for which the map of stalks π0(OX,x) −→ π0(OY,f(x)) is a map of local rings for
each point x ∈ X.

Let O : Toploc
C∞ −→ (C∞Alg)op be the restriction of the global sections functor.

Remark 5.1.7. Let (X,OX) and (Y,OY ) be two locally C∞-ringed spaces. The zeroth
homotopy sheaf π̃0OX is a sheaf of discrete local C∞-rings on X. Furthermore, a map
f : (X,OX) −→ (Y,OY ) of C∞-ringed spaces is a map of locally C∞-ringed spaces if and
only if the map f : (X, π̃0OX) −→ (Y, π̃0OY ) is a map of locally C∞-ringed spaces. In other
words, there is a pullback square of mapping spaces

MapToploc
C∞

(
(X,OX), (Y,OY )

)
//

��

MapTopC∞

(
(X,OX), (Y,OY )

)
��

MapToploc
C∞

(
(X, π̃0OX), (Y, π̃0OY )

)
// MapTopC∞

(
(X, π̃0OX), (Y, π̃0OY )

)
.

Proposition 5.1.8 ([6060, Theorem 2.1.1]). The functor O fits into an adjunction

O : Toploc
C∞

// (C∞Alg)op : Spec.oo

We will give an explicit description of Spec(A) in Section 5.1.25.1.2.

Definition 5.1.9. The ∞-category Aff of affine derived manifolds, or just affines, is the
essential image of the functor Spec

Aff ⊆ Toploc
C∞ .

A locally C∞-ringed space (X,O) is a derived manifold if X admits a cover by opens Ui such
that each (Ui,O|Ui) ' Spec(Ai) for some C∞-ring Ai. Let

dMfd ⊆ Toploc
C∞

be the full subcategory of derived manifolds.

Example 5.1.10. The usual category of smooth manifolds is a full subcategory of dMfd.
In fact, every embedded submanifold M ⊆ Rn is affine: it is equivalent to Spec(C∞(M)).

The inclusion Mfd −→ dMfd does not preserve pullbacks, but it does preserve transverse
pullbacks. Indeed, let f : M −→ N be a map of smooth manifolds and let N ′ −→ N be a
closed submanifold which is transverse to f . To see that their (derived) intersection in dMfd
agrees with the usual intersection, it suffices to work locally, where our diagram of smooth
manifolds takes the form

Rm
f
// R(n−l)+l {0} × Rl.oo

It follows that the derived intersection M ×hN N ′ is given locally by the vanishing locus of
the function (f1, . . . , fn−l) : Rm −→ Rn−l. By Lemma 2.2.72.2.7, the vanishing locus of this map
between affines is simply given by the spectrum of the derived pushout of C∞-rings

C∞(Rm)qhC∞(Rn−l) C
∞({0}) ' C∞(Rm)⊗hC∞(Rn−l) C

∞({0}).
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The fi form a regular sequence, because (f1, . . . , fn−l) is transverse to zero. It follows that this
derived pushout of C∞-rings is simply given by the discrete C∞-ring C∞(Rm)/(f1, . . . , fn−l),
which is the ring of smooth functions on the smooth manifold f−1(0) by [6868, Proposition
2.5].

Remark 5.1.11. Let us say that a derived manifold M is quasi-smooth if it is locally
equivalent to the derived zero locus of a map f : Rn −→ Rm. Equivalently, M is locally
of finite presentation and has a cotangent complex with Tor-amplitude contained in [0, 1]
(see Remark 6.2.56.2.5). The quasi-smooth derived manifolds are exactly the types of derived
manifolds that are studied in [9292] (and in [5151]).

5.1.2 Spectra of C∞-rings. Let us now provide an explicit description of the spectrum of
a C∞-ring.

Definition 5.1.12. Let A be a C∞-ring and let a ∈ π0(A). The localization of A at a is the
universal map of C∞-rings A −→ A{a−1} with the property that for any C∞-ring B, the
map

MapC∞Alg(A{a−1}, B) −→ MapC∞Alg(A,B)

is an inclusion of path components, with essential image consisting of the maps f : A −→ B
for which f(a) ∈ π0(B) is invertible.

Lemma 5.1.13. For any A be a C∞-ring and a ∈ π0(A), the localization A −→ A{a−1}
exists. Furthermore, the map A −→ A{a−1} is a flat map of commutative R-algebras and
induces isomorphisms on homotopy groups

π0(A){a−1} ⊗π0(A) πn(A) // πn(A{a−1})

where π0(A){a−1} is the localization of the discrete C∞-ring π0(A).

Proof. The map A −→ A{a−1} can be obtained as a (derived) pushout of C∞-rings

C∞(R)

a

��

// C∞(R2) //

��

C∞(R×)

��

A // A{y} // A{a−1}.

The map a is classified by the element a ∈ π0(A) and A{y} is obtained from A by freely
adding a variable. The top sequence of C∞-rings is the image of the sequence of commutative
R-algebras

R[x] // R[x, y] // R[x, y]/(xy − 1) ' R[x, x−1]

under the free functor CAlg≥0
R −→ C∞Alg. This composite map of commutative algebras has

the universal property that

MapCAlg≥0
R

(R[x, x−1], B) // MapCAlg≥0
R

(R[x], B)

is an inclusion of path components on those maps f : R[x] −→ B for which f(x) ∈ π0(B) is
invertible ([6060, p. 4.1.18]).

The class of A ∈ C∞Alg for which the second assertion holds is closed under filtered
colimits and retracts, since these commute with homotopy groups and tensor products. We
may therefore assume that A is finitely presented (Definition 2.2.262.2.26) and present it by a
dg-C∞-ring A = C∞(Rn)[ξi] which is free on a finite set of generators, but with nontrivial
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differential. Given an element a ∈ A0, unwinding the definitions and using Example 5.1.105.1.10,
one can identify

AqC∞(R) C∞(R×) ' A{y}/(ay − 1) ∼= C∞(U)[ξi]
with C∞(U)[ξi], where U ⊆ Rn is the open subset a−1(R×).

The map C∞(Rn) −→ C∞(U) is the ring-theoretic localization of C∞(Rn) at the set of
all functions Rn −→ R that are nonzero on U [6969]. It is in particular flat, so that the map

π0(A{a−1})⊗π0(A) πn(A) // πn(A{a−1})

is an isomorphism. The fact that π0(A{a−1}) coincides with the localization π0(A){a−1}
follows from the universal property.

Corollary 5.1.14. Let A ∈ C∞Alg and let us denote by

B(A)op ⊆ A/C∞Alg

the full subcategory on the localization maps A −→ A{a−1}. The functor

π0 : B(A) // B(π0(A));
(
A −→ B

) � //
(
π0(A) −→ π0(B)

)
is an equivalence of ∞-categories and in fact (up to equivalence) of posets.

Proof. The functor π0 is well defined because π0(A{a−1}) ∼= π0(A){a−1} is a localization
of π0(A). It is essentially surjective by Lemma 5.1.135.1.13. To see that it is fully faithful, let
f : A −→ A{a−1} and g : A −→ A{b−1} be two localization maps. The mapping space
MapA/(f, g) in B(A)op fits into a pullback square

MapB(A)op(f, g)

��

// {g}

��

MapC∞Alg(A{a−1}, A{b−1})
f∗
// MapC∞Alg(A,A{b−1}).

Since f is a localization map, the map f∗ is an inclusion of connected components. It
follows that MapB(A)op(f, g) is either empty or contractible, depending on whether the map
π0(A) −→ π0(A{b−1}) factors over π0(A{a−1}). This implies that π0 : B(A) −→ B(π0(A))
is fully faithful.

Construction 5.1.15. Let B ∈ B(A)op and let b : C∞(R) −→ B be an element in π0(B).
For any open cover {Ui} of R in the usual Euclidean topology, the maps

B // B
∐
C∞(R) C∞(Ui)

define a cover of B in B(A). We endow the poset B(A) with the Grothendieck topology
generated by these covers (see [6666] or [6060, Notation 2.2.6]). There is an obvious presheaf of
C∞-rings

OA,pre : B(A)op // A/C∞Alg // C∞Alg

sending an object A −→ A{a−1} to A{a−1}. Let OA be its associated sheaf.

Remark 5.1.16. As in [6666], one can identify the poset B(A) ' B(π0(A)), together with
its Grothendieck topology, in rather concrete terms: there is a topological space Spec(A)
for which it forms a basis of open neighbourhoods, closed under finite intersections. The
set underlying Spec(A) is the set of maps of (discrete) C∞-rings π0(A) −→ R. When
π0(A) ∼= C∞(RE)/I, the topological space Spec(A) is simply the vanishing locus of I inside
RE , equipped with the product topology.
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Definition 5.1.17. The (Archimedean) spectrum of A ∈ C∞Alg is the C∞-ringed space
Spec(A) =

(
Spec(A),OA

)
.

Example 5.1.18. The spectrum of a discrete C∞-ring A is just the spectrum of A as defined
in [2222, 6666]. In particular, when M is a smooth manifold we have that Spec(C∞(M)) is just
M .

Example 5.1.19. For any C∞-ring A, Lemma 5.1.135.1.13 implies that the spectra of its trunca-
tions are given by

Spec(τ≤n(A)) '
(

Spec(A), τ̃≤nOA
)
.

Here τ̃≤nOSpec(A) is the associated sheaf of the pointwise truncation of OA. In particular,
it follows that Spec(A) is a locally C∞-ringed space, since the usual spectrum of a discrete
C∞-ring is a locally C∞-ringed space [6666].

Example 5.1.20. Let U ∈ B(A) be a basic open subspace of Spec(A), corresponding to a
localization map A −→ A{a−1}. Then Spec(A{a−1}) is simply given by (U,O

∣∣U).

The presheaf OA,pre is a presheaf of C∞-rings under A, so that the associated sheaf O
takes values in C∞-rings under A. In particular, there is a natural map A −→ O

(
Spec(A)

)
.

Proposition 5.1.21 ([6060, Theorem 2.2.12], [6363, Proposition 1.1.5.5]). Let A be a C∞-
ring and let (X,OX) be a locally C∞-ringed space. Precomposition with the canonical map
A −→ O

(
Spec(A)

)
induces an equivalence of mapping spaces

MapToploc
C∞

(
(X,OX),Spec(A)

) ' // MapC∞Alg(A,O(X)). (5.1.22)

In other words, the spectrum of Definition 5.1.175.1.17 indeed describes the right adjoint in the
adjunction of Proposition 5.1.85.1.8. Before proving Proposition 5.1.215.1.21, let us make the following
observation:

Remark 5.1.23. Let A be a C∞-ring with spectrum Spec(A) =
(
Spec(A),O

)
and suppose

that R is another sheaf of C∞-rings on Spec(A). Then the map

Map(O,R) // Map
(
A,R

(
Spec(A)

))
is an inclusion of path components. The essential image consists of maps A −→ R(Spec(A))
such that each composite map

π0A // π0R
(
Spec(A)

)
// π0R

(
Spec(A{a−1})

)
inverts the element a ∈ π0(A). To see this, note that the space of maps of sheaves O −→ R
is equivalent to the space of maps of presheaves OA,pre −→ R over the category B(A) of
basic opens of Spec(A). Each map

A = OA,pre
(
Spec(A)

)
// OA,pre

(
Spec(A{a−1})

)
= A{a−1}

is just the localization of A at a, so that the result follows from the universal property of
localizations.

Proof (of Proposition 5.1.215.1.21). Fix a map φ : A −→ O(X) and let F be the fiber of (5.1.225.1.22)
over φ. By [2222, 6666], the induced map π0(A) −→ π̃0OX(X) of discrete C∞-rings is classified
by a unique map of locally C∞-ringed spaces

f : (X, π̃0OX) // Spec(π0(A))
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By Remark 5.1.75.1.7, the fiber F is equivalent to the fiber of the map

MapTopC∞
(
(X,OX),Spec(A)

)
f

// Map
(
A,O(X)

)
(5.1.24)

The domain is the union of path components consisting of maps of C∞-ringed spaces
(X,OX) −→ Spec(A) that induce the map f at the level of π0. This fixes the continuous
function on the underlying spaces, so this domain is a union of path components

MapTopC∞
(
(X,OX),Spec(A)

)
f
⊆ Map(OA, f∗OX)

consisting of maps of sheaves OA −→ f∗OX inducing the map f on π0. It then follows from
Remark 5.1.235.1.23 that (5.1.245.1.24) is an inclusion of path components. To see that the fiber F
is contractible, it therefore suffices to check that φ is contained in the essential image of
(5.1.225.1.22). By Remark 5.1.235.1.23 this comes down to verifying that each map

A // OX(X) // OX
(
f−1Spec(A{a−1})

)
inverts the element a ∈ π0(A). But this is just a condition on π0, where it holds by definition,
since f was adjoint to the map of discrete C∞-rings π0(A) −→ π̃0OX(X).

The functor Spec: C∞Algop −→ Toploc
C∞ is a bit more complicated than its algebro-

geometric counterpart, because it is not fully faithful (or equivalently, O(Spec(A)) is not
equivalent to A). Nonetheless, the category of affine derived manifolds can be studied purely
in terms of C∞-rings. To see this, let us first make some cohomological remarks about the
structure sheaves on affines.
Lemma 5.1.25. Let A be a C∞-ring and let OA : B(A)op −→ C∞Alg be the structure sheaf
of its spectrum. For any module sheaf F : B(A)op −→ Mod over OA (Definition 5.1.315.1.31), the
homotopy presheaves πnF are (discrete) sheaves.

Consequently, the pointwise truncation τ≤nF is a sheaf and the module sheaf F is a
hypersheaf, i.e. satisfies hyperdescent (see [5959, Section 6.5]).

Proof. Fix an element f ∈ π0(A) and consider the induced continuous function

f : Spec(A) −→ Spec(C∞(R)) = R.

Let us first consider the behaviour of the sheaf f∗F on R. Since R has finite covering
dimension, f∗F is a hypersheaf (see [5959, Theorem 7.2.3.6]), so that sections over an open
subspace V ⊆ R can be computed in terms of a hypercohomology spectral sequence (see e.g.
[9494, Proposition 1.36])

Ep,q2 = Hp(V, π̃q(f∗F )) +3 πq−p
(
f∗F (V )

)
.

Here π̃q(f∗F )) are the sheaves over R associated to the presheaves πq(f∗F ). We have a map
of sheaves of C∞-rings OR −→ f∗OA from the sheaf of smooth functions on R, so that the
sheaves π̃q(f∗F ) are modules over OR. The latter has partitions of unity, so that their higher
sheaf cohomology groups vanish. The spectral sequence therefore degenerates and one finds
that π̃q(f∗F )(V ) ∼= πq(f∗F (V )).

In other words, the homotopy presheaves πq(f∗F ) are already sheaves. It follows that
the homotopy presheaves πqF on B(A) satisfy descent with respect to all covers of Spec(A)
of the form U = f−1V, where f : Spec(A) −→ R is induced by an element f ∈ π0(A). But
these were exactly the basic covers of Spec(A) in B(A). Repeating this argument for A{a−1}
instead of A shows that the presheaves πqOA satisfy descend with respect to all basic covers
in B(A), so that they are sheaves on B(A).

A similar argument shows that each (pointwise) truncation τ≤nF is a sheaf. Since these
truncated sheaves are automatically hypersheaves, it follows that F is a limit of hypersheaves
and thus satisfies hyperdescent itself.
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Proposition 5.1.26 ([5050, Proposition 4.34]). Let A be a C∞-ring. Then the unit map

f = Spec(η) : Spec(A) // Spec
(
O(Spec(A))

)
is an equivalence.

Proof. Let us denote S = Spec(A) and B = O(Spec(A)). By Example 5.1.195.1.19 and Lemma
5.1.255.1.25, the functor O◦Spec commutes with the operation of taking truncations. Consequently,
the map of topological spaces S −→ Spec(B) underlying f is simply the map induced by
Spec(π0(A)) −→ Spec

(
O(Spec(π0A))

)
. This map is a homeomorphism by [5050, Proposition

4.34].
It remains to identify the structure sheaves. Since both structure sheaves are hypersheaves,

it suffices to show that f induces isomorphisms on homotopy sheaves. The homotopy sheaves
π̃qOA of Spec(A) are the associated sheaves of the presheaves πqOA sending a basic open
Spec(A{a−1}) to

πq(A{a−1}) ∼= π0(A){a−1} ⊗π0(A) πq(A).

On the other hand, πq(B) = π̃qOA
(
S
)

agrees with the global sections of the q-th homotopy
sheaf of OA, by Lemma 5.1.255.1.25. It follows that the homotopy sheaves π̃qOB are associated to
the presheaves sending an open Spec(A{a−1}) to the tensor product of global sections

Γ(π̃0OA){a−1} ⊗Γ(π̃0OA) Γ(π̃qOA).

The isomorphism on π0-sheaves now follows from the case of discrete C∞-rings [5050, Proposition
4.34] and the isomorphism on higher homotopy sheaves follows from [5050, Proposition 5.20].

Definition 5.1.27 ([5050, Definition 4.35]). A C∞-ring A is complete if the unit map A −→
O(Spec(A)) is an equivalence.

Corollary 5.1.28. The adjunction O : Aff � C∞Algop : Spec realizes the ∞-category Aff as
the opposite of the full subcategory of C∞Alg on the complete C∞-rings.

Example 5.1.29. A finitely generated discrete C∞-ring A = C∞(Rn)/I is complete iff it is
germ-determined (see [6868]). If π0(A) is finitely generated and germ-determined and each
πn(A) is a finitely presented module over π0(A), then A is complete: by Lemma 5.1.255.1.25 the
map πn(A) −→ πnO(Spec(A)) can be identified with the map πn(A) −→ Γ(π̃nOA), which is
an isomorphism by [5050, Proposition 5.27].

Example 5.1.30. Any finitely presented C∞-ring is complete. To see this, let A =
C∞(Rn)[xi] be a finitely presented dg-C∞-ring and consider the presheaf F on Rn sending
an open U ⊆ Rn to C∞(U)[xi]. Using that F is given in each homological degree by a finite
direct sum of the structure sheaf ORn of Rn, a spectral sequence argument shows that F
satisfies descent.

The restriction of F to the basic open subspaces of Spec(A) agrees with the presheaf
OA,pre : B(A)op −→ C∞Alg of Construction 5.1.155.1.15. It follows that OA = OA,pre, so that
A ' O(Spec(A)).

5.1.3 Quasicoherent sheaves. The discussion from the previous section has an analogue
for modules over C∞-rings. To this end, consider the presentable ∞-category of C∞-rings
and modules over them

ModC∞ := Mod×CAlg≥0
R
C∞Alg

where C∞Alg −→ CAlg≥0
R is the forgetful functor and Mod −→ CAlg≥0

R is the cartesian and
cocartesian fibration arising from Construction 4.3.84.3.8. Unraveling the definitions, one sees
that a ModC∞-valued sheaf on a topological space X (Definition 5.1.15.1.1) is given by
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• a sheaf O : Op(X)op −→ C∞Alg of C∞-rings.
• an O-module sheaf F , i.e. the data of an O(U)-module F (U) for each U , such that the

restriction maps F (U) −→ F (V ) are O(U)-linear.

Remembering only the underlying sheaf of C∞-rings determines a functor

π : Sh(X; ModC∞) // Sh(X; C∞Alg)

which is both a left and a right adjoint.

Definition 5.1.31. If (X,O) is a C∞-ringed space, we define the ∞-category ShO(X) of
O-module sheaves to be the fiber of the functor π over O.

Remark 5.1.32. The ∞-category ShO(X) is locally presentable. For instance, ShO(X) can
be realized as a left Bousfield localization of the over-category Sh(X; ModC∞)/(O, 0), whose
local objects are the pairs (O′, F ) consisting of an O′-module sheaf F , together with an
equivalence O′ −→ O.

Using this, one can deduce that ShO(X) can be presented as a Bousfield localization of
the projective model structure on presheaves of dg-Odg-modules, where Odg is a presheaf of
dg-C∞-rings on X presenting O.

Construction 5.1.55.1.5 gives rise to a global sections functor

Γ: TopModC∞
// Modop

C∞ ; (X,O, F ) � // (O(X),Γ(X,F )) = (O(X), F (X)).

For a C∞-ringed space (X,O), this functor restricts to a right adjoint functor Γ: ShO(X) −→
ModO(X) between the fibers over X ∈ TopC∞ .

Lemma 5.1.33. If A is a complete C∞-ring, then Γ: ShO(Spec(A)) −→ ModA is a fully
faithful right adjoint functor.

Proof. We can model O by a presheaf O : B(A)op −→ C∞Algdg of dg-C∞-rings satisfying
descent and present ShO(Spec(A)) by the model category ModO,dg of Remark 5.1.325.1.32. In
that case A can be modeled by the C∞-ring O(X) and the functor Γ is modeled by the
right Quillen functor Γ: ModO,dg −→ ModA,dg sending F to F (X). The left adjoint of this
functor sends a dg-A-module E to the presheaf E(U) = E ⊗A O(U).

Suppose that F is a fibrant object of dgModO, so that F satisfies descent. Since all
O-module sheaves on Spec(A) satisfy hyperdescent by Lemma 5.1.255.1.25, it suffices to show that
the map of presheaves E(−) := F (X)⊗A O(−) −→ F (−) induces stalkwise isomorphisms
on homotopy groups.

The stalk of E at a point x is given by the filtered colimit

Ex = colim
a1,...,an

F (X)⊗A A{a−1
1 , . . . , a−1

n }

indexed by finite tuples of elements a1, . . . , an ∈ π0(A) such that ai(x) 6= 0. Each map
A −→ A{a−1

1 , . . . , a−1
n } is flat by Lemma 5.1.135.1.13, so that πq(Ex) ∼= πq(F (X))⊗π0(A) π0(Ox).

Since πqF is an O-module sheaf by Lemma 5.1.255.1.25, the map

πq(F (X))⊗π0(A) π0(Ox) // πqFx

is an isomorphism by [5050, Proposition 5.20].

Definition 5.1.34. Let M be a derived manifold. We define QC(M) to be the ∞-category
of O-module sheaves on M and refer to them as quasi-coherent sheaves on M .

When M is affine, the global sections functor Γ: QC(M) −→ ModO(M) is fully faithful.
We will refer to its essential image as the complete O(M)-modules and to its left adjoint
ModO(M) −→ QC(M) as the associated sheaf functor.
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We will freely switch between the interpretation of a quasi-coherent sheaf over an affine
as an O-module sheaf and its interpretation as a complete module over a complete C∞-
ring. For example, let f : M −→ N be a map of affine derived manifolds, dual to a map
φ = f∗ : O(N) −→ O(M). Then there is a left adjoint functor f∗ : QC(N) −→ QC(M),
which equivalently sends

(a) an ON -module sheaf E to the inverse image sheaf f∗E = f−1E ⊗f−1ON OM .
(b) a complete O(N)-module E to the associated sheaf of the O(M)-module E⊗O(N)O(M).

Remark 5.1.35. Let M be an affine derived manifold and let A = O(M) be the corre-
sponding complete C∞-ring. An A-module E ∈ ModA is complete if and only if all πn(E)
are complete. It follows that the t-structure on ModA descends to a t-structure on the full
subcategory QC(M) ⊆ ModA.

Similarly, suppose that f : E −→ E′ is a map of A-modules which induces an equivalence
on associated sheaves. For any other A-module F , the map E⊗AF −→ E′⊗AF also induces
an equivalence on the associated sheaves, since the associated map on stalks can be identified
with

(E ⊗A Ox)⊗Ox (F ⊗A Ox) f⊗id
// (E′ ⊗A Ox)⊗Ox (F ⊗A Ox)

The symmetric monoidal structure on ModA therefore descends to QC(M).
Example 5.1.36. The subcategory QC(M) ⊆ ModO(M) is closed under limits and retracts.
Since it contains the unit O(M), it also contains all finitely presented O(M)-modules, as
well as retracts of those.
Remark 5.1.37. Let M = (M,OM ) be a locally C∞-ringed space. Then the C∞-ring
O(M) is complete (Definition 5.1.275.1.27). Indeed, it is a retract of the complete C∞-ring
O
(
Spec(O(M))

)
by the triangle identities.

Similarly, if E is an OM -module sheaf, then Γ(E) is a complete O(M)-module: it can be
identified with the complete module of global sections of f∗(E), where f : M −→ Spec(O(M))
is the canonical map.

5.2 Derived stacks
A situation one frequently encounters in geometry is that a collection of geometric objects
can itself be organized into a space. Such moduli spaces of geometric objects are not quite
(derived) manifolds, but quotients of manifolds where equivalent objects are identified. These
quotients tend to be badly behaved because of the existence of objects with nontrivial
automorphisms. Stacks and higher stacks provide a method for dealing with such singular
quotients of manifolds by equivalences.

Higher stacks have been defined in great generality by Simpson [8989] (see also [9797] for a
detailed discussion), starting from any reasonable setting of spaces and smooth maps between
them. In this section we recall the notion of a stack and the closely related notion of a higher
(derived) Lie groupoid in the setting of derived differential topology.

5.2.1 Functor of points. Let Sh(Aff) be the ∞-category of sheaves

Affop // S

on the category of affine derived manifolds (Definition 5.1.95.1.9), equipped with the topology
generated by the basic open covers Spec(A{a−1

i }) −→ Spec(A) from Construction 5.1.155.1.15.
Remark 5.2.1. There is a set-theoretic issue with our definition of Sh(Aff), since Aff is not
small. We will tacitly assume that Aff is the opposite of the (small) ∞-category of κ-small
objects in the locally presentable ∞-category of complete C∞-rings, for some large enough κ.
Similarly, a derived manifold is locally the spectrum of a κ-small C∞-ring.
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Example 5.2.2. For every affine M , the representable presheaf MapAff(−,M) is a sheaf.
Indeed, if S = {U −→ V } is a covering sieve of an affine V , then there is commuting square

MapAff(V,M)

∼
��

// limU∈S MapAff(U,M)

∼
��

MapC∞Alg(O(M),O(V )) ∼
// limU∈S MapC∞Alg(O(M),O(U))

where the bottom map is an equivalence since O is a sheaf of C∞-rings on V . Similarly, every
(possibly non-connective) B ∈ CAlg≥0 determines a sheaf

Spec(B) : Affop // S; U � // MapCAlg≥0(B,O(M)).

Proposition 5.2.3 ([6060, Theorem 2.4.1]). Every derived manifold M determines a sheaf

hM = MapdMfd(−,M) : Affop // S.

This produces a fully faithful inclusion h : dMfd −→ Sh(Aff).

To see that derived manifolds represent sheaves, let us first consider a slightly different
descent problem:

Lemma 5.2.4. For any locally presentable ∞-category D, the functor

Sh(−,D) : Topop // PrL

satisfies descent, where the category of topological spaces is endowed with the usual open cover
topology.

Proof. Since the forgetful functor PrL −→ Ĉat∞ to (large) ∞-categories preserves small
limits [5959, Proposition 5.5.3.13], it suffices to show that Sh(−,D) : Topop −→ Ĉat∞ satisfies
descent. To see this, it suffices to show that for a fixed topological space X, the functor
Sh(−,D) : Op(X)op −→ Ĉat∞ satisfies descent. Any open inclusion j : U −→ V induces a
left adjoint functor j∗ : Sh(V,D) −→ Sh(U,D), which itself admits a left adjoint j!, given by
extension by zero. We can therefore think of Sh(−,D) as a diagram

Sh(−;D) : Op(X) //
(
PrR)op ' PrL

sending an inclusion j to j!. Since limits in PrR are computed at the level of the underlying
∞-categories [5959, Theorem 5.5.3.18], it suffices to show that this diagram sends the Čech
nerve of an open cover in Op(X) to a colimit diagram in PrL.

Now recall from [6060, Remark 1.1.5] that there is a natural equivalence

Sh(−,D) ' Sh(−)⊗D = FunR(Sh(−)op,D),

so that we can reduce to the case where D = S is the ∞-category of spaces. In that case, the
diagram of locally presentable ∞-categories associated to the Čech nerve of an open cover
{Ui −→ U} can be identified with the augmented simplicial diagram of over-categories

Sh(X)/U Sh(X)
/
Voo Sh(X)

/
V ×U Voo

oo . . .oo
oo
oo

where V =
∐
Ui is the coproduct of sheaves on X represented by the Ui. This is a colimit

diagram of locally presentable ∞-categories by [5959, Theorem 6.1.3.9].
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Corollary 5.2.5. Let V be a derived manifold and let S = {U −→ V } be a covering sieve
of V (in the usual sense of topology). Then the map

MapdMfd(V,M) // limU∈S MapdMfd(U,M) (5.2.6)

is an equivalence.

Proof. Consider the commuting square

MapTopC∞ (V,M) //

��

limU∈S MapTopC∞ (U,M)

��

MapTop(V,M) // limU∈S MapTop(U,M).

A map (V,OV ) −→ (M,OM ) of C∞-ringed spaces is a map of locally C∞-ringed spaces iff the
restrictions to all U ∈ S are maps of locally C∞-ringed spaces. To see that the map (5.2.65.2.6)
is an equivalence, it therefore suffices to show that the top horizontal map is an equivalence
of spaces.

Since the bottom map is a bijection of sets, it suffices to compare the fibers over a
continuous map f : V −→M . The map between fibers can be identified with the map

MapSh(V ;C∞Alg)(f−1OM ,OV ) // limU∈S MapSh(U ;C∞Alg)(f−1OM |U,OV |U)

between spaces of maps between sheaves of C∞-rings. This map is an equivalence by Lemma
5.2.45.2.4.

Proof (of Proposition 5.2.35.2.3). For every derived manifold M , the representable presheaf hM
on Aff is a sheaf by Corollary 5.2.55.2.5. To see that h is fully faithful, observe that the functor
h preserves pullbacks and sends any open cover {Ui −→M} to a local surjection of sheaves∐
hUi −→ hM . Consequently, any open cover induces a commuting square

MapdMfd(M,N)

∼
��

θ // MapSh(Aff)(hM , hN )

∼
��

lim
i0...in

MapdMfd(Ui0...in , N)
θ
// lim
i0...in

MapSh(Aff)(hUi0...in , hN ).

Here the maps θ are induced by the functor h and each Ui0...in denotes a finite intersection
of Ui. The vertical maps are equivalences by descent.

The map θ is an equivalence when M is affine, by the Yoneda lemma. When M ⊆
Spec(A) is an open subspace of an affine, let S = {Ui −→ M} be the cover by all opens
Spec(A{a−1}) ⊆M . Each finite intersection of such opens is again affine, so that the above
square shows that θ is an equivalence for any open subspace M ⊆ Spec(A). Repeating the
same argument and using an affine open cover {Ui −→M} shows that θ is an equivalence
for any derived manifold M .

Remark 5.2.7. The above proof gives the following description of the sheaves representable
by derived manifolds. First, a sheaf is representable by an open subspace of an affine if it is
the essential image of a map of sheaves∐

Spec(A{a−1
i }) // Spec(A)

where each Spec(A{a−1
i }) −→ Spec(A) is an affine open subspace. A sheaf X is repre-

sentable by a derived manifold if there exists a surjection
∐

Spec(Ai) −→ X such that each
Spec(Ai)×X Spec(Aj) −→ Spec(Ai) is the inclusion of an open subspace.
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5.2.2 Groupoids and stacks. Remark 5.2.75.2.7 describes derived manifolds as sheaves ob-
tained by gluing affines along open inclusions. This description fits into a general pattern for
defining spaces in terms of local models by means of gluing constructions, where instead of
gluing along open inclusions, one glues along more general types of maps.

Definition 5.2.8. Let us say that a map f : M −→ N of derived manifolds is

• a closed (open) immersion if the underlying map of topological spaces is a closed (open)
embedding and the map of sheaves f−1ON −→ OM induces a surjection on π0-sheaves
(is an equivalence).
• étale if f is a local homeomorphism and the map f−1ON −→ OM is an equivalence of

sheaves.
• smooth if for every point x ∈ M , there are affine open neighbourhoods x ∈ U and
f(x) ∈ V such that the restricted map f : U −→ V is equivalent to a projection map
Rn × V −→ V .

• locally finitely presented if for every point x ∈M , there are affine open neighbourhoods
x ∈ U and f(x) ∈ V such that the restricted map f : U −→ V is contained in the
smallest subcategory of Aff/V which contains V × R −→ V and is closed under finite
limits.

Lemma 5.2.9. Let f : M −→ N be a map of derived manifolds. The following are equivalent:

(1) f is locally finitely presented.
(2) f is locally given by a map Spec(φ) : Spec(B) −→ Spec(A), where φ : A −→ B is a

finitely presented map of C∞-rings.

Proof. If φ : A −→ B is a finitely presented map of C∞-rings, then the map Spec(B) −→
Spec(A) is locally finitely presented, so that (2) implies (1). For the converse, suppose that
φ : A −→ B is finitely presented and that A −→ C is another map of C∞-rings. There is a
map of presheaves B(C)op −→ S

MapA/(B,OC,pre) // MapA/(B,OC) ' Map/Spec(A)(−,Spec(B)).

Since the map A −→ B is finitely presented, this map arises as a finite limit of the local
weak equivalence OC,pre −→ OC from Construction 5.1.155.1.15. In particular, it follows that
the above natural transformation induces a local surjection between π0-presheaves. In
other words, any map g : Spec(C) −→ Spec(B) over Spec(A) is locally given by a map
Spec(ψ) : Spec(C{c−1}) −→ Spec(B), for some map ψ of C∞-rings under A.

Now let C ⊆ Aff/Spec(A) be the subcategory of maps V −→ Spec(A) that can locally
(on V ) be described by finitely presented maps of C∞-rings A −→ B. This category contains
Spec(A) × R and is closed under pullbacks. Indeed, we can compute pullbacks of affines
locally, where they can be described by pushout diagrams of finitely presented C∞-rings
under A, by the above argument.

Unwinding the definitions, this implies that any locally finitely presented map f : M −→ N
is locally given by a map in C, which in turn means that it is locally given by the spectrum
of a finitely presented map of C∞-rings.

Lemma 5.2.10. Let P be one of the properties of a map from Definition 5.2.85.2.8.

(a) The composition of two maps with property P has property P .
(b) If f : N −→ M has property P and g : M ′ −→ M is any map, then the base change

f ′ : M ′ ×M N −→ N has property P .
(c) If f : N −→M is a map and {Ui −→M} is an open cover such that each base change

Ui ×M N −→ Ui has property P , then f has property P .



Derived stacks 111

(d) Let f : L −→M be a smooth (resp. étale) surjection and let g : M −→ N be a map. If
gf is locally finitely presented or smooth (resp. étale), then so is g.

Proof. Properties (a) - (c) are easily verified, using that pullbacks of derived manifolds
can be computed locally. For assertion (d), note that the map f (which is locally finitely
presented) admits local sections si which are themselves locally finitely presented. It follows
that the map g is locally given by the finitely presented maps gfsi and hence is locally
finitely presented itself. Furthermore, note that there is a cofiber sequence of (connective)
cotangent complexes (see Definition 6.1.206.1.20)

f∗LM/N
// LL/N // LL/M .

When f and gf are smooth, the cotangent complexes LL/N and LL/M are locally free of
finite rank (Definition 5.2.285.2.28). Then f∗LM/N and LM/N are locally free of finite rank as
well, since f was surjective. Corollary 6.2.46.2.4 now implies that g is smooth. The étale case is
straightforward.

Definition 5.2.11 (Simpson [8989]). Let p : Y −→ X be a morphism in Sh(Aff) and let P be
the class of smooth or locally finitely presented maps. We will say that:

(a0) p is 0-representable (resp. 0-P) if for any map Spec(A) −→ X from an affine space,
the pullback Y ×X Spec(A) is a derived manifold (and the map of derived manifolds
Y ×Y Spec(A) −→ Spec(A) is of class P).

(an) X is n-representable (resp. n-P) if for any map Spec(A) −→ X from an affine space,
there exists an (n − 1)-smooth surjection M −→ Y ×X Spec(A) whose domain is a
derived manifold (and such that the composite map of derived manifolds M −→ Spec(A)
is of class P).

A map Y −→ X is smooth if it is n-smooth for some n, and similarly for being locally
finitely presented. A sheaf X is a derived (resp. smooth) n-stack if the map X −→ ∗ is
n-representable (resp. smooth).

Remark 5.2.12. The above definition has an immediate analogue where the role of the
smooth maps is taken by the étale maps. We will call the resulting classes of morphisms étale
representable and étale. A sheaf X is a derived étale stack if X −→ ∗ is étale representable
(it is usually not an étale map).

Remark 5.2.13. In the definition of an n-smooth map, one may equivalently demand that
for any choice of atlas V −→ X ×Y M , the composite map V −→ M is a smooth map
between derived manifolds.

The classes of n-smooth maps are stable under base change and a map p : Y −→ X
is n-smooth if and only if its base change Y ×X Z −→ Z along an effective epimorphism
Z −→ X is n-smooth. For n ≤ k, a k-smooth map between derived n stacks is automatically
n-smooth (see e.g. [9797, Section 1.3.3]).

Derived stacks are closely related to groupoids. Indeed, to verify that a sheaf X is a
derived n-stack, one has to pick a derived manifold M and an (n − 1)-smooth surjection
M −→ X. The Čech nerve of this map is a groupoid object in Sh(Aff)

. . .
//
//
//
//

G ×M G
//

//
// G //

// M.

The source and target map are both given by the base change of M −→ X and are therefore
(n− 1)-smooth. This implies that G ⇒M is a groupoid object which has a derived manifold
of objects, a derived (n− 1)-stack of morphisms and smooth source and target maps.

Conversely, consider a groupoid object G ⇒M with an (n− 1)-stack of arrows, for which
the source and target maps are smooth. Then the map M −→M/G to the quotient, i.e. the
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colimit of the above simplicial diagram, provides an atlas for M/G [9797, Proposition 1.3.4.2].
In particular, M/G is a derived n-stack.

This provides an equivalence between smooth surjections M −→ X from a derived
manifold to a derived n-stack and smooth groupoids G ⇒M over M , which have a derived
(n− 1)-stack of arrows. In particular, verifying that a sheaf X is a derived stack involves
inductively finding atlases: given the map M0 −→ X, one has to produce an atlas M1 −→ G
to show that G is a derived (n − 1)-stack, etcetera. Alternatively, one can make all these
choices of atlases all at the same time:

Definition 5.2.14. Consider a simplicial diagram X• : ∆op −→ dMfd of derived manifolds.
We will say that X• is a derived Lie n-groupoid if for any horn inclusion Λi[k] ⊆ ∆[k], the
map X(∆[k]) −→ X(Λi[k]) from the derived manifold of k-simplices to the derived manifold
of i-th horns is a smooth surjection and an equivalence for k > n.

A map p : Y• −→ X• between derived Lie n-groupoids is called a Kan fibration if for each
horn inclusion Λi[k] ⊆ ∆[k], the matching map

Y (∆[k]) ' Yk // X(∆[k])×X(Λi[k]) Y (Λi[k]) (5.2.15)

is a smooth surjection between derived manifolds. If in addition the map Y0 −→ X0 is
smooth, we will say that the map p is a smooth Kan fibration.

Similarly, a map p : Y• −→ X• of derived Lie n-groupoids is a smooth hypercover if all
maps

Y (∆[k]) ' Yk // X(∆[k])×X(∂∆[k]) Y (∂∆[k])

are smooth surjections. There are similar notions of derived étale Lie n-groupoids, Kan
fibrations and hypercovers.

Remark 5.2.16. Let X be an∞-topos and let n be a natural number. An n-groupoid in X is
a simplicial diagram X• : ∆op −→ X with the property that each map X(∆[k]) −→ X(Λj [k])
is an effective epimorphism and an equivalence for k > n. Similarly, a map Y• −→ X• is a
Kan fibration if each map (5.2.155.2.15) is an effective epimorphism.

As one would expect, Kan fibrations are useful for computing homotopy limits. For
example, consider a pullback diagram of n-groupoids

Y ′• //

��

Y•

p

��

X ′• // X•

where p is a Kan fibration. Then the map of colimits |Y ′• | −→ |Y•|×|X•| |X ′•| is an equivalence.

The relation between n-stacks and derived Lie n-groupoids can be summarized as follows:

Proposition 5.2.17 ([7777]). There is a functor |− | : dLien −→ Sh(Aff) sending each derived
Lie n-groupoid X• : ∆op −→ dMfd to the colimit of the composite diagram ∆op −→ dMfd −→
Sh(Aff). This functor has the following properties:

(i) The essential image of the functor | − | is the subcategory of derived n-stacks.

(ii) The functor | − | sends smooth Kan fibrations to smooth maps.

(iii) Let X ′• −→ X• ←− Y• be a diagram of derived Lie n-groupoids and suppose that
Y• −→ X• is a Kan fibration. Then the levelwise pullback X ′• ×X• Y• is a derived Lie
n-groupoid and the natural map |X ′• ×X• Y•| −→ |X ′•| ×|X•| |Y•| is an equivalence of
sheaves.
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(iv) The functor | − | sends smooth hypercovers to equivalences and realizes the essential
image of |−| as the universal∞-category obtained from the∞-category dLien of derived
Lie n-groupoids by inverting the smooth hypercovers.

The same result holds in the étale case.

In other words, an object X ∈ Sh(Aff) is a derived n-stack if and only if there exists a
derived Lie n-groupoid X• : ∆op −→ dMfd whose colimit |X•| is equivalent to X. We will
refer to |X•| as the associated stack of the derived Lie n-groupoid X•. The associated stack
of a derived Lie n-groupoid X• has a canonical atlas, given by the map X0 −→ |X•|.

Remark 5.2.18. It follows from the description of the localization of dLien at its hypercovers
(see [7777] or [7070]) that for two derived Lie n-groupoids X• and Y•, any map between their
associated stacks f : |X•| −→ |Y•| fits into a homotopy-commuting triangle

|U•|
|g|

!!

|p|

}}

|X•|
f

// |Y•|

where p : U• −→ X• is a smooth hypercover and g : U• −→ Y• is a Kan fibration. We will use
this to freely replace maps of n-stacks by maps of derived Lie n-groupoids and vice versa.
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5.2.3 Examples.

Example 5.2.19. A (smooth) Lie 1-groupoid is just a Lie groupoid. If A is a chain complex
of abelian Lie groups concentrated in degrees [0, n], then the associated Eilenberg-Maclane
object K(A) is a Lie n-groupoid, whose classifying space is the Eilenberg-Maclane stack of A.

Example 5.2.20. Let G be a proper Lie groupoid (e.g. a smooth manifold or a compact
Lie group) and let η ∈ Hn+1(BG,Z) be a class in the cohomology of the classifying space
of G. Then η can be represented by a U(1)-valued Čech cocycle, i.e. by the datum of a
hypercover U• −→ G of G, together with a map of simplicial manifolds η : U• −→ K(U(1), n)
(see e.g. [1616]). The pullback of η along the path fibration of the map ∗ −→ K(U(1), n) is a
Lie n-groupoid, which provides an extension of M by K(U(1), n− 1).

This gives a general procedure for higher stacks: given a stack X and a cohomology class
in Hn(X,U(1)), one can form a higher stack X ×K(U(1),n) ∗ by annihilating this cohomology
class. A well-known example of this construction is classifying stack of the string group
associated to a compact, simple, simply connected Lie group [8484].

Example 5.2.21. Let G be a Lie groupoid with associated stack X. The free loop stack
LX is given by the derived self-intersection X ×X×X X of the diagonal and is modeled by
the derived inertia groupoid of G, whose objects are the automorphisms of G. Alternatively,
one can think of LX ' Map(S1, X) as the stack of X-valued local systems on the circle.
More generally, for any finite simplicial set K and any derived n-stack X, there is a derived
n-stack of X-valued local systems on K.

Remark 5.2.22. Work of Joyce [5151] shows that many analytical constructions of moduli
spaces (such as spaces of J-holomorphic curves) produce derived manifolds.

Example 5.2.23. Other examples of derived Lie groupoids (or derived 1-stacks) are given
by action groupoids of (Lie) groups acting on derived manifolds, which arise as soon as one
tries to intersect two non-transverse G-invariant submanifolds of a manifold with G-action. In
general, there is no equivariant way of deforming two submanifolds until they are transverse.
For example, if µ : M −→ g∗ is the moment map of a Hamiltonian G-space M , then the
symplectic reduction µ−1(0)/G always exists as a derived stack.

Remark 5.2.24. Consider the composite left adjoint functor from affine derived R-schemes
to affine derived manifolds

(−)R : AffSchop
R := CAlg≥0

R
F // C∞Alg Spec

// Affop

Here F is the free functor, left adjoint to the forgetful functor from C∞-rings to connective
commutative R-algebras, and Spec is the left adjoint of Corollary 5.1.285.1.28. This composite
sends an affine derived R-scheme S to its R-points SR, endowed with the analytic topology.

The free functor F preserves cotangent complexes: LF (A)/F (B) is equivalent to F (A)⊗A
LA/B. It follows that (−)R preserves smooth and étale maps, as well as étale covers which
are surjective on R-points. Let τ denote the topology on derived R-schemes consisting of
such étale covers which are surjective on R-points. Then the above functor extends to a left
exact left adjoint

(−)R : Sh(AffSchR, τ) //Sh(Aff)

taking R-points of sheaves. This functor preserves smooth and étale maps, so that XR is
a derived stack in the C∞-sense as soon as X is a derived Artin stack with respect to the
topology τ , instead of the étale topology.

Similarly, the C-points of a derived Artin stack give rise to a derived stack in the C∞-sense.
See e.g. [9797, 8585] for many examples, notably stacks of maps from a flat and proper scheme to
a locally finitely presented derived stack.
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5.2.4 Perfect complexes. Recall that each affine space M comes with a reflective full
subcategory QC(M) ⊆ ModO(M) of (O(M)-modules that arise as the global sections of)
quasi-coherent sheaves on M . Every map f : M −→ N between affines induces an adjunction
f∗ : ModO(N) � ModO(M) : f∗ where f∗ preserves quasi-coherent sheaves. We therefore
obtain a functor

QC: Affop // PrL; M � // QC(M).

Lemma 5.2.25. The functor QC: Affop −→ PrL satisfies descent and therefore determines
a limit-preserving functor QC: Sh(Aff)op −→ PrL. We refer to QC(X) as the ∞-category of
quasi-coherent sheaves on X; when X = M is a derived manifold, this agrees with Definition
5.1.345.1.34.

Proof. Let M be a derived manifold and consider the cartesian square consisting of presheaves
of (large) ∞-categories on M

ShO(−)

��

// Sh(−,Mod)

��

∗
O

// Sh(−, C∞Alg).

The pullback ShO(−) sends each open subspace U ⊆ M to the ∞-category of O-module
sheaves over U and each inclusion V ⊆ U is simply given by the restriction functor ShO(U) −→
ShO(V ). By Lemma 5.2.45.2.4, the presheaf ShO(−) is a sheaf.

By Lemma 5.1.335.1.33, the restriction of ShO(−) to the full subcategory of affine opens is
equivalent to the functor sending an affine open U ⊆M to QC(U). In particular, taking M to
be an affine derived manifold shows that QC: Affop −→ Ĉat∞ satisfies descent. Furthermore,
for a general derived manifold M , there is an equivalence

ShO(M) ∼ // limI ShO(UI)
∼ // limI QC(UI) QC(M)∼oo

where {UI} is some diagram of affine open subspaces of M whose colimit in Sh(Aff) is a
model for M . Indeed, the first equivalence follows from the descent of ShO(−) and the last
equivalence uses that QC is extended to all sheaves on Aff by colimits.

Remark 5.2.26. Let X be a sheaf on Aff and let QC(X) = limU∈Aff/X QC(U) be its
category of quasi-coherent sheaves. For each map x : U −→ X from an affine, the category
QC(U) carries a t-structure where QC≥0(U) consist of the quasi-coherent sheaves F whose
homotopy sheaves vanish below degree 0 or equivalently, for which F (U) is connective.

Given a map f : V −→ U , the functor f∗ : QC(U) −→ QC(V ) preserves the subcategory
of connective sheaves. Using this, one sees that QC(X) carries a t-structure where QC≥0(X)
consists of the quasi-coherent sheaves F such that for any point x : U −→ X, the sheaf x∗F
is connective over Spec(A).

Remark 5.2.27. By Remark 5.1.355.1.35, the (closed) symmetric monoidal structure on ModO(M)
descends to a unique closed symmetric monoidal structure on QC(M) with the property that
the localization functor ModO(M) −→ QC(M) is symmetric monoidal. Each map between
affines f : M −→ N induces a symmetric monoidal functor f∗ : QC(N) −→ QC(M), so that
QC(X) is closed symmetric monoidal for any sheaf X.

Definition 5.2.28. Let M be a derived manifold. We will say that an object E ∈ QC(M)
is a perfect complex if it is locally finitely presentable: every point of M admits an open
neighbourhood U such that the restriction E

∣∣U can be obtained from the structure sheaf
O
∣∣U by finite limits and colimits. Let Perf(M) ⊆ QC(M) be the full subcategory on the

perfect complexes.
A sheaf is locally free of finite rank if E is locally equivalent to a finite direct sum O⊕n.



116 Section 5.2

Example 5.2.29. Let M be a smooth manifold. Every finite chain complex of finite rank
vector bundles

. . . // 0 // Ea // Ea−1 // . . . // Eb+1 // Eb // 0 // . . . .

determines a perfect complex. Conversely, any perfect complex over M is locally quasi-
isomorphic to such a complex of vector bundles. In fact, any perfect complex over a compact
manifold admits a global presentation by a finite complex of finite rank vector bundles, by
the existence of global resolutions [8888, Exposé II, Proposition 2.3.2].

Example 5.2.30. The subcategory Perf(M) ⊆ QC(M) is closed under finite limits and
colimits, as well as the tensor product. Indeed, these can be computed locally, so that the
result follows from the fact that finitely presented modules over a commutative algebra are
closed under these operations.

Note that every perfect complex E is dualizable. Indeed, the mapping sheaf E∨ =
Map(E,O) in QC(M) can be computed locally. But on small enough opens U we can present
E by a finitely presented O-module, so that E∨ is finitely presented and serves as the dual
of E.

Recall that a perfect complex E ∈ Perf(M) has Tor-amplitude contained in [a, b] if the
associated sheaf of E ⊗O π0(O) has homotopy sheaves vanishing in degrees strictly below a

and strictly above b. Let Perf [a,b](M) ⊆ Perf(M) be the subcategory of perfect complexes
with Tor-amplitude contained in [a, b].

Example 5.2.31. The following properties are immediate (see e.g. [9696]):

(a) If E is a perfect complex such that E ⊗O π0(O) ' 0, then E ' 0.
(b) A perfect complex E is locally equivalent to the sheaf O⊕n[a] if and only if E ∈

Perf [a,a](M).

(c) If E ∈ Perf [a,b](M), then E ∈ Perf [a−1,b+1](M).

(d) If f : E −→ F is a map in Perf [a,b](M), then the cofiber cof(f) is contained in
Perf [a,b+1](M)

(e) If E ∈ Perf [a,b](M) and f : N −→M is a map of affine spaces, then f∗E ∈ Perf [a,b](N).

(f) If E ∈ Perf [a,b](M) and F ∈ Perf [a′,b′](M), then the tensor product E⊗AF is contained
in Perf [a+a′,b+b′](M) and E∨ ∈ Perf [−b,−a](M).

(g) If E ∈ Perf [a,b](M), then locally on M there exists a map OU [a]⊕n −→ E
∣∣U whose

cofiber is contained in Perf [a+1,b](U).

Lemma 5.2.32. The functors Perf and Perf [a,b] : Affop −→ Cat∞ satisfy descent.

Proof. This follows from descent of quasi-coherent sheaves, since a quasi-coherent sheaf
is perfect (with Tor-amplitude contained in [a, b]) if and only if it is locally perfect (with
Tor-amplitude contained in [a, b]).

Every sheaf X : Affop −→ S therefore comes equipped with full subcategories

Perf [a,b](X) ⊆ Perf(X) ⊆ QC(X)

of perfect complexes over X (with Tor-amplitude contained in [a, b]), obtained as limits of
the form Perf(X) = limU∈Aff/X Perf(U).
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Remark 5.2.33. Let X• be a Lie n-groupoid and let X be its associated stack. The ∞-
category Perf(X) of perfect complexes is closely related to the ∞-category of representations
up to homotopy of X•, in the sense of [44]. Indeed, for every smooth manifold M , consider
the dg-category of bounded complexes of (finite rank) vector bundles on M , whose dg-nerve
(see e.g. [6262, Section 1.3.1]) we will denote by Vectdg(M). This ∞-category admits a natural
fully faithful inclusion Vectdg(M) −→ Perf(M).

Now suppose that X• is a simplicial manifold and consider the underlying semi-cosimplicial
diagram of fully faithful functors Vectdg(X•) −→ Perf(X•). This induces a fully faithful
functor on homotopy limits

holim Vectdg(X•) // Perf(X).

The homotopy limit of Vectdg(X•) can be computed explicitly: an object is given by a
collection of simplices αn : ∆[n] −→ Vectdg(Xn) taking values in the equivalences and such
that αn ◦ ∂i = d∗iαn−1. By the definition of the dg-nerve, each αn is given by the datum of
• objects E0, . . . , En ∈ Vectdg(Xn).

• for each subset I = {i− < im < · · · < i1 < i+} ⊆ [n], a degree m element fI in the
complex MapVectdg(Xn)(Xi− , Xi+), such that

∂fI =
m∑
j=1

(−1)j
(
fI\{ij} − f{ij<···<i+} ◦ f{i−<···<ij}

)
.

and such that each f{i−,i+} is a quasi-isomorphism.

Using the relations between the αn, one sees that a vertex of holim Vectdg(X•) is precisely a
representation up to homotopy in the sense of [44, Proposition 3.2] (with the extra condition
that the action is by quasi-isomorphisms). A similar analysis can be applied to the higher
simplices of the homotopy limit.

The following results are well-known (see e.g. [9797, Section 1.3.7, 2.2.6] and [9696]):
Lemma 5.2.34. Let E ∈ QC(X) be a quasi-coherent sheaf over an sheaf X and consider
the functor

SpecX(E) : (Aff/X)op // S;
(
U

f−→ X
) � // MapO(U)

(
f∗E,O(U)

)
.

This determines a map of sheaves p : SpecX(E) −→ X over Aff, together with a zero section
0: X −→ SpecX(E).

(1) If E is connective, then p : SpecX(E) −→ X is 0-representable.
(2) If E is perfect with Tor-amplitude contained in [−a, b] with a ≥ 0, then p is a-

representable and locally finitely presented.
(3) If in addition b ≤ 0, then the map p is smooth and if b < 0, then the zero section is a

(a− 1)-smooth surjection.

Proof. Clearly the functor SpecX(E) : (Aff/X)op −→ S satisfies descent, so that it determines
an object in Sh(Aff/X) ' Sh(Aff)/X. The zero section X −→ SpecX(E) sends each affine
f : U −→ X to the zero map f∗E −→ O(U). For any map f : Y −→ X of sheaves, the
functor SpecY (f∗E) is simply given by the restriction of SpecX(E) along the canonical
functor Aff/Y −→ Aff/X. It follows that there is a natural commuting square of functors

QC(X)op f∗
//

SpecX
��

QC(Y )op

SpecY
��

Sh(Aff)/X
f∗
// Sh(Aff)/Y.
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Since all statements are local in X, we may therefore assume that X = M is an affine. In
that case, (1) is immediate since SpecM (E) is corepresentable by the free C∞-ring under
O(M) generated by the connective O(M)-module E.

For (2) and (3), we proceed by induction on a. The case a = 0 follows immediately from
(1). Next, suppose that E has Tor-amplitude contained in [−a, b] with a > 0. To see that
SpecM (E) is a derived a-stack, it suffices to work locally on M and assume that there exists
a map F [−a] −→ E where F is free and with a cofiber E′ of Tor-amplitude [−a+ 1, b]. It
follows that SpecM (E) fits into a homotopy pullback of sheaves over M of the form

SpecM (E′)

��

// M

0
��

SpecM (E) // SpecM (F [−a]).

The zero section 0: M −→ SpecM (F [−a]) is an (a − 1)-smooth surjection, since it is the
base change of the (a − 1)-smooth surjection ∗ −→ K(Rk, a). It follows that the map
SpecM (E′) −→ SpecM (E) is an (a− 1)-smooth surjection. Since SpecM (E′) is an (a− 1)-
stack, locally finitely presented over M (smooth when b ≤ 0), it follows that SpecM (E) is an
a-stack, locally finitely presented over M (smooth when b ≤ 0).

Finally if b < 0, then the zero section of SpecM (E) is the composition of the zero section
of SpecM (E′) and the (−a− 1)-smooth surjection SpecM (E′) −→ SpecM (E). Since E′ has
Tor-amplitude contained in [−a+ 1, b], an inductive argument reduces the statement to the
case where E has Tor-amplitude contained in [b, b]. In that case, E is locally free and the zero
section M −→ SpecM (E) can locally be identified with the base change of ∗ −→ K(Rk, b),
which is smooth.

Example 5.2.35. Let X be a derived stack and let LX ∈ QC(X) be its cotangent complex
(see Definition 6.1.206.1.20). For n ≥ 0, the shifted tangent bundles of X are the derived stacks

T [−n]X := SpecX(LX [n]).

This definition extends for negative n when X is locally finitely presented, so that LX is
perfect.

Lemma 5.2.36 ([9797, Proposition 2.3.3.1], [9696]). Consider the sheaves

M0 = Ob
(
Perf [a,b]) : Affop // S

M1 = Ar
(
Perf [a,b]) : Affop // S

sending an affine U to the spaces of objects and arrows in Perf [a,b](U). Both sheaves are
derived (b− a+ 1)-stacks.

Proof. The second assertion can be deduced from the first, since the map taking domain and
codomain

(d0, d1) : M1 //M0 ×M0

is (b− a)-representable. Indeed, consider a pullback square of the form

P //

��

M1

��

M
(E,F )

//M0 ×M0
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where M is affine and the bottom map classifies two perfect complexes E and F over M .
Unraveling the definitions, one sees that the sheaf P sends an affine U to the space of
maps f : U −→M , together with a map of perfect complexes f∗E −→ f∗F . Since perfect
complexes are dualizable, the latter is equivalent to the data of a map f∗(E⊗F∨) −→ OU . It
follows that P is simply the stack SpecM (E⊗F∨). Since E⊗F∨ has Tor-amplitude contained
in [a−b, b−a], it follows from Lemma 5.2.345.2.34 that the projection to M is (b−a)-representable.

To show that M0 is a derived stack, we will realize it as the R-points of a derived Artin
stack, following Remark 5.2.245.2.24. Let Z ∈ Sh(AffSchR) be the stack of perfect modules with
Tor-amplitude in [a, b], which is a derived Artin (b− a+ 1)-stack by [9696, Proposition 3.7]. In
fact, all coverings used in the proof of loc. cit. induce surjections on R-points, so that the
R-points ZR form a derived (b− a+ 1)-stack as well, by Remark 5.2.245.2.24.

The sheaf ZR is the associated sheaf of the presheaf sending an affine derived manifold
M to Z(O(M)) (where O(M) is considered as an R-algebra). Every perfect O(M)-module
determines a perfect complex over M in the C∞-sense of Definition 5.2.285.2.28, so that there
is a canonical map ZR −→ M0. This map induces a surjection on π0-sheaves, since by
definition every perfect complex can be presented locally by a finitely presented O-module.
On the other hand, the map ZR −→M0 is a fully faithful inclusion, since the quasicoherent
sheaves on M form a full subcategory of the ∞-category of O(M)-modules. We conclude
that M0 ' ZR is a derived (b− a+ 1)-stack.

Variant 5.2.37. Replacing each structure sheaf by its complexification, one obtains a derived
(b − a + 1)-stack Perf [a,b]

C of perfect complexes over C. Similarly, there are derived stacks
of perfect complexes equipped with (non-degenerate or skew-) symmetric forms, defined as
certain pullbacks of the stacks M0 and M1 [102102].

5.3 Homotopy theory of stacks

Because smooth manifolds have a very simple (local) topology, they come with a well-behaved
theory of locally constant sheaves, which is controlled by a simple invariant: their underlying
homotopy type (rather than something more complicated, like a pro-homotopy type). For
example, the category of locally constant set-valued sheaves on M is equivalent to the category
of functors τ≤1(M) −→ Set indexed by the fundamental groupoid of M . The purpose of this
section is to describe an analogue of this result that applies not only a smooth manifold, but
also in relative situations, where we have a smooth map p : Y −→ X between two sheaves on
Aff.

5.3.1 Sheaves on stacks. Every derived manifold M comes equipped with an ∞-topos
Sh(M) of sheaves on its underlying topological space, as well as an ∞-topos Sh(Aff)/M of
‘sheaves over M ’. These two categories of sheaves are closely connected (this is treated in
great generality in [4848]): for any map f : M −→ N between affine derived manifolds, there is
a commuting square

Op(N)

f−1

��

ι // Sh(Aff)/N

f∗

��

Op(M)
ι
// Sh(Aff)/M

(5.3.1)

where the horizontal functors are the obvious inclusions (using Proposition 5.2.35.2.3) and the
vertical functors take inverse images (resp. the pullback) along f .

Lemma 5.3.2. Let ι∗ : PSh(Aff)/M −→ Sh(Op(M)) be the functor restricting along ι. Then
ι∗ has the following two properties:

(1) it preserves sheaves.
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(2) if {Vi −→ V } is an open cover of a derived manifold V over M , then the map of
presheaves

∐
ι∗(Vi) −→ ι∗(V ) induces a surjection on the associated sheaves.

Proof. The functor ι sends an open cover {Vi −→ V } in Op(M) to a surjection
∐
ι(Vi) −→

ι(V ) in Sh(Aff)/M , so ι∗ preserves sheaves. For any derived manifold V over M , the
sheaf ι∗V on M is simply the sheaf sending an open U ⊆M to MapdMfd/M (U, V ). Clearly∐
ι∗(Vi) −→ ι∗(V ) will induce a surjection on associated sheaves: given a map U −→ V over

M , one can always find a cover {Uα −→ U} such that each Uα −→ U −→ V factors over
some open Vi.

Lemma 5.3.3. Restriction along ι determines a functor

et∗ : Sh(Aff)/M // Sh(M)

which admits a left adjoint et! and right adjoint et∗. The left adjoint et! is fully faithful and
preserves finite limits. Furthermore, it depends functorially on the affine manifold M , in the
sense that any map f : M −→ N induces a (natural) commuting square

Sh(M) et! //

f−1

��

Sh(Aff)/M

f∗

��

Sh(N)
et!
// Sh(Aff)/N.

(5.3.4)

Proof. By (1) of Lemma 5.3.25.3.2, restriction along ι determines a functor between categories of
sheaves, whose left adjoint et! sends a sheaf to the associated sheaf of its left Kan extension
along ι. On the other hand, (2) implies that right Kan extension along ι preserves sheaves
and provides a right adjoint et∗ to et∗.

Since et∗ and et! both preserve colimits, to verify that et! is fully faithful it suffices to
show that the map U −→ et∗et!(U) is an equivalence for any open subspace U ⊆M , which
is immediate. Since the functor ι preserves finite limits, the functor et! preserves finite limits.
Finally, the commuting square (5.3.45.3.4) arises from (5.3.15.3.1) by passing to the associated left
Kan extension functors (and taking associated sheaves).

Remark 5.3.5. One can think of the functor et! as an analogue of the étale space (or espace
étalé) construction from classical sheaf theory [3636, Chapitre II.1.2]. To see this, suppose
that F is a sheaf of sets on M and pick a surjection

∐
Ui −→ F where all Ui ⊆M are open

subspaces. The sheaf et!(F ) is obtained from the sheaves represented by the Ui, by gluing
along their intersection Ui ×F Uj . These intersections are representable by open subspaces
of Ui and Uj , so that et!(F ) is representable by a derived manifold over M . This derived
manifold is simply the usual étale space over M associated to the sheaf F .

In particular, et!(F ) −→M is an étale map (since it locally given by the open inclusion
et!(Ui) −→M). Similarly, if F −→ G is a (surjective) map of sheaves of sets over M , then
the map et!(F ) −→ et!(G) is an étale (surjection) of derived manifolds over M . Using this,
one sees that for any n-truncated sheaf F on M , its image et!(F ) −→M is an n-étale map.
Indeed, if F is modeled by an n-groupoid object F• of discrete sheaves on M , then et!(F ) is
the colimit of a derived étale n-groupoid et!(F•) over M .

Using Lemma 5.2.45.2.4 and [5959, Theorem 6.1.3.9], we can extend the natural geometric
morphism (5.3.45.3.4) to a natural geometric morphism

et! : Sh(−) // Sh(Aff)/(−) : et∗oo

between colimit-preserving functors Sh(Aff) −→ ToposR to the ∞-category of ∞-toposes
and (the right adjoints of) geometric morphisms between them. For any sheaf X on Aff, we
will refer to Sh(X) as the ∞-category of sheaves on X.
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Example 5.3.6. Let M be a derived manifold and consider the composite

Sh(M) et! // Sh(Aff)/M
Sh(−)

// ToposR.

This functor preserves colimits and its restriction to the open subspaces Op(M) is naturally
equivalent to the functor sending U ⊆ M to the ∞-topos Sh(U) ' Sh(M)/U . It follows
from [5959, Theorem 6.1.3.9] that for any sheaf F on M , there is an equivalence Sh(et!(F )) '
Sh(M)/F .

Similarly, taking colimits one sees that for any sheaf X : Affop −→ S and any F ∈ Sh(X),
there is an equivalence of ∞-categories

Sh(et!(F )) ' Sh(X)/F.

Corollary 5.3.7. For every sheaf X : Aff −→ S, the left adjoint et! : Sh(X) −→ Sh(Aff)/X
is fully faithful and sends n-truncated sheaves over X to n-étale maps over X.

Proof. The colimit of a diagram of ∞-toposes is computed as the limit of the associated
diagram of ∞-categories and left adjoints between them. It follows that et! is the limit of
the fully faithful functors et! : Sh(M) −→ Sh(Aff)/M for every affine M −→ X, so that it is
fully faithful itself.

To see that et!(F ) −→ X is n-étale for any n-truncated sheaf F on X, it suffices to verify
that for any map f : M −→ X from an affine, the map

f∗et!(F ) ' et!(f−1F ) // M

is n-étale. This follows from Remark 5.3.55.3.5, since f−1F remains n-truncated.

Remark 5.3.8. Quasi-coherent sheaves on X ∈ Sh(Aff) cannot generally be considered as
sheaves on X (with algebraic structure) in the above sense. A notable exception is the case
where X is a derived étale stack: in this case the structure sheaves on an affine étale cover of
X determine a structure sheaf O of (local) C∞-rings on the ∞-topos Sh(X), whose category
of module sheaves can be identified with QC(X).

5.3.2 Locally contractible maps. Classically, one can identify locally constant set-valued
sheaves on a smooth manifold M with presheaves on its fundamental groupoid, using that
M is locally simply connected. Similarly, to make sure that a map p : Y −→ X in Sh(Aff)
has a simple theory of fiberwise locally constant sheaves (of spaces), we need to require p to
be locally contractible:

Definition 5.3.9. Let p : Y −→ X be a map in Sh(Aff). We will say that p is almost locally
contractible if for each pullback diagram in Sh(Aff) on the left

X X ′
f

oo Sh(X)

p−1

��

f−1
// Sh(X ′)

(p′)−1

��

Y

p

OO

Y ′

p′

OO

f ′
oo Sh(Y )

(f ′)−1
// Sh(Y ′).

(5.3.10)

the right square of ∞-categories is right adjointable (Definition 2.3.222.3.22), i.e. the base change
morphism p−1f∗ −→ f ′∗(p′)−1 is a natural equivalence.

A map p : Y −→ X is locally contractible if for every map X ′ −→ X in Sh(Aff), the base
change p′ : Y ×X X ′ −→ X ′ is almost locally contractible.
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Remark 5.3.11. Definition 5.3.95.3.9 arises more naturally as a condition at the level of ∞-
toposes. The above definition suffices for our purposes and avoids working with the∞-category
of ∞-toposes.

The class of locally contractible maps is closed under composition and it is closed under
base change by construction.

Example 5.3.12. Let K ∈ Sh(Aff) be the constant sheaf on a space K. For any sheaf X,
the projection p : K ×X −→ X is almost locally contractible, and thus locally contractible.
Indeed, note that there is a natural equivalence of∞-categories Sh(K×X) ' Fun(K,Sh(X)).
For any f : X ′ −→ X, the square of toposes (5.3.105.3.10) can then be identified with

Sh(X)

cst
��

f−1
// Sh(X ′)

cst
��

Fun(K,Sh(X))
Fun(K,f−1)

// Fun(K,Sh(X ′))

This is easily seen to be right adjointable, since the right adjoints of the horizontal functors
simply apply f∗ pointwise.

Example 5.3.13. Suppose that pi : Yi −→ X is a set of (almost) locally contractible maps.
Then the induced map p : Y =

∐
Yi −→ X is (almost) locally contractible as well. Indeed,

the base change morphism associated to a pullback square (5.3.105.3.10) is a natural transformation

Sh(X ′)

p−1f ′∗

))

f∗(p′)−1

55
Sh(Y ) =

∏
i Sh(Yi)µ

��

whose i-th component is the base change morphism µi associated to pi. Each of these
components is a natural equivalence.

Suppose that p : Y −→ X is an almost locally contractible map and let I be a set. Taking
X ′ =

∐
I X −→ X to be the fold map, the base change morphism can be identified with the

natural transformation

Sh(X)

p−1

��

Fun(I, Sh(X))

Fun(I,p−1)
��

limoo

Sh(Y ) Fun(I, Sh(Y )).
lim

oo

&.

It follows that the functor p−1 preserves infinite products. Consequently, it preserves all
limits [5959, Proposition 4.4.2.7] and admits a left adjoint p!.

Remark 5.3.14. If p is locally contractible, then for every every pullback square (5.3.105.3.10),
the functors p−1 and (p′)−1 have left adjoints. It follows from [6262, Remark 4.7.4.14] that
the transposed square of (5.3.105.3.10) is left adjointable, i.e. the natural transformation of left
adjoint functors p′!(f ′)−1 −→ f−1p! is an equivalence.

For every locally contractible map p : Y −→ X, there is a simple theory of fiberwise
locally constant sheaves on Y :
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Definition 5.3.15. If p : Y −→ X is a locally contractible map, we define the following
sheaves on X

Sing(Y/X) := p!(∗) Sing≤n(Y/X) := τ≤n
(
p!(∗)

)
.

Informally, one can think of Sing(Y/X) as the sheaf of homotopy types of the fibers of p.

Lemma 5.3.16. Let p : Y −→ X be a locally contractible map. The functor p! : Sh(Y ) −→
Sh(X)

/
Sing(Y/X) admits a right adjoint ψ∗, which is fully faithful and preserves colimits.

Proof. The right adjoint ψ∗ sends a map F −→ p!(∗) = Sing(Y/X) to the pullback
p−1F ×p−1p!(∗) {∗} along the unit map. This preserves colimits since colimits are uni-
versal in Sh(Y ). To see that it is fully faithful, let f : F −→ G be a map of sheaves in Sh(X).
Consider the square (5.3.105.3.10) in the case where

• X ′ −→ X is the map et!(G) −→ et!(F )
• Y −→ X is the locally contractible map et!(p−1F ) −→ et!(F ).

Example 5.3.65.3.6 then identifies the right square in (5.3.105.3.10) with

Sh(X)/F f∗
//

p−1

��

Sh(X)/G

p−1

��

Sh(Y )/p−1F
p−1(f)∗

// Sh(Y )/p−1G.

For any A −→ p−1G, the map p!(p−1F ×p−1G A) −→ F ×G p!A is an equivalence by Remark
5.3.145.3.14. Taking G = p!(∗) and A = ∗, this implies that p!ψ

∗(F ) −→ F is an equivalence.

We will refer to the essential image of ψ∗ : Sh(X)
/

Sing(Y/X) −→ Sh(Y ) as the fiberwise
locally constant sheaves on Y .

Example 5.3.17. Suppose that X is locally contractible, i.e. the map X −→ ∗ is locally
contractible. In this case, F ∈ Sh(X) is locally constant iff there exists an epimorphism∐
Uα −→ ∗ in Sh(X) such that each Uα × F is a constant sheaf, i.e. lies in the image of the

left adjoint to the global sections functor (see [6262, Appendix A.1]). The∞-category of locally
constant sheaves on X can be identified with the ∞-category of diagrams Sing(X) −→ S.

Similarly, if p : Y −→ X is locally contractible, then every fiberwise constant sheaf p−1(F )
is fiberwise locally constant. The proof of [6262, Theorem A.1.15] shows that a sheaf F ∈ Sh(Y )
is fiberwise locally constant if there exists an epimorphism

∐
Uα −→ ∗ such that each Uα×F

is fiberwise constant.

Lemma 5.3.18. Let p : Y −→ X be a locally contractible map. For any sheaf F ∈ Sh(X)
and any sheaf G ∈ Sh(Y ), there is an equivalence between hom sheaves

p∗Hom
(
G, p−1F

)
' Hom

(
p!(G), F

)
.

In particular, there is an equivalence of sheaves p∗p−1F ' Hom
(
Sing(Y/X), F

)
.

Proof. The proof of Lemma 5.3.165.3.16 provides a natural equivalence

p!(p−1(A)×G) ∼ // A× p!(G)

for any A ∈ Sh(X). The desired equivalence is obtained by adjunction.

The remainder of this section is devoted to a proof of the following:



124 Section 5.3

Theorem 5.3.19. Let p : Y −→ X be a smooth map between sheaves over Aff. Then p is
locally contractible.

Example 5.3.20. Let X be a smooth n-stack X and present X by a (smooth) Lie n-groupoid
X•. Then Sing(X) is the realization of the bisimplicial set Sing(X•), where Sing(Xk) is the
usual singular complex of the manifold Xk.

Similarly, let p : Y −→ X be a submersion between two finite-dimensional smooth
manifolds. Then a sheaf on Y is fiberwise locally constant if and only if its restriction to
each fiber of p is locally constant in the sense of Example 5.3.175.3.17. The stalk of the sheaf
Sing(Y/X) at x ∈ X is given by the singular complex of the fiber Yx.

The proof of Theorem 5.3.195.3.19 uses a few properties of locally contractible maps:

Lemma 5.3.21. Let p : Y −→ X be a map of sheaves over Aff and consider a diagram
U : I −→ Sh(Aff) with colimit X. If each base change pi : Vi := Y ×X Ui −→ Ui is locally
contractible, then p is locally contractible.

Proof. It suffices to show that p is almost locally contractible. Indeed, given a map f : X ′ −→
X, the base change p′ : Y ×X X ′ −→ X ′ and the diagram U ′• = U• ×X X ′ also satisfy the
conditions of the lemma: each base change Y ′×X′U ′i −→ U ′i is the base change of pi : Vi −→ Ui
and hence locally contractible. Replacing p by p′, the result then follows.

To see that p is almost locally contractible, let us fix a map f : X ′ −→ X and let us
consider the diagram J×∆[1]×2 −→ Sh(Aff) whose value at i ∈ I is given by the pullback
square

Ui X ′ ×X Ui
fioo

Y ×X Ui

pi

OO

Y ′ ×X Ui.
f ′i

oo

p′i

OO

The vertical maps are locally contractible by assumption and taking the colimit over J

produces the cartesian square (5.3.105.3.10). Let

χ : Jop ×∆[1]×2 // Ĉat∞

be the postcomposition of the above diagram with the limit-preserving functor Sh(Aff)op −→
Ĉat∞ sending a map of sheaves f : X ′ −→ X to the left adjoint f−1 : Sh(X) −→ Sh(X ′).
The limit of this diagram over J is the right square in (5.3.105.3.10). To see that this limiting
square is right adjointable, we can equivalently consider the diagram χ as a diagram

χ′ : Jop ×∆[1] // Fun(∆[1], Ĉat∞)

sending (i, 0) to the functor (pi)−1 and (i, 1) to the functor (p′i)−1. Since the maps pi and
p′i are all locally contractible by assumption, the diagram χ′ takes values in the category
FunRAd(∆[1], Ĉat∞) of Definition 2.3.222.3.22. By [6262, Corollary 4.7.4.18], the inclusion

FunRAd(∆[1], Ĉat∞) ⊆ Fun(∆[1], Ĉat∞)

is a right adjoint. Consequently, taking the limit of χ′ over Jop produces an arrow ∆[1] −→
FunRAd(∆[1], Ĉat∞). This means exactly that (5.3.105.3.10) is right adjointable.

Lemma 5.3.22. Consider a sequence Z
q
//Y

p
//X such that q and pq are locally con-

tractible. If q is a surjection, then p is locally contractible as well.
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Proof. Since the conditions of the lemma are stable under base change along a map X ′ −→ X,
it suffices to verify that p is almost locally contractible, as in the proof of Lemma 5.3.215.3.21. To
see this, let f : X ′ −→ X be a map and consider the commuting diagram

Sh(X)

p−1

��

f−1
// Sh(X ′)

(p′)−1

��

Sh(Y )

q−1

��

(f ′)−1
// Sh(Y ′)

(q′)−1

��

Sh(Z)
(f ′′)−1

// Sh(Z ′)

The base change morphism µ associated to the composite square decomposes as

µ : q−1p−1f∗
q−1(µ1)

// q−1f ′∗(p′)−1 µ2◦(p′)−1
// f ′′∗ (p′q′)−1

where µ1 and µ2 are the base change morphisms of the top and bottom square. By assumption,
µ and µ2 are equivalences, so that q−1(µ1) is an equivalence. Since q : Z −→ Y is an effective
epimorphism, the functor q−1 detects equivalences. We conclude that µ1 is an equivalence,
so that p is almost locally contractible.

Lemma 5.3.23. Let F ∈ Sh(X) be a sheaf and consider the map p : et!(F ) −→ X. This
map is locally contractible.

Proof. The base change of p along a map f : X ′ −→ X can be identified with the map
p′ : et!(f−1F ) −→ X ′. It therefore suffices to show that p is almost locally contractible.
Given a map f : X ′ −→ X, it follows from Example 5.3.65.3.6 that the right square in (5.3.105.3.10)
can be identified with

Sh(X) f−1
//

(−)×F
��

Sh(X ′)

(−)×f−1F

��

Sh(X)/F
f−1
// Sh(X ′)/f−1F.

One easily verifies that this square is right adjointable, using that f∗ preserves limits.

Proof (of Theorem 5.3.195.3.19). We will prove by induction on n that an n-smooth map p : Y −→
X is locally contractible. By Lemma 5.3.215.3.21, we may assume that X is affine, so that Y is a
derived n-stack.

For the induction step, suppose that p is n-smooth and let q : Z −→ Y be an (n − 1)-
smooth atlas for the derived n-stack Y . Then q is locally contractible and pq is a 0-smooth
map, hence locally contractible by the base of the induction. Lemma 5.3.225.3.22 then implies
that p is locally contractible as well.

It therefore remains to treat the base case, where p : Y −→ X is a (0-)smooth map
between derived manifolds. Using Lemmas 5.3.215.3.21, 5.3.225.3.22 and 5.3.235.3.23, as well as Example
5.3.135.3.13, we can work locally on Y and X and thus reduce to the case of a projection map
X × Rn −→ X.

It therefore suffices to verify that for any sheaf X, the map p : X × Rn −→ X is almost
locally contractible. The ∞-category Sh(X × Rn) has a very simple description: it follows
from Proposition 7.3.1.11 and Theorem 7.3.3.9 of [5959] that for any topological space M , there
is a natural equivalence

Sh(M × Rn) ' Sh(M,Sh(Rn))
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between the ∞-category of sheaves on M ×Rn and the category of sheaves on M with values
in Sh(Rn). If X ' colimMi is a colimit of affine derived manifolds, we obtain a natural
equivalence of ∞-categories

Sh(X × Rn) ' lim
i

Sh(Mi × Rn) ' lim
i

Sh(Mi,Sh(Rn)) ' Sh(X,Sh(Rn))

where the limits are taken along the left adjoints of the geometric morphisms. For any map of
sheaves f : X ′ −→ X, the square (5.3.105.3.10) can then be identified with the commuting square
of ∞-categories

Sh(X, S) f−1
//

Sh(X,cst)
��

Sh(X ′, S)

Sh(X′,cst)
��

Sh(X,Sh(Rn))
f−1
//

f−1
// Sh(X ′,Sh(Rn)).

(5.3.24)

The horizontal functors simply take inverse image sheaves (with coefficients) along f and the
vertical functors send a sheaf of spaces to Sh(Rn)-valued sheaf whose values are constant
sheaves.

To see that this square is right adjointable, note that the functor cst : S −→ Sh(Rn)
admits a left adjoint σ, because Rn is a contractible topological space (see e.g. [6262, Remark
A.1.4]). Consequently, the vertical functors admit left adjoints Sh(X,σ) and Sh(X ′, σ′).
These left adjoints clearly commute with restriction of sheaves along f , so that the transpose
of (5.3.245.3.24) is left adjointable. It then follows from Remark 2.3.242.3.24 that (5.3.245.3.24) is right
adjointable, which shows that p : X × Rn −→ X is almost locally contractible.

5.3.3 Application: higher connected covers. Any Lie groupoid G ⇒ M admits a
source-simply connected cover G̃ ⇒ M . The discussion from the previous paragraphs
provides an alternative description of this Lie groupoid. Indeed, suppose that p : Y −→ X is
a smooth map and let

Sing≤n(Y/X) // X

be the image of sheaf Sing≤n(Y/X) from Definition 5.3.155.3.15 under the functor et!. This map
is n-étale by Corollary 5.3.75.3.7. Furthermore, the map of sheaves on Y

∗ // p−1(p!(∗)) // p−1τ≤n(p!(∗))

decomposes the map p : Y −→ X as Y p̃−→ Sing≤n(Y/X) −→ X.

Lemma 5.3.25. Suppose that p : Y −→ X is m-smooth. Then the induced map p̃ : Y −→
Sing≤n(Y/X) is an m-smooth surjection for all −1 ≤ n ≤ m.

Proof. The fact that p̃ is m-smooth follows immediately from the fact that the map
Sing≤n(Y/X) −→ X is n-étale. To see that p̃ is a surjection, we may replace X by
Sing≤n(Y/X), so that p̃ = p has n-connected fibers. Working locally on X, we may assume
that X is a derived manifold and take a smooth map p• : Y• −→ X between derived Lie
n-groupoids modeling p.

For any point x ∈ X, the stalk p!(∗)x is given by the homotopy type Sing(Yx) of the fiber
of Y over x. By assumption, this homotopy type is nonempty so that Yx is nonempty. It
follows that the map p0 : Y0 −→ X is a smooth surjective map of derived manifolds, so that
Y −→ X is a surjection of sheaves.

Lemma 5.3.26. Suppose that p : Y −→ X is smooth and let x̃ : ∗ −→ Sing≤n(Y/X) be a
point with image x in X. Then the natural map Yx̃ −→ Yx realizes the fiber Yx̃ over x̃ as an
n-connected cover of the fiber Yx over x.



Homotopy theory of stacks 127

Proof. There is a diagram of pullback squares of sheaves

Yx̃ //

��

Yx //

��

Y

��

∗
x̃
// Sing≤n(Y/X)x //

��

Sing≤n(Y/X)

��

∗
x

// X.

The sheaf Sing≤n(Y/X)x is the constant sheaf on the stalk of τ≤np!(∗) ∈ Sh(X), which can
be identified with the space τ≤nSing(Yx). The top left pullback square therefore realizes Yx̃
as an n-connected cover of the fiber Yx.

Example 5.3.27. In terms of groupoids, the above construction takes source n-connected
covers. For example, let G ⇒ M be a Lie groupoid and let p : M −→ X be the induced
smooth map to its classifying stack. Then p̃ : M −→ Sing≤n(M/X) is an n-smooth surjection,
whose Čech nerve G̃ fits into a commuting diagram

G̃ //
//

��

M

��

G //
// M.

Here G̃ is no longer a manifold, but a smooth (n− 1)-stack. For each point x ∈M , the map
on source fibers G̃s−1(x) −→ Gs−1(x) realizes the former as the n-connected cover of the latter.



Chapter 6

Deformation theory

A derived stack X : Affop −→ S is a particular kind of sheaf that still exhibits a reasonable
geometric behaviour. In particular, just like (derived) manifolds, derived stacks have a good
infinitesimal theory, which is controlled by their cotangent complex.

The purpose of this section is to study the infinitesimal structure of derived stacks. In
particular, we will establish the following version of Theorem 00 from the introduction:

Theorem 00. Let f : M −→ X be a map from a derived manifold (or a derived étale stack)
to a derived stack. Then the fiberwise tangent bundle of M over X has the structure of a
sheaf of Lie algebroids over M , with anchor given by the canonical map

TM/X = HomOM (LM/X ,OM ) // TM .

Remark 6.0.1. The behaviour of the Lie algebroid TM/X depends on the map f : M −→ X.
If f is a smooth map, then TM/X is a connective Lie algebroid over M , whose global sections
can be thought of as the Lie algebra of the group of automorphisms of M over X. When
M −→ X is a closed embedding, the Lie algebroid TM/X behaves like the (shifted) normal
bundle of M inside X.

Theorem 22 is a formal consequence of the results of Chapter 44, together with some
elementary properties of derived stacks that we will discuss in this chapter. More precisely,
this chapter can be outlined as follows:

(1) We will start in Section 6.16.1 by recalling various conditions on a sheaf X : Affop −→ S

that guarantee that it has good infinitesimal behaviour. The most important of these
conditions is being infinitesimally cohesive (Definition 6.1.16.1.1): this guarantees that the
deformations of a map Spec(A) −→ X are controlled by a formal moduli problem under
A.

(2) In Section 6.26.2, we verify that derived stacks have all the infinitesimal properties discussed
in Section 6.16.1, using a well-known inductive argument. The main technical result is a
version of the inverse function theorem for derived manifolds (Proposition 6.2.16.2.1). This
was already used in Section 5.25.2 to guarantee a reasonable theory of derived stacks.

(3) In Section 6.36.3 we describe a variant of Theorem 4.2.14.2.1 which relates sheaves of formal
moduli problems and sheaves of Lie algebroids (Corollary 6.3.156.3.15). Using this, we prove
Theorem 22.

(4) Finally, Section 6.46.4 discusses the deformation theory of derived stacks: when p : X −→
Spec(A) is a derived stack over Spec(A), there is a Lie algebroid controlling the deforma-
tions of p to a map X ′ −→ Spec(A′) over an infinitesimal extension of A. We prove this
by verifying (some of) the infinitesimal properties of Section 6.16.1 for the moduli space of
derived stacks (Theorem 6.4.36.4.3).
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Remark 6.0.2. The material of Section 6.16.1 and Section 6.26.2 is extensively discussed in the
algebro-geometric setting, see e.g. [9797, Chapter 1.4], [6363, Chapter 17] and [3333, Chapter III.1].
We closely follow the treatments of loc. cit. in the setting of derived differential topology.

6.1 Infinitesimal properties of sheaves
As we have seen in Section 2.32.3, there is good obstruction theory for deformations of algebraic
objects, such as (connective) modules, along square zero extensions of C∞-rings: the spaces
of such deformations can be identified with spaces of null-homotopies of an obstruction class
inside a certain spectrum. In this section, we recall some conditions on a sheaf

X : Aff // S

that provide it with a similar deformation theory, i.e. with a (linear) obstruction theory for
extending a point x : Spec(A) −→ X to a point x′ : Spec(Aη) −→ X along a square zero
extension of A.

6.1.1 Infinitesimally cohesive maps. The axioms of a formal moduli problem (Definition
2.3.342.3.34) have a simple global analogue:

Definition 6.1.1 ([6363, Definition 17.3.1.4]). A (pre)sheaf X : Affop −→ S is infinitesimally
cohesive if it preserves each pullback square of complete C∞-rings

A′η //

��

A

0
��

A′
η
// A⊕ I[1]

(6.1.2)

where I is a complete connective A-module and π0(A′) −→ π0(A) is a surjection of (discrete)
C∞-rings with nilpotent kernel.

More generally, a map p : X −→ S of (pre)sheaves is infinitesimally cohesive if for each
S′ = Spec(B) −→ S, the base change X ×S S′ is infinitesimally cohesive.

Example 6.1.3. If X is representable by an affine derived manifold, then X is infinitesimally
cohesive. Similarly, if X is representable by a (non-connective) commutative dg-algebra B
(Example 5.2.25.2.2), then it is infinitesimally cohesive.

Example 6.1.4. The class of infinitesimally cohesive sheaves is closed under limits in
Sh(Aff). Consequently, a sheaf X is infinitesimally cohesive if and only if the map X −→ ∗
is infinitesimally cohesive.

Definition 6.1.5. Given an infinitesimally cohesive sheaf X and a map x : M = Spec(A) −→
X, the deformation functor of x is the formal moduli problem

X̂ : C∞Algsm/A // S; A′ � // X(Spec(A′))×X(Spec(A)) {x}.

We denote by TM/X := TA/X̂ the corresponding Lie algebroid from Theorem 4.2.14.2.1.

Lemma 6.1.6. Let X be a presheaf with associated sheaf X̃. If X is infinitesimally cohesive,
so is X̃.

Proof. Let A′η be a square zero extension of A′ by an A-module I. For any (pre)sheaf
X : Affop −→ S and a map of C∞-rings A′η −→ B, consider the (pre)sheaf on the basis of
opens B(A′η) of Spec(A′η)

XB : B(A′η)op // S; U � // X
(
U ×Spec(A′η) Spec(B)

)
.
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The associated sheaf of XB is simply (X̃)B . A (pre)sheaf X is infinitesimally cohesive if and
only if each pullback square (6.1.26.1.2) induces a pullback square of sheaves on B(A′η)

XA′η //

��

XA

��

XA′ // XA⊕E[1].

Since taking associated sheaves is left exact, the result follows.

Example 6.1.7. Let Xi be a set of infinitesimally cohesive sheaves. Then the sheaf
∐
iXi

is infinitesimally cohesive as well, since the pointwise coproduct is infinitesimally cohesive.
Construction 6.1.8. For each affine U = Spec(A) and each E ∈ QC≥0(U), let

U // UE := Spec(A⊕ E) // U

denote the retract diagram of affines dual to A −→ A⊕ E −→ A. This determines a right
adjoint functor from quasi-coherent sheaves to retract diagrams of affines. For every map
f : U −→ V between affines, there is a natural commuting square of right adjoint functors

QC≥0(V )op

f∗

��

V(−)
// V/Sh(Aff)/V

f∗

��

QC≥0(U)op
U(−)

// U/Sh(Aff)/U

(6.1.9)

where the left and right functors take pullbacks along f . If X : Aff −→ S is a presheaf, the
limit of these functors over all U ∈ Aff/X yields a right adjoint functor

QC≥0(X)op // X/Sh(Aff)/X; E � //
(
X −→ XE −→ X

)
.

We will call the sheaf XE the square zero extension of X by E.
Remark 6.1.10. For any map f : U −→ V in Sh(Aff), there is a commuting square of
right adjoints as in (6.1.96.1.9). For every E ∈ QC≥0(U), there is a base change morphism
f∗UE −→ Vf∗E , which arises from a map of retract diagrams

U //

��

UE //

��

U

��

V // V(f∗E) // V.

When f arises from a map A −→ B of C∞-rings, this vertical map arises from the obvious
map A⊕ E −→ B ⊕ E.
Construction 6.1.11. Let p : X −→ S be a map of sheaves and fix a map x : Y −→ X. For
any E ∈ QC≥0(Y ), let Derx(X/S;E) be the space of dotted sections of the square

Y
x //

��

X

p

��

YE //

77

Y
p(x)
// S.

Given a map of quasi-coherent sheaves E −→ F , we can restrict such sections along YF −→ YE .
Consequently, we obtain a functor

Derx(X/S;−) : QC≥0(Y ) // S.
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Remark 6.1.12. Consider a pullback square

X ′
f
//

��

X

��

S′ // S.

For any map x′ : Y −→ X ′, there is an equivalence of functors

Derx′(X ′/S′;−) ∼ // Derf(x′)(X/S;−).

Remark 6.1.13. Let f : U −→ V be a map of sheaves and let x : V −→ X be a point.
Restriction along the (natural) map of square zero extensions from Remark 6.1.106.1.10 yields a
natural transformation

Derx
(
X/S; f∗(−)

)
// Derf∗(x)

(
X/S;−

)
. (6.1.14)

Lemma 6.1.15. Suppose that Y = colimYi is a colimit of sheaves and let fi : Yi −→ Y
be the canonical maps. For every p : X −→ S, x : Y −→ X and E ∈ QC≥0(Y ), there is a
natural equivalence of spaces

Derx(X/S;E) // lim Derf∗
i

(x)(X/S; f∗i E).

Proof. There is a natural equivalence of sheaves

colim
(

(Yi)f∗
i

(E)

)
∼ // colim

(
Yi ×Y YE

) ∼ // YE .

The result follows by restricting along this equivalence.

Lemma 6.1.16. Suppose that p : X −→ S be infinitesimally cohesive. For every x : Y −→ X,
the functor Derx(X/S;−) naturally extends to an exact functor

Derx(X/S;−) : QC−(Y ) // Sp

from the eventually connective quasi-coherent sheaves on Y .

Proof. Consider the functor

QC≥0(Y )× Sfin
∗

// S; (E,K) � // Derx
(
X/S;C∗(K,E)

)
that sends a finite pointed space and quasi-coherent sheaf E to the value of Derx(X/S;−)
on the reduced chains of K with values in E.

The functor Derx(X/S;E) : Sfin
∗ −→ S is reduced excisive for each E and cofiber sequences

in QC≥0(Y ) are sent to fiber sequences of reduced excisive functors. Indeed, when Y =
Spec(A) is affine, this follows immediately from the fact that p : X −→ S is infinitesimally
cohesive. Lemma 6.1.156.1.15 implies that it holds for general Y as well.

By [6262, Lemma 1.3.3.11], the resulting right exact functor F : QC≥0(Y ) −→ Sp admits a
unique extension to an exact functor

Derx(X/S;−) : QC−(Y ) // Sp

which sends E ∈ QC≥−n(Y ) to ΩnF (E[n]).

Remark 6.1.17. Let X ′ q−→ X
p−→ S be a sequence of infinitesimally cohesive maps. For

any point x′ : Y −→ X ′, there is a fiber sequence of functors QC−(Y ) −→ Sp

Derx′(X ′/X;−) //

��

Derx′(X ′/S;−)

��

∗
0

// Derq(x′)(X/S;−).
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6.1.2 The cotangent complex. If p : X −→ S is infinitesimally cohesive and x : Y −→ X
is a map, a relative cotangent space of p at the point x is an object

LX/S,x ∈ QC−(Y )

that corepresents the functor Derx(X/S;−) : QC≥0(Y ) −→ S (see e.g. [9797, Definition 1.4.1.5]).
Such a relative cotangent space automatically corepresents the spectrum-valued functor
Derx(X/S;−) : QC≥0(Y ) −→ Sp from Lemma 6.1.166.1.16, so that LX/S,x is unique if it exists.

Informally speaking, p : X −→ S admits a relative cotangent complex if it admits a
cotangent space at each affine point of X, and these cotangent spaces together determine
a quasi-coherent sheaf on X. To make this somewhat more explicit, let us start with the
following observation:

Lemma 6.1.18. For any map p : X −→ S, the following are equivalent:

(1) p is infinitesimally cohesive and for every map f : V −→ U between affines, the map

Derx
(
X/S; f∗(−)

)
// Derf∗(x)

(
X/S;−

)
. (6.1.19)

from Remark 6.1.136.1.13 is an equivalence.
(2) For any map S′ −→ S from an affine, the pullback X ×S S′ : Affop −→ S preserves all

pullback squares of complete C∞-rings of the form

A′η //

��

A

0
��

A′ // A⊕ I[1].

Proof. We may assume that S′ = S is affine. The above square can be decomposed into
pullback squares

A′η //

��

A′ //

��

A

��

A′ // A′ ⊕ I[1] // A⊕ I[1].

We claim that the map (6.1.196.1.19) is an equivalence if and only if X preserves the right pullback
square. The result follows immediately from this.

Consider the commuting square of spectra

Derx(X/S; f∗I[1]) //

��

Derf∗(x)(X/S; I[1])

��

Derx(X; f∗I[1]) // Derf∗(x)(X; I[1]).

Unwinding the definitions, one sees that X preserves the right pullback square if and only if
the bottom map is an equivalence. To see that this is equivalent to the top map being an
equivalence, it suffices to show that the induced map between the fibers of the vertical maps

Derp(x)(S; f∗I) // Derf∗(p(x))(S; I).

is an equivalence. This is obvious, since S = Spec(B) was assumed affine.

Definition 6.1.20 ([9797, Definition 1.4.1.15]). Let p : X −→ S be infinitesimally cohesive.
We will say that p admits a relative cotangent complex if it satisfies the following conditions:
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(1) for each map x : U −→ X from an affine, there exists a relative cotangent space
LX/S,x ∈ QC≥−n(U) of p at x, for some fixed n.

(2) the map p satisfies the equivalent conditions of Lemma 6.1.186.1.18.

Remark 6.1.21. Let f : U −→ V be a map of affines and let x : V −→ X. If p : X −→ S
satisfies the equivalent conditions of Lemma 6.1.186.1.18 and p admits a cotangent space at x,
then p admits a cotangent space at f∗(x), given by f∗LX/S,x.

Example 6.1.22. Let X = Spec(A) be an affine and let x : Spec(B) −→ Spec(A) be a map
of affines. Clearly X satisfies the second condition of Lemma 6.1.186.1.18. Using Remark 6.1.216.1.21,
we see that X admits a cotangent space at x, given by the associated sheaf of the B-module
B ⊗A LA, where LA is the C∞-algebraic cotangent complex of A.

Remark 6.1.23. A map of sheaves p : X −→ S admits a relative cotangent complex if and
only if its base change X ′ −→ S′ admits a relative cotangent complex for every map S′ −→ S
from an affine.

Lemma 6.1.24. Let p : X −→ S be a map satisfying the equivalent conditions of Lemma
6.1.186.1.18. Then the following are equivalent:

(1) For any map x : Y −→ X from a sheaf Y , there exists a (unique) cotangent space
LX/S,x ∈ QC≥−n(Y ) at x.

(2) p admits a cotangent complex (which is (−n)-connective).
(3) For any map x : U −→ X from an affine U , there exists a cover {Ui −→ U} such that

p admits a relative cotangent space LX/S,xi ∈ QC≥−n(Ui) at each xi : Ui −→ U −→ X.

Proof. Obviously (1) ⇒ (2) ⇒ (3). The converse follows from the following assertion. Fix
a point x : Y −→ X and suppose that Y ' colimYi is a colimit of affines, with canonical
maps fi : Yi −→ Y . If p admits a cotangent space at each point xi := f∗i (x), then p admits a
cotangent space at x.

To see this, note that for any map α : Yi −→ Yj over Y , the map (6.1.146.1.14) induces a
natural map Lxi −→ α∗Lxj , which is an equivalence by the conditions of Lemma 6.1.186.1.18. It
follows that the cotangent spaces Lxi form a matching family of quasi-coherent sheaves over
the diagram of Yi. Since

QC≥−n(Y ) ' lim QC≥−n(Yi)

there exists a unique object LX/S,x in QC≥−n(Y ) such that f∗i LX/S,x ' LX/S,xi . To see that
this object corepresents Derx(X/S;−), note that there are natural equivalences

Map
(
LX/S,x, E

)
' lim Map

(
f∗i LX/S,x, f

∗
i E
)

' lim Map
(
LX/S,xi , f

∗
i E
)

' lim Derxi(X/S; f∗i E) ' Derx(X/S;E)

where the last equivalence is Lemma 6.1.156.1.15.

Definition 6.1.25. If p : X −→ S admits a relative cotangent complex, we refer to LX/S :=
LX/S,id ∈ QC(X) as its relative cotangent complex.

Remark 6.1.26. Let X ′ q−→ X
p−→ S be a sequence of infinitesimally cohesive maps. By

Remark 6.1.176.1.17, if two out of the three maps p, q and pq admits a relative cotangent space at
a point x′ : Y −→ X ′ (resp. q(x′)), then so does the third. In fact, these cotangent spaces
are related to each other by a cofiber sequence in QC(Y )

LX/S,q(x′) // LX′/S,x′ // LX′/X,x′ .
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Example 6.1.27. Let Y ′ = X ′ ×X Y be a pullback of infinitesimally cohesive sheaves, each
of which has a cotangent complex. Then Y ′ has a cotangent complex as well:one easily verifies
that Y ′ satisfies the second condition of Lemma 6.1.186.1.18 and for any point y′ : U −→ Y ′, the
functor Dery′(Y ′;−) is corepresented by the pushout LY ′,y′ ' LX′,x′ ⊕LX,x LY,y in QC−(U).

Let us now describe how the obstruction theory for deformations along square zero
extensions arises in the above terms. Consider a lifting problem

Spec(A) //

=
''

Spec(A⊕ I[1])

q

��

η
// Spec(A′) x //

��

X

p

��

Spec(A) // // Spec(A′η) //

x̃

;;

S

(6.1.28)

where the left square arises from the pullback square (6.1.26.1.2). When p is infinitesimally cohesive,
the space of diagonal lifts x̃ is equivalent to the space of diagonal lifts Spec(A) −→ X of the
composite rectangle. To identify the space of such lifts, note that there is a unique such
lift making the outer part of the diagram commute, given by the total horizontal composite
x0 : Spec(A) −→ X. The space of lifts can then be identified with the space of homotopies
between the two maps

Spec
(
A⊕ I[1]

) q
// Spec(A) x0 // X Spec

(
A⊕ I[1]

) η
// Spec(A′) x // X

over S and relative to Spec(A). These two maps correspond to the zero element and a certain
obstruction element ‘ob’ in Derx0

(
X/S, I[1]

)
. We conclude that the space of diagonal lifts x̃

in (6.1.286.1.28) is equivalent to the space of null-homotopies of

ob ∈ Derx0(X/S, I[1]).

When p : X −→ S admits a cotangent complex, this means that the space of lifts x̃ is
equivalent to the space of null-homotopies of a certain map

ob: x∗0LX/S // I[1].

A particular situation in which there exists such a null-homotopy, is the case where
Derx0(X/S, I[1]) is connected:

Definition 6.1.29. A map p : X −→ S is formally smooth if for each point x : Spec(A) −→ X
and E ∈ QC≥1(A), the space Derx(X/S;E) is connected. When p is infinitesimally cohesive,
it is formally smooth iff the spectrum Derx(X/S;E) is connective for every E ∈ QC≥0(A).

6.1.3 Convergence. There above obstruction theory can be applied to a particular system
of square zero extensions: if A is a complete C∞-ring, then its Postnikov tower

A // . . . // τ≤n+1A // τ≤nA // . . . // τ≤0A = π0(A)

consists of square zero extensions by the complete π0(A)-modules πn(A)[n]. Ideally, one
would like to use the above theory to study the ways of extending maps from π0(A) to A, or
more generally, lifting problems of the form

Spec(π0(A)) //

��

X

��

Spec(A) //// S.
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This lifting problem can be decomposed into lifting problems for the various stages of the
Postnikov tower of A. However, if one inductively finds a compatible sequence of lifts
Spec(τ≤nA) −→ X, it may not be true that these lifts together determine a lift Spec(A) −→
X.

Definition 6.1.30 ([6363, Definition 17.3.2.1]). A (pre)sheaf X : Affop −→ S is convergent if
for every complex C∞-ring A, the natural map

X(A) ∼ // lim
n
X(τ≤nA)

is an equivalence. A map p : X −→ S is convergent if S′ ×S X is convergent for any affine S′.

Example 6.1.31. If X = Spec(B) is a representable sheaf then X is convergent, and
similarly when X is represented by a (possibly non-connective) commutative dg-algebra.
Indeed, this follows from the fact that

Map(B,A) ' Map(B, lim τ≤nA) ' lim Map(B, τ≤nA).

Remark 6.1.32. The full subcategory of convergent sheaves is closed under limits in Sh(Aff).
In particular, this implies that X is a convergent sheaf if and only if the map X −→ ∗ is
convergent.

Let Shconv(Aff) ⊆ Sh(Aff) be the full subcategory of the convergent sheaves. This fully
faithful inclusion admits a left adjoint, sending a sheaf X to the sheaf A 7→ limX(τ≤nA). In
fact, one can describe the∞-category of convergent sheaves more concisely as follows (see e.g.
[3333, Chapter I.2]): let i : Aff<∞ ⊆ Aff be the full subcategory on the eventually coconnective
complete C∞-rings, i.e. those Spec(A) for which A has homotopy groups vanishing above a
certain degree. Then the adjunction

i∗ : Sh(Aff) // Sh(Aff<∞) : i∗oo

yields an equivalence between Sh(Aff<∞) and the full subcategory Shconv(Aff). Indeed,
unwinding the definitions one sees that i∗ sends a sheaf X defined on eventually coconnective
complete C∞-rings to the sheaf i∗X(A) = limX(τ≤nA).

Let us conclude with a local criterion for being infinitesimally cohesive or convergent:

Proposition 6.1.33. Let p : U −→ X be a surjective map of sheaves which is formally
smooth. If U and p are infinitesimally cohesive, then X is infinitesimally cohesive. If U and
p are also convergent, then so is X.

Proof. Let U• be the Čech nerve of p. By assumption, each Un is infinitesimally cohesive
(and convergent). If A′η is a square zero extension of A′ by an A-module I, we therefore
obtain a pullback square of simplicial spaces

U•(A′η) //

��

U•(A)

��

U•(A′) // U•
(
A⊕ I[1]

)
Since p : U −→ X, the right vertical map is a Kan fibration of simplicial spaces (5.2.165.2.16).
It follows that the induced square of realizations is cartesian as well. The realization |U•|
computed in presheaves is therefore infinitesimally cohesive. Lemma 6.1.66.1.6 implies that X is
infinitesimally cohesive as well.
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For the second part, let Xconv = i∗i
∗X be the convergent sheaf associated to X. There is

a commuting diagram
colimU•

∼
��

∼ // X

��

colim(U•)conv // Xconv

where the top and left maps are equivalences by assumption. The bottom map is the canonical
map from the realization of the Čech nerve of Uconv −→ Xconv to Xconv itself, because taking
convergent sheaves preserves limits. It therefore suffices to check that Uconv −→ Xconv
induces a surjection on π0-sheaves.

To see this, let x : Spec(A) −→ Xconv be a point, corresponding to a natural family of
points xn : Spec(τ≤nA) −→ X. Since U −→ X is surjective, we may shrink Spec(A) and
assume that the point x0 lifts to a point u0 : Spec(τ≤0A) −→ U .

Now suppose that we have found a matching family of points u0, . . . , un−1 lifting the
points x0, . . . , xn−1. We claim that there is a point un : Spec(τ≤nA) −→ U which lifts xn
and restricts to un−1. In other words, there exists a diagonal lift in the diagram

Spec(τ≤n−1A)
un−1

//

��

U

p

��

Spec(τ≤nA)
xn
//

un

99

X.

This follows from the fact that p is formally smooth, since τ≤nA −→ τ≤n−1A is a square zero
extension. Proceeding inductively, we obtain a point u in Uconv(A) = limU(τ≤nA) which
lifts the point x (up to homotopy).

6.2 Derived stacks
We will now turn to verifying the above properties for derived stacks. These results and
arguments are well-known (see e.g. [9797]) and proceed by induction, starting from the case of
affine derived manifolds.

6.2.1 The cotangent complex of an affine. For every C∞-ring A, the affineX = Spec(A)
is infinitesimally cohesive, convergent and admits a cotangent complex, which is simply the
associated sheaf of the C∞-algebraic cotangent complex LA. More generally, let A −→ B be
a map of C∞-rings. Then the relative cotangent complex of f : Spec(B) −→ Spec(A) is the
associated sheaf of

O(Spec(B))⊗B LB/A ∈ ModO(Spec(B)).

In particular, if f is locally finitely presented (resp. smooth, étale), it follows from Lemma
5.2.95.2.9 that LX/S ∈ QC≥0(X) is a perfect complex (resp. locally free of finite rank, zero).
Conversely, we have the following:

Proposition 6.2.1 (Inverse function theorem). Let f : X −→ S be a locally finitely presented
map between affines and let x ∈ X. If x∗LX/S ' 0, then f is étale (Definition 5.2.85.2.8) on an
neighbourhood of x.

Lemma 6.2.2. Let X = Spec(A) be the spectrum of a C∞-ring A and let x ∈ X. Suppose
that E is a finitely presented A-module such that x∗E ' 0. Then there exists a localization
A{a−1} with x ∈ Spec(A{a−1}) such that E ⊗A A{a−1} ' 0.

In particular, if a perfect complex is trivial at a point, then it is trivial on an open
neighbourhood of that point.
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Proof. It suffices to prove the result when A is discrete: indeed, if we know the result for
E ⊗A π0(A), then there exists a a ∈ π0(A) such that

0 '
(
E ⊗A π0(A)

)
⊗π0(A) π0(A){b−1}

'
(
E ⊗A A{b−1}

)
⊗A{b−1} π0(A{b−1})

The lowest nontrivial homotopy group of E ⊗A A{b−1} (which exists since E is eventually
connective) is isomorphic to the corresponding homotopy group of the above π0(A{b−1})-
module. This implies that E ⊗A A{b−1} ' 0.

When A is discrete and x∗E ' 0, it follows from Nakayama’s lemma that the stalk
Ex = E ⊗A Ax is trivial as well. By assumption, E is given by a chain complex

0 // A⊕nb // . . . // A⊕na+1 // A⊕na // 0

in degrees [a, b]. Since the stalk Ex is null-homotopic, the map A⊕na+1 −→ A⊕na induces a
surjection on stalks. We can therefore find a localization A{a−1} with x ∈ Spec(A{a−1}) so
that A{a−1}⊕na+1 −→ A{a−1}⊕na is surjective. The kernel of this map is projective, so we
can find a further localization A{b−1} on which it becomes free. We can therefore replace the
above complex by an equivalent complex of free modules in degrees [a+ 1, b] after tensoring
with A{b−1}. Proceeding inductively, one finds a neighbourhood of x on which E ' 0.

Proof (of Proposition 6.2.16.2.1). Since the statement is local, we can assume that f arises from
a finitely presented map of C∞-rings φ : A −→ B, by Lemma 5.2.95.2.9. Then the cotangent
complex is the sheaf associated to the finitely presented B-module LB/A. It follows from
Lemma 6.2.26.2.2 that LB/A vanishes after tensoring with some localization B{b−1}, so replacing
B by B{b−1} we may that LB/A ' 0.

Let us first prove the proposition in the special case where φ induces a surjection
π0(A) −→ π0(B). In that case, we can present the map A −→ B by a map of dg-C∞-rings
A −→ A[ηi], with finitely many generators in degrees > 0. Consequently, the C∞-algebraic
cotangent complex LB/A agrees with the cotangent complex of A −→ B, considered as a
map of R-algebras.

It follows that A −→ B is an étale map of R-algebras, which means that π0(A) −→ π0(B)
is étale and that the natural maps π0(B)⊗π0(A) πn(A) −→ πn(B) are isomorphisms (see e.g.
[9797, Theorem 2.2.2.6]). Since π0(A) −→ π0(B) is surjective, it follows that there exists an
idempotent element e ∈ π0(A) such that π0(B) ∼= π0(A)[e−1] ∼= π0(A)/(1 − e). Since this
already has the natural structure of a C∞-ring, it follows that the natural map A{e−1} −→ B
is an equivalence of connective C∞-rings. But this means that the map Spec(A) −→ Spec(B)
is an affine open inclusion, which is in particular étale.

For the general case, suppose that A = R{xi, ξi} is a free dg-C∞-ring on generators xi of
degree zero and ξi of degree > 0 (but with nontrivial differential) and that B = R{xi, yi, ξi, ηi}
is obtained from A by adding finitely many extra generators y1, . . . , yn (of degree 0) and
η1, . . . , ηn′ (of degree > 0) to it. Our goal will be to prove that the map A −→ B induces a
surjection on π0 after localizing A and B, so that we can apply the previous argument.

The module LB/A is freely generated as a graded B-module by the elements dyi and dηj .
Since LB/A is acyclic, we have for each i = 1, . . . , n that

dyi = ∂

 n∑
j=1

fij(x, y, η, ξ) · dyj +
n′∑
k=1

gik(x, y) · dηk


for some finite set of elements fij , gik ∈ B. In particular, we can fix a finite set of generators
x1, . . . , xm such that the elements fij and gik, as well as the boundaries ∂(ηk), depend only
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on these. Together with the n generators y1, . . . , yn of B, these generators determine a map
of C∞-rings C∞(Rm+n) −→ B. This map induces a map of affine locally C∞-ringed spaces

Φ := (x1, . . . , yn) : Spec(B) // Rm+n = Spec(C∞(Rm+n)). (6.2.3)

Writing out the above formula for dyi, we find that

dyi =
n∑
j=1

(
hij(x, y) +

∑
k

gik
∂(∂ηk)
∂yj

)
· dyj +

m∑
l=1

∑
k

gik
∂(∂ηk)
∂xl

· dxl.

where the gik and hij = ∂(fij) are smooth functions on Rm+n.
Since the elements hij are boundaries of elements in B, it follows that their value at each

point in |Spec(B)| is zero. Consequently, the smooth matrix-valued function

(id− hij) : Rm+n // Mat(n,R)

sends the image Φ(|Spec(B)|) of the map (6.2.36.2.3) to the identity matrix. It follows that
(id− hij) is invertible on an open neighbourhood of the image of Φ(|Spec(B)|) inside Rm+n.

But this smooth matrix-valued function agrees with the matrix valued function(∑
k

gik
∂(∂ηk)
∂yj

)
ij
,

which implies that the Jacobi matrix
(∂(∂ηk)

∂yj

)
kj

has maximal rank on an open neighbourhood
of Φ(|Spec(B)|). The usual inverse function now shows that for each point b ∈ |Spec(B)|,
there exists an open subset U × V ⊆ Rm × Rn containing Φ(b), on which there is a new set
of coordinates (x1, ..., xm, ỹ1, . . . , ỹn) with the property that ỹ1 = ∂ηi1 , . . . , ỹn = ∂ηin .

It follows that all extra generators yi in degree 0 are boundaries when restricted to the
open U × V . Now consider the localizations

A′ = AqC∞(Rn) C∞(U) B̃ = B qC∞(Rm+n) C∞(U × V ).

By construction, the map A′ −→ B̃ induces a surjection on π0 and its relative cotangent
complex is just the restriction of LB/A, so that we can apply the first part of the argument.

Corollary 6.2.4. Let f : X −→ S be a locally finitely presented map of affines. If x ∈ X is
a point such that the fiber x∗(LX/S) is a finite-dimensional vector space (in degree 0), then f
is smooth at x, i.e. there are open neighbourhoods around x and f(x) on which f takes the
form U × Rn −→ U .

Proof. There exist functions g1, . . . , gn : V −→ R defined on an open neighbourhood of x
inside X whose differentials generate x∗(LX/S). It follows that the map (f, g1, . . . , gn) : V −→
S ×Rn has a cotangent complex that vanishes at x. By the inverse function theorem, we can
identify an open neighbourhood of x with an open neighbourhood of S × Rn, which implies
the result.

Remark 6.2.5. By a similar argument, if x∗LX/S is concentrated in degrees [0, 1], then
locally around x the map f can be identified with a composition

h−1(0) // U × Rn // U

where the first map is the inclusion of the zero locus of some h : U×Rn −→ Rm. In particular,
locally around the point x the fibers of f : X −→ S are quasi-smooth (Remark 5.1.115.1.11).
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6.2.2 Derived stacks. The deformation-theoretic properties of derived stacks can imme-
diately be deduced from the properties of affines:

Proposition 6.2.6. Any derived stack X satisfies the equivalent conditions of Lemma 6.1.186.1.18.
In particular, it is infinitesimally cohesive.

Proof. Let X• −→ X be a derived Lie n-groupoid whose colimit is X. Each map X(∆[n]) −→
X(Λi[n]) is smooth, so in particular formally smooth. The same argument as in the proof of
the Proposition 6.1.336.1.33 shows that X satisfies the second condition of Lemma 6.1.186.1.18.

It follows that every map x : Spec(A) −→ X to a derived stack gives rise to a Lie algebroid
TSpec(A)/X over A, as in Definition 6.1.56.1.5. The anchor map of TSpec(A)/X is the linear dual
of the map of cotangent complexes LSpec(A) −→ LSpec(A)/X , which can often be identified
more explicitly as follows:

Lemma 6.2.7. Let X• be a derived Lie n-groupoid and let x : U −→ X• be a map from an
affine into X•, inducing a map x : U −→ X into the associated stack. Then the cotangent
space LX,x at the point x exists and is given by the limit of the cosimplicial diagram LX•,x of
quasi-coherent sheaves over U . More generally, given maps x : U −→ X• and p : X• −→ S•
of derived Lie n-groupoids, LX/S,y is the limit of the cosimplicial diagram of quasi-coherent
sheaves LX•/S•,x.

Proof. The relative cotangent space LX/S,x is the cofiber of the map LS,p(x) −→ LX,x. Since
taking limits over ∆ commutes with taking cofibers, the description of the relative cotangent
space follows from the absolute case.

We will prove by induction on n that LX,x exists and is given by

LX,x ' lim
∆

(
x∗LX•

)
.

When n = 0, X is just a derived manifold. Working locally on U , we may replace X by one
of its affine open subspaces, where the result is obvious.

For n > 0, consider the pullback diagram of derived Lie n-groupoids, each of which is
equipped with a natural map from U

G• //

��

Dec0(X•)

��

X0 // X•

(6.2.8)

Here Dec0(X•) is the décalage of X•, whose value on [n] ∈∆ is the value of X• at the join
[1 + n] = [0] ? [n] (see e.g. [4646, Chapitre VI]). Since the right vertical map is a smooth,
surjective Kan fibration, the induced square of colimits is simply the pullback of stacks
G ' X0 ×X X0.

Let us first prove that the cotangent space LX,x exists. To see this, note that there is a
fiber sequence of functors

Derx(X0/X;−) // Derx(X0;−) // Derx(X;−).

In light of Remark 6.1.266.1.26, it suffices to show that Derx(X0/X;−) is corepresentable. By
Remark 6.1.126.1.12, there is an equivalence

Derx(G/X0;−) ∼ // Derx(X0/X;−)

Both G and X0 are derived (n− 1)-stacks, so Derx(G/X0;−) is corepresentable by inductive
hypothesis. This implies that Derx(X0/X;−) is corepresentable.
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Let us now show that LX,x ' limLX•,x. In each simplicial degree, the pullback square of
(6.2.86.2.8) gives rise to a pushout square on cotangent spaces (Example 6.1.276.1.27). Because taking
homotopy limits over ∆ preserve pushout squares of quasi-coherent sheaves, the natural map

LX,x // lim
∆
LX•,x

is a weak equivalence as soon as it is an equivalence for the other three simplicial sheaves
X0,Dec0(X•) and G•. For the derived Lie (n−1)-groupoids X0 and G• this holds by inductive
hypothesis.

The simplicial diagram Dec0(X•) can be extended to a split augmented simplicial object,
augmented by X0. Such a split augmented simplicial diagram is a colimit diagram that is
preserved by any functor, from which it follows that LX0,x ' limLDec0(X•),x.

Corollary 6.2.9. Let p : X −→ S be an n-representable map of sheaves. Then p has a relative
cotangent complex, which is −n-connective. If the map p is locally of finite presentation
(smooth, étale), then LX/S is a perfect complex over X (with Tor-amplitude contained in
[−n, 0], zero).

Proof. By Lemma 6.1.246.1.24, it suffices to verify the existence of a cotangent space at a point
x : Spec(A) −→ X, where we can work locally on Spec(A). We may therefore assume that S
is affine, that X• −→ S is a Kan fibration whose domain is a derived Lie n-groupoid and
that Spec(A) −→ X factors over X•. By Lemma 6.2.76.2.7, the relative cotangent complex at x
exists and is given by the limit of the cosimplicial diagram LX•/S,x.

To verify the properties of the cotangent complex, observe that the limit of the cosimplicial
diagram LX•/S,x can be computed as the limit of a tower of quasi-coherent sheaves

. . . // L(2) // L(1) // L(0)

where each L(k) is the limit over ∆≤n. By the Dold-Kan correspondence of [6262, Section
1.2.4] that for k ≥ 1, the fiber F (k) = fib(L(k) −→ L(k − 1)) of this tower fits into a fiber
sequence of modules

LX(Λ0[k])/S,x // LX(∆[k])/S,x // F (k)[k].

In other words, F (k) is the k-fold desuspension of the relative cotangent complex of
X(∆[k]) −→ X(Λ0[k]) at the point x. Since X• is a derived Lie n-groupoid, the above
tower stabilizes after degree n. Furthermore, each fiber F (k) is (−k)-connective, so that the
limit L(n) is (−n)-connective.

Because the maps X(∆[k]) −→ X(Λ0[k]) are smooth, the fibers F (k) for k ≥ 1 are locally
free modules. If p is locally of finite presentation (smooth), then we may assume that the
map X0 −→ S is locally of finite presentation (smooth), so that F (0) ' LX0/S,x is perfect
(locally free). Using this, one sees that LX/S is perfect (with Tor-amplitude contained in
[−n, 0]). Finally, if p is étale, then all X(∆[k]) −→ X(Λ0[k]) are étale and X0 −→ S is étale,
so that the relative cotangent complex vanishes.

Lemma 6.2.10. Any derived stack X is convergent and satisfies hyperdescent.

Proof. Let X be a derived n-stack. If X is convergent, then it satisfies hyperdescent: indeed,
since X is a derived n-stack, the value of X on a complete, k-truncated C∞-ring A is an
(n+ k)-truncated space. This implies that each of the sheaves A 7→ X(τ≤kA) are (n+ k)-
truncated sheaves, and in particular satisfy hyperdescent. Since X is convergent, it can be
obtained as the limit of these hypersheaves, so that it is a hypersheaf itself.

We will prove by induction on n that X is convergent. We will assume the case n = 0
(i.e. where X is a derived manifold); one can use the exact same method as we will employ
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here to deduce this case from the case of a coproduct of affines. For the inductive step, let X
be a derived n-stack and let p : U −→ X be an affine atlas for X. Since U and U ×X U are
convergent by inductive hypothesis and p is formally smooth by Corollary 6.2.96.2.9, it follows
from Proposition 6.1.336.1.33 that X is convergent.

Example 6.2.11. Let X• be a (smooth) Lie n-groupoid and let p : M = X0 −→ X be the
canonical atlas of its associated stack. The anchor map of the Lie algebroid TM/X can then
be identified as follows. Consider the simplicial vector bundle TX•

∣∣M , obtained by restricting
the tangent bundle of each Xn along the degeneracy M = X0 −→ Xn. Its normalized chains
form a chain complex of vector bundles

. . . // T d1,d2,d3X3
∣∣M d0 // T d1,d2X2

∣∣M d0 // T d1X1
∣∣M d0 // TM .

Here T d1,d2X2 ⊆ TX2 denotes the sub-bundle of tangent vectors whose images under
d1, d2 : TX2 −→ TX1 vanish. There is an obvious inclusion of TM into the above chain
complex. Lemma 6.2.76.2.7 identifies the anchor map TM/X −→ TM with the mapping fiber of
this inclusion, which is given up to quasi-isomorphism by[

. . . −→ T d1,d2X2
∣∣M −→ T d1X1

∣∣M] d0 //
[
. . . −→ 0 −→ 0 −→ TM

]
.

6.3 Sheaves of Lie algebroids

For every point x : M = Spec(A) −→ X of an infinitesimally cohesive sheaf gives rise, the
deformation functor of x from Definition 6.1.56.1.5

X̂ : C∞Algsm/A // S; A′ � // X(Spec(A′))×X(Spec(A)) {x}.

is a formal moduli problem and gives rise to a Lie algebroid TM/X over A. Since X is a
sheaf, one would expect this formal moduli problem and this Lie algebroid to arise as the
global sections of sheaves of formal moduli problems and Lie algebroids over M .

The purpose of this section is to describe such sheaves of formal moduli problems and
the associated sheaves of Lie algebroids. This allows us to study Lie algebroids and formal
moduli problems locally on Spec(A). As an immediate consequence, we find that maps
f : M −→ X from non-affine derived manifolds (or étale stacks) give rise to sheaves of Lie
algebroids over M as well.

6.3.1 Sheaves of formal moduli problems. Throughout this section, let us fix an
injectively fibrant-cofibrant diagram of complete dg-C∞-rings

Odg : Iop // C∞Algdg.

Let O be the corresponding diagram in with values in C∞Alg. We assume that for each
i −→ j, the associated sheaf of LO(j)/O(i) is trivial.

Example 6.3.1. Let M be a derived manifold and let Opaff(M) be the category of affine
open subspaces of M . The structure sheaf O : Opaff(M)op −→ C∞Alg has the property that
each restriction map is étale.

Example 6.3.2. Similarly, suppose that X• is a derived étale Lie n-groupoid and let
Opaff(X•) be the category of tuples ([n], U) where U ⊆ Xn is an affine open subspace. A
map ([n], U) −→ ([m], V ) is a map α : [m] −→ [n] such that α∗(U) ⊆ V . The structure sheaf

O : Opaff(X•)op // C∞Alg; ([n], U) � // O(U)
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sends each restriction map to an étale map (together, these determine a locally C∞-ringed
∞-topos which models the étale stack X).

Construction 6.3.3. Let us consider the category C
dg
/O with

• objects given by tuples (i, A), where i ∈ I and A −→ O(i) is a dg-C∞-rings over O(i).
• maps (i, A) −→ (j, B) given by a map i −→ j in I and a commuting square

B //

��

A

��

Odg(j) // Odg(i).

The obvious projection C
dg
/O −→ I is a cartesian and cocartesian fibration. After inverting

the quasi-isomorphisms, this yields a cartesian and cocartesian fibration

C/O // I.

Let InfO ⊆ C/O be the full subcategory consisting of tuples (i, A) for which A −→ O(i) is a
small extension. In particular, each A −→ O(i) in InfO is a map between complete C∞-rings.

Definition 6.3.4. Let M be a derived manifold (or a derived étale stack). We define the
infinitesimal site of M to be the ∞-category InfM = InfO associated to the structure sheaf
O of Example 6.3.16.3.1.

Lemma 6.3.5. The projection InfO −→ I is a cartesian fibration.

Proof. Let i −→ j −→ k be a sequence of maps in I and let A′ −→ O(k). We have to find a
small extension B̃ −→ O(j) with a map from A′, with the following property: for every solid
diagram

A′

��

((// B̃

��

// C̃

��

O(k) // O(j) // O(i)

(6.3.6)

where C̃ −→ O(i) is a small extension, there exists a unique dotted lift, as indicated.
Suppose that there is a map B̃ −→ O(j) making the left square in (6.3.66.3.6) cocartesian. By

Proposition 6.4.76.4.7, this map is a small extension so that B̃ ∈ InfO. An inductive application
of Proposition 6.4.136.4.13 shows that LB̃/A′ has vanishing associated sheaf.

We claim that this B̃ has the desired universal property. Indeed, the map C̃ −→ O(i) is
a composition of square zero extensions by complete modules. Since LB̃/A′ has vanishing
associated sheaf, there is a unique lift of A′ −→ B̃ against each of these square zero extensions.
Proceeding inductively, one obtains a unique dotted lift in (6.3.66.3.6).

It therefore remains to find such a B̃, i.e. a deformation of O(k) −→ O(j) along A′. To
this end, consider the formal moduli problem

DefO(j) : C∞Algsm/O(k) // S.

By Theorem 4.4.14.4.1, this formal moduli problem is classified by the Atiyah Lie algebroid
AtO(j) −→ TO(k). Since LO(j)/O(k) has vanishing associated sheaf and O(k) is complete, the
above formal moduli problem is trivial and the desired deformation exists.

Definition 6.3.7. A presheaf of formal moduli problems over O is a functor

F : Infop
O

// S
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which restricts to a formal moduli problem Fi : C∞Algsm/O(i) −→ S on each fiber.
When I comes equipped with a Grothendieck topology and O is a sheaf of C∞-rings, there

is an induced topology on InfO, where a collection of maps is a cover if they are cartesian
lifts of a cover in I. In that case, we will say that F is a sheaf of formal moduli problems if it
satisfies descent.

Remark 6.3.8. Let F : Infop
O −→ S be a presheaf of formal moduli problems. Each map

α : i −→ j in I induces a functor C∞Algsm/O(j) −→ C∞Algsm/O(i) between the fibers.
The proof of Proposition 6.3.56.3.5 shows that this functor preserves pullbacks along the maps
O(j) −→ O(j)⊕O(j)[n]. Consequently, restriction along this functor induces a right adjoint

α∗ : FormModO(i) // FormModO(j).

The functoriality of F gives rise to a natural map Fj −→ α∗Fi from the restriction of F to
the fiber over j to its restriction over i.

If I carries a Grothendieck topology and O is a sheaf of C∞-rings, then F is a sheaf of
formal moduli problems if and only if it satisfies the following condition: for every covering
sieve S = {α : i −→ j} on I, the natural map

Fj // limα∈S α∗Fi

is an equivalence of formal moduli problems over O(j).

6.3.2 Sheaves of Lie algebroids. The presheaf of dg-C∞-rings Odg determines a presheaf
of O-modules ΩO, sending each i ∈ I to the module ΩO(i) of C∞-algebraic Kähler differentials
on O(i). Let TO = HomO(ΩO,O) be the hom-presheaf, which sends each i ∈ I to the chain
complex of natural derivations

vj : O(j) // O(j) j ∈ I/i.

For each i ∈ I, the value TO(i) has the natural structure of a dg-Lie algebroid over O(i), with
bracket given by the commutator bracket and anchor map given by the map TO(i) −→ TO(i)
evaluating a natural derivation over I/i at i.

For each map α : i −→ j, there is a natural map of dg-Lie algebroids TO(j) −→ TO(i)
over the map O(j) −→ O(i), which restricts natural derivations on I/j to I/i. By Lemma
3.1.403.1.40, there is a Quillen adjunction

α∗ : LieAlgddg
O(j)/TO(j) // LieAlgddg

O(i)/TO(i) : α∗oo (6.3.9)

where α∗(g) = g⊗O(j) O(i). This produces a diagram of model categories and left Quillen
functors

LieAlgddg
O(−)/TO(−) : Iop // ModCatL.

Let LieAlgddg
/O −→ I be the associated cartesian fibration and let LieAlgd/O −→ I be the

cartesian fibration of ∞-categories obtained from this by inverting the quasi-isomorphisms.
Note that the fiber of this cartesian fibration over i ∈ I is equivalent to the ∞-category
LieAlgdO(i), by the following observation:

Lemma 6.3.10. For each i, the anchor map TO(i) −→ TO(i) is a weak equivalence.

Proof. There is a natural map of presheaves of cofibrant O-modules over I/i

O ⊗O(i) ΩO(i) // ΩO.
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Since each LO(j)/O(i) has a vanishing associated sheaf, the above map is a natural local
weak equivalence. Since O is an injectively fibrant presheaf of complete (i.e. locally fibrant)
O-modules, the induced map between mapping complexes into O is a weak equivalence as
well. But this map is precisely the map TO(i) −→ TO(i) restricting a natural derivation to
its component at i.

Lemma 6.3.11. Let LieAlgdgood
/O ⊆ LieAlgd/O be the full subcategory on the tuples (i, g)

where g ∈ LieAlgdO(i) is good. Then the following assertions hold:

(1) The inclusion LieAlgdgood
/O −→ LieAlgd/O is a map of cartesian fibrations over I which

preserves cartesian edges.

(2) There is an equivalence between the ∞-category LieAlgdO of sections of the functor
LieAlgd/O −→ I and the ∞-category of presheaves

F : LieAlgdgood,op
/O

// S

whose restriction to each fiber LieAlgdgood
O(i) satisfies the conditions of Proposition 4.2.74.2.7.

Proof. For assertion (1), let i −→ j be a map in I. The left Quillen functor (6.3.96.3.9) sends the
free Lie algebroid on the map 0: O(j)[n] −→ TO(j) −→ TO(j) to the free Lie algebroid on
O(i)[n]. Since it preserves all homotopy colimits of dg-Lie algebroids, this implies that the
associated functor of ∞-categories preserves good Lie algebroids.

For assertion (2), consider the natural transformation of functors Iop −→ Cat∞

j : LieAlgdgood
O(−)

// LieAlgdO(−).

obtained by straightening the map LieAlgdgood
/O −→ LieAlgd/O of cartesian fibrations over I.

The codomain of this natural transformation is a diagram of locally presentable ∞-categories
with left adjoint functors between them (induced by the left Quillen functors (6.3.96.3.9)). It
follows from [5959, Theorem 5.1.5.6] that there is a unique natural transformation of functors
Iop −→ PrL

j! : PSh
(

LieAlgdgood
O(−)

)
// LieAlgdO(−). (6.3.12)

For each i ∈ I, the functor j! has a fully faithful right adjoint, whose essential image consists
of the presheaves satisfying the conditions of Proposition 4.2.74.2.7.

The diagram PSh
(
LieAlgdgood

O(−)
)

is classified by a cartesian fibration over I, whose ∞-
category of sections is equivalent to the ∞-category of presheaves on LieAlgdgood

/O , by [3434].
We conclude that the above left adjoint functor induces an adjunction on ∞-categories of
sections

j! : PSh
(

LieAlgdgood
/O

)
// LieAlgdO : j∗oo

whose right adjoint is fully faithful. The essential image of j∗ consists of those presheaves
LieAlgdgood,op

/O −→ S whose restriction to each fiber LieAlgdgood
O(i) is contained in the essential

image of the right adjoint to (6.3.126.3.12).

Remark 6.3.13. A section of LieAlgd/O −→ I given by a collection of Lie algebroids gi over
each O(i), together a coherent family of maps of Lie algebroids gj −→ gi over O(j) −→ O(i),
for each i −→ j in I. We will therefore refer to an object of LieAlgdO as a presheaf of Lie
algebroids over O.

Suppose that I carries a Grothendieck topology and that O is a sheaf of C∞-rings. If g is
a presheaf of Lie algebroids and S = {α : i −→ j} is a covering sieve of j, there is a natural
map of Lie algebroids over O(j)

gj // holimα∈S α∗gi.
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Let us say that g is a sheaf of Lie algebroids if each of these maps is an equivalence of Lie
algebroids over O(j). This is equivalent to the assertion that the presheaf of O-modules
underlying g is a sheaf.

6.3.3 Duality. A map (i, g) −→ (j, h) in the category LieAlgddg
/O is given by a map

α : i −→ j in I, together with a map dg-Lie algebroids

f : g // α∗h = h⊗O(j) O(i)

over TO(i). Such a map induces a map between (connective covers of) Chevalley-Eilenberg
complexes

c∗
(
h
)
��

c∗(f)
// c∗
(
g
)
��

O(j) // O(i)

where the top map is a composition

c∗
(
h,O(j)

) c∗(h,α∗)
// c∗
(
h,O(i)

) ∼= c∗
(
α∗h,O(i)

) f∗
// c∗
(
g,O(i)

)
.

The first map arises from the fact that h is a dg-Lie algebroid over TO(j), so that it acts
on the map α∗ : O(j) −→ O(i) by natural derivations. The last map restricts along f and
the middle isomorphism sends an O(j)-linear map SymO(j)(h[1]) −→ O(i) to its O(i)-linear
extension SymO(i)(α∗h[1]) −→ O(i).

We therefore obtain a functor

LieAlgddg
/O

c∗ //

$$

C
dg
/O

~~
I

to the category of Construction 6.3.36.3.3. Since c∗ preserves quasi-isomorphisms between
cofibrant objects in each fiber, this induces a functor c∗ : LieAlgd/O −→ C/O over I. The
functor between the fibers over some i ∈ I is just the functor taking the Chevalley-Eilenberg
complex of a Lie algebroid over O(i), and therefore preserves colimits.

Lemma 6.3.14. The functor c∗ : LieAlgd/O −→ C/O restricts to a functor preserving
cartesian edges c∗ : LieAlgdgood

O −→ InfO.

Proof. On each fiber, the functor c∗ is the usual Chevalley-Eilenberg complex functor, which
sends good Lie algebroids over O(i) to small extensions of O(i). This implies that it restricts
to a functor c∗ : LieAlgdgood

O −→ InfO.
To see that this functor preserves cartesian edges, fix a map α : i −→ j in I and let h be

a good Lie algebroid over O(j). By (the proof of) Proposition 6.3.56.3.5, it suffices to verify that
the square

C∗(h) //

��

C∗
(
α∗h

)
��

O(j) // O(i)

realizes C∗
(
α∗h

)
as a deformation of the map O(j) −→ O(i) along the small extension

C∗(h) −→ O(j). When h is free on 0: O(j)[n] −→ TO(j), the above map can be identified
with the map

O(j)⊕O(j)[−n− 1] // O(i)⊕O(i)[−n− 1]
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which is clearly a deformation of the map O(j) −→ O(i). A general good Lie algebroid
h can be obtained as an iterated pushout of such free Lie algebroids. The functor c∗
sends these iterated pushouts to iterated pullbacks of deformations of O(i) −→ O(j). An
inductive application of Proposition 2.3.212.3.21 then shows that the map C∗(h) −→ C∗(α∗h) is a
deformation of O(i) −→ O(j) along C∗(h).

Corollary 6.3.15. Let O : Iop −→ C∞Alg be a presheaf of complete C∞-rings, such that
each O(j) −→ O(i) has vanishing relative cotangent complex. Then there is an adjunction of
∞-categories

MC: LieAlgdO
// FormModO : TO/oo

between the∞-category of presheaves of Lie algebroids over O (Remark 6.3.136.3.13) and presheaves
of formal moduli problems over O (Definition 6.3.76.3.7). Furthermore, this adjunction is an
equivalence if each O(i) is eventually coconnective.

Proof. Combine Lemma 6.3.146.3.14 and Lemma 6.3.116.3.11.

Remark 6.3.16. If I carries a Grothendieck topology and O is a sheaf of C∞-rings, Remark
6.3.86.3.8 and Remark 6.3.136.3.13 imply that for any sheaf of formal moduli problems F : Infop

O −→ S,
the associated presheaf of Lie algebroids TO/F is a sheaf of Lie algebroids over O. When all
O(i) are eventually coconnective, this furnishes an equivalence between the ∞-categories of
sheaves of Lie algebroids and sheaves of formal moduli problems.

Example 6.3.17. Let M be a derived manifold and let InfM be its infinitesimal site
(Definition 6.3.46.3.4). If f : M −→ X is a map to an infinitesimally cohesive sheaf, then the
assignment (

M ⊇ Spec(A) −→ Spec(A′)
)
� // X

(
A′
)
×X(A) {f

∣∣Spec(A)}

defines a sheaf of formal moduli problems X̂ : Infop
M −→ S. By Corollary 6.3.156.3.15, this

determines a sheaf of Lie algebroids over M , which we will denote by TM/X .
When the sheaf X has a cotangent complex, the underlying anchor map TM/X −→ TM

can be identified with the canonical map

Hom(LM/X ,OM ) // Hom(LM ,OM ).

Example 6.3.18. Similarly, suppose that f : Y −→ X is a map from a derived étale stack
to X. If Y• −→ Y is a derived étale Lie n-groupoid modeling Y , then the map f gives rise
to a sheaf of formal moduli problems over InfY• (Example 6.3.26.3.2). By Corollary 6.3.156.3.15, it
determines a sheaf of Lie algebroids TY/X over Y•.

6.4 Deformations of stacks
In the previous section we have seen that derived stacks have good infinitesimal behaviour:
they are infinitesimally cohesive, convergent and admit a cotangent complex which governs
the obstruction theory for extending maps along square zero extensions. In this section, we
will study a ‘delooping’ of this result: we show that the moduli space of all derived n-stacks
is infinitesimally cohesive as well.

Definition 6.4.1. Let E ⊆ Fun(∆[1],Sh(Aff)) be the full subcategory of maps X −→ M
from a derived stack to an affine derived manifold M . The codomain projection E −→ Aff is
a cartesian fibration. Let

Stack : Affop // Ĉat∞
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be the presheaf of (large) ∞-categories classifying E −→ Aff. In other words, Stack(U) is
the ∞-category of derived stacks over U and each f : U −→ V determines a functor

f∗ : Stack(V ) // Stack(U);
(
X −→ V

) � //
(
f∗X = X ×V U −→ U

)
.

Remark 6.4.2. It follows from [5959, Theorem 6.1.3.9] that for any covering sieve S = {Ui −→
U}, there is an equivalence of ∞-categories

Sh(Aff)/U // limUi∈S Sh(Aff)/Ui;(
X −→ U

) � // {X ×U Ui −→ Ui}i∈S

A sheaf X −→ U over U is a derived n-stack if and only if each Ui×U X is a derived n-stack.
It follows that the above equivalence restricts to an equivalence between categories of derived
stacks, so that Stack is a (large) sheaf of ∞-categories.

The aim of this section is to prove the following:

Theorem 6.4.3. The sheaf Stack : Affop −→ Ĉat∞ is infinitesimally cohesive and conver-
gent, i.e. each sheaf of spaces Map(∆[n],Stack) : Affop −→ Ŝ is infinitesimally cohesive and
convergent in the sense of Definition 6.1.16.1.1.

In the algebro-geometric setting, this is proven in [7676, Section 3.2.2] (based on results
from [7777]). We will give an alternative proof, which proceeds by induction. More precisely,
note that Stack arises as a filtered colimit

Stack0 // Stack1 // . . . // Stack

where Stackn sends an affine U to the full subcategory of Stackn(U) on the derived n-stacks
over U . We will prove by induction on n that the sheaves Stackn are infinitesimally cohesive.
The case of derived manifolds (n = 0) is closely related to the deformation theory of C∞-rings
discussed in Section 2.32.3.

6.4.1 Deformations of derived manifolds. A map of C∞-ringed spaces

i : X = (X ,OX) // Y = (Y,OY )

is a closed immersion if the map of topological spaces i : X −→ Y is a closed embedding and
the map i−1OY −→ OX induces a surjection on π0-sheaves. Any closed immersion between
locally C∞-ringed spaces is a morphism of locally C∞-ringed spaces.

Lemma 6.4.4 (cf. [6363, Theorem 3.1.2.1]). Let A be a complete C∞-ring and let i : X −→
Spec(A) be a closed immersion of derived manifolds. Then X is affine.

Proof. Since i : X −→ |Spec(A)| is a closed embedding, the map OA −→ i∗OX of sheaves of
OA-modules induces a surjection on π0. It follows that the induced map on global sections
A −→ B := Γ(X,OX) induces a surjection on π0 as well.

The map i therefore factors as the composition of a map f : X −→ Spec(B) and a
closed immersion Spec(B) −→ Spec(A). In particular, f : X −→ |Spec(B)| is a closed
embedding and the map OB −→ f∗OX is given on global sections by the equivalence
B ' Γ(Spec(B),OB) −→ Γ(X,OX). But the global sections functor on OB-module sheaves
is fully faithful, so it follows that the map OB −→ f∗OX is an equivalence of sheaves. Since
the support of OB is the entire Spec(B), it follows that f is a homeomorphism so that
X ' Spec(B).
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Lemma 6.4.5. Consider a solid square of derived manifolds in which the vertical arrows
are closed immersions

Y ′x //

��

��

Z ′
��

��

// Z
��

��

Spec(OX,x) // X ′ // X.

This square is cartesian if for any point x ∈ X ′, the pullback Y ′x = Z ′ ×X′ Spec(OX,x) is
equivalent to the pullback Yx = Z ×X Spec(OX,x).

Proof. Because Y ′x is nonzero iff x is contained in the image of Z ′, the map Z ′ −→ X ′ ×X Z
is a homeomorphism as soon as each Y ′x −→ Yx is an equivalence. Since OZ′ and OX′×XZ
are both hypersheaves, it suffices to verify that their stalks are equivalent. But for a point
x ∈ Z ′ ⊆ X ′, the induced map on stalks can be identified with the map O(Yx) −→ O(Yx),
which is an equivalence by assumption.

Lemma 6.4.6 (cf. [6363, Theorem 16.1.0.1]). Consider a pushout square of C∞-ringed spaces

X //

h

!!��

X0

f

��

X1 g
// X01

where X −→ X0 and X −→ X1 are closed immersions of derived manifolds. Then X01 is a
derived manifold and models the pushout of derived manifolds.

Proof. The C∞-ringed space X01 is given by the pushout of topological spaces X0
∐
X X1 ∼= X1,

together with the sheaf of C∞-rings f∗OX0 ×h∗OX g∗OX1 . For any open subspace U ⊆ X01,
the C∞-ringed space (U,OX01

∣∣U) is therefore given by the pushout of the diagram

(f−1U,OX0

∣∣f−1U) (h−1U,OX
∣∣h−1U)oo // (g−1U,OX1

∣∣g−1U).

For any point x ∈ X01, one may choose an open U so that f−1U and g−1U are affine opens
of X0 and X1. Lemma 6.4.46.4.4 implies that h−1U is affine as well.

We may therefore assume that X,X0 and X1 are affine and consider the complete C∞-ring
A01 = O(X0) ×O(X) O(X1). There is a map of C∞-ringed spaces f : X01 −→ Spec(A01),
which is a closed embedding of topological spaces because each Xi −→ Spec(A01) is a closed
immersion. Furthermore, the map OA01 −→ f∗OX01 induces an equivalence on global sections.
Arguing as in Lemma 6.4.46.4.4, one sees that f is an equivalence.

Proposition 6.4.7. Let A′ −→ A be a map of complete C∞-rings inducing a surjection
on π0 and let η : A′ −→ A ⊕ E[1] classify a square zero extension A′η of A′ by a complete
A-module E. Consider a cube of derived manifolds

X

uu

��

//

h
))

X0
f
ww

��

X1

��

g
// X01

��

Spec(A⊕ E[1])

vv

// Spec(A)

ww

Spec(A′) // Spec(A′η)

(6.4.8)

such that the left and back square are pullback diagrams of derived manifolds. Then the
following are equivalent:
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(1) The front and right square are cartesian.
(2) The top square is a pushout square of derived manifolds.

Proof. At the level of the underlying topological spaces, conditions (1) and (2) are both
equivalent to the condition that all maps from left to right are homeomorphisms. Assume
(1), let x ∈ X01 be a point and consider the map Spec(OX01,x) −→ X01. By pulling the top
square of (6.4.86.4.8) back along this map, we obtain a cube of affine derived manifolds

Spec(OX,h−1(x))

vv

��

//

hx
((

Spec(OX0,f−1(x))
fx
vv

��

Spec(OX1,g−1(x))

��

gx // Spec(OX01,x)

��

Spec(A⊕ E[1])

vv

// Spec(A)

vv

Spec(A′) // Spec(A′η)

(6.4.9)

where each C∞-ring is either zero (if f−1(x) = ∅) or local with residue field R. Each of the
vertical squares is a pullback of affine spaces, which dually means that it is a pushout square
of C∞-rings (the result is local, so in particular complete). Proposition 2.3.212.3.21 implies that the
top square of (local) affine derived manifolds is a pushout, so that the map of hypersheaves
OX01 −→ f∗OX0 ×h∗OX g∗OX1 induces equivalences on stalks. This implies (2).

Conversely, assuming condition (2) and pulling back the top row of (6.4.86.4.8) along
Spec(OX01,x) −→ X01, we obtain the cube (6.4.96.4.9) in which the top square is a pushout. By
Lemma 6.4.56.4.5, condition (1) follows if we show that the map

Spec(OX01,x)⊗A′η A
′ // Spec(OX1,g−1(x))

is an equivalence of local (or zero) C∞-rings, and similarly for X0. This follows from
Proposition 2.3.212.3.21.

Remark 6.4.10. Suppose that Aη −→ A is a square zero extension by an A-module E.
Proposition 6.4.76.4.7 shows that a derived manifold X −→ Spec(Aη) is affine if and only if its
base change X ×Spec(Aη) Spec(A) is affine.

Corollary 6.4.11. The sheaf Map(∗,Stack0) : Affop −→ Ŝ is infinitesimally cohesive and
convergent.

Proof. Proposition 6.4.76.4.7 implies that Map(∗,Stack0) is infinitesimally cohesive, using the
same argument as in Example 2.3.352.3.35. To see that it is convergent, let Xn −→ Spec(τ≤nA)
be a compatible family of derived manifolds. The closed immersions Xn−1 −→ Xn are
the pullbacks of Spec(τ≤n−1A) −→ Spec(τ≤nA), which induce homeomorphisms on the
underlying topological spaces. In other words, the Xn form a sequence of locally C∞-ringed
spaces (X ,OXn) with the property that each map

OXn ⊗τ≤nA τ≤n−1A // OXn−1

is an equivalence. There is a unique locally C∞-ringed space X = (X , limnOXn) such that
X ×Spec(A) Spec(τ≤nA) ' Xn.

To see that this locally C∞-ringed space is a derived manifold, let (U,OX0) be an affine
open subspace of X0. Each (U,OXn) ' Spec(OXn(U)) is affine by Remark 6.4.106.4.10. It follows
that (U,OX) ' Spec(OX(U)) is affine as well, so that Map(∗,Stack0) is convergent.
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6.4.2 Deformations of derived stacks. Let us now turn to the sheaves Stackn of higher
stacks. The mapping spaces of Stackn are easily seen to be infinitesimally cohesive and
convergent:

Lemma 6.4.12. For each n, the map of sheaves (of spaces)

(d1, d0) : Map(∆[1],Stackn) // Map({0},Stackn)×Map({1},Stackn)

is infinitesimally cohesive and convergent.

Proof. Let A′ −→ A be a map of complete C∞-rings inducing a surjection on π0 and let
η : A′ −→ A⊕ E[1] classify a square zero extension A′η of A′ by a complete A-module E. It
suffices to show that any commuting square of sheaves

Spec(A′)
∐

Spec(A⊕E[1]) Spec(A) //

��

Map(∆[1],Stackn)

(d1,d0)
��

Spec(A′η)

33

(X,Y )
// Map({0},Stackn)×Map({1},Stackn)

has a contractible space of diagonal lifts. The bottom map classifies two derived stacks X,Y
over Spec(A′η). Unwinding the definitions, the space of diagonal lifts is equivalent to the
space of dotted lifts in the square

X ×Spec(A′η)

(
Spec(A′)

∐
Spec(A⊕E[1]) Spec(A)

)
��

// Y

��

X

44

// Spec(A′η).

To see that this space is contractible, we may assume that X = Spec(B) is affine, since a
general stack X arises as a colimit of affines. The fact that A′ −→ A induces a surjection on
π0 then implies that

X ×Spec(A′η) Spec(A) ' Spec(B ⊗A′η A)
and similarly for the other pullbacks. It follows that B is a square zero extension of B ⊗A′η A

′

by B ⊗A′η E. The space of diagonal lifts is then contractible because Y is infinitesimally
cohesive.

Similarly, to see that (d1, d0) is convergent it suffices to show that any square

colimn

(
Spec(τ≤nA)

)
//

��

Map(∆[1],Stackn)

(d1,d0)

��

Spec(A)
(X,Y )

//

33

Map({0},Stackn)×Map({1},Stackn)

has a contractible space of diagonal lifts. Unwinding the definitions, the space of diagonal
lifts is equivalent to the space of space of lifts

colimn

(
X ×Spec(A) Spec(τ≤nA)

)
��

// Y

��

X

55

// Spec(A).

Writing X as a colimit of affines, one sees that this space is contractible because Y is
convergent.
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Proposition 6.4.13. Let A′ −→ A be a square zero extension of a complete C∞-ring A by
a complete A-module E and consider a composition of pullback squares of derived stacks

Y
f
//

��

X //

��

Spec(A)

��

Y ′
f ′
// X ′ // Spec(A′).

If f is of one of the following types, then so is f ′: n-representable, locally finitely presented,
smooth, smoothly surjective, étale, an equivalence.

Proof. Suppose that f ′ is m-representable. We will prove the proposition by induction on
m. We may assume that X ′ = Spec(A′) and that X = Spec(A), and we can work locally on
Spec(A′).

The case m = 0. To see that f ′ is locally finitely presented (smooth, étale), we can work
locally on Y ′. In particular, we may assume that Y ′ = Spec(B′) is affine, so that Y = Spec(B)
is affine by Lemma 6.4.46.4.4. Furthermore, by Lemma 5.2.95.2.9, we may assume that f arises from
a finitely presented map of C∞-rings A −→ B.

By Lemma 2.2.282.2.28 and Proposition 6.2.16.2.1, it suffices to verify that π0(A′) −→ π0(B′)
is a locally finitely presented map of discrete C∞-rings and that LB′/A′ is perfect (resp.
locally free of finite rank, zero). For the first condition, we can locally choose a map
q : π0(A′){x1, . . . , xn} −→ π0(B′) which induces a surjection

π0(A){x1, . . . , xn} // π0(B)

after tensoring along the square zero extension π0(A′) −→ π0(A). By Nakayama’s lemma,
the map q is surjective as well and π0(A′) −→ π0(B′) is finitely presented.

Since B′ −→ B is a square zero extension, Nakayama’s lemma has the following conse-
quence: if E is an n-connective B′-module and p : B′[n]⊕k −→ E induces a local surjection
(isomorphism) πn(B)⊕k −→ πn(B ⊗B′ E), then p induces a surjection (isomorphism) on πn.
Using this, we can inductively lift generators from LB/A ' LB′/A′ ⊗B′ B to LB′/A′ to find
that LB′/A′ is perfect (resp. locally free of finite rank, zero).

Finally, to see that f ′ is a smooth surjection (equivalence) of derived manifolds when f is,
note that f and f ′ induce the same maps on the underlying topological spaces. The result
follows immediately from this.

The case m > 0. Let us assume that the proposition is proven for (m− 1)-representable
maps f ′ and suppose that Y ′ is a derived m-stack. Let U ′ −→ Y ′ be an atlas by a coproduct
of affines. The pullback of this atlas yields an atlas U −→ Y for Y . If Y is n-representable
for n < m, then the map U −→ Y is (n − 1)-smooth. By inductive hypothesis, it follows
that U ′ −→ Y ′ is (n− 1)-smooth, so that Y ′ is n-representable.

The assertions about locally finitely presented, smooth and smoothly surjective maps
are immediate, since they can be verified for the composition U ′ −→ X ′. When f is an
equivalence, the map f ′ is an n-smooth surjection. To verify that f ′ is an equivalence, it
therefore suffices to verify that the diagonal

Y ′ // Y ′ ×Spec(A′) Y
′

is an equivalence. This map is (n− 1)-representable, so the assertion follows by inductive
hypothesis.

Finally, suppose that f is étale. Let U −→ Y be the smooth atlas for Y obtained by
pulling back the smooth atlas U ′ −→ Y ′. Since Y −→ X = Spec(A) is étale, we can refine
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this atlas by an étale atlas
∐
Vi −→ U −→ Y given by a coproduct of affines. We therefore

obtain a commuting diagram∐
Vi //

��

U // //

��

Y //

��

X = Spec(A)

��∐
V ′i

// U ′ // // Y ′ // X ′ = Spec(A′)

(6.4.14)

where the right two squares are cartesian. Each composite map of affines Vi −→ Spec(A)
is étale, so by refining the atlas we can assume that it is presented by a map of C∞-rings
A −→ Bi for which LBi/A is zero.

By Example 2.3.292.3.29, the space of deformations of A −→ Bi along the square zero extension
A′ −→ A is given by the space of null-homotopies of a map

ob: LBi/A // Bi ⊗A E[2].

This space is contractible, so that there is a (unique) map
∐
V ′i −→ X ′ making the outer

rectangle in the above diagram cartesian. By Proposition 2.3.212.3.21, each map Vi −→ V ′i is a
square zero extension. Since the composite map U ′ −→ X ′ is a smooth surjection, it follows
that there exists a lift

∐
V ′i −→ U ′ as indicated.

We can therefore extend diagram (6.4.146.4.14) as indicated, such that all squares are cartesian.
But now the map

∐
V ′i −→ Y ′ is (n− 1)-representable and its base change is an (n− 1)-étale

surjection. It follows by inductive hypothesis that the map
∐
V ′i −→ Y ′ provides an étale

atlas for Y ′, such that
∐
V ′i −→ Spec(A′) is étale. It follows that f ′ is étale.

To inductively prove that the sheaves Stackn are infinitesimally cohesive and convergent,
we use the following construction.

Definition 6.4.15. Let Atlasn : Affop −→ Ŝ be the sheaf associating to each affine M the
space of diagrams

U
p
// X // M

where X is a derived n-stack, U is a coproduct of affine derived manifolds and p is an
(n− 1)-smooth surjection.

Lemma 6.4.16. The sheaf Atlasn is equivalent to the sheaf Gpdn−1 sending each affine M
to the space of groupoid objects over M

. . .G ×U G //
//

// G //
// U // M

where U is a coproduct of affine derived manifolds, G is a derived (n−1)-stack and the source
and target maps G −→ U are smooth.

Proof. Consider an augmented simplicial diagram over M

U2 //
//

// U1
//
// U0 // X // M. (6.4.17)

By [5959, Proposition 6.1.3.9], the following two assertions are equivalent:

(1) The entire diagram is a right Kan extension of its restriction U0 −→ X −→M , which
is contained in Atlasn(M).

(2) The entire diagram is a left Kan extension of its restriction U• −→M (i.e. |U•| ' X),
which is contained in Gpdn−1(M).

Let E be the sheaf associating to each M the space of diagrams (6.4.176.4.17) satisfying these
equivalent conditions. Restriction determines natural equivalences Atlasn ←− E −→ Gpdn−1.
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Proof (of Theorem 6.4.36.4.3). We will prove by induction that the sheaf of (large) ∞-categories
Stackn : Affop −→ Ĉat∞ is infinitesimally cohesive and convergent. For n = 0 this follows
from Corollary 6.4.116.4.11 and Lemma 6.4.126.4.12. Assuming that Stackn−1 is infinitesimally cohesive,
it suffices to verify that Map(∗,Stackn) has deformation theory, by Lemma 6.4.126.4.12.

Consider the canonical map of (large) sheaves on Aff

G := Atlasn // Map(∗,Stackn) =: F.

This map is a surjection of sheaves, since every map X −→M from a derived n-stack to M
can be equipped with an atlas U −→ X. We will show that the map G −→ F satisfies the
conditions Proposition 6.1.336.1.33, from which the result follows.

By Lemma 6.4.166.4.16, the sheaf G can equivalently be described as the sheaf of groupoid
objects G ⇒ U where U is a coproduct of affines and the source and target map are (n− 1)-
smooth. This sheaf is infinitesimally cohesive and convergent because Stackn−1 is and because
deformations of smooth maps along a square zero extensions remain smooth, by Proposition
6.4.136.4.13.

To see that the map G −→ F is infinitesimally cohesive (convergent), note that the map
G −→ F decomposes as

G // Stack0−→n // Map(∗,Stack0)×Map(∗,Stackn) // F.

The second map is the base change of Map(∆[1],Stack) −→ Map(∗,Stack)×Map(∗,Stack).
In other words, Stack0−→n is the sheaf of maps from a derived manifold to a derived n-stack
and the second map takes the domain and codomain. The last two maps are infinitesimally
cohesive and convergent by Lemma 6.4.126.4.12 and Corollary 6.4.116.4.11.

To see that the first map is infinitesimally cohesive, we have to show that any diagram

Spec(A′)
∐

Spec(A⊕E[1]) Spec(A) //

��

Atlasn

��

Spec(A′η)

55

U−→X
// Stack0−→n

has a contractible space of diagonal lifts. Unwinding the definitions, the above square
classifies a map U −→ X −→ Spec(A′η) from a derived manifold U to a derived n-stack over
Spec(A′η), whose base change along Spec(A′) −→ Spec(A′η) is a smooth surjection whose
domain is a coproduct of affines. Proposition 6.4.76.4.7 and Proposition 6.4.136.4.13 then imply that
U −→ X is also a smooth surjection whose domain is a coproduct of affines, so that there is
a unique diagonal lift.

A similar argument shows that G −→ Stack0−→n is convergent: let U −→ X −→ Spec(A)
be a map between derived stacks whose base change Uk −→ Xk along each Spec(τ≤kA) −→
Spec(A) is a smooth surjection. Then U −→ X is a smooth surjection as well. Indeed, since
being a smooth surjection is local for the smooth topology, we can reduce to the case where
U −→ X is a map between affines. In that case, the result follows in a straightforward way
from Corollary 6.2.46.2.4.

Finally, we have to check that G −→ F is formally smooth: for any point x : M =
Spec(A) −→ G and any E ∈ QC≥2(Spec(A)), we have to show that

Ω0Derx(G/F,E)

is a connected space. The point x determines an atlas U q−→ X
p−→M of a derived n-stack

X and the basepoint 0 ∈ Derx(G/F,E) corresponds to the trivial deformation

U(pq)∗E // Xp∗E
// ME (6.4.18)
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obtained by base change along the zero map ME −→M . The stacks appearing in (6.4.186.4.18)
are simply the square zero extension from Construction 6.1.86.1.8, applied to the restrictions of
E to U and X. The space Ω0Derx(G/F,E) can then be identified with the space of natural
equivalences of (6.4.186.4.18) over ME which

(i) restrict to the identity when pulled back along M −→ME .

(ii) restrict to the identity Xp∗E −→ Xp∗E .

By Proposition 6.4.136.4.13, a map of stacks over ME is an equivalence if and only if its pullback
along M −→ ME is an equivalence. We can therefore identify Ω0Derx(G/F,E) with the
space of diagonal lifts

U

��

// U(pq)∗E

��

// U

��

U(pq)∗E //

99

Xp∗E
// X

Since U(pq)∗E −→ Xp∗E is the base change of U −→ X along ME −→M , the space of such
diagonal lifts is equivalent to the mapping space

Map(LU/X , (pq)∗E)

Since U −→ X is smooth, LU/X is perfect with Tor-amplitude contained in (−∞, 0]. Because
U is a coproduct of affines, the space Map(LU/X , (pq)∗E) is connected whenever E (hence
(pq)∗E) is 1-connected. We conclude that G −→ F is formally smooth, so that the sheaf
F = Map(∗,Stackn) is infinitesimally cohesive and convergent.

6.4.3 Tangent spaces. Let χ : M −→ Map(I,Stack) be a map classifying an I-diagram of
stacks p• : X• −→M over an affine M = Spec(A). Consider the functor

DefX•/M : C∞Algsm/A // S

sending a small extension A′ to the space of deformations of the diagram X•

X•

p

��

// X̃•

��

Spec(A) // Spec(A′).

to a diagram of stacks over Spec(A′). Theorem 6.4.36.4.3 implies that DefX•/M is a formal moduli
problem, which has an associated Lie algebroid over A by Theorem 4.2.14.2.1.

Proposition 6.4.19. Let χ : M = Spec(A) −→ Stack classify a map p : X −→M and let g
be the Lie algebroid associated to the formal moduli problem DefX/M . Then the anchor map
g −→ TM is equivalent to the projection map

Hom(LX ,OX)×Hom(p∗LM ,OX) Hom(LM ,OM ) // Hom(LM ,OM ) ' TM . (6.4.20)

In other words, one can think of the Lie algebroid g as consisting of ‘p-related vector
fields’ on X and M .

Proof. To provide the map from (6.4.206.4.20) to the anchor map g −→ TM , it suffices to provide
the following: for every (perfect) connective quasi-coherent sheaf E over M and every element
η ∈ Map(LM , E[1]), we have to provide a natural map

Map(LX , p∗E[1])×Map(p∗LM ,p∗E[1]) {η} // DefX/M (Aη) (6.4.21)



Deformations of stacks 155

to the space of deformations over the square zero extension Aη of A classified by η. This
determines a map of reduced excisive functors LA/Modf.p,≥1

A −→ S, whose domain is classified
by (6.4.206.4.20) and whose codomain is classified by the anchor map g −→ TM , by Example
4.2.244.2.24.

The map (6.4.216.4.21) can be described as follows. By the universal property of the cotangent
complex of X, the domain of this map is given by the space of dotted lifts

X //

=
))

��

Xp∗E[1]

��

η̃
// X

p

��

M // ME[1] η
// M

(6.4.22)

from the square zero extension of X by p∗E[1] (Construction 6.1.86.1.8), where the left vertical map
Xp∗E[1] −→ME[1] is the trivial deformation of p : X −→M over ME[1]. Because η̃ restricts
to the identity on X, Proposition 6.4.136.4.13 implies that the right square becomes cartesian.
Together with the canonical map 0: Xp∗E[1] −→ X covering the zero map ME[1] −→M , the
map η̃ therefore determines an element(

X
0←− Xp∗E[1]

η̃−→ X
)
∈ DefX/M (A)×DefX/M (A⊕E[1]) DefX/M (A).

Since DefX/M is a formal moduli problem, this space is naturally equivalent to the space
DefX/M (Spec(Aη)). The above point therefore determines a unique deformation Xη̃ ∈
DefX/M (Spec(Aη)), depending functorially on the map η̃. This provides the natural map
(6.4.216.4.21) and hence the map from (6.4.206.4.20) to g −→ TM over TM .

To see that this map is an equivalence, it suffices to show that the map between the fibers
over TM is an equivalence. In other words, it suffices to show that the map (6.4.216.4.21) is an
equivalence whenever η = 0 is the zero map. In that case, the map (6.4.216.4.21) reduces to a map

Map
(
LX/M , p

∗E[1]
)

// Ω0DefX/M
(
A⊕ E[1]

) ∼ // DefX/M
(
A⊕ E

)
.

The second map is the natural equivalence arising from the fact that DefX/M is a formal
moduli problem.

The first map sends η̃ : LX/M −→ p∗E[1] to the lift (6.4.226.4.22) classified by it, which can
equivalently be identified with a map Xp∗E[1] −→ η∗X over ME[1] and under X. Since we
are working over the fiber where η = 0, such a map is just an endomorphism of Xp∗E[1]
over ME[1], which restricts to the identity on X and is therefore an equivalence (Proposition
6.4.136.4.13). In other words, the universal property of the cotangent complex guarantees that the
first map is an equivalence as well.

Remark 6.4.23. Suppose that χ : ∗ −→ Stack classifies a stack X. It follows from Proposi-
tion 6.4.196.4.19 that the chain complex HomOX (LX ,OX) carries a natural Lie bracket. Informally,
one can think of this Lie algebra as the Lie algebra of vector fields on X.

Example 6.4.24. Suppose that the map X• −→M = Spec(A) is the opposite of a diagram
of complete dg-C∞-rings A −→ B•. Then the formal moduli problem DefX•/M is equivalent
to the formal moduli problem DefB• from Example 2.3.352.3.35. In particular, the Lie algebroid
from Proposition 6.4.196.4.19 can be identified with the Atiyah Lie algebroid of A −→ B• (Example
3.1.33.1.3).

Example 6.4.25. Let G = Map(∆[1],Stack) be the sheaf of maps between stacks and
suppose that χ : M = Spec(A) −→ G classifies a diagram

X0
f
// X1

p
// M.
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A similar argument as in Proposition 6.4.196.4.19 shows that for any E ∈ QC≥0(M), the space
Ω0Derχ(G;E) is equivalent to the space of natural diagonal lifts

X•
= //

��

X•

��

X̃•

>>

// M.

where X̃• is given by (X0)(pf)∗E −→ (X1)p∗E −→ME . The tangent complex of the formal
moduli problem DefX0−→X1/M is therefore given by

Hom
(
LX1/M ,OX1 [1]

)
×Hom(f∗LX1/M ,OX0 [1]) Hom

(
LX0/M ,OX0 [1]

)
. (6.4.26)

There are canonical maps of formal moduli problems

DefX0/M DefX•/M
d0 //

d1oo DefX1/M

whose induced maps on tangent complexes are the obvious projection maps out of (6.4.266.4.26).

Corollary 6.4.27. Let X0
f−→ X1 −→ M = Spec(A) be a map of derived stacks over an

affine M . If f is smooth, then the map of formal moduli problems DefX•/M −→ DefX1/M

induces a map of Lie algebroids with connective fibers.

Proof. By Example 6.4.256.4.25, the fiber can be identified with Map(LX0/X1 ,OX0), which is
connective by the assumption that f is smooth.

6.4.4 Lie algebroids from Lie groupoids. Let G ⇒ M be an ordinary (smooth) Lie
groupoid and let p : M −→ X be the induced atlas of the associated stack. Let TM/X be the
Lie algebroid associated to p by Definition 6.1.56.1.5. We will use Theorem 6.4.36.4.3 to show that
TM/X is equivalent to the usual Lie algebroid of the Lie groupoid G. In fact, we also provide
a description of the Lie algebroid TM/X when M is an affine derived manifold.

Construction 6.4.28. Let G• : ∆op −→ Aff be an affine derived Lie (1-)groupoid. The
simplicial diagram G• is classified by a map {G} −→ Map(∆op,Stack0) to the sheaf of
simplicial diagrams of 0-stacks. Consider the sheaf

FG = Map(∆op × [1],Stack0)×Map(∆op×{1},Stack0) {G}

whose value on an affine U is given by the space of natural transformations

P• // U × G•

of derived manifolds over U . Let BunG ⊆ FG be the sub-sheaf sending an affine U to the
connected components on those diagrams that satisfy the following two conditions:

(a) The augmented simplicial diagram of derived manifolds P• −→ U is the right Kan
extension of its restriction P0 −→ U . In other words, P• is the Čech nerve of the map
P0 −→ U .

(b) The map P• −→ U × G• of simplicial derived manifolds over U is equifibered, i.e. every
map α : [n] −→ [m] induces a cartesian square

Pm //

��

Pn

��

U × Gm // U × Gn.
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Unwinding the definitions, one sees that an object in BunG(U) is given by a derived manifold
P0 equipped with an action of the groupoid G, whose quotient is equivalent to U .

Lemma 6.4.29. Let G be an affine derived Lie groupoid and let X be its associated stack.
There is a canonical equivalence of sheaves

X // BunG .

Proof. The groupoid G determines a natural diagram G• −→ X × G• of sheaves over X.
Furthermore, each map Gn −→ X is 0-representable, the augmented simplicial diagram
G• −→ X realizes G• as the Čech nerve of G0 −→ X by [5959, Proposition 6.1.3.9] and the map
G• −→ X × G• is clearly equifibered. It follows that this diagram of 0-representable sheaves
over X is classified by a map X −→ BunG .

To see that the map f : X −→ BunG is an equivalence, fix an element x ∈ BunG(U),
corresponding to a diagram P• −→ U × G• over U . Unwinding the definitions, the fiber
f−1(x) can be identified with the space of dotted extensions

P• //

��

G•

��

U // X

for which each induced map Pn −→ U ×X Gn is an equivalence. Since the map P• −→ G•
is equifibered, the space of such extensions is contractible by [5959, Theorem 6.1.3.9] and it
follows that f is an equivalence.

The canonical atlas M = G0 −→ X fits into a diagram of augmented simplicial objects

Dec0(G) d0 //

d{0}

��

G•

��

M // X.

The groupoid object Dec0(G) is the Čech nerve of the map Dec0(G) = G1 −→M and each
map Dec0(G)n −→M ×X Gn is an equivalence. In other words, the composite map

M // X
∼ // BunG

classifies the canonical G-torsor over M = G0, given by the translation action of G1 on itself.

Proposition 6.4.30. Let G be a derived Lie groupoid such that M = G0 and G1 are affine
derived manifolds and let M −→ X be the atlas of its associated stack. Consider the diagram
of augmented simplicial derived manifolds

Dec0(G•)

d{0}

��

d0 // G•

��
M // ∗.

The the Lie algebroid TM/X can be identified with the O(M)-module of natural vector fields
on Dec0(G•) −→M over G• −→ ∗, equipped with the commutator bracket and with anchor
map given by the map sending such a natural vector fields to its component at M .
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Proof. By Lemma 6.4.296.4.29, the formal moduli problem associated to the map M −→ X is
equivalent to the formal moduli problem associated to the map M −→ BunG classifying
the canonical G-torsor G1 −→ M . By Proposition 6.4.136.4.13, this formal moduli problem is
equivalent to the formal moduli problem associated to the composite map M −→ FG which
classifies natural transformation of simplicial manifolds over M

Dec0(G•) // M × G•. (6.4.31)

Note that FG is the fiber of a map of sheaves

Map(∆op × [1],Stack0) // Map(∆op × {1},Stack0)

By Example 6.4.246.4.24 and Theorem 4.4.14.4.1, the Lie algebroids associated to these two sheaves
are just given by Atiyah Lie algebroids, consisting of natural derivations on diagram 6.4.316.4.31
over M , resp. its restriction M × G•, equipped with the commutator bracket.

It follows that the Lie algebroid TM/X can be identified with the complex of natural
vector fields over the diagram (6.4.316.4.31) (and over M) whose restriction to M × G• is just
induced by the the vector field on M . This is precisely the complex of natural vector fields
on Dec0(G•) −→M over G•, together with the commutator bracket and with anchor map
given by restriction to M .

Remark 6.4.32. The description from Proposition 6.4.306.4.30 can be made more explicit at
the level of algebra, as in Example 3.1.33.1.3: if the simplicial affine space G• is modeled by
a projectively cofibrant cosimplicial diagram A• : ∆ −→ C∞Algdg, then the Lie algebroid
TM/X can be modeled by the dg-Lie algebroid over A0 consisting of natural ∆+-diagrams of
derivations v• : A1+• −→ A1+• For all n ≥ 0, the derivation vn : A1+n −→ A1+n is An-linear,
where A1+n is considered an An-algebra via the coface map δ0. The anchor map takes the
component v−1.

Corollary 6.4.33. Let G ⇒ M be an ordinary Lie groupoid and let M −→ X be the map
to its associated stack. Then the Lie algebroid TM/X is equivalent to the usual Lie algebroid
of G.

Proof. We already identified the anchor map of TM/X in Example 6.2.116.2.11. In particular,
TM/X is just a non-derived, discrete Lie algebroid. The description of Proposition 6.4.306.4.30 can
therefore be applied strictly (i.e. without taking the derived space of natural vector fields).
Unwinding the definitions, this identifies TM/X with the vector space of tuples

v ∈ Γ(G, T tG)G w ∈ Γ(M,TM)

of a G-invariant vector field v on G, tangent to the target fiber, and a vector field w on M .
Furthermore, these two vector fields have to be related under the source map s : G −→M .
The vector field v then determines w uniquely: it is simply given by the restriction of ds(v) to
the unit section M −→ G. We can therefore identify the Lie algebroid TM/X with Γ(G, T tG)G ,
endowed with the usual commutator bracket and anchor map.



Chapter 7

Lie algebroids from stacks

In Chapter 66, we have seen that any map f : M −→ X from a derived manifold to a derived
stack X gives rise to a sheaf of Lie algebroids TM/X over M (see Definition 6.1.56.1.5 and Example
6.3.176.3.17). This Lie algebroid is associated to the sheaf of formal moduli problems X̂ sending a
small extension of an affine open subspace of M to the space of extensions

Spec(A) open
//

��

M
f
// X

Spec(Ã).

55

Somewhat informally, the formal moduli problem X̂ assembles a compatible family of infinites-
imal neighbourhoods of M inside X, and hence describes a certain formal neighbourhood of
X around M . However, X̂ does not contain the data of all infinitesimal neighbourhoods of M
inside X. For example, X̂ does not describe deformations of f along a square zero extension
Spec(A⊕E) where E is infinitely generated. This also becomes apparent in terms of linear
algebra: while the deformations of f along Spec(A ⊕ I) are controlled by the cotangent
complex LM/X , the formal moduli problem X̂ is only controlled by the dual of LM/X .

The entire family of infinitesimal neighbourhoods of M inside X can be organized into
a sheaf X∧M , the formal completion of X at M . The purpose of this section is to study
the relation between the stack X itself, the formal completion X∧M and the formal moduli
problem X̂, or equivalently, the Lie algebroid TM/X .

In Section 7.17.1, we show that the formal completion of X at M can be retrieved from the
Lie algebroid TM/X when the map f : M −→ X is locally finitely presented. For example,
when M −→ X is smooth, one can think of the formal completion X∧M as the infinitesimal
quotient of M by the action of the Lie algebroid TM/X .

In Section 7.27.2, we study the relation between this formal quotient and the global quotient
X. Our main result is the following variant of the Van Est theorem:

Theorem 7.2.17.2.1. Let p : M −→ X be a smooth map from a smooth manifold to a smooth
stack whose fibers are n-connected. If f : M −→ Y is map to a derived m-stack, then the
map

MapM/(X,Y ) // MapLieAlgdM (TM/X , TM/Y )

is (m− n− 2)-truncated (in particular, an equivalence if m = n).

Example 7.0.1. Suppose that X and Y arise from Lie groupoids G ⇒ M and H ⇒ M .
In light of Proposition 6.4.306.4.30, the above result reproduces ‘Lie’s second theorem’ for Lie
groupoids [6464, 6767]. When Y = K(m,R), this reproduces the van Est theorem (with trivial
coefficients) [2828, 2020].

Section 7.37.3 outlines some further examples and applications of Theorem 7.2.17.2.1. In par-
ticular, we describe how the cohomology of the Lie algebroid TM/X can often be identified
without providing an explicit point-set model for TM/X , using descent.
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7.1 Formal completion

Let f : Y −→ X be a map in Sh(Aff). Informally, the formal completion of X around Y
consists of all A-points Spec(A) −→ X which are infinitesimal thickenings of points in Y .
More precisely, let A be a complete C∞-ring and define the reduction Ared to be the discrete
C∞-ring

Ared = π0(A)/
(
f : locally fn = 0 for some n

)
.

By construction, Ared is a complete C∞-ring, being the global sections of the quotient sheaf
by the sheaf of locally nilpotent elements of π0O (taking global sections of O-module sheaves
over Spec(π0A) is exact).

Remark 7.1.1. Our definition of Ared differs from the C∞-algebraic reduction of a C∞-ring,
given by the quotient of π0(A) by the ideal containing all f ∈ π0(A) such that f(x) = 0 for
all x ∈ |Spec(A)|.

Definition 7.1.2 ([9090]). Let f : Y −→ X be a map in Sh(Aff). The formal completion X∧Y
of X at Y is the sheaf given by

X∧Y (A) =


Spec(Ared) //

��

Y

��

Spec(A) // X

 .

There are natural maps of sheaves Y −→ X∧Y −→ X.

Example 7.1.3. If f : Y −→ X is a closed immersion of derived manifolds, X∧Y ⊆ X is the
subsheaf consisting of those maps x : Spec(A) −→ X for which the map Spec(Ared) −→ X
factors (uniquely) over Y . In particular, the map of topological spaces underlying x takes
values in the closed subspace Y ⊆ X.

Remark 7.1.4. The formal completion of the terminal map X −→ ∗ is the de Rham space
XdR of X, defined by XdR(A) = X(Ared) [9090]. The functor (−)dR : Sh(Aff) −→ Sh(Aff)
preserves limits and colimits and takes values in convergent, infinitesimally cohesive sheaves.
For any map Y −→ X, the formal completion fits into a pullback square of sheaves

X∧Y
//

��

X

��

YdR // XdR.

Example 7.1.5. The canonical map Rn −→ RndR is an epimorphism of sheaves (since any
set of elements in π0(A)/I can be lifted to π0(A)) and the associated Čech nerve is given by
the groupoid object (

Rn × Rn
)∧
Rn

//
// Rn // RndR

whose space of arrows is the formal completion of Rn × Rn at its diagonal. In other words,
RndR can be considered as the quotient of Rn by the formal completion of its pair groupoid,
i.e. as the quotient where one identifies ‘infinitesimally close points’.

More generally, if p : Y −→ X is smooth then the map Y −→ X∧Y is a surjection of
sheaves and realizes X∧Y as the quotient of Y by the formal completion of the Čech nerve of
p. Indeed, it suffices to verify this locally on X and Y , where the map p is equivalent to a
projection U × Rk −→ U . The map Y −→ X∧Y can therefore be identified locally with the
surjection U × Rk −→ U × RkdR.

Our goal will be to prove the following:
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Proposition 7.1.6. Let M −→ X be a locally finitely presented map from a derived manifold
to a derived stack. Then the map M −→ X∧M −→ X has the following universal property:
for every map M −→ Y to a convergent, infinitesimally cohesive sheaf, there is a natural
commuting triangle

MapM/(X,Y )

vv

(̂−)

))

MapM/(X∧M , Y ) '
// MapFormModM (X̂, Ŷ )

where MapFormModM (X̂, Ŷ ) is the space of maps between the sheaves of formal moduli problems
associated to X and Y .

When the structure sheaf OM is locally eventually coconnective, Corollary 6.3.156.3.15 identifies
the space of maps X̂ −→ Ŷ with the space of Lie algebroid maps TM/X −→ TM/Y . Under
this identification, the derivative TM/X −→ TM/Y of a map of stacks X −→ Y corresponds
simply to its restriction to X∧M .

We will first study the formal completion of a map between affines and then use a gluing
construction to deduce Proposition 7.1.67.1.6.

7.1.1 Formal completions of affines. When M −→ X is a finitely presented map of
affines, the formal completion X∧M can be described relatively explicitly in terms of algebra.

Construction 7.1.7. Consider a cofibration A −→ B = A[ξi] in C∞Algdg, where A is
cofibrant and there are finitely many generators ξi, each of which has degree ≥ 1. This
cofibration determines a dg-Lie algebroid g ⊆ TB over B, spanned by the derivations ∂/∂ξi.
Let Ã = C∗sm(g) be the global Chevalley-Eilenberg complex of this Lie algebroid, as in
Construction 4.1.304.1.30.

Unwinding the definitions, one can explicitly describe Ã as follows. For each generator ξi,
let fi = fi(ξ) be the differential of ξi in B and let xi be an additional generator of degree
|ξi| − 1. Then Ã is the freely generated dg-C∞-ring

Ã = A{xi, ξi} ∂ξi = fi(ξ)− xi ∂xik =
∑ ∂fi

∂ξik−1

xik−1 .

When xik is of degree k − 1, the last sum runs over all generators ξik−1 of degree k − 1. In
other words, Ã is the dg-C∞-ring obtained by attaching along each boundary fi a cylinder
instead of a cell. The canonical map A −→ Ã is a weak equivalence between cofibrant
dg-C∞-rings.

Let N be the total number of generators ξi and fix a number n ≥ 1. For each generator
xi of degree k, let Ji be the set of all monomials of degree (N + 1)k ·n satisfying the following
two conditions:

• they are monomials in xi, as well as all generators xj of degree < k.
• they are divisible by xni .

Let J =
⋃
i Ji and let A(n) := Ã/J be the (strict) quotient of Ã by J . There are canonical

maps
A // · · · // A(n) // A(n−1) // · · ·A(1) // B = A[ξi]

taking succesive quotients by lower degree polynomials in the generators xi (and ultimately,
by the generators xi themselves).

Remark 7.1.8. The precise definition of the set J and the quotient A(n) is essentially
irrelevant; we only need that J has the following properties:
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(a) The set J contains the monomials xn0 , for every generator x0 of degree 0. All other
elements in J have degrees ≥ n.

(b) For any generator xi of degree k, the set J contains its n · (N + 1)k-th power. In
particular, each map A(n) −→ B has a nilpotent kernel.

(c) The ideal generated by J is closed under the differential. Indeed, consider a monomial
of the form xai · p(x), where xi is of degree k, p(x) is some monomial in generators
of lower degree and n ≤ a ≤ (N + 1)k · n. The differential of xai · p(x) is a linear
combination of monomials of the form

xai · p′(x) or xa−1
i · q(x).

The first monomial is again contained in J and the second monomial is contained in J
when a > n. When a = n, the monomial q(x) must contain an n · (N + 1)k−1-th power
of a generator of lower degree, so that it is in the ideal generated by J as well.

Lemma 7.1.9. Let n ≥ 2 and suppose that C is an (n− 1)-truncated C∞-ring. Restriction
along the map A −→ A(n) induces an inclusion of path components

Map(A(n), C) // Map(A,C).

The essential image consists of those maps φ : A −→ C for which φ(fi0)n = 0 in π0(C), for
each fi0 = dξi0 in π0(A).

Proof. The map A −→ A(n) decomposes as

A
∼ // Ã // Ã/(xni0) // A(n)

where Ã −→ Ã/(xni0) takes the quotient by all n-th powers of generators xi0 ∈ Ã of degree 0.
The map Ã/(xni0) −→ A(n) takes the quotient by the remaining monomials in the set J , each
of which is of degree ≥ n (Remark 7.1.87.1.8(a)). Since C is (n− 1)-truncated, the map

Map(A(n), C) // Map(Ã/(xni0), C)

is an equivalence.
The sequence of xni0 is a regular sequence in Ã, so that the quotient Ã/(xni0) is a model

for the homotopy quotient of Ã by the elements xni0 . For any C∞-ring C, we therefore obtain
a homotopy pullback square of spaces

Map(Ã/(xni0), C)

��

// F

��

// ∗

0
��

Map(Ã, C)
ψ

//
∏
i0
C

(−)n
//
∏
i0
C

where ψ sends a map φ : Ã −→ C to the various degree 0 cycles φ(xi0) of C. The map
(−)n takes the n-th power of elements in C. More precisely, given a map of pointed spaces
α : K −→ C = (C, 0), the map αn : K −→ C −→ C is given by the composite

K
∆ // K∧n

α∧n // C∧n
×

// C

where ∆ is the diagonal map. When K is a k-sphere for k > 0, the diagonal map is null-
homotopic, which implies that the map (−)n induces the zero map on homotopy groups in
degree ≥ 1. It follows that the map F −→

∏
C is an inclusion of path components, indexed

by the elements c ∈ π0(C) for which cn = 0 in π0(C).
The space Map(Ã/(xni0), C) is therefore a union of the path components in Map(Ã, C),

on those maps φ : Ã −→ C such that φ(xni0) = 0 in π0(C). By construction, xi0 is homotopic
to fi0 in Ã and the result follows.
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Proposition 7.1.10. Let A −→ B be a cofibration of dg-C∞-rings as in Construction 7.1.77.1.7
and let i : M = Spec(B) −→ Spec(A) = X be the associated closed immersion. Then there is
a map of presheaves Affop −→ S

colimn−→∞
(
Spec(A(n))

)
// X∧M

realizing X∧M as the convergent sheaf associated to the union of all Spec(A(n)).

Proof. Recall that there is a finite set of elements fi ∈ π0(A) such that

π0(B) ∼= π0(A)/(fi) π0(A(n)) ∼= π0(A)/(fni ).

The maps A(n) −→ B therefore induce isomorphisms A(n)
red −→ Bred and the maps Ared −→

A
(n)
red factor naturally over Bred, so that there is a diagram of presheaves

· · · // Spec(A(n)) // Spec(A(n+1)) // · · · // X∧M
// Spec(A).

For any n-truncated complete C∞-ring C, the maps

Spec(A(n+1))(C) // X∧M (C) // Spec(A)(C)

are inclusions of path components: X∧M (C) consists of maps φ : A −→ C such that each
φ(fi) is a locally nilpotent element of π0(C). On the other hand, Spec(A(n+1))(C) consists
of maps φ such that φ(fi)n+1 = 0 in π0(C), by Lemma 7.1.97.1.9. Because there are only finitely
many elements fi, the presheaf

colim
n−→∞

Spec(A(n))

sends C to the path components of Spec(A)(C) on the maps φ : A −→ C for which each φ(fi)
is nilpotent. Consequently, its associated sheaf agrees with X∧M on all truncated complete
C∞-rings. This means that the corresponding convergent sheaves are naturally equivalent as
well (Remark 6.1.326.1.32).

Example 7.1.11. If 0 : ∗ −→ Rk is the inclusion of the origin, then the formal completion
(Rk)∧0 is given by the colimit

colim
n−→∞

Spec
(
R{x1, . . . , xk}/(xn1 , . . . , xnk )

)
.

7.1.2 Formal completions of derived stacks. Let M be a derived manifold and let
InfM be its infinitesimal site (Definition 6.3.46.3.4). There is a canonical functor

i : InfM // M/Shinf.coh.,conv(Aff) (7.1.12)

to the category of convergent, infinitesimally cohesive sheaves with a map from M . For each
affine open Spec(A) ⊆M , this functor sends a small extension Spec(A) −→ Spec(Ã) to the
pushout M

∐
Spec(A) Spec(Ã).

Since M/Shinf.coh.,conv(Aff) is locally presentable, there is an adjunction

i! : PSh(InfM ) //
M/Shinf.coh.,conv(Aff): i∗oo

where i! takes the left Kan extension of a sheaf of formal moduli problems Infop
M −→ S along

i. The right adjoint i∗ sends a map M −→ X to the sheaf of formal moduli problems X̂.
If f : M −→ X is a map to a convergent, infinitesimally cohesive sheaf, then the map

M −→ X∧M −→ X induces an equivalence of formal moduli problems

i∗(X∧M ) ∼ // i∗X = X̂.

The inverse of this equivalence is adjoint to a map i!X̂ −→ X∧M .
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Proposition 7.1.13. Let A −→ B be a finitely presented map of C∞-rings and let f : M =
Spec(B) −→ Spec(A) = X be the associated closed immersion. Then the canonical map

i!X̂
∼ // i!i

∗(X∧M ) // X∧M

is an equivalence of convergent, infinitesimally cohesive sheaves.

Proof. We can identify X∧M with the sheaf colim Spec(A(n)) from Proposition 7.1.107.1.10, at least
when restricted to C∞-rings that are eventually coconnective. We claim that each map
A(n) −→ B is a small extension. Assuming this, the result follows: indeed, let

F = colim Spf(A(n)) : Infop
M

// S

be the ind-representable sheaf of formal moduli problems given by the colimit of the corepre-
sentable functors on the A(n). Then X∧M ' i!F and the map i!i∗i!F −→ i!F admits a section,
induced by the unit map F −→ i∗i!F . This unit map is a filtered colimit of the unit maps

Spf(A(n)) // i∗Spec(A(n))

which are all equivalences. It follows that the map i!i
∗(X∧M ) −→ X∧M is an equivalence.

It therefore suffices to show that each

A(n) = A{xi, ξi}/(xni0 , . . . ) // B = A{ξi}

is a small extension of B. To see this, note that the quotient A(n) contains finitely many
nonzero monomials in the generators xik , since every generator xik is nilpotent in A(n)

(Remark 7.1.87.1.8(b)). Equip these remaining monomials with a linear order such that p(x) ≤ q(x)
if and only if both

(1) the polynomial degree of p is less or equal than the polynomial degree of q.

(2) if the polynomial degrees of p and q agree, then the total homological degree of p is
greater or equal than the homological degree of q.

The point of this ordering is that xi · p(x) > p(x) and that the boundary of a monomial
p(x) is a linear combination of larger monomials. Now take successive quotients by these
monomials, starting with the largest one and ending with the highest degree generator xm.
It follows from (2) that in each step, one takes the quotient by a cycle and it follows from
(1) that each step is a strict square zero extension by a shifted copy of B (and therefore a
square zero extension, by Lemma 2.2.212.2.21). We conclude that each A(n) −→ B is indeed a
small extension.

Lemma 7.1.14. Let f : M −→ X be a map from a derived manifold to an infinitesimally
cohesive sheaf. Suppose that there exists a covering sieve S ⊆ Aff/M with the property that
for each Uα ∈ S, the map

iα!i
∗
α(X∧Uα) // X∧Uα

is an equivalence, where iα is the functor (7.1.127.1.12) for Uα. Then the map

i!i
∗(X∧M ) // X∧M

is an equivalence as well.
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Proof. There is a commuting square of convergent sheaves with deformation theory

colim
α∈S

M
∐
Uα

(
iα!i
∗
α(X∧Uα)

)
∼ //

��

colim
α∈S

M
∐
Uα
X∧Uα

∼

��

i!i
∗X∧M

// X∧M .

The top map is an equivalence since each iα!i
∗
α(X∧Uα) −→ X∧Uα is an equivalence. Because

M ' colimα∈S Uα, there is an equivalence of sheaves

colim
α∈S

X∧Uα
∼ // colim

α∈S

(
X ×XdR (Uα)dR

)
∼ // X ×XdR MdR = X∧M .

This implies that the right vertical map is an equivalence as well. To see that the left vertical
map is equivalence, note that each affine open subspace Uα ⊆M defines a sheaf on InfM

χα : Infop
M

// S;
(
V −→ Ṽ

) � //

{
∗ V ⊆ Uα
∅ otherwise

Unwinding the definitions, there is a natural equivalence M
∐
Uα
iα!i
∗
α(X) ' i!(χα × i∗X)

for any M −→ X. There is an equivalence of sheaves colimα∈S χα −→ ∗ over InfM , which
implies that the left vertical map is an equivalence. It follows that the bottom map is an
equivalence, as asserted.

Proof (of Proposition 7.1.67.1.6). If f : M −→ X is a map to an infinitesimally cohesive sheaf,
then the sheaf i!(X̂) is characterized by the property that

MapFormModM (X̂, Ŷ ) ' MapM/(i!X̂, Y )

for any convergent sheaf with deformation theory. To prove the proposition, it therefore
suffices to verify that for any locally finitely presented map f : M −→ X to a derived stack,
the canonical map

i!i
∗(X∧M ) // X∧M

is an equivalence of convergent, infinitesimally cohesive sheaves.
To prove this, it suffices to work locally on M , by Lemma 7.1.147.1.14. We may therefore assume

that the map f : M −→ X arises from a map M −→ X• to a derived Lie n-groupoid, which is
locally finitely presented in each simplicial degree. In fact, replacing X• by X•×Pair(Rk), we
may assume that this map is given in each degree by a locally finitely presented embedding.

Since the maps X(∆[k]) −→ X(Λj [k]) are smooth, Example 7.1.57.1.5 shows that the map of
simplicial sheaves X• −→ (X•)dR is a Kan fibration. It follows that

X∧M ' colim
(

(X•)∧M
)
.

Similarly, it follows that the sheaf of formal moduli problems X̂ is the colimit of the simplicial
diagram of formal moduli problems X̂•. We therefore obtain a commuting square of sheaves

colim
∆op

i!i
∗(X•) //

∼

��

colim
∆op

(
(X•)∧M

)
∼

��

i!i
∗X• // X∧M

and it suffices to treat the case where f is a locally finitely presented embedding of derived
manifolds. Working locally, we may assume that f arises from a finitely presented map of
C∞-rings A −→ B. In that case, the result follows from Proposition 7.1.137.1.13.
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Example 7.1.15. Consider the sheaf O : Affop −→ CAlg of (unbounded) commutative
algebras sending each affine space M to its ring of smooth functions. This extends to a
limit-preserving functor O : Sh(Aff)op −→ CAlg which one can think of as sending a sheaf to
its function algebra.

Suppose that M is a locally finitely presented derived manifold whose structure sheaf is
locally eventually coconnective (e.g. M is a smooth manifold, or a derived intersection of
two smooth submanifolds of a smooth manifold). If F : Infop

M −→ S is the terminal formal
moduli problem, there is a canonical map of commutative algebras over O(M)

O(MdR) // O(F ) // C∗(TM )

The second map is an equivalence by Remark 4.2.224.2.22. Taking the map M −→ Y to be
the zero map 0: M −→ K(n,R) in Proposition 7.1.67.1.6, one finds that the first map induces
an equivalence between the fibers over 0 ∈ O(M). The above map therefore provides an
equivalence between the function algebra of the de Rham space O(MdR) and C∗(TM ).

Remark 7.1.16. Let X• be a (smooth) Lie n-groupoid and let M = X0 −→ X be the
canonical atlas. This map also arises as the colimit of the map of simplicial manifolds
X0 −→ X•. Proposition 7.1.67.1.6 shows that C∗(TM/X) can also be computed as the homotopy
limit

C∗(TM/X) ' lim
∆
C∗(TM/X•) ' lim

∆
O((X•)∧X0

).

The cosimplicial diagram O((X•)∧X0
) consists of discrete (C∞-)rings and can be identified

with the usual completion (A•)∧m• of the cosimplicial ring A• = C∞(X•) at the kernel
m• ⊆ A• −→ A0 of the map restricting along X0 −→ X•. A dg-algebra model for the above
homotopy limit can then be obtained by applying the left derived functor of the Quillen
equivalence

N∗ : CAlg∆
R

// CAlgdg,≤0
R : Koo

between cosimplicial commutative R-algebras (in sets) and non-positively graded cdgas,
induced by the Dold-Kan correspondence (see e.g. [3030, Chapter 6]).

The resulting commutative dg-algebra is computed (implicitly) in the work of Ševera
[8787] (see also [5757]) and is discussed more explicitly in [7878, Section 3]. These works show that
before deriving, there is a non-canonical isomorphism of graded-commutative algebras

N∗((A•)∧m•) ∼= SymA0(N(m•/m2
•)).

The complex N(m•/m2
•) is the normalization of the conormal bundle ν∨X0/X•

. By induction
on the adic filtration, one can show that each unit map

O(A•/mn• ) ∼ // KN∗(O(A•/mn• ))

is a weak equivalence. In the limit, this implies that the homotopy limit of O((X•)∧X0
) can

be modeled by the quasi-free cdga SymA0(N(m•/m2
•)).

The conormal bundle N(m•/m2
•) is the shifted dual of TM/X , as described in Example

6.2.116.2.11. At the point-set level, the differential on SymA0(N(m•/m2
•)) therefore determines

an L∞-algebroid structure on TM/X . The underlying complex and the Chevalley-Eilenberg
complex of this L∞-algebroid are weakly equivalent to the ones of the dg-Lie algebroid TM/X

that classifies the formal moduli problem X̂ under Theorem 4.2.14.2.1.
At least when M is a point, the L∞-algebra obtained by the above computation is

equivalent to the one classifying the formal moduli problem X̂. This follows from a refinement
of the above construction (in the setting of pro-Artin dg-algebras) due to Pridham [7575];
this refinement is part of the equivalence between L∞-algebras and formal moduli problems
constructed in loc. cit.
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7.1.3 Lie algebroids from smooth maps. Suppose that M −→ X is a map from a
derived manifold to a derived stack and that M −→ Y is a map to a convergent, infinitesimally
cohesive sheaf. Then there is a sequence of maps

MapM/(X∧M , Y ) // MapFormModM (X̂, Ŷ ) // MapLieAlgdM (TM/X , TM/Y ).

Proposition 7.1.67.1.6 asserts that the first map is an equivalence when the map M −→ X is
locally finitely presented and Corollary 6.3.156.3.15 asserts that the second map is an equivalence
when the structure sheaf OM is locally eventually coconnective. In fact, when M −→ X is
smooth, the second map is always an equivalence:

Proposition 7.1.17. Let M −→ X be a smooth map from a derived manifold to a derived
stack and let X̂ be the associated sheaf of formal moduli problems over M . Then the counit
map from Corollary 6.3.156.3.15

MCTM/X // X̂

is an equivalence (even when OM is unbounded).

Proof. We can work locally on M . In particular, we can assume that M −→ X is modeled
by a map of derived Lie n-groupoids M −→ X•. Since M −→ X is smooth, the map
f : M −→ X0 decomposes as

M
(id,s0(f))

// M ×X({0}) X1
d0 // X({1})

where the second map is smooth. Pulling back the derived Lie n-groupoid X• along the
second map d0, we obtain a hypercover X ′• −→ X• with the property that the map M −→ X ′•
is the section of a smooth map X ′0 −→M in degree 0. Replacing X• by X ′•, we may therefore
assume that each map M −→ Xn is the section of a smooth map Xn −→M .

Since the X• −→ X is a smooth hypercover, the Lie algebroid TM/X is the colimit of the
Lie algebroids TM/X• . We therefore obtain a commuting square of formal moduli problems

colim MCTM/X• //

∼

��

colim X̂•

∼
��

MCTM/X // X̂.

It hence suffices to verify that the map MCTM/X −→ X̂ is an equivalence when M −→ X is
the section of a smooth map between derived manifolds. Working locally, we can assume that
the map M −→ X is given by the map M × {0} −→M × Rn, where M = Spec(A) is affine.

Let us therefore consider the deformation functor X̂ associated to the map M =
Spec(A) −→ Spec(A{t1, . . . , tn}) = X. By Example 4.2.234.2.23, the Lie algebroid t := TA/X̂ is
given by the 0: A[−1]⊕n −→ TA, together with the trivial Lie bracket. To see that the counit
map ε : X̂ −→ MCt is an equivalence, note that the functor

TA/ : FormModA // LieAlgdA

always detects equivalences and preserves filtered colimits. The image of ε under TA/ has a
section, given by the unit map η : t −→ TA/MCt

. It therefore suffices to verify that this unit
map is an equivalence.

Consider the class K of Lie algebroids g over A for which g −→ TA/MCg
is an equivalence.

Because TA/ preserves filtered colimits, K is closed under filtered colimits. When g is a good
Lie algebroid and MCg is corepresentable by C∗(g), Example 4.2.234.2.23 identifies the unit map



168 Section 7.2

with the unit map g −→ DC∗(g). Proposition 4.1.264.1.26 shows that this map is an equivalence
for every good Lie algebroid g whose underlying A-module is perfect.

It therefore suffices to show that we can write t as a filtered colimit of good A-linear Lie
algebras whose underlying A-module is perfect. In fact, it suffices to prove this for A = R:
once we have found such a sequence of Lie algebras for R, we can simply take the tensor
product of the entire sequence with A. Over R, consider the sequence of small C∞-rings
Bk = R[t1, . . . , tn]/(tk1 , tk2 , . . . , tkn) and the induced sequence of Lie algebras

D
(
B2
)

// D(B3) // . . . // D
(
R{t1, . . . , tn}

)
= t. (7.1.18)

Since R is eventually coconnective, the functor D yields an equivalence between small C∞-
rings and good Lie algebras over R (cf. Remark 4.2.204.2.20). In particular, each D(Bk) is a good
Lie algebra over R, whose underlying module is given by

L∨R/Bk [−1] ' R[−1]⊕n ⊕ R[−2]⊕n.

One can easily compute that the maps D(Bk) −→ D(Bk+1) are the identity on the summand
R[−1]⊕n and zero on the summand R[−2]⊕n. It follows that the sequence (7.1.187.1.18) realizes t
as a filtered colimit of good Lie algebras whose underlying module is perfect, which concludes
the proof.

7.2 An integrability result

Let p : M −→ X be a smooth map from a derived manifold to a derived stack with associated
(connective) Lie algebroid TM/X over M . When f : M −→ Y is another map to a derived
stack (or any other sheaf with deformation theory) with associated Lie algebroid TM/Y , there
is a natural map

MapM/(X,Y ) // Map(TM/X , TM/Y ).

The aim of this section is to prove the following:

Theorem 7.2.1. Let p : M −→ X be a smooth map from a smooth manifold to a smooth
stack whose fibers are n-connected. If f : M −→ Y is map to a derived m-stack, then the
map

MapM/(X,Y ) // MapLieAlgd(TM/X , TM/Y )

is (m− n− 2)-truncated (in particular, an equivalence if m = n).

In fact, we will prove something slightly more general (Theorem 7.2.147.2.14).
The proof of the above result is essentially the same as the usual proofs of Van Est-type

theorems and boils down to a simple descent argument, which is described in Section 7.2.27.2.2.
The main content of Theorem 7.2.17.2.1 is contained in its local version, where the map M −→ X
is simply a projection map U ×Rn −→ U to an affine U . In that case, Theorem 7.2.17.2.1 reduces
to the analytical assertion that any smooth bundle P −→ U ×Rn (where P is a higher stack)
with a flat connection along Rn admits parallel transport. This is proven in Section 7.2.17.2.1,
using the deformation theory of stacks discussed in Section 6.46.4.

7.2.1 Poincaré lemma. Recall that in the end, smooth maps between derived stacks are
constructed out of projection maps U × Rn −→ U between affine derived manifolds. We
will therefore start by studying Theorem 7.2.17.2.1 in the special case where M −→ X is such a
projection map. In this case, the result can be thought of as a version of the Poincaré lemma.
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Definition 7.2.2. Let C be a locally presentable ∞-category and let F : Affop −→ C be
C-valued sheaf. We will say that F satisfies the Poincaré lemma if the natural map

F (U) // F (U × RdR)

is an equivalence for any affine U .

Remark 7.2.3. The class of C-valued sheaves satisfying the Poincaré lemma is closed under
all limits. Furthermore, if F satisfies the Poincaré lemma, then F (X) −→ F (X ×RdR) is an
equivalence for every object X ∈ Sh(Aff). In particular, the maps F (U) −→ F (U × RndR)
are equivalences for all n.

Remark 7.2.4. Let π : U × R −→ U be the projection map and consider the (C-valued)
sheaf

Fπ : Op(U × R)op // C; V � // F (U∧V ).

The map F (U) −→ F (U ×RdR) arises as the global sections of the map of sheaves π−1F −→
Fπ over U × R, where F ∈ Sh(U) is the restriction of F to the open subspaces of U . It
therefore suffices to verify the Poincaré lemma locally, on a cover of U × R by opens of the
form V × (a, b).

Remark 7.2.5. Let f : U ×R −→ X be a map from an affine to a convergent, infinitesimally
cohesive sheaf. Since the map U × R −→ U is smooth, Proposition 7.1.67.1.6 and Proposition
7.1.177.1.17 imply that there is an equivalence

MapU×R/(U × RdR, X) // MapLieAlgd(U × TR, TU×R/X).

In other words, one can think of a map U ×RdR −→ X as a map f : U ×R −→ X, together
with a (flat) connection along the direction of R. The Poincaré lemma asserts that any such
map is locally constant along the direction of R.

Example 7.2.6. Let F = O ∈ Sh(Aff,CAlg) be the sheaf sending an affine to its function
algebra, considered as an (unbounded) commutative algebra. Then O satisfies the Poincaré
lemma. Indeed, for every affine U , there is a sequence of maps

O(U × RdR) // O(Û) // C∗(TU×R/U ) // O(U).

The first map is a weak equivalence by Remark 7.1.157.1.15, since U×R −→ U is finitely presented.
The second map is a weak equivalence by Proposition 7.1.177.1.17. The commutative dg-algebra
C∗(TU×R/U ) can be identified with the usual de fiberwise de Rham complex of U × R, so
that the last map is an equivalence by the usual Poincaré lemma.

We will prove the following:

Proposition 7.2.7. Any derived stack satisfies the Poincaré lemma.

Example 7.2.8. The sheaf Perf : Affop −→ Cat∞ satisfies the Poincaré lemma. To see this,
recall that Perf ' colimn−→∞ Perf [−n,n] is the union of the sheaves of perfect complexes with
Tor-amplitude contained in [−n, n]. A perfect complex over V × RdR is a perfect complex
over V × R, together with an action of the groupoid V × (R× R)∧R ⇒ V × R.

In particular, locally on V × R such a perfect complex has Tor-amplitude contained in
some [−n, n]. It follows that there is an equivalence of sheaves over V × R (as in Remark
7.2.47.2.4) (

Perf [−n,n])π // Perfπ.

It therefore suffices to verify that each sheaf of ∞-categories Perf [−n,n] satisfies the Poincaré
lemma. This follows from the fact that each Map(∆[n],Perf [−n,n]) is a derived stack (Lemma
5.2.365.2.36) and satisfies the Poincaré lemma by Proposition 7.2.77.2.7.
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The proof of Proposition 7.2.77.2.7 requires some preliminary observations:

Lemma 7.2.9. Consider a pullback diagram of sheaves

P

q

��

// P̃

q̃

��

U × R // U × RdR

where q : P −→ U × R is a smooth surjection between affines. Every point in U × R admits
an open neighbourhood V × (t− ε, t+ ε) over which q̃ admits a section

V × (t− ε, t+ ε)dR // P̃.

Proof. Since the assertion is local, we may shrink U × R whenever necessary. Because the
map U × R −→ U × RdR is a surjective map of sheaves, the map q̃ is a 0-smooth surjection
and the above pullback diagram of 0-representable maps is classified by a sequence

U × R // U × RdR // Stack0.

The Lie algebroid associated to the composite map is given by the Atiyah Lie algebroid
associated to the map of complete C∞-rings O(U × R) −→ O(P ) (see Example 6.4.246.4.24). By
Remark 7.2.57.2.5, the map U × RdR −→ Stack0 can equivalently be described as a map of Lie
algebroids

U × TR // At(O(P )).

In other words, the map q̃ is classified by a fiberwise vector field v on P , which lifts the
vector field ∂/∂t on U × R. When Q ⊆ P is an open subspace of P , the restriction of this
vector field v determines a deformation of Q −→ U × R over U × RdR. To find a local
section, we may therefore work locally and assume that the map q is a projection map
q : U × R× Rn −→ U × R.

Let R{xα} be a cofibrant dg-C∞-ring which models O(U), let t be the coordinate in the
direction of R and let yi be the standard coordinates on Rn. Then the vector field v takes
the form

v = ∂

∂t
+

n∑
i=1

ai(x, t, y) ∂

∂yi

where the functions ai depend only finitely many coordinates (of degree 0) x1, . . . , xk on U .
We can (locally) find a solution s = (s1, . . . , sn) : U × R −→ Rn of the differential equation

∂si
∂t

(x, t) = ai(x, t, s(x, t)).

We then obtain a section of the map q

σ = (id, s) : U × R // U × R× Rn

with the property that the vector field v is σ-related to the vector field ∂/∂t on U × R. At
the level of C∞-rings, this section provides a retraction of the map O(U × R) −→ O(P )
which intertwines the derivation v and the derivation ∂/∂t. In other words, it determines
commuting triangle of dg-Lie algebroids

At
(
O(P ) σ∗−→ O(U × R)

)
��

U × TR
v

//

ṽ

66

At(O(P )).
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The top dg-Lie algebroid is the Atiyah Lie algebroid of the retract diagram O(U × R) −→
O(P ) −→ O(U × R) (Definition 3.1.33.1.3).

By Theorem 4.4.14.4.1 and Proposition 7.1.177.1.17, the lift ṽ gives rise to a deformation of the
retract diagram of stacks U × R −→ P −→ U × R to a retract diagram of sheaves

U × RdR // P̃ // U × RdR.

and the result follows.

Corollary 7.2.10. Let p : Y −→ X be a smooth surjection between derived stacks, let U be
an affine derived manifold and let Y π −→ Xπ be the induced map of sheaves over U × R, as
in Remark 7.2.47.2.4. Then the map Y π −→ Xπ is a surjection of sheaves.

Proof. U × R has a basis of opens of the form W × (a, b), for which Xπ(W × (a, b)) '
X(W × (a, b)dR). Given a map U × RdR −→ X, it therefore suffices to find local lifts

W × (a, b)dR

��

// Y

p

��

U × RdR // X

around any point of U × R. To prove that such a lift exists, we use the deformation theory
of stacks discussed in Section 6.46.4. Consider the composite pullback diagram

P

q

��

// P̃ //

��

Y

p

��

U × R // U × RdR // X.

It suffices to find a local section of the map P̃ −→ U × RdR. The left pullback square is
classified by a sequence of maps

U × R // U × RdR // Stack.

The composite map gives rise to a Lie algebroid g over U ×R, whose anchor map is described
in Proposition 6.4.196.4.19. By Remark 7.2.57.2.5, the map U × RdR −→ Stack is classified by a map
of Lie algebroids

U × TR // g.

Let P0 −→ P be an affine atlas for the derived stack P , so that the composite P0 −→ P −→
V × R is a smooth surjection between affines. There is a map of formal moduli problems
(see Section 6.4.36.4.3)

DefP0−→P/U×R
// DefP/U×R.

The induced map of Lie algebroids g̃ −→ g over U × R has connective fibers, by Corollary
6.4.276.4.27. Since the Lie algebroid U × TR is the free Lie algebroid on a single generator ∂/∂t,
there exists a lift of the map U × TR −→ g to a map U × TR −→ g̃. By Proposition 7.1.177.1.17,
this map of Lie algebroids classifies a diagram of pullback squares of the form

P0 //

��

P̃0

��

P //

��

P̃ //

��

Y

��

U × R // U × RdR // X.
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It suffices to find a local section of the map P̃0 −→ U ×RdR. Such a local section is provided
by Lemma 7.2.97.2.9.

Proof (of Proposition 7.2.77.2.7). We have to verify that for any derived n-stack X and any
derived manifold U , the map Y (U) −→ Y (U × RdR) is an equivalence. We proceed by
induction on n.

For the case where X is affine, note that C∞Alg is generated under colimits by C∞(R)
and that the functor Spec: C∞Algop −→ Sh(Aff) preserves all limits. It therefore suffices to
treat the case where X is simply R. For any sheaf Z, the space Map(Z,R) is the underlying
space of the connective cover of O(Z). The result then follows from Example 7.2.67.2.6.

For the inductive step, suppose we have proven the result for derived (n− 1)-stacks and
let X be a derived n-stack. In light of Remark 7.2.47.2.4, it suffices to show that for any derived
manifold U ×R, the map of sheaves π−1X −→ Xπ over U ×R is an equivalence. To see this,
let X0 −→ X be an atlas for X and let X• −→ X be the associated Čech nerve. We obtain
a natural transformation of augmented simplicial sheaves over U × R

π−1X• //

��

Xπ
•

��

π−1X // Xπ.

The map π−1X• −→ π−1X is a hypercover since π−1 is a left exact left adjoint and the
map Xπ

• −→ Xπ is a hypercover by Corollary 7.2.107.2.10. Since X• is a diagram of derived
(n − 1)-stacks, each map π−1Xn −→ Xπ

n is an equivalence of sheaves. It follows that the
map π−1X −→ Xπ is an equivalence of sheaves as well.

7.2.2 Descent. Recall that any smooth map p : Y −→ X between derived stacks decom-
poses as

Y
p̃
// Sing≤n(Y/X) p′

// X

where Sing≤n(Y/X) is the ‘fiberwise n-connective cover’ of the map p (for some n ≤ ∞).
The étale map p′ induces an equivalence upon completion at Y , so that the canonical map
X∧Y −→ X decomposes as

X∧Y
// Sing≤n(Y/X) // X.

Using a simple descent argument, one obtains the following global analogue of Proposition
7.2.77.2.7:

Proposition 7.2.11. Let F : Affop −→ C be a sheaf satisfying the Poincaré lemma and let
p : Y −→ X be a smooth map between sheaves on Aff. Then the map

F (Sing(Y/X)) // F (X∧Y )

is an equivalence.

Proof. Let f : X̃ −→ X be a map and p̃ : Ỹ = X̃ ×X Y −→ X̃ be the base change of p. Then
p̃ is smooth and the diagram of sheaves

Ỹ //

��

X̃∧
Ỹ

//

��

Sing(Ỹ /X̃) //

��

X̃

f

��

Y // X∧Y
// Sing(Y/X) // X
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consists of pullback squares. Indeed, X̃∧
Ỹ

is the pullback of X∧Y because taking de Rham
spaces preserves limits. To see that Sing(Ỹ /X̃) is the pullback of Sing(Y/X), recall from
Section 5.35.3 that Sing(Y/X) was defined as the étale space over X associated to the sheaf
p!(∗) over X. We then have that

Sing(Ỹ /X̃) = et!p̃!(∗) ' et!
(
f−1p!(∗)

)
' f∗

(
et!p!(∗)

)
= f∗(Sing(Y/X))

where the first equivalence follows from smooth base change (Theorem 5.3.195.3.19) and the second
equivalence follows from the fact that taking étale spaces commutes with pulling back sheaves
(see Lemma 5.3.35.3.3).

Using this, one sees that the assertion is local on X, so that we may assume that X is a
derived manifold. In this case, we can model the map p by a map of derived Lie n-groupoids
p• : Y• −→ X which is smooth in each simplicial degree. For each n, there is a (C-valued)
sheaf over Yn

F pn : Op(Yn)op // C; U � // F (X∧U ).

For each open V ⊆ X, there is a natural map F (V ) −→ F pn(p−1
n (V )). By adjunction, this

determines a map of sheaves over Yn

ψn : p−1
n

(
et∗F

)
// F pn

where et∗F is the restriction of F to a sheaf on X (see Lemma 5.3.35.3.3). By Proposition 7.2.77.2.7
(see Remark 7.2.47.2.4), ψn is an equivalence when restricted to an open of the form V × Rn,
where V is an open subspace of X. It follows that each ψn is an equivalence of sheaves, so
that the natural map

holim∆ Γ(Yn, p−1
n et∗F ) // holim∆ F (X∧Yn) ' F (X∧Y )

is an equivalence. Note that the matching family of sheaves p−1
n et∗F can be identified with

the inverse image sheaf
p−1et∗F ∈ Sh(Y ) ' lim

∆
Sh(Y•).

We therefore find that the natural map Γ(Y, p−1et∗F ) −→ F (X∧Y ) is an equivalence. Since
p : Y −→ X is smooth, Lemma 5.3.185.3.18 provides a sequence of equivalences

Γ
(
Y, p−1et∗F

)
' MapSh(X)

(
p!(∗), et∗F

)
' F

(
et!p!(∗)

)
.

But the sheaf et!p!(∗) was exactly Sing(Y/X), and one therefore finds that the natural map
F (Sing(Y/X)) −→ F (X∧Y ) is an equivalence.

Corollary 7.2.12. Let p : M −→ X be a smooth map to a derived stack and let f : M −→ Y
be a map to a derived stack. Then there is an equivalence

MapM/(Sing(M/X), Y ) ∼ // MapLieAlgdM (TM/X , TM/Y ) (7.2.13)

sending each map Sing(M/X) −→ Y to the induced map of Lie algebroids over M . In
particular, if the fibers of p are∞-connected, then any map of Lie algebroids TM/X −→ TM/Y

integrates to a map of stacks X −→ Y under M .

Proof. The map (7.2.137.2.13) is obtained as the composition

MapM/(Sing(M/X), Y ) // MapM/(X∧M , Y ) // Map(TM/X , TM/Y ).

The first map restricts along X∧M −→ Sing(M/X) and is an equivalence by Proposition 7.2.117.2.11,
since Y satisfies the Poincaré lemma by Proposition 7.2.77.2.7. The last map is an equivalence by
Proposition 7.1.67.1.6 and Proposition 7.1.177.1.17.
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Theorem 7.2.14. Let M be a derived manifold and let s be a number so that the following
holds: there exists an open cover of M by affines U such that for all q ≥ 0, O(U × Rq) is
s-coconnective, i.e. πi(O(U × Rq)) = 0 for all i > s.

Let p : M −→ X be a smooth map to a derived stack, whose fibers are m-connected and
let f : M −→ Y be a map to a derived n-stack. Then the map

MapM/(X,Y ) // MapLieAlgdM (TM/X , TM/Y )

is an (s+ n−m− 2)-truncated map of spaces.

Example 7.2.15. When M is a smooth manifold, one can take s = 0. If M is the derived
zero locus of a function f : Rp −→ Rq, then one can take s = q.

Proof. By Corollary 7.2.127.2.12, it suffices to show that the map

Map(X,Y ) // Map(Sing(M/X), Y ) (7.2.16)

is (s+ n−m− 2)-truncated.
To see this, let X• −→ X be a derived Lie n-groupoid modeling X and let

pi : Fi = Xi ×X M // Xi

be the base change of p, whose fibers are m-connected. The base change of the map
Sing(M/X) −→ X can be identified with the map Sing(Fi/Xi) −→ Xi.

The derived n-stack Y restricts to a sheaf et∗Y on each derived manifold Xi. The
condition on M guarantees that for any smooth map V −→ M , the sheaf OV is locally
s-coconnective. In particular, one can choose X• such that each sheaf OXi is locally s-
coconnective. In that case, the sheaf et∗Y is (s + n)-truncated, because Y is a derived
n-stack.

The map Map(Xi, Y ) −→ Map(Sing(Fi/Xi), Y ) arises as the global sections of a map of
sheaves over Xi

φ : et∗Y ' Hom(∗, et∗Y ) // Hom((pi)!(∗), et∗Y ).

The above map of sheaves induces a map of stalks at x ∈ Xi (see also Lemma 5.3.185.3.18)

φx : (et∗Y )x // Map
(

Sing(p−1
i (x)), (et∗Y )x

)
.

Since each fiber p−1
i (x) is m-connected and the stalk (et∗Y )x is (s + n)-truncated, the

map of spaces φx is (s + n − m − 2)-truncated. It follows that the map of sheaves φ is
(s+n−m−2)-truncated as well, so that the induced map on global sections Map(Xi, Y ) −→
Map(Sing(Fi/Xi), Y ) is (s+ n−m− 2)-truncated. Taking the limit over ∆, one finds that
the map (7.2.167.2.16) is (s+ n−m− 2)-truncated as well.

7.3 Examples and applications

We have seen that Lie algebroids over a (derived) manifold M arise naturally from maps to
(derived) stacks. However, the construction of these Lie algebroids is rather abstract and
passes through the equivalence between Lie algebroids and formal moduli problems from
Theorem 4.2.14.2.1. In particular, we do not know of a point-set description of the Lie algebroid
associated to a stack, even if this stack is explicitly presented by a (derived) higher Lie
groupoid.
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The purpose of this section is to sketch how one may nonetheless study geometric
structures (such as representations and differential forms) on such Lie algebroids in terms of
descent data. This is based on the results of Section 7.17.1: for many purposes, studying the
Lie algebroid of a map M −→ X is equivalent to studying the formal completion X∧M . The
latter can be decomposed into local pieces, which themselves can be described in terms of
more elementary Lie algebroids.

7.3.1 Representations. Let A be a complete C∞-ring and let g be a Lie algebroid over A.
Let Perf(g) ⊆ Repg be the full subcategory of g-representations whose underlying module is
contained in Perf(Spec(A)). A map from an affine to a derived stack f : M = Spec(A) −→ X
gives rise to a sequence of functors

Perf(X) // Perf(X∧M ) // Perf(X̂) // Perf(TM/X) (7.3.1)

where the first functor simply restricts along the inclusion X∧M −→ X. The second functor
sends a perfect complex over X∧M to the associated quasi-coherent module over the formal
moduli problem X̂. The last functor is the functor ΨX from Theorem 4.3.14.3.1. The resulting
TM/X -representation associated to E ∈ Perf(X) is given as an O(M)-module by f∗E.

Theorem 7.2.17.2.1 and Example 7.2.87.2.8 imply the following:

Corollary 7.3.2. Let p : M −→ X be a smooth map from a smooth manifold to a stack.
For any −∞ ≤ a ≤ b ≤ ∞, the functor of (b− a+ 1)-categories

p∗ : Perf [a,b](X) // Perf [a,b](TM/X). (7.3.3)

is an equivalence when p has (b− a+ 1)-connected fibers. If p has n-connected fibers, then p∗

induces (b− a− n− 2)-truncated maps of mapping spaces.

Remark 7.3.4. If p : M −→ ∗ is a smooth manifold, then the fiberwise ∞-connective cover
Sing(M/∗) can be identified with the constant sheaf on the singular complex of M . Using
Example 7.2.87.2.8 and Proposition 7.2.117.2.11, one obtains an equivalence of ∞-categories

Perf
(
Sing(M)

) ' // Perf(TM )

between the ∞-category of local systems of perfect complexes over M and the ∞-category of
perfect TM -representations. For an alternative treatment of this equivalence, which explicitly
associates a local system over M to a representation of TM , using iterated integrals, see [1111].

Example 7.3.5. The functor p∗ sends OX ∈ Perf(X) to the canonical representation of
TM/X on OM , via the anchor map. At the level of mapping objects, the functor (7.3.37.3.3)
therefore induces a map

Γ(X,E) = MapOX (OX , E) // MapU(TM/X)(OM , p∗E) ' C∗(TM/X , p
∗E)

from the global sections of E over X to the Lie algebroid cohomology of TM/X with coefficients
in p∗E.

The composite functor (7.3.17.3.1) is not particularly explicit, especially if we do not have
a concrete description of the Lie algebroid TM/X . One can use descent data to give an
alternative description of (7.3.17.3.1), which avoids the Lie algebroid TM/X . For simplicity, we
will only treat the case where X is the colimit of a (smooth) Lie n-groupoid X• and where
f : X0 −→ X is the canonical map.
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Construction 7.3.6. Let X• be a (smooth) Lie n-groupoid with associated quotient stack
X. The canonical atlas X0 −→ X arises as the colimit of the Kan fibration of simplicial
manifolds

d0 : X1+• = Dec0(X•) // X•

which is a degreewise surjective submersion. Let U denote the category whose

• objects are pairs ([n], Un), which we will often abbreviate to Un, where [n] ∈∆inj and
Un ⊆ X1+n is an open subspace.

• morphisms ([n], Un) −→ ([m], Vm) are given by a map α : [m] −→ [n] in ∆inj such that
α∗(Un) ⊆ Vm.

The category U carries a topology whose open covers are the maps ([n], Un,α) −→ ([n], Un)
where Un,α −→ Un is an open cover in X1+n.

For each Un in U , let TUn/Xn be the Lie algebroid over Un that describes the foliation on
Un by the fibers of the submersion

d0 : Un ⊆ X1+n // Xn.

Let f : Un −→ Vm be a map in U, determined by a map α : [m] −→ [n] in ∆inj. This fits
into a commuting square

Un
f

//

d0
��

Vm

d0
��

d0(Un)
α∗
// d0(Vm)

where d0(Un) is the image of Un ⊆ X1+n in Xn. Restriction these maps determines a
commuting diagram of functors

Repdg
O(d0(Vm))

d∗0 //

(α∗)∗

��

Repdg
TVm/Xm

f∗

��

forget
// Repdg

TUn/Xn

f∗

��

Repdg
O(d0(Un)) d∗0

// Moddg
O(Vm) forget

// Moddg
O(Un)

(7.3.7)

where f∗ takes the tensor product over O(Vm) −→ O(Un), and similarly for d∗0 and (α∗)∗.
The functors with values in Lie algebroid representations are defined as follows:

• If E is a dg-module over O(d0(Un)), then,

d∗0E = O(Un)⊗O(d0(Un)) E

carries a TUn/Xn -representation given by ∇v(a⊗ e) = v(a)⊗ e.

• Note that there is a natural O(Un)-linear map

TUn/Xn
// f∗TVm/Xm = O(Un)⊗O(Vm) TVm/Xm . (7.3.8)

Geometrically, this is simply the map that applies the derivative of f : Un −→ Vm. Al-
gebraically, this map restricts a C∞-derivation v : O(Un) −→ O(Un) over O(d0(Un)) to a
derivation in

DerO(d0(Vm))
(
O(Vm),O(Un)

) ∼= O(Un)⊗O(Vm) DerO(d0(Vm))(O(Vm)).

If E is a representation of TVm/Xm , then f∗E = O(Un) ⊗O(Vm) E carries a natural
representation of TUn/Xn : if b⊗ w denotes the image of v under (7.3.87.3.8), then v acts by

∇v(a⊗ e) = v(a)⊗ e+ ab⊗∇w(e).
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Lemma 7.3.9. Let X• be a (smooth) Lie n-groupoid. There is a sequence of functors
Uop −→ Cat∞

Perf(d0(−))
d∗0 // Perf(T(−)/X•)

forget
// Perf(−)

where the middle functor sends ([n], Un) to the ∞-category of perfect representations of
TUn/Xn .

Proof. The commuting diagram (7.3.77.3.7) provides a sequence of diagrams of model categories
Uop −→ ModCatL

Moddg
O(d0(−))

d∗0 // Repdg
T(−)/X•

forget
// Moddg

O(−).

The categories of dg-modules are endowed with the projective model structure and the
categories of dg-representations are endowed with the A-model structure from Variant 3.3.93.3.9.
After inverting the quasi-isomorphisms, this yields a Uop-indexed diagram of ∞-categories of
modules and Lie algebroid representations. Since all functors involved are given by restriction
and therefore preserve perfect complexes, the result follows.

The map d∗0 : Perf(d0(−)) −→ Perf(T(−)/X•) is a local equivalence between Uop-diagrams
of ∞-categories. Indeed, when evaluated an open neighbourhood Un ⊆ X1+n of the form
Un ' d0(Un)× Rn, the functor d∗0 is an equivalence by Corollary 7.3.27.3.2. On the other hand,
the functor Perf(T(−)/X•) is a sheaf, since Lie algebroid representations can be glued at the
level of the underlying modules. In other words, Perf(T(−)/X•) is the associated sheaf of
Perf(d0(−)) over U .

On the other hand, there is a natural sequence of functors Uop −→ Cat∞

Perf(d0(−))
d∗0 // Perf

(
(X•)∧(−)

)
// Perf(−)

where the middle functor sends an open Un ⊆ X1+n to the ∞-category of perfect complexes
on the formal completion (Xn)∧Un of Xn along d0 : Un ⊆ X1+n −→ Xn. By the Poincaré
lemma (Example 7.2.87.2.8), the map d∗0 is a local equivalence. On the other hand, the functor
Perf

(
(X•)∧(−)

)
is a sheaf because for any covering sieve S of Un, there is an equivalence

colim
Un,α∈S

(Xn)∧Un,α ' (Xn)∧Un .

It follows that Perf
(
(X•)∧(−)

)
is the associated sheaf of Perf(d0(−)) as well. We therefore

obtain the following:
Proposition 7.3.10. Let X• be a Lie n-groupoid and let p : M = X0 −→ X be the canonical
atlas. Then the functor p∗ : Perf(X) −→ Perf(TM/X) can be modeled by the limit of the
cosimplicial diagram of functors

Perf(X•)
d∗0 // Perf(TX•+1/X•).

Proof. The previous discussion shows that the natural transformations

d∗0 : Perf(X•) −→ Perf(TX•+1/X•) and d∗0 : Perf(X•) −→ Perf((X•)∧X1+•
)

are naturally equivalent. By Example 7.1.57.1.5, the map d0 : (X1+•)dR −→ (X•)dR is a Kan
fibration between n-groupoids in Sh(Aff), so that

colim
∆op

(
X•
)∧
X•+1

= colim
∆op

(
X• ×(X•)dR (X1+•)dR

)
' X ×XdR MdR = X∧M .

It follows that the limit of d∗0 : Perf(X•) −→ Perf((X•)∧X1+•
) can be identified with the

canonical restriction functor p∗ : Perf(X) −→ Perf(X∧M ) ' Perf(TM/X) of Corollary 7.3.27.3.2.



178 Section 7.3

In other words, when X• is a Lie n-groupoid, then Perf(X) −→ Perf(TM/X) can be
identified with the functor sending a matching family En ∈ Perf(Xn) to the matching family
d∗0En ∈ Perf(TX1+n/Xn) of representations of the tangent bundle to the fibers of d0.

Example 7.3.11. Let G ⇒ M be a Lie groupoid and let X• be its nerve. Unwinding the
definitions, an object in

lim
(

Perf(TX1+n/Xn)
)

is given by the datum of a quasi-coherent sheaf E on G with a flat connection along the
fibers of the target map t = d0 : G −→M , together with (coherent) equivariance data for the
principal right action of G on itself.

When E is just an ordinary G-equivariant vector bundle on G, such an equivariant flat
connection on E is determined uniquely by a representation of the G-invariant vector fields
on the G-equivariant sections of E. These equivariant sections can be identified with the
sections of the restriction of E along the unit map M −→ G. We therefore retrieve the usual
notion of a representation of the Lie algebroid of G on a vector bundle E

∣∣M .

Example 7.3.12. Let X• be a (smooth) Lie n-groupoid and let p : M = X0 −→ X be the
canonical atlas. Suppose that E ∈ Perf(X) is modeled by a family En of cofibrant dg-modules
over O(Xn), together with a coherent family of local quasi-isomorphisms (α∗)∗En

∼−→ Em
for any injection α : [n] −→ [m]. The family of dg-representations

d∗0E• ∈ Repdg
TX1+•/X•

then represents the image p∗E ∈ Perf(TM/X) of E under the functor (7.3.37.3.3).
The map Γ(X,E) −→ C∗(TM/X , p

∗E) of Example 7.3.57.3.5 can then be computed at follows:
taking the Chevalley-Eilenberg complex of each d∗0En yields a natural transformation of
O(X•)-modules

E• // C∗(TX1+•/X• , d
∗
0E•) // d∗0E•.

The first map sends an element e ∈ En to the constant element 1⊗ e ∈ d∗0En. The induced
map on total complexes

Tot(E•) // Tot
(
C∗(TX1+•/X• , d

∗
0E•)

)
is a model for the map Γ(X,E) −→ C∗(TM/X , p

∗E). In particular, this induces a van
Est-type spectral sequence

Ep,q1 = Ωp(X1+q/Xq, d
∗
0Eq) +3 Hp−q(TM/X , p

∗E)

from the fiberwise de Rham cohomology of X1+q with coefficients in d∗0Eq, converging to the
Lie algebroid cohomology of TM/X with coefficients in p∗E.

Suppose that X• is the nerve of a Lie groupoid G ⇒ M and that E is a vector bundle
over M equipped with a (strict) G-representation. It follows that the map Γ(X,E) −→
C∗(TM/X , p

∗E) of Example 7.3.57.3.5 can be identified with the classical Van Est homomorphism
from Lie groupoid cohomology to Lie algebroid cohomology [2020].

7.3.2 Differential forms. As a special case of Example 7.3.57.3.5, we find that a smooth map
M −→ X to a derived stack induces a map O(X) −→ C∗(TM/X) from the function algebra
of X to the Chevalley-Eilenberg complex of the Lie algebroid TM/X . Similarly, the de Rham
complex dR(X) can be described at the infinitesimal level by the Weil algebra of TM/X .
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To see this, let us start by briefly recalling from [7373] the description of differential forms
on derived stacks in terms of graded mixed complexes. A mixed complex is a chain complex
E together with a chain map

d : E // E[−1]

which squares to zero. If the chain complex E admits a grading E =
⊕

p∈ZE(p) (where we
refer to p as the weight) and d increases the weight by 1, then E is called a graded mixed
complex. The category of (graded) mixed complexes has a natural symmetric monoidal
structure given by

(E ⊗ F )(p) =
⊕
i

E(i)⊗ F (p− i) dE⊗F = dE ⊗ 1 + 1⊗ dF .

A graded mixed cdga is a commutative monoid for this monoidal structure, i.e. a cdga A
equipped with a graded mixed structure, such that d : A −→ A[−1] is a derivation and
A(p) ·A(q) ⊆ A(p+ q). Similarly, a (graded) mixed dg-C∞-ring is a dg-C∞-ring A together
with a C∞-derivation d : A −→ A[−1] which squares to zero (and a grading making it a
graded mixed cdga).

Example 7.3.13. Any dg-C∞-ring A determines a dg-C∞-ring SymA

(
Ω1
A[1]

)
, with A-linear

differential induced by the differential on A and Ω1
A. The universal derivation d : A −→ Ω1

A

determines a C∞-derivation

d : SymA

(
Ω1
A[1]

)
// SymA

(
Ω1
A[1]

)
[−1]

which squares to zero. Together with the obvious grading by the polynomial degree in Ω1
A[1],

this makes SymA

(
Ω1
A[1]

)
a graded mixed dg-C∞-ring, which we will denote by dR(A).

Remark 7.3.14. Graded mixed complexes and algebras all arise as algebras over certain dg-
operads. Consequently, they can be organized into model categories, whose weak equivalences
(fibrations) are the maps inducing quasi-isomorphisms (surjections) on the underlying chain
complexes.

Lemma 7.3.15 (c.f. [9898]). The forgetful functor U : C∞Algdg,mix −→ C∞Algdg from mixed
dg-C∞-rings admits a left adjoint, sending A 7→ dR(A), and a right adjoint, sending A to
(A, d = 0). Furthermore, the category C∞Algdg,mix of mixed dg-C∞-rings admits a model
structure whose weak equivalences (fibrations) are detected by U .

Proof. One immediately verifies that U has the given left and right adjoint. To see that
the model structure on C∞Algdg transfers along U , it suffices to verify that dR preserves
trivial cofibrations. This follows from the fact that Ω1

A ⊗A B −→ Ω1
B is a trivial cofibration

whenever A −→ B is a trivial cofibration.

Let A be a complete (cofibrant) C∞-ring and let X = Spec(A). The C∞-ring dR(A) can
be thought of geometrically as the function algebra on the shifted tangent bundle

T [−1]X = SpecA
(
LA[1]

)
' Map

(
Spec(R[ε1]), X

)
consisting of maps Spec(R[ε1]) −→ X (see Example 5.2.355.2.35).

Lemma 7.3.16 ([7373, Lemma 1.15]). Let X be a derived stack and consider its shifted tangent
stack

T [−1]X = Spec(LX [1]).

Then the (unbounded) function ring O(T [−1]X) ∈ CAlg has the natural structure of a mixed
graded cdga, denoted dR(X) ∈ CAlggr,mix and called the de Rham complex of X.
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Proof. If p : Y −→ X is a map between locally finitely presented derived stacks, there is an
induced square

T [−1]Y

T [−1]p
��

// Y

p

��

T [−1]X // X.

The map from T [−1]Y into the pullback is given by the map

SpecY (LY [1]) // SpecY (p∗LX [1])

induced by the map p∗LX [1] −→ LY [1] of perfect complexes over Y . When p is a smooth
surjection, LY/X is locally free and the map p∗LX [1] −→ LY [1] locally admits a retraction.

A smooth surjection therefore induces a surjection T [−1]Y −→ T [−1]X. This implies
that a derived Lie n-groupoid X• −→ X induces an equivalence of stacks

T [−1]X ' colim
n∈∆op

T [−1]Xn.

By Example 7.3.137.3.13, there is a functor dR : Affop −→ CAlggr,mix sending an affine X to a
natural graded mixed enhancement of the function algebra O(T [−1]X). This functor extends
to a functor from the ∞-category of derived Lie n-groupoids

dR : Lieop
n

// CAlgmix,gr; X• � // lim[n]∈∆ dR(Xn).

The underlying functor to CAlg is just the functor sending X• to O(T [−1]X) and thus
sends Morita equivalences to equivalences of commutative algebras. It follows that the above
functor descends to a functor on the ∞-category of derived stacks and equips O(T [−1]X)
with a natural graded mixed structure.

There is a variant of the complex of differential forms for Lie algebroids, given by their
Weil algebra (see [22]). For simplicity, we will only provide a point-set model for the Weil
algebra that applies to fibrant-cofibrant dg-Lie algebroids.

Assumption 7.3.17. Let A be an Ω-cofibrant dg-C∞-ring and let TA
∼−→ TA be a replace-

ment of its tangent Lie algebroid by a dg-Lie algebroid whose underlying dg-A-module is
cofibrant. The Quillen pair LieAlgddg

A � LieAlgddg
A /TA is a Quillen equivalence.

We will assume that all dg-Lie algebroids under consideration come with a map g −→ TA
to the resolved tangent bundle. When A is the function ring of a smooth manifold or
A = R{xi} is finitely presented and cofibrant, one can simply take TA = TA.

Construction 7.3.18. Let ρ : g −→ TA be a fibration of dg-Lie algebroids whose domain is
A-cofibrant. Then the kernel n := ker(ρ) ⊆ g is a cofibrant dg-A-module which models the
fiber of the anchor map of g (this is the main reason for replacing TA by TA). Let g⊕ n[−1]
be the square zero extension of g by the shifted adjoint representation of g on n.

The Chevalley-Eilenberg differential on C∗(g⊕ n[−1]) restricts to the subspaces of maps
that are polynomial of degree q in n

C∗(g⊕ n[−1])q := HomA

(
SymAg[1]⊗ Symq

An, A
)
⊆ C∗(g⊕ n[−1]).

There is a natural derivation d : C∗(g⊕ n[−1])q −→ C∗(g⊕ n[−1])q+1 given by

(dα)(X1, . . . , Xn, ξ1, . . . , ξq) =
q∑
j=1

α(X1, . . . , Xn, σ(ξj), ξ1, . . . , ξq)
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where Xi ∈ g[1], ξj ∈ n and σ : n −→ g[1] the inclusion, followed by a degree shift. This
defines a graded mixed cdga

W (g) :=
⊕
q

C∗(g⊕ n[−1])q ⊆ C∗(g⊕ n[−1])

whose connective cover is a mixed graded dg-C∞-ring.

Definition 7.3.19. The Weil algebra of a fibrant, A-cofibrant dg-Lie algebroid g −→ TA is
the mixed graded cdga W (g) from Construction 7.3.187.3.18.

Remark 7.3.20. When g −→ TA is not a fibration, one can use an alternative model for
the Weil algebra, due to Arias Abad and Crainic [22]: instead of using the kernel of the map
g −→ TA, this uses its mapping fiber ñ. In loc. cit. the authors construct a graded mixed
cdga whose weight q part is given by

HomA

(
SymAg[1]⊗ Symq

Añ, A
)
.

When g −→ TA is a fibration, restriction along the canonical map n −→ ñ from the kernel
to the mapping fiber induces a weak equivalence between the Weil algebra from the above
definition and the one defined in [22] (see [7171] for more details).

Remark 7.3.21. A map f : g −→ h of fibrant-cofibrant dg-Lie algebroids over TA induces
a map W (h) −→W (g) of mixed graded cdgas, which is a weak equivalence if f is. It follows
that taking Weil algebras induces a functor of ∞-categories

W : LieAlgdop
A

// CAlggr,mix.

The functor sending ρ : g −→ TA to g⊕ ker(ρ)[−1] preserves sifted homotopy colimits, which
are computed at the level of the underlying complexes. This implies that W : LieAlgdop

A −→
CAlggr,mix preserves sifted colimits as well.

Suppose that φ0 : B −→ A is a map between Ω-cofibrant dg-C∞-rings and let g −→ TA
be a dg-Lie algebroid over A. By Lemma 7.3.157.3.15, a map of dg-C∞-rings φ : B −→ c∗(g) over
A induces a map of graded mixed cdgas over A

dR(B) = SymB

(
Ω1
B [1]

)
// W (g) ⊆ C∗(g⊕ n[−1]). (7.3.22)

At the level of connective covers, this map is a map of graded mixed dg-C∞-rings.

Lemma 7.3.23. Suppose that the map φ : B −→ c∗(g) induces an equivalence g −→ D(B)
of dg-Lie algebroids over A. Then the map (7.3.227.3.22) is adjoint to an equivalence g⊕n[−1] −→
D
(
SymBLB [1]

)
.

Proof. Recall from Proposition 4.1.264.1.26 that D(B) −→ g can be described as follows: the map
φ induces a map

(φ0, φ1) : B // C∗(g) // A⊕ρ∗ g[1]∨.

over A, which is classified by a map to the mapping fiber of ρ∗ : LA −→ g∨

LB ⊗B A // LA ⊕ρ∗ g[1]∨; db � // (dφ0(b), φ1(b)).

The adjoint of this map is a map β : cof(ρ) −→ Der(B,A) from the cofiber of the anchor
ρ : g −→ TA. The map g −→ D(B) induces a map between the cofibers of the anchor maps,
which is precisely given by β.
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Similarly, the map (7.3.227.3.22) induces a map SymB(LB[1]) −→ A⊕ρ∗ g[1]∨ ⊕ n∨ which is
classified by (

LB ⊗B A
)
⊕
(
LB [1]⊗B A

)
//
(
LA ⊕ρ∗ g[1]∨

)
⊕ n∨;(

db1, db2

)
� //

(
dφ0(b1), φ1(b1), φ1(b2)

)
.

The map g⊕n[−1] −→ D(SymBLB [1]) induces a map on cofibers, which is the adjoint of this
above map. This adjoint map is a direct sum of the map β, together with the composition

n[−1] ∼ // fib(ρ) ' cof(ρ)[−1]
β[−1]

// Der(B,A)[−1]

where the first map is the natural inclusion of the kernel into the mapping fiber. This is a
weak equivalence, which implies that g⊕ n[−1] −→ D(SymBLB [1]) is an equivalence.

When M = Spec(A) −→ Spec(B) = X is a map between affines, Lemma 7.3.237.3.23 provides
a natural map of graded mixed cdgas dR(X) −→W (TM/X). Furthermore, postcomposition
with the natural map of commutative algebras

⊕
qW

q(g) −→
∏
qW

q(g) yields a map of
commutative algebras

O(T [−1]X) ' dR(X) // W (TM/X) // C∗(TM/T [−1]X)

which agrees with the canonical (restriction) map O(T [−1]X) −→ C∗(TM/T [−1]X) from
Example 7.3.57.3.5.

Corollary 7.3.24. Let f : M = Spec(A) −→ X be a map from an affine to a derived stack
and consider the composite map M −→ X

0−→T [−1]X into the shifted tangent stack. Then
there is a map of graded mixed commutative algebras

dR(X) // W (TM/X)

whose underlying map of commutative algebras can be identified with the canonical map

O(T [−1]X) // W (TM/X) // C∗(TM/T [−1]X).

Proof. It suffices to work locally on M , so that we may assume that M −→ X arises from a
map M −→ X• of derived Lie n-groupoids and that the map M −→ T [−1]X arises from the
map M −→ X• −→ T [−1]X•. The result now follows from the fact that dR and W (−) send
the colimits of X• and TM/X• to limits of graded mixed algebras, by Remark 7.3.217.3.21 and (the
proof of) Lemma 7.3.167.3.16.

Corollary 7.3.25. Let f : M −→ X be a smooth surjection from a smooth manifold to a
smooth m-stack, whose fibers are n-connected. Then the map of graded-mixed complexes

dR(X) // W (TM/X)

has (m− n− 2)-truncated fibers.

Proof. Since X is a smooth stack, hence locally finitely presented, the cotangent complex LX
is a perfect complex. For each weight q, the map dR(X)q −→W (TM/X)q can be identified
with the map

Γ
(
X,SymqLX [1]

)
// C∗
(
TM/X ,Symq

O(M)LX [1]
∣∣M)

from Example 7.3.57.3.5. Each of these maps has (m− n− 2)-truncated fibers by Corollary 7.3.27.3.2,
so that the direct sum dR(X) −→W (TM/X) has (m− n− 2)-truncated fibers as well.
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Remark 7.3.26. Recall from [7373] that the weighted negative cyclic complex of a graded
mixed complex E is the graded complex

NCw(E) :=
⊕
p

NCw(E)(p) NCw(E)(p) =
∏
q≥0

E(p+ q)[−2q]

where the differential on NCw(E)(p) sends a tuple e = (eq)q≥0 to the tuple

(∂e)q = ∂E(eq) + d(eq−1).

In particular, for any derived stack X one can think of NCw(dR(X))(0) as the complex
describing the (derived) de Rham cohomology of X. If X is a smooth stack arising from
a Lie n-groupoid X•, this complex is simply given by the totalization of the cosimplicial
chain complex of differential forms on X•. If M −→ X is an atlas for this smooth stack with
n-connected fibers, Corollary 7.3.257.3.25 implies that the map

NCw(dR(X))(0) // NCw(W (TM/X))

induces isomorphisms on homotopy groups in degrees ≥ − n (both chain complexes are
concentrated in homologically nonpositive degrees when X is smooth).
Example 7.3.27. Let p : M −→ X smooth atlas of a smooth m-stack. An element ω ∈
NCw(dR(X))(2)[q− 2] describes a closed 2-form on X of degree q. Such a 2-form determines
an element ω0 ∈

(∧2
LX
)
[q], which determines a map ω0 : L∨X −→ LX [q]. The closed 2-form

ω defines a q-shifted symplectic structure on X when this map is an equivalence (see [7373]).
The closed 2-form ω determines a closed 2-form

ωinf ∈ NCw(W (TM/X))(2)[q − 2].

Using that fib(TM/X −→ TM ) '
(
p∗LX [1]

)∨, such a 2-form determines a map

ωinf,0 : p∗(L∨X) // p∗LX [q].

In fact, this map is simply the restriction of ω0 along p. Since p is a smooth surjection, it
follows that ω0 is an equivalence iff ωinf,0 is an equivalence. In the latter case, ωinf defines a
q-shifted symplectic structure on the Lie algebroid TM/X (see [7979]).

In other words, each shifted symplectic structure on an m-stack X gives rise to a shifted
symplectic structure on TM/X . Conversely, any such shifted symplectic structure on TM/X

can be integrated to X when the fibers of p : M −→ X are m-connected.

The Weil algebra W (g) admits a natural interpretation in terms of loop spaces. Recall
that for any Lie algebroid g, the free loop space L(g) is the limit of the constant S1-diagram
with value g. When g −→ TA be a fibrant dg-Lie algebroid over TA, there is a simple way
to compute Lg using the cotensoring of dg-Lie algebroids over (unbounded) cdgas from
Construction 3.1.313.1.31. Indeed, Lg can simply be computed as g�Ω[S1], where S1 is some finite
simplicial model for the circle. In fact, recall that H∗(S1) = k[ε−1] is the free graded algebra
on a generator of (homological) degree −1. We can therefore choose a weak equivalence of
cdgas k[ε−1] −→ Ω[S1] and identify

Lg = g� k[ε−1].

Unwinding the definitions, Lg is exactly the dg-Lie algebroid g⊕ n[−1] used in Construction
7.3.187.3.18. This dg-Lie algebroid has itself a graded mixed structure, given by the obvious
inclusion

d : Lg(1) = n[−1] // Lg(0)[−1] = g[−1]

The inclusion d is a derivation for the Lie bracket and the Lie bracket respects the weights.
The Weil algebra W (g) can then be identified with the Chevalley-Eilenberg complex of Lg,
computed internally to graded mixed complexes (see [7171] for more details).



184 Section 7.3

Remark 7.3.28. The graded-mixed structure on Lg can also be interpreted at follows.
Recall (see e.g. [99], [7373]) that graded mixed complexes can be viewed as dg-comodules over
the cohomology Hopf algebra

H = H∗(Gm nBGa,O) = k[t, t−1]⊗k k[ε−1].

Here t has degree 0, ε−1 has (homological) degree −1 and the comultiplication is given by
∆(t) = t ⊗ t and ∆(ε−1) = t ⊗ ε−1. The action of Gm n BGa on BGa (by rescaling and
translation) induces a coaction

H∗(BGa,O) = k[ε−1] // k[ε−1]⊗k H = H∗(Gm nBGa ×BGa,O).

This induces a coaction of H on the free loop space Lg of the form

Lg = g� k[ε−1] // g�
(
k[ε−1]⊗k H

) ∼= Lg�H,
simply by restricting the canonical H-comodule structure on g ⊗ k[ε−1]. Unwinding the
definitions, this coaction of H on Lg corresponds to the graded mixed structure on Lg
described above.

Remark 7.3.29. The coaction of H on H∗(S1) = H∗(BGa,O) = k[ε−1] restricts to a
coaction of H∗(S1) on itself. In terms of graded mixed structures, this coaction encodes just
the mixed structure on k[ε−1]. On the other hand, this coaction arises topologically from the
rotation action µ : S1 × S1 −→ S1, by passing to cohomology. In fact, it provides a rational
model for the rotation action by [9898].

Similarly, the mixed structure on Lg is encoded by the coaction

Lg = g�H∗(S1)
g�H∗(µ)

// g�H∗(S1 × S1) ∼= Lg�H∗(S1).

One can therefore think of the mixed structure on Lg as a (rational) algebraic incarnation
of the S1-action on Lg by rotation of loops. The mixed structure on W (g) arises from the
associated S1-action on C∗(L(g)).

Remark 7.3.30. The above description of the Weil algebra W (g) as C∗(Lg) admits a very
well-known global counterpart (see [9898, 99, 7373]). Consider a map M −→ X from a locally
finitely presented affine to a locally finitely presented derived stack and let

M // X // LX

be the canonical map into the loop stack, taking values in constant loops. As shown in
[99, Lemma 6.7], there is a canonical map of stacks T [−1]X −→ LX which induces an
equivalence on cotangent complexes at M (where M takes values in the zero section of
T [−1]X). Consequently, the map T [−1]X∧M −→ LX∧M is an equivalence by Proposition
7.1.137.1.13. One can then identify W (TM/X) with the function algebra of the formal completion
LX∧M . Informally, one can then think of its mixed structure as arising from the S1-action on
LX∧M by rotation of loops.

7.3.3 Further examples. So far, we have seen two types of maps M −→ X from a
(derived) manifold to a (derived) stack whose Lie algebroids can be described explicity. For
any (derived) Lie groupoid G ⇒ M , the map to the quotient M −→ X = M/G has Lie
algebroid TM/X given by the usual Lie algebroid of G (Proposition 6.4.306.4.30). Furthermore, if

M = Spec(A) // Map(∗,Perf [a,b]) = X
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classifies a perfect complex E over M , then the associated formal moduli problem over
A is the formal moduli problem DefE describing the deformations of E (Example 2.3.352.3.35).
Theorem 4.4.14.4.1 asserts that TM/X is simply the Atiyah Lie algebroid At(E) of E.

Various other examples can be deduced from these two examples.

Example 7.3.31. Suppose that G• −→ M is a smooth (strict) groupoid object in the
category of (smooth) Lie n-groupoids, where M is a manifold. This determines natural maps
of stacks M −→ X• = M/G•, whose colimit is a smooth surjection M −→ X to a smooth
(n+1)-stack. Explicitly, one can describe X by the W -construction of the simplicial groupoid
G• [2626, 104104].

The augmented simplicial diagram X• −→ X (under M) is a smooth hypercover (of finite
height) of X. It follows that the induced diagram of formal moduli problems X̂• −→ X̂ is a
formally smooth hypercover, in the sense of Lemma 4.2.294.2.29. In particular, the Lie algebroid
TM/X is simply the colimit of the simplicial diagram of Lie algebroids TM/X• .

This colimit can be computed at the level of the underlying complexes (Theorem 3.1.153.1.15)
and each Lie algebroid TM/Xn is simply the (discrete) Lie algebroid of the Lie groupoid
Gn ⇒M . It follows that TM/X is just the normalized complex of the simplicial Lie algebroid
TM/X• , with its canonical dg-Lie algebroid structure.

Example 7.3.32. Let E ∈ Perf(X) be a perfect complex over a derived stack and consider
the derived stack SpecX(E∨) −→ X over X (see Lemma 5.2.345.2.34). Given a map M −→ X
from an affine to X, one obtains a diagram of stacks

M

yy �� %%
X

0
// SpecX(E∨) // X

which induces a retract diagram of Lie algebroids over M

TM/X
// TM/SpecX(E∨) // TM/X .

Let Einf denote the image of E under the functor Perf(X) −→ Perf(TM/X) of Corollary
7.3.27.3.2. Then TM/SpecX(E∨) is equivalent to the split square zero extension TM/X ⊕ EM [−1].

To see this, let us first treat the universal case where SpecX(E∨) −→ X is the universal
bundle

Spec(E∨uni) // Map(∗,Perf).

The stack Spec(E∨uni) is the classifying stack for perfect complexes E, together with an
element e ∈ E. The zero section sends a perfect complex E to the pair (E, e = 0).

When M −→ Map(∗,Perf) classifies a perfect complex E0 over M , the formal moduli
problem associated to the zero section M −→ Spec(E∨uni) simply describes deformations of
the pointed O(M)-module (E0, 0). It follows from Theorem 4.4.14.4.1 that the associated Lie
algebroid is the Atiyah Lie algebroid At(E0, 0) in the sense of Example 3.1.33.1.3, which fits into
a retract diagram

At(E0) // At(E0, 0) // At(E0).

To compute the Atiyah Lie algebroid of (E0, 0), one has to replace (E0, 0) by a cofibrant
pointed O(M)-module. In other words, one has to replace the map 0: O(M) −→ E0 by
a cofibration, e.g. by the canonical map 0̃ : O(M) −→ E0 ⊕ O(M)[0, 1] into the mapping



186 Section 7.3

cylinder. One can then easily verify that

At(E0)⊕ E0[−1] // At
(
E0 ⊕O(M)[0, 1], 0̃

)
(∇v, e) � //

 ∇v 0 e
0 v 0
0 0 v


is a quasi-isomorphism of dg-Lie algebroids, which is compatible with the projection to
At(E0).

The general case follows from the universal case. Indeed, if E is a perfect complex over a
derived stack X, then SpecX(E) fits into a pullback square

SpecX(E∨)

��

// Spec(E∨uni)

��

X // Perf [a,b]

Since the formation of Lie algebroids preserves limits, one obtains a pullback diagram of Lie
algebroids over M

TM/SpecX(E) //

��

At(E0)⊕ E0[−1]

��

TM/X
// At(E0).

The bottom map describes the TM/X -representation Einf , whose underlying module is the
restriction E0 = E

∣∣M . The result follows immediately from this.
Example 7.3.33. Let G ⇒M be a Lie groupoid with Lie algebroid g and let E be a chain
complex of G-representations, i.e. E is given in each degree by a vector bundle over M with
an action of G. Then E determines a perfect complex over the quotient stack X = M/G and
the Lie algebroid TM/Spec(E) is the split square zero extension g⊕E[−1], where E[−1] is the
shifted complex of associated Lie algebroid representations.
Example 7.3.34. Given a derived stack X and a perfect complex E over X, consider a
pullback diagram

Xη
//

p

��

X

0
��

X
η
// SpecX(E[1]∨)

where η is a section of the canonical map SpecX(E[1]∨) −→ X. A map M −→ Xη from a
derived manifold induces a pullback square of Lie algebroids

TM/Xη

��

// TM/X

0
��

TM/X ηinf
// TM/X ⊕ Einf

which realizes TM/Xη as a square zero extension of TM/X by Einf [−1], classified by ηinf . To
identify ηinf , note that Example 7.3.57.3.5 provides a map Γ(X,E[1]) −→ C∗(TM/X , Einf [1]) over
Γ(M,E[1]) ' Einf [1].

Since the section η : X −→ SpecX(E[1]∨) is null-homotopic when restricted to M , it
corresponds to an element η in the fiber of Γ(X,E[1]) −→ Γ(M,E[1]). The map ηinf then
corresponds to the image of η in the reduced Chevalley-Eilenberg complex C∗(TM/X , Einf [1]).
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Example 7.3.35. Let G ⇒ M be a Lie groupoid and let X = M/G. If E is an ordinary
G-representation, then the map Γ(X,E[1]) −→ C∗(TM/X , Einf [1]) agrees with the usual van
Est homomorphism from [2020] (Example 7.3.127.3.12). If X̃ −→ X is an extension of X classified
by a class η in the (reduced) Lie groupoid cohomology of G with coefficients in E, then the
Lie algebroid TM/X is the square zero extension of the Lie algebroid TM/X classified by the
image ηinf under the van Est map. This square zero extension admits a point-set description
in terms of L∞-algebroids, using the following observation:

Lemma 7.3.36. Let g be an L∞-algebroid whose underlying dg-A-module is cofibrant and
let E be a g-representation. Let α ∈ C

∗(g, E[1]) be a (degree 0) cocycle in the reduced
Chevalley-Eilenberg complex. The square zero extension gα −→ g classified by α can then be
described explicitly as a map of L∞-algebroids

g⊕α E // g

whose domain has L∞-structure of Example 3.1.83.1.8: elements in E square to zero and brackets
of elements in g with a single element e ∈ E are given by the representation of g on E.
Furthermore, the brackets of elements Xi ∈ g are given by

[X1, . . . , Xn] =
(

[X1, . . . , Xn]g, α(X1, . . . , Xn)
)
.

The resulting L∞-algebroid over g is a model for the square zero extension gα −→ g classified
by α.

Proof. A tedious, but straightforward computation shows that the above brackets determine
an L∞-algebroid structure on g⊕αE. To see that g⊕αE represents the square zero extension
gα, let f : h −→ g be a map from a cofibrant L∞-algebroid and consider the simplicial set of
dotted arrows (defined using the simplicial cotensoring from Construction 3.1.313.1.31)

cobar(h) //

∼
��

g⊕α E

��
h

f
// g.

Since the left vertical map is a weak equivalence between cofibrant objects, the right map is
a fibration and L∞Algd is right proper, it follows that this simplicial set is a model for the
space of sections h −→ g⊕α E over g.

A dotted lift cobar(h) −→ g ⊕α E is uniquely determined by its second component
cobar(h) −→ E. Unwinding the definitions of the cobar construction and the Chevalley-
Eilenberg complex, one sees that this second component describes a degree 1 element
β ∈ C

∗(h, f∗E[1]) with the property that ∂β = f∗α. It follows that there is a natural
equivalence between the space of lifts h −→ g⊕α E and the space of null-homotopies of f∗α.

On the other hand, the space of null-homotopies of f∗α is naturally equivalent to the
space of sections of gα −→ g, by definition of gα. It follows that g⊕α E indeed represents
the square zero extension gα.

Example 7.3.37. Let θ : M −→ K(U(1), n) be a map from a smooth manifold, classifying
a higher U(1)-bundle gerbe. Such a map fits into a diagram of derived stacks (where U(1)
and R are considered as smooth manifolds)

M
θ //

[θ]
%%

K(U(1), n)

��

// ∗

��

K(Z, n+ 1) // K(R, n+ 1)
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where [θ] ∈ Hn+1(M,Z) is the integral cohomology class classifying θ. The right square is
cartesian and induces a cartesian diagram of Lie algebroids over M

TM/K(U(1),n) //

��

TM

0
��

TM
θinf

//// TM ⊕OM [n+ 1].

The map θinf is classified by a class θinf ∈ π−n−1C
∗(TM ) in the (n+1)-st de Rham cohomology

group of M . To identify this class, note that it is induced by the canonical map (under M)

Sing(M)
[θ]
// K(Z, n+ 1) // K(R, n+ 1).

Using Proposition 7.2.117.2.11, one sees that θinf is simply the image of [θ] in de Rham cohomol-
ogy. If we choose a closed (n + 1)-form Fθ presenting [θ], then Lemma 7.3.367.3.36 shows that
TM/K(U(1),n) is modeled by the L∞-algebroid

TM ⊕OM [n] [X1, . . . , Xn+1] = Fθ(X1, . . . , Xn).

7.3.4 Integrability of regular L∞-algebroids. We conclude with a simple observation
about the integrability of (finite dimensional) L∞-algebroids over a smooth manifold M ,
essentially due to van Est [2828] (and due to Crainic [2020] for the case of Lie algebroids).

Definition 7.3.38. Let g ∈ LieAlgdM be a (connective) Lie algebroid over a smooth
manifold M . We will say that g integrates to an n-stack if there exists a smooth n-stack X
and a smooth surjection M −→ X whose associated Lie algebroid is (equivalent to) g.

Remark 7.3.39. If g integrates to an n-stack, then the underlying module of g is perfect,
with Tor-amplitude contained in [0, n− 1].

Remark 7.3.40. Theorem 7.2.17.2.1 shows that any Lie algebroid admits a canonical integration,
assuming it can be integrated at all. Indeed, let g be a Lie algebroid over M which arises from
a smooth map p : M −→ X to an n-stack. The map p factors over the ‘source n-connected
cover’ p̃ : M −→ X̃ of p (Section 5.35.3). Since the map X̃ −→ X is étale, one finds that the
Lie algebroid associated to p̃ is g as well. It follows that g can be integrated by a smooth
map p̃ : M −→ X to a smooth n-stack whose fibers are n-connected.

By Theorem 7.2.17.2.1, such an integration is unique (up to a contractible space of choices): for
any other integration q : M −→ Y with n-connected fibers, there is a unique map X̃ −→ Y
(under M) integrating the identity map on g. Reversing the rôles of X̃ and Y , one finds that
this unique map is an equivalence.

Proposition 7.3.41. Let g be a Lie algebroid over M which integrates to a smooth n-stack
and let E ∈ Perf [0,n−1](g). For any square zero extension

E // g̃ // g

the Lie algebroid g̃ integrates to a smooth (n + 1)-stack. Furthermore, it integrates to a
smooth n-stack if the n-connected integration of g is already (n+ 1)-connected.

Proof. Let M −→ X be the source (n + 1)-connected cover of the n-stack integrating g,
which is an (n+ 1)-stack in general. The square zero extension g̃ is classified by a map of
Lie algebroids

g
η
// g⊕ E[1]
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to the split square zero extension of g by E[1]. The functor Perf [0,n−1](X) −→ Perf [0,n−1](g)
is an equivalence by Corollary 7.3.27.3.2, so that E integrates to a perfect complex Ẽ over X,
with Tor-amplitude contained in [0, n− 1].

The split square zero extension g ⊕ E[1] is the Lie algebroid of the (n + 1)-stack
SpecX(Ẽ[2]∨) −→ X, by Example 7.3.327.3.32. Since X is (n + 1)-connected, Theorem 7.2.17.2.1
implies that the section η integrates to a section

η̃ : X // Spec(Ẽ[2]∨)

under M . By Example 7.3.347.3.34, the extension g̃ arises as the Lie algebroid of the pullback

X̃

p

��

// X

0
��

X
η̃
// SpecX(Ẽ[2]∨).

Since Ẽ[2]∨ has Tor-amplitude contained in (−∞,−1], the zero section

X // Spec(E∨[2])

is n-smooth (Lemma 5.2.345.2.34) and the map p : X̃ −→ X is n-smooth.
It remains to check that the map M −→ X̃ is a smooth surjection. To see that it induces a

surjection on π0, it suffices to observe that the map p induces an isomorphism on π0-sheaves.
This follows from the fac that the map 0: X −→ Spec(Ẽ[2]∨) induces isomorphisms on
π0-sheaves. Since the dual of LM/X̃ is the connective module g̃, it follows that M −→ X̃ is
smooth.

Corollary 7.3.42. Let g be a connective Lie algebroid on a smooth manifold M with the
property that each πi(g) is a (finite rank) vector bundle and πi(g) = 0 for i > n. Then g
integrates to an (n+ 1)-stack.

Proof. If g is an ordinary Lie algebroid, then the integrability to a 2-stack is proven in [9999].
For n > 0, we proceed by induction along the Postnikov tower

g = τ≤ng // τ≤n−1g // . . . // τ≤0g.

Each stage τ≤kg is a regular Lie algebroid and τ≤kg −→ τ≤k−1g is a square zero extension
by the τ≤k−1g-representation πk(g)[k]. Since g is assumed regular, this representation is
contained in Perf [0,k](τ≤k−1g), so that the result follows from Proposition 7.3.417.3.41.

Example 7.3.43. Let g be an L∞-algebroid over M whose underlying complex

0 // En // En−1 // . . . // E0

is a bounded of vector bundles whose differential is (locally) of constant rank. Then g satisfies
the conditions of Corollary 7.3.427.3.42 and can be integrated to an (n+ 1)-stack. In particular,
any finite dimensional L∞-algebra admits such an integration (cf. [3939, 3535] for similar results
by completely different methods).
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[31] A. Frölicher and A. Nijenhuis, A theorem on stability of complex structures. Proc. Nat.
Acad. Sci. U.S.A., 43:239–241, 1957.

[32] D. Gaitsgory, Ind-coherent sheaves. Mosc. Math. J., 13:399–528, 553, 2013.
[33] D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry. American

Mathematical Society, Providence, RI. 2017.
[34] D. Gepner, R. Haugseng, and T. Nikolaus, Lax colimits and free fibrations in ∞-

categories. arXiv:1501.02161arXiv:1501.02161, 2015.
[35] E. Getzler, Lie theory for nilpotent L∞-algebras. Ann. of Math. (2), 170:271–301,

2009.
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[98] B. Toën and G. Vezzosi, Algèbres simpliciales S1-équivariantes, théorie de de Rham
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Samenvatting

Het centrale thema van dit proefschrift is het verband tussen de meetkunde van moduliruimten,
hun deformatietheorie en de theorie van Lie algebröıden. De twee hoofdresultaten geven een
precieze beschrijving van dit verband, in termen van een equivalentie tussen Lie algebröıden en
formele moduliruimten over een (mogelijk singuliere) differentieerbare variëteit, samen met een
integreerbaarheidsstelling voor afbeeldingen tussen Lie algebröıden. Beide resultaten maken
intensief gebruik van methodes uit de algebräısche topologie en afgeleide differentiaaltopologie.

Differentiaaltopologie bestudeert meetkundige figuren, of ruimtes, met een goed begrip van
‘raakruimte’ dat kan worden gebruikt om functies herhaaldelijk te differentiëren. Voorbeelden
van dit soort figuren zijn de rechte lijn R en de cirkel (beide hebben raaklijnen) en het platte
vlak R2, de bolschil en de torus (met raakvlakken). Er zijn twee algemene methodes om
meer voorbeelden van dergelijke ruimtes te produceren: door het opstellen van een stelsel
vergelijkingen of door een symmetrie uit te delen.

De genoemde voorbeelden kunnen allen worden verkregen via de eerste methode: de
(eenheids)cirkel wordt beschreven door de vergelijking x2 + y2 = 1 in R2, en de torus en
de bolschil door vergelijkingen (a)(a) en (b)(b) hieronder. De oplossingsruimte van een stelsel
vergelijkingen hoeft echter niet altijd glad te zijn; zie bijvoorbeeld de zandloperfiguur (c)(c).

(a): 8(x2 + y2) = (x2 + y2 + z2 + 1)2 (b): x2 + y2 + z2 = 1 (c): x2 + y2 = z2(1 − z2)

Deze drie figuren hebben een rotatiesymmetrie om de z-as. Door de punten op iedere cirkel
om de z-as met elkaar te identificeren verkrijgt men een nieuwe ruimte die eruitziet als (a)(a)
de cirkel of (b)(b), (c)(c) het gesloten interval [−1, 1].

Deformatietheorie onderzoekt kleine vervormingen in dit soort figuren. Zo zien kleine
vervormingen van de torus en de bolschil er niet wezenlijk anders uit, maar kan Figuur (c)(c)
zowel worden gescheiden in twee bollen, als worden samengedrukt tot een samenhangend
figuur. Een ander voorbeeld van een deformatieprobleem is de vraag in hoeverre een punt in
een ruimte kan worden bewogen. Voor kleine bewegingen kan dit worden bestudeerd door
middel van een lineaire benadering: kleine (eerste orde) verschuivingen van een punt worden
precies beschreven door de raakruimte in dat punt.

Het opstellen van vergelijkingen of het uitdelen van symmetrieën resulteert echter niet
altijd in een ruimte waarvan de raakruimtes direct duidelijk zijn. In Figuur (c)(c) hebben
bijvoorbeeld alle punten een zichtbaar raakvlak, behalve het (meest interessante!) middelpunt;
daar blijkt de raakruimte niet 2-, maar 3-dimensionaal te zijn. Op dezelfde manier hebben
bijna alle punten op het interval [−1, 1] een raaklijn, behalve de twee randpunten ±1; deze
punten corresponderen met de rotatie-invariante maxima en minima van Figuur (b)(b) en (c)(c).

Om dit soort singuliere punten effectief te kunnen behandelen, maken we gebruik van de
theorie van afgeleide differentiaaltopologie, uitgewerkt in Hoofdstuk 55. Deze theorie beschrijft
ruimtes met singulariteiten in termen van zogenaamde ‘afgeleide variëteiten’ en ‘stacks’. Het
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uitgangspunt hierbij is dat men onthoudt hoe een meetkundig figuur precies is verkregen
door het stellen van vergelijkingen en het uitdelen van symmetrie. Bovendien moet rekening
worden gehouden met relaties tussen vergelijkingen en symmetrieën tussen symmetrieën.

Singuliere punten hebben nu een raakcomplex, dat bestaat uit meerdere lagen van
raakruimtes: het middelpunt van Figuur (c)(c) heeft bijvoorbeeld een raakcomplex dat 3-
dimensionaal is in graad 0 en 1-dimensionaal in graad −1. Werk van Pridham en Lurie
laat zien dat een formele omgeving van een punt, en daarmee de manieren om dit punt
(infinitesimaal) te bewegen, volledig kan worden beschreven door de structuur van een Lie
algebra op zijn raakcomplex.

Dit proefschrift behandelt een uitbreiding van dit resultaat tot deformaties van een ruimte
van punten in plaats van één punt. Lie algebras worden nu vervangen door Lie algebröıden,
waarvan de homotopietheorie wordt ontwikkeld in Hoofdstuk 33. Het eerste hoofdresultaat
(Stelling II, bewezen in Hoofdstuk 44) is een equivalentie tussen de homotopietheorie van Lie
algebröıden en de homotopietheorie van formele moduliruimten over een afgeleide variëteit
M .

In het bijzonder geeft dit een beschrijving van een formele omgeving van een afgeleide
variëteit M in een afgeleide stack X, en zodoende van de manieren om M te bewegen binnen
X. Deze omgeving wordt volledig vastgelegd door de structuur van een Lie algebröıde op
de raakbundel van M over X. Als M de oplossingsruimte is van een onafhankelijk stelsel
vergelijkingen, dan is deze Lie algebröıde simpelweg de normaalbundel in graad −1, met
triviale Lie haak.

Het tweede hoofdresultaat van dit proefschrift beschouwt de complementaire situatie
waarin M −→ X een gladde quotiëntafbeelding is. Dit is de situatie waarin X een afgeleide
stack is, verkregen uit M door het uitdelen van symmetrieën en homotopieën daartussen. In
dit geval beschrijft Stelling IIII een nauw verband tussen het quotiënt X en de bijbehorende
Lie algebröıde over M : als de vezels van M over X voldoende samenhangend zijn, dan
kan iedere afbeelding van Lie algebröıden worden gëıntegreerd tot een afbeelding tussen
stacks. Dit reproduceert in het bijzonder bekende resultaten van Van Est en Crainic over
het verband tussen de cohomologie van Lie groepöıden en Lie algebröıden. Tevens volgt de
integreerbaarheid van eindigdimensionale L∞-algebras tot hogere Lie groepen.
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