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Abstract. This paper studies the role of dg-Lie algebroids in derived deforma-
tion theory. More precisely, we provide an equivalence between the homotopy
theories of formal moduli problems and dg-Lie algebroids over a commutative

dg-algebra of characteristic zero. At the level of linear objects, we show that
the category of representations of a dg-Lie algebroid is an extension of the
category of quasi-coherent sheaves on the corresponding formal moduli problem.

We describe this extension geometrically in terms of pro-coherent sheaves.

1. Introduction

Lie algebroids appear throughout algebraic and differential geometry as natural
objects describing infinitesimal geometric structures, like foliations and actions of
Lie algebras [2828, 2020]. In this paper, we study the relation between Lie algebroids
and deformation theory, which can informally be described as follows: suppose that
k has characteristic zero and that

x : Spec(A) //M

is a map from an affine (derived) scheme to a moduli space over k. Then a formal
neighbourhood of M around x is controlled by a Lie algebroid over Spec(A). This
Lie algebroid is given by the vector fields on Spec(A) that are (derived) tangent to
the fibers of x.

When Spec(A) is a point, this recovers the well-known relation between defor-
mation problems and dg-Lie algebras, which originates in the work of Kodaira and
Spencer [1313] and which has been put forward as a key principle in deformation
theory by Deligne and Drinfeld. The classification of deformation problems by dg-Lie
algebras has been extensively studied and applied [66, 1414, 2121], and has been given a
precise mathematical formulation in the work of Hinich [99], Pridham [2626] and Lurie
[1717]. An important idea in these works is to describe the formal neighbourhood
of a moduli space in terms of derived geometry, using its functor of points. More
precisely, one can describe a formal neighbourhood of M around x by a functor

M∧ : CAlgsm
k /A // S; B � //M(B)×M(A) {x} (1.1)

sending a derived infinitesimal thickening Spec(A) −→ Spec(B) to the space of
extensions of x to a map x̃ : Spec(B) −→M. Such derived infinitesimal thickenings
are dual to maps B −→ A in the ∞-category of connective commutative k-algebras,
i.e. the ∞-categorical localization of the category of (homologically) nonnegatively
graded commutative dg-k-algebras at the quasi-isomorphisms.

For any reasonable moduli spaceM, the functorM∧ satisfies a derived version of
the Schlessinger conditions, which encodes the usual obstruction theory for existence
and uniqueness of deformations [3030]. The works mentioned above provide an
equivalence between the homotopy theory of such functors satisfying the Schlessinger
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conditions and the homotopy theory of dg-Lie algebras, at least when A is a field
(see also [88] for an extension to dg-Lie algebras over more general dg-algebras A).

The purpose of this paper is to provide a similar identification of the homotopy
theory of dg-Lie algebroids with the homotopy theory of formal moduli problems, in
the sense of [55, 1717]:

Definition 1.2. Let A be a connective commutative k-algebra, where k has char-
acteristic zero. The ∞-category CAlgsm

k /A of small extensions of A is the smallest
subcategory of the ∞-category of connective commutative k-algebras over A that
contains A and that is closed under square zero extensions by A[n] with n ≥ 0.

A formal moduli problem on A is a functor

X : CAlgsm
k /A // S

satisfying the following two conditions:

(a) X(A) ' ∗ is contractible.

(b) X preserves any pullback diagram of small extensions of A of the form

Bη

��

// A

(id,0)

��

B
η
// A⊕A[n+ 1].

Such a pullback square realizes Bη as a square zero extension of B by A[n]
(for n ≥ 0).

Geometrically, a formal moduli problem can be thought of as a map of stacks
x : Spec(A) −→ X that realizes X as an infinitesimal thickening of Spec(A). We
show that such a stack determines a Lie algebroid TA/X , which can be thought of
as the fiberwise vector fields on Spec(A) over X. This construction is part of an
equivalence, with inverse sending a Lie algebroid g to the ‘quotient’ of Spec(A) by
the infinitesimal g-action:

Theorem 1.3. Suppose that A is eventually coconnective. Then there is an equiva-
lence of ∞-categories

MC: LieAlgdA
//
FMPA : TA/oo

between the∞-category of Lie algebroids over A and the∞-category of formal moduli
problems under A.

The ∞-category of Lie algebroids has an explicit description in terms of homo-
logical algebra, as the localization of the category of dg-Lie algebroids over A at the
quasi-isomorphisms. One can therefore think of the above result as a rectification
result, showing that any formal moduli problem admits a rigid description in terms
of chain complexes endowed with algebraic structure. In this sense, Theorem 1.31.3
provides a complement to the recent work of Gaitsgory and Rozenblyum [55], where
Lie algebroids are defined and studied purely in terms of formal moduli problems.

Remark 1.4. Theorem 1.31.3 relates formal moduli problems and Lie algebroids on
an affine derived scheme. Using descent methods, one can extend this result to
derived Deligne-Mumford stacks. Recent work by Calaque and Grivaux [33] sketches
extensions of Theorem 1.31.3 to more general kinds of stacks.

The proof of Theorem 1.31.3 follows the lines of [1717], and relies on a version of Koszul
duality: the small extensions of A are Koszul dual to certain free Lie algebroids over
A, by means of the functor sending a dg-Lie algebroid to its cohomology (as studied
already in [2828]). To make efficient use of this result, it is useful to study Koszul
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duality at the level of linear objects as well. More precisely, given a quasi-coherent
sheaf F on X, one expects the restriction x∗F along x : Spec(A) −→ X to carry a
natural representation of the Lie algebroid TA/X . Indeed, we prove the following
result:

Theorem 1.5. Let A be eventually coconnective and let X be a formal moduli
problem on A with associated Lie algebroid TA/X . Then there is a fully faithful,
symmetric monoidal left adjoint functor

ΨX : QC(X) // RepTA/X

which induces an equivalence on connective objects.

As an application of this result, we give a simple (folklore) chain-level description of
the formal moduli problem describing the deformations of a connective commutative
A-algebra (or an algebra over some other operad, cf. Remark 6.186.18):

Proposition 1.6. Let A be eventually coconnective and let R be a connective
commutative A-algebra. Then the formal moduli problem

DefR : CAlgsm
k /A // S; B � // CAlg

(
ModB

)
×CAlg(ModA) {R}

is classified by the dg-Lie algebroid of natural derivations of the map A −→ R. The
Lie bracket is given by the commutator bracket and the anchor sends a natural
derivation to its component at A.

It is well-known (cf. [2929, 1212]) that there are convergence issues that prevent the
functor ΨX from being an equivalence. For example, for any map f : X −→ Y of
formal moduli problems, the restriction functor

f ! : RepTA/Y
// RepTA/X

preserves all limits, while the restriction functor f∗ : QC(Y ) −→ QC(X) does not.
For this reason (among many others), a more refined geometric theory of sheaves has
been introduced in [44], in which quasi-coherent sheaves are replaced by ind-coherent
sheaves. For our purposes, it seems more convenient to work with the dual notion
of pro-coherent sheaves, which are often equivalent to ind-coherent sheaves by Serre
duality (see [44, Section 9] or Remarks 7.77.7 and 7.117.11). For instance, this is the case for
derived schemes which are locally almost of finite type over a field (this condition is
imposed on most objects in the book [55]). The ∞-category of pro-coherent sheaves
on an eventually coconnective algebra A is an extension

ModA = QC(A)
� � // QC!(A) = Ind

(
Cohop

A

)
of the usual ∞-category of quasi-coherent sheaves, i.e. A-modules (see Section 7.17.1).
This extension exhibits much better behaviour with respect to deformation theory.
For instance, we will relate pro-coherent sheaves to (quasi-coherent) Lie algebroid
representations:

Theorem 1.7. Let A be eventually coconnective and coherent, and let X be a formal
moduli problem on A with associated Lie algebroid TA/X . Then there is fully faithful
embedding

RepTA/X
� � // QC!(X)

whose essential image consists of the pro-coherent sheaves on X whose restriction
to A is quasi-coherent.



4 JOOST NUITEN

The work of Gaitsgory and Rozenblyum [55] provides an extensive study of derived
algebraic geometry in terms of ind-coherent sheaves, or equivalently (by Serre
duality) in terms of pro-coherent sheaves. In particular, they develop a theory of
pro-coherent Lie algebroids and their representations, which is formulated entirely
in terms of formal moduli problems and their categories of pro-coherent sheaves.
More precisely, they consider a slightly larger ∞-category of small extensions of A,
which also contains square zero extensions of A by connective coherent A-modules.
A Lie algebroid is then defined to be a functor

X : CAlgsm,coh
k /A // S

that satisfies the Schlessinger conditions, analogous to conditions (a) and (b) of
Definition 1.21.2. We will refer to such a functor as a pro-coherent formal moduli
problem, since it has a tangent space functor

TX : Coh≥0
A

// S; E � // X
(
A⊕ E

)
that defines a pro-coherent sheaf on A. Similarly, a representation of a Lie algebroid
is essentially defined to be a pro-coherent sheaf on such a pro-coherent formal moduli
problem [55, Vol. II, Ch. 8, §4].

Remark 1.8. One can think of pro-coherent formal moduli problems as refinements
of formal moduli problems (as in Definition 1.21.2), which are adapted to ‘almost
finite type’ situations (as considered in [55]). Such situations appear naturally
in deformation theory, because small extensions and Postnikov stages of finitely
presented algebras are typically only almost of finite type.

In terms of linear algebra, the usefulness of pro-coherent formal moduli problems
can be seen as follows. Suppose that A is eventually coconnective and almost of finite
type, and let f : Spec(A) −→M be a map to a derived Artin stack which is locally
finitely presented. The formal completion ofM at Spec(A) is then controlled by the
cotangent complex LA/M, while the associated formal moduli problem (1.11.1) is only
controlled by its A-linear dual TA/M. In general, one cannot retrieve LA/M from
its linear dual, unless it is perfect, for instance. This puts some further constraints
on the map f (and hence on A), such as being finitely presentation.

In contrast, one can recover the cotangent complex LA/M from its pro-coherent
dual: indeed, LA/M is a locally almost finitely presented A-module (Definition 7.37.3),
which implies that LA/M ' L∨∨A/M in the ∞-category of pro-coherent sheaves (this

follows from Corollary 8.98.9). Accordingly, the formal completion of M at Spec(A)
is completely determined by a pro-coherent formal moduli problem [55, Vol. II, Ch.
5, §1.4]. Because of this, pro-coherent formal moduli problems appear for instance
in the study of D-modules, i.e. ind-coherent sheaves on de Rham stacks (in other
words, on formal completions of points) [55, Vol. II, Ch. 4].

In certain (somewhat restricted) situations, we show that the rectification results
from Theorem 1.31.3 and Theorem 1.71.7 can also be applied to pro-coherent formal moduli
problems. In particular, this allows one to study formal completions of derived stacks
(locally almost of finite type) algebraically in terms of dg-Lie algebroids. Our results
make use of a simple point-set model for Lie algebroids in the pro-coherent setting,
based on a certain ‘tame’ model structure on dg-A-modules [11, 2525]. Unfortunately,
the resulting tame homotopy theory of dg-Lie algebroids is only well behaved when
A satisfies some rather strict technical assumptions at the chain level (see Warning
8.148.14). As an important example, these technical conditions are met when k is
Noetherian and eventually coconnective and when

Spec(A) = Ank ×Amk {0}.
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In particular, for A = k we obtain a simple point-set model for the ∞-category of
pro-coherent Lie algebras over any coherent, eventually coconnective A.

In the cases where we have a good point-set model for pro-coherent Lie algebroids
over A, we show (Theorem 8.28.2) that there is an equivalence of ∞-categories

TA/ : FMP!
A

∼ // LieAlgd!
A

between pro-coherent formal moduli problems and pro-coherent Lie algebroids over
A. Theorem 1.71.7 can then be refined (Theorem 8.38.3) to an equivalence

ΨX : QC!(X)
∼ // Rep!

TA/X

between pro-coherent sheaves on X and pro-coherent TA/X -representations.

Outline. The paper is outlined as follows. In Section 22, we recall the basic homotopy
theory of dg-Lie algebroids over a commutative dg-algebra A, in which the weak
equivalences are the quasi-isomorphisms. Our main result (Theorem 1.31.3) is proven
in Section 55, based on results about Lie algebroid cohomology that are discussed in
Section 33 and 44. Section 66 is devoted to a proof of Theorem 1.51.5.

In Section 77, we discuss the theory of pro-coherent sheaves on formal moduli
problems and prove Theorem 1.71.7. Finally, Section 88 describes the homotopy theories
of pro-coherent sheaves and pro-coherent Lie algebroids in model categorical terms.
Using these, we establish extensions of Theorem 1.31.3 and Theorem 1.71.7 to the pro-
coherent setting.

Conventions. Throughout, let Q ⊆ k be a fixed connective commutative dg-algebra
of characteristic zero and let A be a connective cdga over k. All differential-graded
objects are homologically graded, so that connective objects are concentrated in
non-negative degrees. Homology and homotopy groups are both denoted by πi.
Given a chain complex V , we denote its suspension and cone by V [1] and V [0, 1].

Acknowledgements. I am grateful to Ieke Moerdijk and Pelle Steffens for many
useful discussions about the contents of this work, and to the anonymous referees
for their comments, which helped to greatly improve the paper. I would also like to
thank NWO for supporting this work.

2. Recollections on DG-Lie algebroids

In this section we recall the homotopy theory of dg-Lie algebroids over a commu-
tative dg-algebra, based on the discussion in [2323].

2.1. DG-Lie algebroids. Recall that the tangent module of a commutative dg-k-
algebra A is the dg-A-module of k-linear derivations of A

TA = Derk(A,A).

The commutator bracket endows this complex with the structure of a dg-Lie-algebra
over k.

Definition 2.1. A dg-Lie algebroid g over A (relative to k) is an unbounded dg-A-
module g, equipped with a k-linear dg-Lie algebra structure and an anchor map
ρ : g −→ TA such that

(1) ρ is both a map of dg-A-modules and dg-Lie algebras.

(2) the failure of the Lie bracket to be A-bilinear is governed by the Leibniz rule

[X, a · Y ] = (−1)Xaa[X,Y ] + ρ(X)(a) · Y.

Let LieAlgddg
A be the category of dg-Lie algebroids over A, with maps given by

A-linear maps over TA that preserve the Lie bracket.
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Example 2.2. Any dg-A-module E gives rise to an Atiyah dg-Lie algebroid At(E)
over A, which can be described as follows: a degree n element of At(E) is a tuple
(v,∇v) consisting of a derivation v : A −→ A (of degree n), together with a k-linear
map ∇v : E −→ E (of degree n) such that

∇v(a · e) = v(a) · e+ (−1)|a|·na · ∇v(e)

for all a ∈ A and e ∈ E. This becomes a dg-A-module under pointwise multiplication
and a dg-Lie algebra under the commutator bracket. The anchor map is the obvious
projection At(E) −→ TA sending (v,∇v) to v.

Example 2.3. Similarly, suppose that E ∈ Moddg
A has the structure of an algebra

over a k-linear dg-operad P . Then there is a sub dg-Lie algebroid AtP(E) ⊆ At(E)
consisting of the tuples (v,∇v) where ∇v is a P-algebra derivation.

The following is the main result of [2323]:

Proposition 2.4. The category of dg-Lie algebroids over A carries the projective
semi-model structure, in which a map is a weak equivalence (fibration) if and only if
it is a quasi-isomorphism (degreewise surjective). Furthermore, the forgetful functor
to the projective model structure on dg-A-modules

LieAlgddg
A

// Moddg
A /TA

is a right Quillen functor that preserves all sifted homotopy colimits.

Remark 2.5. Let 0 −→ g −→ TA be a fibrant-cofibrant replacement of the initial
dg-Lie algebroid over A. Then there is a Quillen equivalence

LieAlgddg
A

//
g/LieAlgddg

A .oo

Using the simplicial structure from [3232] and the fact that every object in g/LieAlgddg
A

is fibrant, one finds that g/LieAlgddg
A is a genuine (combinatorial) model category.

Definition 2.6. Let A be a cofibrant connective cdga over k. We define the
∞-category of Lie algebroids over A to be the ∞-categorical localization

LieAlgdA := LieAlgddg
A

[
{quasi-iso}−1

]
.

This is a locally presentable ∞-category since LieAlgddg
A is Quillen equivalent to a

combinatorial model category (Remark 2.52.5).

Remark 2.7. The condition that A is cofibrant over k guarantees that the tangent
module TA has the correct homotopy type.

Definition 2.8. We will say that a dg-Lie algebroid g is A-cofibrant when it
is cofibrant as a dg-A-module. Every cofibrant dg-Lie algebroid is A-cofibrant.
Conversely, if g is A-cofibrant, then it has an explicit cofibrant replacement Q(g)

∼−→
g, described as follows [2323, Section 5]: without differential, Q(g) is freely generated
by the A-linear map (

Sym≥1
A g[1]

)
[−1]

π // g
ρ
// TA

where π is the obvious projection. As a dg-Lie algebra, Q(g) is a quotient of the A-
linear extension of the usual operadic bar-cobar resolution ΩBg of the dg-Lie algebra
underlying g [1515, Theorem 11.3.6] (also denoted LC(g) by Quillen [2727, Appendix
B]). This determines the differential.
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2.2. Representations. Recall that a representation of a dg-Lie algebroid g is a
dg-A-module E, together with a Lie algebra representation ∇ : g⊗k E −→ E such
that (without Koszul signs)

∇a·X(e) = a · ∇X(e) ∇X(a · e) = a · ∇X(e) + ρ(X)(a) · e

for all a ∈ A,X ∈ g and e ∈ E. Equivalently, a g-representation on E is a map

g // At(E)

to the Atiyah Lie algebroid of E (Example 2.22.2). Such representations can be

organized into a symmetric monoidal category Repdg
g , with tensor product given by

E ⊗A F , endowed with the g-representation

∇X(e⊗ f) = ∇X(e)⊗ f + e⊗∇X(f).

The internal hom is given by HomA(E,F ), endowed with the g-representation by
conjugation.

Example 2.9. Let P be a dg-operad. Then a P-algebra in Repdg
g is simply a P-

algebra in Moddg
A , equipped with a g-representation acting by P-algebra derivations.

Equivalently, such a P-algebra structure on a g-representation E is determined by a
map of dg-Lie algebroids g −→ AtP(E) (Example 2.32.3).

One can identify Repdg
g with the category of left modules over the universal

enveloping algebra U(g) of g [2828, Section 2]. In particular, it carries the projective
model structure, where a map is a weak equivalence (fibration) if it is a quasi-
isomorphism (surjection). We define the ∞-category of g-representations to be the
associated ∞-category

Repg := Repdg
g

[
{quasi-iso}−1

]
.

Lemma 2.10. Any map between dg-Lie algebroids f : g −→ h induces a Quillen
adjunction between the projective model structures

f∗ : Repdg
g

//
Repdg

h : f !
oo

where f ! restricts a representation along f . When g and h are A-cofibrant and f is
a weak equivalence, this Quillen adjunction is a Quillen equivalence.

Proof. The map f induces a map of universal enveloping algebras U(g) −→ U(h),
which gives rise to the Quillen pair (f∗, f

!). The left adjoint f∗ is given by the
functor E 7→ U(h)⊗U(g) E.

For the second part, recall that the universal enveloping algebra U(g) has a
natural PBW filtration, obtained by declaring generators from A to have weight 0
and generators from g to have weight 1 [2828, Section 3]. The associated graded is a
graded cdga and comes equipped with a surjective map of graded cdgas

SymA(g) // gr
(
U(g)

)
.

When g is projective as a graded A-module, this map (or rather, the underlying map
of graded graded-commutative algebras) is an isomorphism by the PBW theorem of
[2828], which applies verbatim in the graded setting.

Now suppose that f : g −→ h is a weak equivalence between A-cofibrant dg-Lie
algebroids. The map U(g) −→ U(h) is compatible with the PBW filtrations and is
given by SymA(f) : SymA(g) −→ SymA(h) on the associated graded. Since g and h
are cofibrant as dg-A-modules, SymA(f) is a weak equivalence. By induction along
the PBW filtration, this implies that U(g) −→ U(h) is a weak equivalence, so that
(f∗, f

!) is a Quillen equivalence. �
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Lemma 2.11. Suppose that g is A-cofibrant. Then the category Repdg
g also carries

a combinatorial model structure where a map is a weak equivalence (cofibration) if
the underlying map of dg-A-modules is a weak equivalence (cofibration).

Proof. We can apply the criterion from [1616, Proposition A.2.6.8], using that there are
sets of generating (trivial) cofibrations by [1616, Lemma A.3.3.3]. To see that a map
with the right lifting property against the cofibrations is a weak equivalence, note
that it is in particular a trivial fibration of dg-A-modules. Indeed, U(g) is cofibrant
as a dg-A-module (by the PBW theorem), so that any projective cofibration of
g-representations is also a cofibration of dg-A-modules. �

Remark 2.12. The ‘A-injective’ model structure from Lemma 2.112.11 has the following
properties:

(1) The identity functor is a Quillen equivalence from the projective to the A-
injective model structure (both have the same weak equivalences). In particular,
the∞-category Repg can also be studied using the A-injective model structure.

(2) For any map f : g −→ h between A-cofibrant dg-Lie algebroids, the functor f !

is the left adjoint in a Quillen pair between the A-injective model structures

f ! : Repdg
h

//
Repdg

g : f!.oo

The right Quillen functor f! sends E to the coinduction HomU(g)

(
U(h), E

)
.

This is a Quillen equivalence when f is a Quillen equivalence, because the
(left derived) functor of ∞-categories f ! : Reph −→ Repg agrees with the right
derived functor of Lemma 2.102.10.

(3) The A-injective model structure manifestly defines a monoidal model structure

on Repdg
g , and each f ! is a monoidal left Quillen functor. It follows that Repg is

a closed symmetric monoidal ∞-category [1919, Example 4.1.7.6, Lemma 4.1.8.8].
In fact, when g is A-cofibrant, one can show that the projective model structure
satisfies the pushout-product axiom as well: this uses that the tensor product
of free representations U(g)⊗A U(g) is isomorphic to the free representation
generated by U(g). However, the unit A is not cofibrant in the projective
model structure.

In particular, the properties from Remark 2.122.12 imply that a map between A-
cofibrant dg-Lie algebroids f : g −→ h induces a symmetric monoidal functor
f ! : Reph −→ Repg between presentable (closed) symmetric monoidal ∞-categories.
Since the ∞-category of Lie algebroids can be obtained from the category of A-
cofibrant dg-Lie algebroids by inverting the quasi-isomorphisms, we obtain a functor

Rep: LieAlgdop
A

// PrL
sym.mon.

/
ModA := CAlg(PrL)/ModA

to the ∞-category of presentable (closed) symmetric monoidal ∞-categories over
ModA. This functor sends g to the forgetful functor Repg −→ ModA (or equivalently,
the functor restricting along the map of Lie algebroids 0 −→ g). For a more precise
description of this functor in terms of fibrations, see Section 6.26.2.

Lemma 2.13. The functor Rep preserves all limits.

Proof. We can forget about the symmetric monoidal structures, since the forgetful
functor PrL

sym.mon. −→ PrL preserves limits and detects equivalences. For any map

f : g −→ h, the restriction functor f ! is both a left and a right adjoint. It therefore
suffices to show that the functor Rep: LieAlgdop

A −→ PrR/ModA preserves limits.
To see this, consider U(g) as a unital associative algebra in the category of

dg-A-bimodules (over Q), using the map of algebras A −→ U(g). The category of
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dg-A-bimodules carries a monoidal model structure, whose weak equivalences and

fibrations are transferred along the forgetful functor BiModdg
A −→ LModdg

A . Since
we are working in characteristic zero, there exists a transferred model structure on

the category of associative algebras in BiModdg
A as well. By [1919, Theorem 4.1.8.4],

this is a model for the ∞-category of algebras in the monoidal ∞-category BiModA
of A-bimodules (in loc. cit., the monoid axiom and symmetry of the monoidal
structure are only used for the existence of a model structure on algebras).

The functor Rep now factors over the ∞-category of algebras in A-bimodules

LieAlgdop
A

U // Alg
(
BiModA

)op LMod // PrR/ModA.

The functor LMod preserves all limits by [1919, Theorem 4.8.5.11] (see the remarks
just above Corollary 4.8.5.13 in loc. cit.). It remains to verify that U : LieAlgdA −→
Alg
(
BiModA

)
preserves colimits. At the chain level, U admits a right adjoint,

sending an algebra B to the dg-Lie algebroid of tuples (b ∈ B, v ∈ TA) such that
[b, a] = v(a) in B. Because it is not clear to us that this adjoint descends to the
level of ∞-categories, we will verify by hand that U preserves (homotopy) colimits.
First, observe that U preserves sifted colimits, since the composite

LieAlgdA
U // Alg

(
BiModA

) forget
// BiModA

preserves sifted colimits by [2323, Theorem 4.22]. To see that U : LieAlgdA −→
Alg
(
BiModA

)
preserves finite coproducts, note that LieAlgdA is generated under

sifted colimits by free Lie algebroids F (V ) on A-modules V , equipped with the zero
map 0: V −→ TA (cf. [2323, Corollary 3.8]). It therefore suffices to verify that the
composite

ModA
F // LieAlgdA

U // Alg
(
BiModA

)
preserves finite coproducts. Unravelling the definitions, one sees that for any
cofibrant dg-A-module V , the dg-algebra U(F (V )) is naturally equivalent to the
A-linear tensor algebra TA(V ). In other words, the above functor is naturally
equivalent to the functor

ModA
∆ // BiModA

Free // Alg
(
BiModA

)
sending an A-module to the free algebra on V , considered as a symmetric A-bimodule.
This functor clearly preserves colimits. �

3. Lie algebroid cohomology

The purpose of this section is to prove the following:

Proposition 3.1. Let A be a cofibrant commutative dg-k-algebra. There is an
adjunction of ∞-categories

C∗ : LieAlgdA
// (

CAlgk/A
)op

: Doo (3.2)

between the ∞-category of Lie algebroids over A and the ∞-category of unbounded
commutative k-algebras over A (i.e. cdgas up to quasi-isomorphism). The right
adjoint sends B −→ A to the dual in ModA of the map between cotangent complexes
LA −→ LA/B (over k).

On A-cofibrant dg-Lie algebroids, the left adjoint in (3.23.2) is given by the Chevalley-
Eilenberg complex (with trivial coefficients). Recall that for any representation E of
a dg-Lie algebroid g, this complex (with coefficients in E) is given by the graded
vector space

C∗(g, E) := HomA

(
SymAg[1], E

)
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with the usual Chevalley-Eilenberg (or de Rham) differential (without Koszul signs)

(∂α)(X1, . . . , Xn) = ∂E
(
α(X1, . . . , Xn)

)
−
∑
i

α(X1, . . . , ∂Xi, . . . , Xn)

+
∑
i

∇Xi
(
α(X1, . . . , Xn)

)
−
∑
i<j

α
(

[Xi, Xj ], X1, . . . , Xn

)
.

There is a natural k-linear augmentation map C∗(g, E) −→ E, evaluating at the
unit element of SymA

(
g[1]
)
.

Remark 3.3. The shuffle product of forms defines a lax symmetric monoidal
structure on C∗(g,−), which is compatible with the augmentation in the sense that
there is a commuting square

C∗(g, E)⊗k C∗(g, F )
×
//

��

C∗(g, E ⊗A F )

��

E ⊗k F // E ⊗A F.

In particular, taking coefficients with values in the commutative algebra A, one
obtains a functor

C∗ : LieAlgddg
A

//

(
CAlgdg

k /A
)op

; g
� // C∗(g) := C∗(g, A).

For every dg-Lie algebroid g, the Chevalley-Eilenberg complex yields a lax symmetric

monoidal functor C∗(g,−) : Repdg
g −→ Moddg

C∗(g).

The proof of Proposition 3.13.1 is given at the very end of this section and uses some
formal properties of the Chevalley-Eilenberg complex. To understand these proper-
ties, it will be useful to first give a slightly more model-categorical characterization
of the Chevalley-Eilenberg complex.

3.1. The cotangent complex of a Lie algebroid. Consider the right Quillen
functor

g⊕ (−) : Repdg
g

// LieAlgddg
A /g

sending a g-representation E to the square zero extension of g by E. If we denote
the value of the left adjoint functor on g itself by Υg, then the other values of the
left adjoint are given by(

f : h −→ g
)
� // f∗Υh = U(g)⊗U(h) Υh. (3.4)

Definition 3.5. Let g be an A-cofibrant dg-Lie algebroid. The cotangent complex
Lg of g is the value of the left derived functor of (3.43.4) on the identity map of g. In
other words, it is the universal g-representation classified by

MapU(g)(Lg, E) ' Map/g
(
g, g⊕ E

)
.

Example 3.6. Let g = F (V ) be the free dg-Lie algebroid generated by an A-
linear map V −→ TA whose domain is cofibrant. Then g is a cofibrant dg-Lie
algebroid and for any g-representation E, there is a natural bijection between
sections g −→ g⊕ E and A-linear maps V −→ E. It follows that Lg = U(g)⊗A V
is the free g-representation generated by the dg-A-module V .

More generally, one can use the cofibrant replacement Q(g) of Definition 2.82.8 to
compute the cotangent complex:
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Proposition 3.7. Let g be an A-cofibrant dg-Lie algebroid. Then the cotangent
complex Lg can be modelled by the cofibrant left U(g)-module

Lg = U(g)⊗A
(

Sym≥1
A g[1]

)
[−1] (3.8)

with differential given (modulo Koszul signs) by

∂(u⊗X1 . . . Xn) = (∂u)⊗X1 . . . Xn +
∑
i

u⊗X1 . . . ∂(Xi) . . . Xn

(n>1)
+

∑
i

u ·Xk ⊗X1 . . . Xn +
∑
i<j

u⊗ [Xi, Xj ]X1 . . . Xn. (3.9)

The first term in the second line only applies when n > 1.

Proof. Since g is A-cofibrant, it suffices to find a g-representation corepresenting
the functor

Repdg
g

// Set; E � // Hom/g(Q(g), E).

By [2323, Corollary 6.16], there is a natural bijection between maps Q(g) −→ g⊕ E
over g and 0-cycles in the kernel of the augmentation map C∗(g, E[1]) −→ E[1]. On
the other hand, unwinding the definition of the complex Lg in (3.83.8), one sees that
there is a short exact sequence

HomU(g)

(
Lg, E

)
// C∗
(
g, E[1]

)
// E[1]. (3.10)

Passing to 0-cycles, one finds that the complex Lg given in (3.83.8) indeed represents
maps Q(g) −→ g⊕ E over g. �

Remark 3.11. The cotangent complex (3.83.8) comes with a U(g)-linear map

Lg = U(g)⊗A
(

Sym≥1
A g[1]

)
[−1] // U(g)

sending u⊗X1 . . . Xn to zero when n > 1 and to u ·X1 when n = 1. The Koszul
complex K(g) of g is the mapping cone of this map. It fits onto a cofiber sequence

Lg
// U(g) // K(g).

Unravelling the definitions, K(g) can be identified with U(g)⊗A SymA

(
g[1]
)
, with

differential given by formula (3.93.9), but where the term in the second line is also
included when n = 1. The Chevalley-Eilenberg complex C∗(g, E) can be identified
with HomU(g)(K(g), E), so that the above cofiber sequence induces (a shift of) the
fiber sequence (3.103.10) on mapping complexes.

Remark 3.12. The composite map

Lg = U(g)⊗A
(

Sym≥1
A g[1]

)
[−1] // U(g)

u 7→u·1 // A

is equal to zero, so that there is a U(g)-linear map K(g) −→ A. When g is A-
cofibrant, this map is a weak equivalence. Indeed, the PBW filtration on U(g) (see
the proof of Lemma 2.102.10) and the filtration on SymA

(
g[1]
)

by polynomial degree
determine a total filtration on the Koszul complex K(g). The map on the associated
graded is the obvious projection

SymA

(
g[0, 1]

)
= SymA(g)⊗A SymA

(
g[1]
)

// A

from the symmetric algebra on the cone g[0, 1], which is a weak equivalence.
In other words, C∗(g, E) is a model for the derived mapping space HomU(g)(A,E).

The lax symmetric monoidal structure on C∗(g,−) arises from the fact that A is a

cocommutative coalgebra in Repdg
g .
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3.2. The free case. When g = F (V ) is the free dg-Lie algebroid generated by a
cofibrant dg-A-module over TA, we now have two different (but weakly equivalent)
descriptions of the cotangent complex Lg: Example 3.63.6 simply evaluates the left
Quillen functor (3.43.4) on g itself, while Proposition 3.73.7 computes the value of (3.43.4)
on the ‘cobar’ resolution Q(g). Of course, the first description is significantly smaller
than the second. To compare the two, note that there is a canonical section of the
map Q(g)

∼−→ g, induced by the canonical inclusion

V �
�

// g //

(
SymAg[1]

)
[−1] ⊆ Q(g).

Applying (3.43.4) to this section produces a weak equivalence between the two models
for the cotangent complex Lg, given by the U(g)-linear extension of the above
inclusion

U(g)⊗A V
∼ // U(g)⊗A

(
Sym≥1

A g[1]
)

[−1].

Restriction along this map induces a weak equivalence to a significantly smaller
complex

κ : C∗(g, A)
∼ // AV = A⊕ρ∨ HomA

(
V [1], A

)
; α � //

(
α(1), α

∣∣
V [1]

)
.

The codomain AV has the natural structure of a commutative dg-algebra, the square
zero extension of A by V [1]∨ = HomA(V [1], A) classified by the map

ρ∨ : ΩA // V ∨; ddRa
� //

(
v 7→ ρ(v)(a)

)
.

In other words, AV fits into a (homotopy) pullback square of cdgas

AV = A⊕ρ∨ V [1]∨ //

��

A⊕ V [0, 1]∨

��

A
ρ∨

// A⊕ V ∨.

(3.13)

Using this pullback square, one can easily check that the functor

A(−) : Moddg
A /TA

//
(
CAlgdg

k /A
)op

;V � // AV = A⊕ρ∨ V [1]∨.

is a left Quillen functor from the model category of dg-A-modules to the model
category of cdgas over A. Its right adjoint sends B −→ A to the mapping fiber of
the map

TA = Derk(A,A) // Derk(B,A),

together with its natural projection to TA. We may therefore summarize the previous
discussion by the following result:

Corollary 3.14. There is a natural transformation to a right Quillen functor

Moddg
A /TA

C∗◦F
((

A(−)

77
κ

��

(
CAlgdg

k /A
)op

which is a quasi-isomorphism when restricted to cofibrant dg-A-modules over TA.

Let us finally turn to the proof of Proposition 3.13.1:
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Proof (of Proposition 3.13.1). Consider the functor

LieAlgddg
A

C∗ //
(
CAlgdg

k /A
)op ker //

(
Moddg

k

)op

sending a dg-Lie algebroid to the kernel of the map C∗(g) −→ A. By Proposition
3.73.7, this functor can be identified with the composite

LieAlgddg
A

Q
// LieAlgddg

A
Υ // Repdg

TA

HomU(TA)(−,A)
//
(
Moddg

k

)op
.

The functor Q sends an A-cofibrant dg-Lie algebroid to its cofibrant replacement,
the functor Υ is the functor (3.43.4) sending g to U(TA)⊗U(g) Υg and the last functor
takes the maps from a TA-representation to A. Since the last two functors are left
Quillen functors, it follows that C∗ preserves weak equivalences between A-cofibrant
dg-Lie algebroids. We therefore obtain functors of ∞-categories

LieAlgdA
C∗ //

(
CAlgk/A

)op ker //
(
Modk

)op
.

The composition of these two functors preserves all colimits. Since the functor
ker : CAlgk/A −→ Modk detects equivalences and preserves all limits, it follows that
C∗ preserves all colimits. By the adjoint functor theorem, it follows that C∗ admits
a right adjoint D :

(
CAlgk/A

)op −→ LieAlgdA.
It remains to describe this right adjoint D, at least at the level of the underlying

A-modules. To this end, observe that the composite(
CAlgk/A

)op D // LieAlgdA
U // ModA/TA

is right adjoint to the functor C∗ ◦ F : ModA/TA −→
(
CAlgk/A

)op
. Corollary 3.143.14

provides a natural equivalence κ : C∗ ◦ F −→ A(−), so that U ◦D is equivalent to
the derived right adjoint to the left Quillen functor A(−). Because A is cofibrant
over k, the discussion preceding Corollary 3.143.14 shows that this derived functor sends
B −→ A to the A-linear dual of LA −→ LA/B . �

Remark 3.15. The functor D does not admit a straightforward point-set descrip-
tion. However, when B −→ A is a cofibration of commutative dg-algebras, its image
under D can be identified with the sub-dg-Lie algebroid TA/B := DerB(A,A) −→ TA
of B-linear derivations of A. To see this, note that there is a natural diagram of
commutative dg-k-algebras over A

B
f
//

φ
$$

C∗(TA/B) //

��

C∗(T̃A/B)

xx
A

where T̃A/B −→ TA/B is a cofibrant replacement. For any b ∈ B, its image under f
is the map

SymA

(
TA/B [1]

) TA/B 7→0
// A

φ(b)·(−)
// A.

The map f respects the differential because the derivations in TA/B are B-linear.

The composition B −→ C∗(T̃A/B) is adjoint to a map T̃A/B −→ D(B −→ A). At
the level of the underlying A-modules, this map is simply given by the composite
map

T̃A/B
∼ // TA/B // L∨A/B .

Because B −→ A was a cofibration, the second map is a weak equivalence. It
follows that the dg-Lie algebroid T̃A/B (and therefore TA/B) is weakly equivalent to
D(B −→ A).
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4. Koszul duality

The purpose of this section is to show that the adjunction from Proposition 3.13.1

C∗ : LieAlgdA
// (

CAlgk/A
)op

: Doo

is not too far from being an equivalence: when restricted to suitably finite-dimensional
dg-Lie algebroids, the functor C∗ is fully faithful.

Proposition 4.1. Let A be a cofibrant connective commutative dg-k-algebra and
let g be an A-cofibrant dg-Lie algebroid. Suppose g satisfies the following conditions:

(i) As a graded A-module, g is free on a set of generators xi.

(ii) There are finitely many xi in each single degree, and all generators have
(homological) degree ≤ −1.

Then the unit map g −→ DC∗(g) can be identified with the map of dg-A-modules

g // g∨∨

from g into its A-linear bidual.

Corollary 4.2. Let A be a cofibrant commutative dg-k-algebra which is eventually
coconnective. Then C∗ : LieAlgdA −→

(
CAlgk/A

)op
is fully faithful on all Lie

algebroids that can be modelled by A-cofibrant dg-Lie algebroids satisfying conditions
(i) and (ii) of Proposition 4.14.1.

Proof. It suffices to verify that the map g −→ g∨∨ is a quasi-isomorphism. Forgetting
about the differential, we can write g =

⊕
n<0A

⊕kn [n]. It follows that g∨ is a
cofibrant dg-A-module, so that g∨∨ is a model for the derived bidual of g. It
therefore suffices to pick a weak equivalence A −→ A to a bounded cdga and verify
that the map g ⊗A A −→ (g ⊗A A)∨∨ is a quasi-isomorphism. Unravelling the
definitions, this map can be identified with⊕

n<0A
⊕kn

[n] //
∏
n<0A

⊕kn
[n],

which is an isomorphism because A is bounded. �

To prove Proposition 4.14.1, let us start by considering the map of commutative
dg-algebras over A

c : C∗(g) // Ag = A⊕ρ∨ g[1]∨ (4.3)

which sends α : SymA

(
g[1]
)
−→ A to the restriction

(
α(1), α

∣∣g[1]
)
. Just above

Corollary 3.143.14, we have seen that the functor g 7→ Ag was a left Quillen functor,
whose derived right adjoint sent(

B −→ A
) � //

(
L∨A/B −→ L∨A = TA

)
.

Lemma 4.4. Let g be an A-cofibrant dg-Lie algebroid and consider the A-linear
map g −→ L∨A/C∗(g) adjoint to (4.34.3). This map is equivalent to the A-linear map

underlying the unit map g −→ DC∗(g).

Proof. Let F : ModA/TA � LieAlgdA : U be the free-forgetful adjunction. The
A-linear map U(g) −→ UDC∗(g) in ModA/TA corresponds by adjunction to the
map

C∗(g) // C∗(F (g))

in CAlg/A. The composition of this map with the equivalence κ : C∗(F (g)) −→ Ag

from Corollary 3.143.14 is exactly the map (4.34.3). This means that the maps

g −→ L∨A/C∗(g) and U(g) −→ UDC∗(g)
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are identified under the adjoint equivalence between UD and the functor sending
B −→ A to L∨A/B . �

To use Lemma 4.44.4, we will have to compute the relative cotangent complex of the
map C∗(g) −→ A. Unfortunately, C∗(g) has the structure of a power series algebra,
which means that C∗(g) is not cofibrant and computing its cotangent complex
requires some effort. Let us therefore introduce the following ‘global’ variant of the
Chevalley-Eilenberg complex:

Construction 4.5. Let A be a cofibrant commutative dg-k-algebra and let g be
a dg-Lie algebroid over A satisfying conditions (i) and (ii) of Proposition 4.14.1, i.e.
g ∼=

⊕
n<0A

⊕kn [n] as a graded A-module. Let

C∗poly(g) := SymA

(
g[1]∨

)
⊆ C∗(g)

denote the graded-subalgebra of C∗(g) consisting of the graded A-linear maps
SymA

(
g[1]
)
−→ A that vanish on some Sym≥nA g[1]. This graded subalgebra of C∗(g)

is closed under the Chevalley-Eilenberg differential of C∗(g), which sends a function

vanishing on Sym≥nA g[1] to a function vanishing on Sym≥n+1
A g[1].

Example 4.6. Let g = A⊕n[−1] be the trivial dg-Lie algebroid on n generators
of degree −1. Then C∗(g) is isomorphic to the ring of power-series A[[x1, ..., xn]]
and the inclusion C∗poly(g) ⊆ C∗(g) is the inclusion of the polynomial algebra

A[x1, ..., xn] ⊆ A[[x1, ..., xn]].

Warning 4.7. Note that C∗poly(−) does not preserve quasi-isomorphisms.

Lemma 4.8. Let A be a cofibrant commutative dg-k-algebra and let g be a dg-Lie
algebroid over A such that g ∼=

⊕
n<0A

⊕kn [n] as a graded A-module. Then the
following hold:

(1) C∗poly(g) is a cofibrant commutative dg-k-algebra.

(2) the map on Kähler differentials (relative to the base cdga k)

ΩC∗poly(g) ⊗C∗poly(g) A // ΩA

can be identified with the projection map ΩA ⊕ g[1]∨ −→ ΩA. Here ΩA ⊕ g[1]∨

is the mapping fiber of the dual of the anchor map, i.e. it has differential

∂
(
ddR(a), α

)
=
(
ddR(∂Aa), ∂g[1]∨(α) + ρ∨(ddRa)

)
where ρ∨ : ΩA −→ g∨ is the adjoint of the anchor map g −→ TA.

Proof. Since g is given by
⊕

i<0A
⊕ki [i] as a graded A-module, C∗poly(g) is a polyno-

mial algebra over A, generated by the free module g[1]∨. This module has generators
in degrees ≥ 0 and A is cofibrant, so that C∗poly(g) is the retract of a connective

graded polynomial ring over k. This implies that C∗poly(g) is cofibrant.

For the second assertion, note that C∗poly(g) is freely generated over A by the

graded A-module g[1]∨. It follows that

ΩC∗poly(g) ⊗C∗poly(g) A ∼= ΩA ⊕ g[1]∨

as a graded A-module. The map C∗poly(g) −→ A sends all g[1]∨ to zero, so that

the induced map on Kähler differentials is just the projection ΩA ⊕ g[1]∨ −→ ΩA.
Furthermore, the Chevalley-Eilenberg differential is given by

A 3 a 7→ ∂Aa+ ρ∨(ddRa)

g[1]∨ 3 α 7→ ∂g[1]∨α mod
(
g[1]∨

)2
.

This shows that the differential on ΩA ⊕ g[1]∨ is given as in the lemma. �
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Lemma 4.9. Let A be a nonnegatively graded commutative Q-algebra, let V be a
finite dimensional Q-vector space and let W be a degreewise finite-dimensional graded
Q-vector space, concentrated in degrees ≤ −1. Then there is a natural isomorphism
of graded-commutative A-algebras

HomQ
(
SymQV,A

)
⊗Q SymQ(W∨) // HomQ

(
SymQ(V ⊕W ), A

)
where SymQW

∨ is the graded polynomial algebra on the dual vector space of W .

Proof. Observe that there is an isomorphism of graded cocommutative coalgebras
SymQ(V ⊕W ) ∼= SymQV ⊗QSymQW . There is a natural map of graded-commutative
algebras

HomQ
(
SymQV,A

)
⊗Q HomQ(SymQW,Q)

µ
// HomQ

(
SymQV ⊗Q SymQW,A

)
.

sending two maps α : SymQV −→ A and β : SymQW −→ Q to α ⊗ β. Using that
SymQW is free on generators of degrees ≤ −1, with finitely many generators in each
degree, one can identify SymQ(W∨) ' HomQ(SymQW,Q). Using this, it follows
that µ is an isomorphism. �

Lemma 4.10. Let A be a cofibrant commutative dg-k-algebra and let g be a dg-Lie
algebroid over A such that g ∼=

⊕
n<0A

⊕kn [n] as a graded A-module. Then the map
C∗poly(g) −→ C∗(g) induces an equivalence on cotangent complexes over k

LC∗poly(g) ⊗C∗poly(g) A
' // LC∗(g) ⊗C∗(g) A.

Proof. Consider the trivial cofibration, followed by a fibration

0
∼ // h = F

(
g[0,−1]

)
// // g

where h is the free dg-Lie algebroid on the map g[0,−1] −→ g −→ TA from the
(contractible) path space of g. Let V be the free graded Q-vector space spanned by
the generators xi of g, so that g = A ⊗Q V . As a graded Lie algebroid, h is then
freely generated by the graded Q-vector space V [0,−1]. Consequently, the map
h −→ g is given without differentials by the A-linear extension of a map from the
free Lie algebra

h = A⊗ Lie
(
V [0,−1]

)
// A⊗ V = g

which sends V to the generators of g and V [−1] to zero. Without differentials, this
map has a splitting, induced by the inclusion

V // V [0,−1] // Lie
(
V [0,−1]

)
where the first map (which does not respect differentials) includes V into its path
object and the second map is the inclusion of the generators in the free Lie algebra.
Using this splitting, we can identify h −→ g with

h = A⊗ (V ⊕W )
(id,0)

// A⊗ V = g.

Here W is a graded Q-vector space isomorphic to Lie
(
V [0,−1]

)
/V , which is degree-

wise finite dimensional and concentrated in degrees ≤ −2. Indeed, V is degreewise
finite dimensional and concentrated in degrees ≤ −1, so that Lie

(
V [0,−1]

)
has these

properties as well. The map V −→ Lie
(
V [0,−1]

)
is an isomorphism in degree −1,

since the elements in V [−1] and brackets of elements in V [0,−1] are all of degree
≤ −2.
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Let us now consider the commutative diagram of cdgas associated to h −→ g

C∗poly(g)

��

// C∗poly(h)

��

// A

��

C∗(g) // C∗(h) ∼
// A.

(4.11)

The right bottom map is a weak equivalence since h is cofibrant and weakly con-
tractible. The map C∗poly(g) −→ C∗poly(h) can be identified with a map of polynomial
algebras

A⊗Q SymQ
(
V [1]∨

)
// A⊗Q SymQ

(
(V ⊕W )[1]∨).

It follows that C∗poly(h) is freely generated over C∗poly(g) by W [1]∨, which is
degreewise finite dimensional and concentrated in degrees ≥ 1. In particular,
C∗poly(g) −→ C∗poly(h) is a cofibration of cdgas.

On the other hand, the map C∗(g) −→ C∗(h) is given without differentials by

HomQ

(
SymQV [1], A

)
// HomQ

(
SymQ(V [1]⊕W [1]), A

)
.

It now follows from Lemma 4.94.9 that the left square in (4.114.11) is a (homotopy) pushout
square of cdgas. Its image under L(−) ⊗(−) A

LC∗poly(g) ⊗C∗poly(g) A

��

// LC∗poly(h) ⊗C∗poly(h) A

��

LC∗(g) ⊗C∗(g) A // LC∗(h) ⊗C∗(h) A

(4.12)

is a homotopy pushout square as well. Since C∗(h) −→ A is a weak equivalence,
the map LC∗(h) −→ LA is a weak equivalence. On the other hand, the map
LC∗poly(h) ⊗C∗poly(h) A −→ LA is identified with the projection map

ΩA ⊕ h[1]∨ // ΩA

by Lemma 4.84.8. The kernel of this map is contractible, since h is a cofibrant
contractible dg-A-module. It follows that the right vertical map in Diagram (4.124.12)
is an equivalence, so that the left map is an equivalence as well. �

Proof (of Proposition 4.14.1). By Lemma 4.44.4, it suffices to show that the map g −→
L∨A/C∗ is adjoint to a weak equivalence LA/C∗(g) −→ g∨. This map fits into a

sequence of maps

LA/C∗poly(g)
// LA/C∗(g)

// g∨

classifying the composite map of commutative dg-algebras over A

C∗poly(g) // C∗(g)
c // Ag = A⊕ρ∨ g[1]∨ (4.13)

where c is as in (4.34.3). The map LA/C∗poly(g) −→ LA/C∗(g) is an equivalence by

Lemma 4.104.10, so it suffices to show that LA/C∗poly(g) −→ g∨ is an equivalence. This

map can be computed explicitly: the map (4.134.13) is simply the quotient of C∗poly(g)

by the augmentation ideal (g[1]∨)2. Unwinding the definitions, e.g. using the
pullback square (3.133.13), one finds the following description of the classifying map
LA/C∗poly(g) −→ g∨: it is the canonical map from the mapping cone of

ΩC∗poly(g) ⊗C∗poly(g) A ∼= ΩA ⊕ g[1]∨ // ΩA

to g∨. This map is a weak equivalence, which concludes the proof. �
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5. Formal moduli problems

We will now use the results of Section 44 to establish an equivalence between Lie
algebroids and formal moduli problems (Definition 1.21.2):

Theorem 5.1. Let A be a cofibrant connective commutative dg-k-algebra. Then
there is an adjoint pair of functors

MC: LieAlgdA
//
FMPA : TA/oo

which is an equivalence whenever A is eventually coconnective.

Theorem 5.15.1 follows formally from Corollary 4.24.2, by means of a general procedure
due to Lurie [1717] that we will briefly recall.

5.1. Generators. Categories of chain complexes or spectra endowed with a certain
algebraic structure often admit a presentation in terms of generators and relations.

Definition 5.2. Let Ξ be a locally presentable ∞-category equipped with a collec-
tion of right adjoint functors

eα : Ξ // ModS := Sp

to the ∞-category of spectra (the reader may replace ModS by the ∞-category
ModZ of chain complexes in everything that follows, by Example 5.65.6). The left
adjoint to eα sends the map S[n] −→ 0 in ModS to a map in Ξ that we will denote by
Kα,n −→ ∅. We will say that an object X ∈ Ξ is good if it admits a finite filtration

∅ = X(0) // X(1) // . . . // X(n)

where for each i, there is an α and a n ≤ −2, together with a pushout square

Kα,n
//

��

X(i−1)

��

∅ // X(i).

(5.3)

Let Ξgood ⊆ Ξ be the full subcategory on the good objects; it is the smallest
subcategory of Ξ which contains ∅ and is closed under pushouts along the maps
Kα,n −→ ∅ with n ≤ −2.

Proposition 5.4 ([1717, Theorem 1.3.12]). Let (Ξ, eα) be as in Definition 5.25.2. Suppose
that each eα preserves small sifted homotopy colimits and that a map f in Ξ is an
equivalence if and only if each eα(f) is an equivalence of spectra. Then the right
adjoint functor

Ψ: Ξ // PSh(Ξgood); X � // MapΞ(−, X)

is fully faithful, with essential image consisting of those (space-valued) presheaves F
satisfying the following two conditions:

(a) F (∅) is contractible.

(b) For any α and n ≤ −2, F sends a pushout square of the form (5.35.3) to a
pullback square of spaces.

This is exactly [1717, Theorem 1.3.12], replacing the category Υsm from loc. cit. by
the opposite of Ξgood.

Example 5.5. Let Ξ be a compactly generated stable ∞-category. The collection
of mapping spectrum functors HomΞ(K,−) : Ξ −→ ModS, for all compact objects
K, satisfies the condition of Proposition 5.45.4. The good objects are exactly the
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compact objects and a functor F : Ξω,op −→ S satisfies conditions (a) and (b) if and
only if it is left exact. Proposition 5.45.4 then reproduces the equivalence

Ξ ' Ind(Ξω).

Example 5.6. Let A be a connective commutative dg-algebra and let ModA be
the ∞-category of A-modules. The single functor e : ModA −→ ModS, forgetting
the A-module structure, satisfies the conditions of Proposition 5.45.4. In this case, the
good A-modules can be presented by the dg-A-modules whose underlying graded
A-module is free on finitely many generators xi of degree < 0.

There is an equivalence of ∞-categories

Modgood,op
A

// Modf.p.,≥0
A ; E // E[1]∨

to the ∞-category of finitely presented connective A-modules, i.e. dg-A-modules
generated by finitely many generators of degree ≥ 0. Combining this equivalence
with Proposition 5.45.4, one finds that ModA is equivalent to the∞-category of functors

F : Modf.p.,≥0
A

// S

that send 0 to a contractible space and preserve pullbacks along the maps 0 −→ A[n]
with n ≥ 1.

5.2. Proof of Theorem 5.15.1. Let A be a cofibrant commutative dg-k-algebra. By
Proposition 2.42.4 and Example 5.65.6, the composite forgetful functor

LieAlgdA
U // ModA/TA

ker // ModA
e // ModS = Sp

preserves small limits and sifted colimits, and detects equivalences. The correspond-
ing notion of a good Lie algebroid can be described in terms of the (projective)
model structure on dg-Lie algebroids as follows: let us say that a dg-Lie algebroid g
is very good if it admits a finite sequence of cofibrations

0 = g(0) // · · · // g(n) = g,

each of which is the pushout of a (generating) cofibration with ni ≤ −2

Free
(
∂φ : A[ni] −→ TA

)
// Free

(
φ : A[ni, ni + 1] −→ TA

)
. (5.7)

Here φ is a map from the cone of A[ni] to TA, which is determined uniquely by a
degree (ni + 1) element of TA. Then the good Lie algebroids can be presented by
the very good dg-Lie algebroids over A.

Remark 5.8. Good Lie algebroids may have nontrivial anchor maps, even though
the Lie algebroids in (5.75.7) have null-homotopic anchor maps.

Lemma 5.9. Let g be a very good dg-Lie algebroid over A. Then the following hold:

(1) g has a cofibrant underlying dg-A-module.

(2) Without the differential, g is freely generated by a negatively graded finite-
dimensional vector space over TA.

(3) g is isomorphic as a graded A-module to
⊕

n<0A
⊕kn [n] for some sequence of

kn ∈ N≥0.

Proof. Assertion (1) is obvious and (3) follows immediately from (2). For (2), note
that each pushout along a map (5.75.7) freely adds a single generator of degree < 0 at
the level of graded Lie algebroids. �
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Proof (of Theorem 5.15.1). Let us denote the ∞-category of presheaves satisfying
conditions (a) and (b) of Proposition 5.45.4 by

E ⊆ PSh
(
LieAlgdgood

A

)
.

We then have an equivalence LieAlgdA ' E, so that it suffices to produce the required
adjunction (equivalence) between E and the ∞-category of formal moduli problems.
To this end, recall that the good Lie algebroids form the smallest subcategory of
LieAlgdA that contains 0 and is closed under pushouts against the maps

F
(
0: A[n] −→ TA

)
// 0 n ≤ −2. (5.10)

The functor C∗ preserves colimits (Proposition 3.13.1) and sends the above maps to
the maps (id, 0) : A −→ A⊕A[−1− n], for n ≤ −2. It follows that C∗ restricts to a
functor

C∗ : LieAlgdgood
A

//

(
CAlgsm

k /A
)op

. (5.11)

The restriction of a formal moduli problem along C∗ is a presheaf contained in E.
We therefore obtain a right adjoint functor

TA/ : FMPA
(C∗)∗

// E
' // LieAlgdA.

If A is eventually coconnective, Corollary 4.24.2 and Lemma 5.95.9 show that (5.115.11) is
fully faithful. The essential image of C∗ contains A and is closed under pullbacks
along the maps (id, 0) : A −→ A⊕A[n] for n ≥ 1. Indeed, such pullbacks can dually
be computed as pushouts along the images of the maps (5.105.10). The small extension
of A form the smallest subcategory of CAlgk/A with these two closure properties,
so (5.115.11) is essentially surjective as well. This implies that the functor TA/ is an
equivalence. �

Example 5.12. Let f : B −→ A be a map of connective commutative k-algebras
and consider the formal moduli problem

Spec(B)∧ : CAlgsm
k /A // S; Ã

� // Map(B, Ã)×Map(B,A) {f}.

Unwinding the definitions, one sees that the associated Lie algebroid is given by
D(B), which can be identified with the Lie algebroid TA/B −→ TA of (derived)
B-linear derivations of A by Remark 3.153.15.

Remark 5.13. Suppose that A is eventually coconnective, so that CAlgsm
k /A is

equivalent to the ∞-category of good Lie algebroids over A. If g is a Lie algebroid
over A, then the formal moduli problem MCg is given (up to a natural equivalence)
by

MCg(B) = MapLieAlgdA

(
D(B), g

)
.

By Remark 5.125.12, one can think of this as the space of flat g-valued connections on
the fiberwise tangent bundle of A over B.

6. Representations and quasi-coherent sheaves

In the previous section, we have seen that there is an equivalence between formal
moduli problems over A and Lie algebroids over A. Geometrically, one can think of
a formal moduli problem as a map of stacks x : Spec(A) −→ X that realizes X as an
infinitesimal thickening of Spec(A). Any such stack X gives rise to an ∞-category
of quasi-coherent sheaves on X in the usual way (Definition 6.136.13): a quasi-coherent
sheaf F is given by a collection of B-modules Fy for every B ∈ CAlgsm

k /A and every
y ∈ X(B), together with a coherent family of equivalences

Fα(y) ' B′ ⊗B Fy
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for every α : B −→ B′. In particular, a quasi-coherent sheaf F on X determines an
A-module Fx, by restricting to the canonical point x ∈ X(A). We will see that Fx
carries a representation of TA/X . In fact, we will prove the following:

Theorem 6.1. Let A be eventually coconnective and let X be a formal moduli
problem on A with associated Lie algebroid TA/X . Then there is a fully faithful,
symmetric monoidal left adjoint functor

ΨX : QC(X) // RepTA/X

where ΨX(F ) has underlying A-module given by the restriction Fx to the canonical
basepoint x ∈ X(A). Furthermore, the functor ΨX induces an equivalence

QC(X)≥0 ' Rep≥0
TA/X

between the connective quasi-coherent sheaves on X and the TA/X-representations
whose underlying A-module is connective.

Our proof closely follows the discussion in [1717, Section 2.4]. We will begin by
considering representations of good Lie algebroids in Section 6.16.1. Theorem 6.16.1 then
follows from a formal argument described in Section 6.36.3.

6.1. Representations of good Lie algebroids. Recall from Remark 3.33.3 that
there is a lax monoidal functor sending a g-representation E to its Chevalley-
Eilenberg complex C∗(g, E). This functor is part of an adjoint pair

K(g)⊗C∗(g) (−) : Moddg
C∗(g)

//
Repdg

g : C∗(g,−)oo (6.2)

were K(g) is the Koszul complex of g (see Remark 3.113.11).
When g is A-cofibrant, this adjoint pair is a Quillen pair between the projective

model structure on dg-C∗(g)-modules and the model structure on g-representations.
We let Φg : ModC∗(g) −→ Repg denote the left derived functor between∞-categories.
One can think of Φg as the functor F 7→ A ⊗C∗(g) F , since K(g) is equivalent to
the g-representation A.

Lemma 6.3. Suppose that g ∈ LieAlgdA is compact. Then Φg : ModC∗(g) −→ Repg

is fully faithful.

Proof. Let C be the class of objects in ModC∗(g) for which the derived unit map is an
equivalence. Then C is closed under finite colimits and retracts and contains C∗(g)
because Φg(C∗(g)) ' A. It follows that the unit map is an equivalence for all compact
C∗(g)-modules. Since ModC∗(g) ' Ind(ModωC∗(g)) is the ind-completion of the

category of compact C∗(g)-modules, it suffices to show that the right adjoint C∗(g,−)
preserves filtered colimits. Equivalently, it suffices to verify that Φg(C∗(g)) ' A
is a compact object of Repg. By Remark 3.113.11, A fits into a cofiber sequence of
U(g)-modules

Lg
// U(g) // A.

It suffices to show that Lg is compact. This follows from the fact that the cotangent
complex functor preserves compact objects, since its right adjoint (taking square zero
extensions) preserves filtered colimits, which are computed at the level of A-modules
(Proposition 2.42.4). �

Lemma 6.4. Suppose that g ∈ LieAlgdA admits a finite filtration

0 = g(0) // . . . // g(n) = g
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with the following property: for each i, there is a pushout square of Lie algebroids

F (V ) //

��

g(i−1)

��

0 // g(i)

where F (V ) is the free dg-Lie algebroid on 0: V −→ TA, with V a cofibrant dg-A-
module of the form V =

⊕
n≤−2A

⊕kn [n], equipped with some differential.
Let E be a g-representation whose underlying A-module is connective. Then there

exists a map
⊕

αA −→ E in the ∞-category Repg which induces a surjection on
π0.

Proof. Pick representatives eα ∈ E for the generators of π0(E) and consider the
associated map of g-representations

⊕
α U(g) −→ E. This map is clearly surjective

on π0, so it suffices to prove that it factors (up to homotopy) as⊕
α U(g) //

⊕
αA

// E.

Using the cofiber sequence Lg −→ U(g) −→ A, we therefore have to provide a
null-homotopy of each composite map

Lg
// U(g)

eα // E.

By the assumption on g, the cotangent complex Lg admits a filtration by U(g)-
modules

0 = L
(0)
g

// . . . // L
(n)
g = Lg

where each L
(i−1)
g −→ L

(i)
g has cofiber of the form U(g)⊗A V ′, with V ′ a cofibrant

dg-A-module of the form V ′ =
⊕

n≤−1A
⊕kn [n]. Since all maps from such V ′ to a

connective dg-A-module are null-homotopic, one obtains by induction that any map
Lg −→ E to a connective g-representation is null-homotopic, which concludes the
proof. �

Corollary 6.5. Suppose that A is eventually coconnective and let g ∈ LieAlgdA be
good. Then Φg : ModC∗(g) −→ Repg is fully faithful and induces an equivalence

Φg : Mod≥0
C∗(g)

// Rep≥0
g

between the full subcategories consisting of connective C∗(g)-modules and represen-
tations whose underlying A-module is connective.

Proof. Since g is good, it is compact in LieAlgdA, so that Φg is fully faithful by

Lemma 6.36.3. The subcategory Mod≥0
C∗(g) ⊆ ModC∗(g) is the smallest subcategory of

ModC∗(g) which is closed under colimits and extensions and which contains C∗(g).
As a consequence, the essential image

C := Φg

(
Mod≥0

C∗(g)

)
⊆ Repg

under Φg is the smallest subcategory of Repg which is closed under colimits and
extensions and which contains A. Clearly C is contained in Repg, so it suffices to
prove the reverse inclusion.

To this end, let E be a left U(g)-module whose underlying dg-A-module is
connective. We will inductively construct a sequence of left U(g)-modules 0 =
E(−1) −→ E(0) −→ · · · −→ E such that each E(n) ∈ C and such that each map
E(n) −→ E induces an isomorphism on homotopy groups in degrees < n and a
surjection on πn. It follows that the map colimE(n) −→ E is a weak equivalence,
so that E ∈ C.
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To construct this sequence, suppose we have constructed E(n−1) and let F be
the fiber of the map E(n−1) −→ E. Then F is a left U(g)-module whose underlying
dg-A-module is (n− 2)-connective. Since g is good, a shift of Lemma 6.46.4 shows that
there exists a map

⊕
αA[n − 2] −→ F which induces a surjection on πn−2. Now

let E(n) be the cofiber of the map
⊕

αA[n− 2] −→ F −→ E(n−1). This cofiber is

contained in C and the five lemma shows that E(n) −→ E induces an isomorphism
on homotopy groups in degrees < n and a surjection on πn. �

6.2. Naturality. Let us now address the functoriality of Φg in the dg-Lie algebroid
g. This is somewhat delicate, because the Quillen adjunction

K(g)⊗C∗(g) (−) : Moddg
C∗(g)

//
Repdg

g : C∗(g,−)oo

does not strictly intertwine restriction of g-representations with induction of C∗(g)-
modules. However, this does become true at the level of ∞-categories. To see this,
let us make the following definitions (following the discussion in [1717, Section 2.4]):

Construction 6.6. Let Moddg,⊗ be the category in which

• an object is a tuple (B,M1, . . . ,Mm), where B is a cdga and each Mi is a
dg-B-module.

• a morphism (B,M1, . . . ,Mm) −→ (C,N1, . . . , Nn) is a map of finite pointed
sets α :

〈
m
〉
−→

〈
n
〉
, a map of cdgas B −→ C and B-multilinear maps⊗α(i)=j

Mi −→ Nj .

Similarly, let Repdg,⊗ be the category in which

• an object is a tuple (g, E1, . . . , Em), where g is an A-cofibrant dg-Lie algebroid
and each Ei is a g-representation.

• a morphism (g, E1, . . . , Em) −→ (h, F1, . . . , Fn) is a map of finite pointed sets
α :
〈
m
〉
−→

〈
n
〉
, a map of dg-Lie algebroids h −→ g and maps of h-representations⊗α(i)=j

A Ei −→ Fj .

These categories fit into a commuting square

Repdg,⊗

��

C∗ // Moddg,⊗

��(
LieAlgddg,A−cof

A

)op

× Fin∗
C∗

// CAlgdg
k × Fin∗

(6.7)

where Fin∗ is the category of finite pointed sets. The vertical functors are the
obvious projections, which are both cocartesian fibrations. The top functor sends
(g, E1, . . . , Em) to

(
C∗(g), C∗(g, E1), . . . , C∗(g, Em)

)
.

Lemma 6.8. After inverting the weak equivalences on the left and right of (6.76.7),
one obtains a commuting square of ∞-categories

Rep⊗
C∗ //

��

Mod⊗

��(
LieAlgdA

)op × Fin∗
C∗
// CAlgk × Fin∗.

in which the vertical functors are cocartesian fibrations.

Proof. All functors in (6.76.7) preserve weak equivalences, so that they descend to
functors between localizations. It suffices to verify that the vertical projections
remain cocartesian fibrations after inverting the quasi-isomorphisms. To see this, let



24 JOOST NUITEN

C ⊆ Repdg,⊗ be the full subcategory on (g, E1, . . . , Em) where each Ei is cofibrant as

a dg-A-module. The inclusion C ⊆ Repdg,⊗ induces an equivalence on localizations,
with inverse provided by a cofibrant replacement functor. The projection

C //

(
LieAlgddg,A−cof

A

)op

× Fin∗

is a cocartesian fibration. For any map α :
〈
m
〉
−→

〈
n
〉

and any f : h −→ g, the
induced functor between fibers is given by(

Repdg,A−cof
g

)×m
//

(
Repdg,A−cof

h

)×n
; (Ej)j≤m

� //

(⊗
α(j)=i f

∗Ej

)
i≤m

.

This functor preserves all weak equivalences and induces an equivalence of ∞-
categories whenever α is a bijection and f is a weak equivalence. It follows from
[1111, Proposition 2.1.4] that the induced functor of ∞-categories

Rep⊗ // LieAlgdop
A × Fin∗

is a cocartesian fibration. A similar argument shows that Mod⊗ −→ CAlgk × Fin∗
is a cocartesian fibration. �

Remark 6.9. Fix a map α :
〈
m
〉
−→

〈
n
〉
, a map f : h −→ g and a collection

E1, . . . , Em of g-representations that are cofibrant as dg-A-modules. By [1111, Propo-
sition 2.1.4], the cocartesian lift of (f, α) in Rep⊗ with domain (g, E1, . . . , Em) is
the image of

(g, E1, . . . , Em) //

(
h,
⊗

α(j)=1 f
∗Ej , . . . ,

⊗
α(j)=n f

∗Ej

)
in the ∞-categorical localization of Repdg,⊗

g .

Lemma 6.10. Let Mod⊗C∗ −→
(
LieAlgdA

)
op × Fin∗ denote the base change of the

projection Mod⊗ −→ CAlgk × Fin∗ along the functor C∗, so that there is a functor
of cocartesian fibrations

Rep⊗
C∗ //

((

Mod⊗C∗

vv(
LieAlgdA

)op × Fin∗.

This functor admits a left adjoint Φ, which preserves cocartesian edges.

In other words, the functors Φg from Section 6.16.1 determine a natural (symmetric
monoidal) transformation between diagrams of symmetric monoidal ∞-categories.

Proof. For each
〈
m
〉

and each dg-Lie algebroid g, the functor between the fibers

C∗ :
(
Repg

)×m // Mod×mC∗(g)

admits a left adjoint Φg: this is just the m-fold product of the left derived functor of
the Quillen pair (6.26.2). By Remark 6.96.9 and [1919, Proposition 7.3.2.11], the existence
of the global left adjoint Φ: Mod⊗C∗ −→ Rep⊗, as well as the fact that it preserves
cocartesian edges, follows once we verify the following: for any map of dg-Lie
algebroids f : h −→ g and any collection of C∗(g)-modules Mi, the natural map

Φh

(
C∗(h)⊗C∗(g) M1 ⊗C∗(g) · · · ⊗C∗(g) Mm

)
// Φg(M1)⊗A · · · ⊗A Φg(Mm)

is an equivalence. Since both functors preserve colimits of modules in each variable,
we can reduce to the case where each Mi is equivalent to C∗(g). In that case, the
map can be identified with a map

K(h) // K(g)⊗A · · · ⊗A K(g)
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between Koszul complexes. Since both K(g) and K(h) were resolutions of the
canonical representation A, the result follows. �

6.3. Quasicoherent sheaves. The left adjoint Φ of Lemma 6.106.10 corresponds under
straightening to a natural transformation

LieAlgdop
A

ModC∗

))

Rep

44
PrL

sym.mon. = CAlg(PrL)Φ

��

between diagrams of presentable (closed) symmetric monoidal ∞-categories, with
symmetric monoidal left adjoint functors between them. This natural transformation
is given pointwise by the left derived functor Φg of (6.26.2).

We can precompose with the duality functor D (3.23.2) and obtain a natural
transformation of functors

CAlgsm
k /A

��

//

��

CAlgk

Mod

��

Fun(CAlgsm
k /A, S)op

D!

// LieAlgdop
A Rep

// PrL
sym.mon.

Ψow (6.11)

Here D! is the unique limit-preserving functor which restricts to D on the corepre-
sentable functors. For each B in CAlgsm

k /A, the functor ΨB is the composite

ΨB : ModB // ModC∗D(B)

ΦD(B)
// RepD(B)

(6.12)

where the first functor arises from the unit map B −→ C∗D(B).

Definition 6.13. The presentable, symmetric monoidal ∞-category QC(X) of
quasi-coherent sheaves on a functor X : CAlgsm

k /A −→ S is the value on X of the
right Kan extension

CAlgsm
k /A

Mod //

��

PrL
sym.mon.

Fun
(
CAlgsm

k /A, S
)op

QC

66

This right Kan extension exists by [1616, Lemma 5.1.5.5], since PrL
sym.mon. has all

small limits [1919, Proposition 4.8.1.15].

Remark 6.14. The quasi-coherent sheaves of Definition 6.136.13 are closely related
to the quasi-coherent sheaves on a derived (pre)stack CAlgk −→ S, as usually
considered in derived algebraic geometry. Indeed, any functor X : CAlgsm

k /A −→ S

determines a derived prestack f!X : CAlgk −→ S, by left Kan extension along the
forgetful functor

f : CAlgsm
k /A // CAlgk.

The ∞-category QC(X) is then equivalent to the ∞-category of quasi-coherent
sheaves on f!X in the usual sense.

By the universal property of QC, we obtain a natural transformation of pre-
sentable symmetric monoidal ∞-categories ΨX : QC(X) −→ RepD!(X). When X

is corepresentable, this is simply the functor Ψ from (6.116.11). If A is eventually
coconnective and X is a formal moduli problem on A, then D!(X) is naturally



26 JOOST NUITEN

equivalent to TA/X , by Remark 5.135.13. We thus obtain a natural symmetric monoidal
functor

ΨX : QC(X) // RepTA/X (6.15)

for any formal moduli problem X. By naturality, the composition

QC(X)
ΨX // // RepTA/X

// Rep0 = ModA

is naturally equivalent to the functor x∗ : QC(X) −→ ModA that restricts F to the
basepoint x ∈ X(A).

Proof (of Theorem 6.16.1). We have to prove that for any formal moduli problem X,
ΨX (6.156.15) is fully faithful and restricts to an equivalence between QC≥0(X) and

Rep≥0
TA/X

. When X is representable by an object B ∈ CAlgsm
k /A, this functor is

given by the composite (6.126.12). The first functor is an equivalence by Theorem 5.15.1,
so that the result follows from Corollary 6.56.5.

The functor QC sends sifted colimits in Fun
(
CAlgsm/A, S

)
to limits of symmetric

monoidal∞-categories by construction. Lemma 2.132.13 implies that the same assertion
holds for X 7→ RepD!(X). Every formal moduli problem is a sifted colimit of
representable functors, since every Lie algebroid is a sifted colimit of good Lie
algebroids. It follows that ΨX is fully faithful, being a limit of fully faithful functors.

It remains to identify the essential image of QC(X)≥0. Recall that a quasi-coherent
sheaf F is connective if and only if f∗F ∈ ModB is connective for any f ∈ X(B).
In terms of its image ΨX(E), this means that for any map f : D(B) −→ TA/X ,

the restricted representation f !ΨX(E) is the image of a connective B-module. By
Corollary 6.56.5, this is equivalent to ΨX(E) being a connective TA/X -representation.

�

Corollary 6.16. Let A be eventually coconnective and let X be a formal moduli
problem such that TA/X is connective. Then there is an equivalence

ΨX : QC(X) // RepTA/X .

Proof. Since TA/X is connective, its enveloping algebra U(TA/X) is connective as
well. It follows that TA-representations carry a right complete t-structure, where
Rep≥0

TA/X
consists of g-representations whose underlying chain complex is connective

[1919, Example 2.2.1.3]. Similarly, QC(X) carries a right complete t-structure where
F ∈ QC(X)≥0 if and only if f∗F is a connective chain complex for all f ∈ X(B).

The functor ΨX fits into a sequence of locally presentable ∞-categories and left
adjoint functors between them

QC(X)≥0

Ψ
≥0
X

��

// QC(X)≥−1 //

Ψ
≥−1
X

��

. . . // QC(X)

ΨX

��

Rep≥0
TA/X

// Rep≥−1
TA/X

// . . . // RepTA/X .

Since QC(X) and RepTA/X are right complete, the horizontal sequences are colimit

diagrams, so that the result follows from Theorem 6.16.1. �

6.4. Deformations of algebras. Theorem 6.16.1 can be used to study the deforma-
tion theory of connective (commutative) A-algebras. Suppose that R is a cofibrant

commutative dg-algebra in Moddg,≥0
A , so that R determines an object in the ∞-

category CAlg(Mod≥0
A ). Consider the functor

DefR : FMPop
A

// Ĉat∞; X � // CAlg
(
QC(X)

)
×CAlg(ModA) {R}
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sending each formal moduli problem X to the (locally small) ∞-category of com-
mutative algebras in QC(X), equipped with an equivalence between R and their
restriction to the canonical basepoint x ∈ X(A). One can think of a point in
DefR(X) as a deformation of the commutative algebra along the map of stacks
Spec(A) −→ X.

Note that every such deformation is necessarily connective, since R itself is
connective: indeed, Theorem 6.16.1 implies that E ∈ QC(X) is connective if and only
if its restriction to Spec(A) is connective, the latter being the A-module underlying
ΨX(E). It then follows from Theorem 5.15.1 and Theorem 6.16.1 that DefR can be
identified with the functor

ActR : LieAlgdop
A

// Ĉat∞; g
� // CAlg(Repg)×CAlg(ModA) {R}

sending each Lie algebroid g to the category of commutative algebras in Repg whose
underlying commutative A-algebra is equivalent to R. In light of Example 2.92.9, one
can think of ActR(g) as the category of actions of g on R by derivations.

It follows from Lemma 2.132.13 that ActR, and therefore DefR, preserves all limits.
In particular, the restriction of DefR along the Yoneda embedding gives rise to a
formal moduli problem

DefR : CAlgsm
k /A // S; B � // CAlg(ModB)×CAlg(ModA) {R}.

This takes values in (small) spaces because DefR(A⊕A[n]) ' ΩDefR(A⊕A[n+ 1])
and all ∞-categories involved are locally small. In particular, DefR is classified by
a certain Lie algebroid h.

Recall from Example 2.32.3 that associated to the commutative dg-algebra R in

Moddg
A is a dg-Lie algebroid AtE∞(R) of compatible derivations of A and R (here E∞

denotes the commutative operad). Since R is a cofibrant commutative dg-algebra,
AtE∞(R) is a fibrant dg-Lie algebroid. There is an obvious representation of AtE∞(R)
on R by means of derivations, which is classified by a map

φ : AtE∞(R) // h.

We have the following (folklore) result, cf. [3131] (see also [1010]):

Proposition 6.17. The map φ is an equivalence for any cofibrant connective dg-
A-algebra R. In other words, AtE∞(R) classifies the formal moduli problem DefR.

Proof. Let sn be the free Lie algebroid on the map 0: A[n] −→ TA, with natural
maps i : 0 −→ sn and r : sn −→ 0. It suffices to verify that the maps φ∗ in the
following commuting diagram are bijections for all n:

π1Map
(
sn,AtE∞(R)

) φ∗ //

∼=
��

π1Map
(
sn, h

) ∼= //

∼=
��

π1ActR(sn) =: M1

ψ ∼=
��

π0Map(sn+1,AtE∞(R))
φ∗

// π0Map
(
sn+1, h

)
∼=
// π0ActR(sn+1) =: M0.

The dg-Lie algebroid AtE∞(R) is fibrant and the kernel of its anchor map is the Lie
algebra of A-linear derivations of R. The abelian group π1Map

(
sn,AtE∞(R)

)
can

therefore be identified with πn+1DerA(R,R).
On the other hand, M1 can also be identified with πn+1DerA(R,R). To see this,

let r!R ∈ CAlg(Repsn) be the trivial representation of sn on R. We can identify M1

with the set of homotopy classes of maps α : r!R −→ r!R such that the restriction
i!(α) is the identity map in CAlg(ModA). Using that the restriction functors r! and
i! have a right adjoints r! and i!, such maps can be identified with sections of

r!r
!(R)

r!ηr
!

// r!i!i
!r!(R) = R
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in the ∞-category CAlg(ModA). By [2424, Theorem 7.11], we can present the ∞-
categories CAlg(ModA) and CAlg(Repsn) by the model categories of commutative

algebras in Moddg
A and Repdg

sn . Using this, the right adjoint r! can be computed at
the chain level as

r!(r
!R) ' RHomU(sn)(A, r

!R) ' C∗
(
sn, r

!R
)
.

In fact, since sn is a free Lie algebroid, the discussion of Section 3.23.2 shows that
restriction along A[n] −→ sn induces a weak equivalence of commutative dg-A-
algebras

C∗(sn, r
!R)

∼ // R⊕HomA

(
A[n+ 1], r!R

) ∼= R⊕R[−n− 1]

to the square zero extension of R by a shifted copy of itself. We conclude that M1

is isomorphic to the set of homotopy classes of sections in CAlg(ModA) of

R⊕R[−n− 1] // R.

The set of such sections is indeed isomorphic to πn+1DerA(R,R), as asserted.
Consider an element v ∈ DerA(R,R) ∼= M1, corresponding to a map v : r!R −→

r!R in CAlg(Repsn). Unwinding the definitions, the image ψ(v) ∈M0 is given by
(the equivalence class of) the sn+1-action on R where the generator of sn+1 acts by v.
This representation is exactly the image of the map v : A[n+ 1] −→ sn+1 −→ At(R)
under the map φ∗. We conclude that φ∗ is indeed an isomorphism. �

Remark 6.18. The exact same proof shows that for any coloured simplicial operad
P and a cofibrant P-algebra R, the formal moduli problem DefR of deformations of
R is classified by the Atiyah Lie algebroid AtP(R) of Example 2.22.2. For example,
this provides an explicit dg-Lie algebroid classifying the deformations of modules,
associative algebras, or diagrams thereof.

7. Representations and pro-coherent sheaves

Let X be a formal moduli problem on A with associated Lie algebroid TA/X . We
have seen in the previous section that the ∞-category of TA/X -representations is an
extension of the ∞-category of quasi-coherent sheaves on X. The purpose of this
section is to provide a geometric description of this extension when A is coherent
(Definition 7.27.2), in terms of pro-coherent sheaves on X (Definition 7.107.10).

Theorem 7.1. Suppose that A is coherent and eventually coconnective and let
X : CAlgsm

k /A −→ S be a formal moduli problem. Then there is a natural fully
faithful left adjoint functor

RepTA/X
� � // QC!(X)

from the ∞-category of (quasi-coherent) TA/X-representations to the ∞-category of
pro-coherent sheaves on X. Its essential image consists of pro-coherent sheaves on
X whose restriction to A is quasi-coherent.

In [55, Vol. II, Ch. 8, §4], the ∞-category of representations of a Lie algebroid is
defined to be the ∞-category IndCoh(X) of ind-coherent sheaves on the associated
formal moduli problem. In the setting of loc. cit., this ∞-category is equivalent to
QC!(X) by Serre duality (see Remark 7.117.11).

Section 7.17.1 discusses the definition of the ∞-category of pro-coherent sheaves on
a formal moduli problem. In Section 7.27.2, we relate this to the ∞-category of Lie
algebroid representations and prove Theorem 7.17.1.



KOSZUL DUALITY FOR LIE ALGEBROIDS 29

7.1. Pro-coherent sheaves on formal moduli problems. Let us start by re-
calling the following definitions:

Definition 7.2 ([1919, Definition 7.2.4.16]). Let A be a connective commutative
dg-algebra over Q. We will say that A is coherent if π0(A) is a coherent ring and
each πn(A) is a finitely presented π0(A)-module.

Definition 7.3 ([44, Definition 2.2.2]). A module E over a connective commutative
dg-algebra A is called coherent if it satisfies the following conditions:

(1) It is almost of finite presentation: for every n there exists a map from a
perfect A-module En −→ E whose cone is n-connective. Equivalently, E can
be presented by a graded-free dg-A-module with generators in homological
degrees ≥ N for some integer N , and finitely many generators in each degree.

(2) It is eventually coconnective, i.e. πn(E) = 0 for n� 0. Note that (1) already
implies that πn(E) = 0 for n� 0.

When A is coherent, this is equivalent to the condition that each πn(E) is finitely
presented over π0(A) and that πn(E) = 0 for n � 0 and n � 0 [1919, Proposition
7.2.4.17]. We will denote the ∞-category of coherent A-modules by CohA.

Definition 7.4. For any connective cdga A, we define the ∞-category of pro-
coherent sheaves on A to be

QC!(A) := Ind(Cohop
A ),

even though this is technically its opposite category.

Remark 7.5. When A is eventually coconnective, there is a fully faithful inclusion
PerfA ⊆ CohA. This induces a fully faithful embedding ModA ⊆ QC!(A) of the
quasi-coherent sheaves on A (i.e. A-modules) into the pro-coherent sheaves on A,
via

ModA ' Ind(PerfA)
Ind((−)∨)

∼
// Ind(Perfop

A )
� � // Ind(Cohop

A ). (7.6)

Unravelling the definitions, the inclusion ModA −→ QC!(A) can be described as
follows. If E ∈ ModA is an A-module, then the corresponding object in Ind

(
Cohop

A

)
is the finite-limit preserving functor

CohA // S; F � // Ω∞
(
E ⊗A F

)
.

Here Ω∞(V ) denotes the space underlying an A-module V , e.g. obtained by applying
the Dold-Kan correspondence to the connective cover τ≥0(V ).

Remark 7.7 (Serre duality). Suppose that A is a connective cdga such that π0(A)
is Noetherian and each πn(A) is a finitely generated π0(A)-module. If A admits
a dualizing complex ωA in the sense of [1818, Definition 4.2.5], then there is an
equivalence of ∞-categories [1818, Theorem 4.2.7]

HomA(−, ωA) : Cohop
A

∼ // CohA.

Taking ind-completions, we obtain an equivalence

Ind
(
Cohop

A

) ∼ // Ind
(
CohA

)
between the∞-category of pro-coherent sheaves and the∞-category of ind-coherent
sheaves studied extensively by Gaitsgory [44] (see also Section 9 of loc. cit.).

By [1818, Theorem 4.3.5], A admits a dualizing complex if and only if π0(A) admits
a dualizing complex in the classical sense [77, Chapter V.2]. In particular, this is
the case when π0(A) is a complete Noetherian local ring, or when π0(A) is locally
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finitely presented over a field [77, Chapter V.10]. The affines used in the work of
Gaitsgory–Rozenblyum [55] have this last property.

For us, the importance of the ∞-category of pro-coherent sheaves stems from the
following basic result:

Lemma 7.8. Let A be a coherent commutative dg-k-algebra and let f : B −→ A
be an iterated square zero extension by coherent A-modules. Consider the thick
subcategory C ⊆ ModB generated by the modules of the form f∗F , where F ∈ CohA
is a coherent A-module. Then B is coherent and C coincides with CohB.

Proof. By assumption, the map f decomposes as

B = Bn // Bn−1
// . . . // B0 = A,

where each map is a square zero extension by a coherent A-module. Proceeding by
induction along this tower, we can reduce to the case where f : B −→ A is a square
zero extension by a coherent A-module I. In this case, π0(f) : π0(B) −→ π0(A)
is a square zero extension by a finitely presented π0(A)-module. One easily sees
that any finitely presented π0(A)-module is finitely presented over π0(B) and that
π0(B) is a coherent ring (see e.g. [22, Lemma 3.25 and Lemma 3.26]). Using the long
exact sequence of I −→ B −→ A and the fact that all πn(I) and πn(A) are finitely
presented over π0(A) (hence over π0(B)), one deduces that B is coherent.

For every coherent A-module F , its homotopy groups are finitely presented over
π0(A) and hence over π0(B). This means that f∗F is a coherent B-module, so that
C ⊆ CohB . It remains to be verified that C exhausts CohB . Using Postnikov towers,
one sees that CohB is the thick subcategory generated by the (discrete) finitely
presented π0(B)-modules. It therefore suffices to show that C contains any such
finitely presented π0(B)-module E. Note that E fits into a short exact sequence of
finitely presented π0(B)-modules

0 // K // E // π0(A)⊗π0(B) E // 0

where K is a quotient of ker(π0(f)) ⊗π0(B) E. In particular, ker(π0(f)) ⊆ π0(B)

acts trivially on K, so that both K and π0(A)⊗π0(B) E are contained in f∗
(
CohA

)
.

It follows that E is contained in C, as desired. �

Given a functor X : CAlgsm,coh
k /A −→ S on the ∞-category of iterated square

zero extensions of A by coherent A-modules, its category of pro-coherent sheaves is
obtained by gluing, using Lemma 7.87.8.

Construction 7.9. Suppose that A is coherent and eventually coconnective. It
follows from Lemma 7.87.8 that for any map f : B −→ B′ between small extensions of
A by coherent A-modules, the functor

f∗ : ModB′ // ModB

preserves coherent modules. Consequently, there is a functor

Coh:
(
CAlgsm,coh/A

)op
// StCatex

∞

sending each small extension B −→ A to the stable ∞-category of coherent B-
modules, and each map f : B −→ B′ to the exact functor f∗. Consider the composite
functor (

CAlgsm,coh
k /A

)op Cohop
// Cat∞

Ind // PrL

sending each small extension B −→ A to the∞-category Ind
(
Cohop

B

)
of pro-coherent

sheaves on B. Every map f : B −→ B′ of small extensions over A is sent to the
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adjoint pair

f∗ = Ind(f∗) : Ind
(
Cohop

B′

) //
Ind
(
Cohop

B

)
: f !.oo

By construction, the functor f∗ preserves compact objects. It follows that the
right adjoint f ! preserves all colimits and admits a further right adjoint f! (this is
discussed in much greater generality in [44]).

Definition 7.10. Let A be coherent and eventually coconnective. For any functor

X : CAlgsm,coh
k /A −→ S, we define the stable presentable ∞-category QC!(X) of

pro-coherent sheaves on X to be the value on X of the left Kan extension

(
CAlgsm,coh

k /A
)op Ind(Cohop)

//

��

PrL

Fun(CAlgsm,coh
k /A, S)

QC!

66

This exists by [1616, Lemma 5.1.5.5], since PrL has all small colimits [1616]. Informally,
a pro-coherent sheaf on X is given by a collection of pro-coherent sheaves Fy
over B ∈ CAlgsm,coh

k /A for every y ∈ X(B), together with a coherent family of
equivalences for every f : B −→ B′

Ff(y) ' f !Fy.

For a functor X : CAlgsm
k /A −→ S defined on the full subcategory CAlgsm

k /A ⊆
CAlgsm,coh

k /A, we define QC!(X) in a similar fashion.

Remark 7.11 (Serre duality). Suppose that we are in the ‘locally almost of finite
type’ situation considered in [44, 55], i.e. that A is eventually coconnective, coherent
and with π0(A) locally finitely presented over a field. In this case, these properties

are shared by each object in CAlgsm,coh
k /A. Work of Gaitsgory [44, Theorem 9.1.4]

then provides a natural equivalence of functors

(
CAlgsm,coh

k /A
)op

Ind(Cohop)

))

Ind(Coh)

55 PrL.D∼
��

(7.12)

This natural equivalence is given on objects by Serre duality (see [44, Section 9.5], cf.

Remark 7.77.7). By Kan extension, one then obtains for any X : CAlgsm,coh
k /A −→ S

a Serre duality equivalence

D : QC!(X)
∼ // IndCoh(X).

Here the∞-category IndCoh(X) agrees with the∞-category of ind-coherent sheaves
on X considered in [44, Section 10] and [55] (by an argument as in Remark 6.146.14).

7.2. Koszul duality. Recall that the left adjoint Φ from Lemma 6.106.10 corresponds
under straightening to a natural transformation between diagrams

Rep: LieAlgdop
A

// PrL ModC∗ : LieAlgdop
A

// PrL

of locally presentable ∞-categories and left adjoint functors between them. When
evaluated on a map of A-cofibrant dg-Lie algebroids f : g −→ h, this natural
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transformation is given by the commuting square of left adjoints

ModC∗(h)

f∗:=C∗(g)⊗C∗(h)−
��

Φ // Reph

f !

��

ModC∗(g) Φ
// Repg.

Let us pass to the associated diagram of right adjoint functors and next take opposite
categories. The natural transformation Φ then determines a natural transformation
between two diagrams of large ∞-categories and left adjoint functors between them

Repop : LieAlgdop
A

// ĈatL
∞ Modop

C∗ : LieAlgdop
A

// ĈatL
∞.

The value of this natural transformation on a map of Lie algebroids f : g −→ h is
given by

Repop
g

f!

��

C∗(g,−)
// Modop

C∗(g)

f∗

��

Repop
h C∗(h,−)

// Modop
C∗(h)

(7.13)

where f! is the right adjoint to f !, given by coinduction. For every A-cofibrant
dg-Lie algebroid g, taking the A-linear dual of a g-representation determines a left
Quillen functor

(−)∨ : Repdg
g

// Repdg,op
g

whose right adjoint is given by (−)∨ as well. For every map f : g −→ h, this functor
intertwines induction and coinduction, i.e. there is a natural commuting diagram

Repg

(−)∨
//

f∗

��

Repop
g

f!

��

Reph
(−)∨

// Repop
h

(7.14)

at the level of ∞-categories. We therefore obtain a natural transformation

µ : Rep∗
(−)∨

// Repop C∗ // Modop
C∗ (7.15)

between functors LieAlgdA −→ ĈatL
∞. Here Rep∗ denotes the functor sending a

map of Lie algebroids f : g −→ h to the induction functor f∗ : Repg −→ Reph.

Proposition 7.16. Suppose that A is cofibrant, coherent and eventually coconnec-
tive, and let g be a good Lie algebroid over A. Then the left adjoint functor µ (7.157.15)
restricts to a fully faithful functor

µ : Repωg // Cohop
C∗(g)

on the compact g-representations. Its essential image is the thick subcategory of
Cohop

C∗(g) generated by f∗(A).

Proof. The right adjoint of the functor µ is given by

ν : Modop
C∗(g)

// Repg; M // Φ(M)∨.

We will first show that for any compact g-representation E, the unit map E −→
νµ(E) is an equivalence. To this end, let f : 0 −→ g be the initial map and note
that the forgetful functor f ! : Repg −→ ModA detects equivalences and preserves
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filtered colimits. It follows that Repωg ⊆ Repg is the thick subcategory generated by
the g-representations

f∗(F ) = U(g)⊗A F
where F ∈ ModωA is a compact object in the ∞-category of A-modules. It therefore
suffices to check that the unit map f∗F −→ νµ(f∗F ) is an equivalence for any such
free g-representation f∗F . We may assume that g is a very good dg-Lie algebroid
and, up to retracts, that F is a cofibrant dg-A-module of the form

F =
⊕
n≤n0

A⊕in [n]. (7.17)

(In the present situation the above sum can be taken finite, but in the tame setting
of Section 88 we cannot assume this). To see that f∗F −→ νµ(f∗F ) is an equivalence,
note that it decomposes as

f∗F //
(
(f∗F )∨

)∨ ε // Φ
(
C∗(g, (f∗F )∨)

)∨
where ε is the unit of the adjoint pair (Φ, C∗). The PBW theorem and Lemma 5.95.9
imply that U(g) ∼=

⊕
n≤0A

⊕kn [n] as a graded A-module. It follows that f∗F is a
cofibrant dg-A-module of the form

f∗F = U(g)⊗A F ∼=
⊕
n≤n0

A⊕mn [n].

Its linear dual (f∗F )∨ is then a dg-A-module of the form
⊕

n≤n0
A⊕mn [−n]. In

particular, (f∗F )∨ is eventually connective, so that ε is an equivalence by Corollary
6.56.5. Furthermore, since A is eventually coconnective, the argument used in the proof
of Corollary 4.24.2 shows that the biduality map f∗F −→ (f∗F )∨∨ is an equivalence.
We conclude that µ is fully faithful on the compact objects of Repg.

The essential image of the compact objects is the smallest thick subcategory of
ModC∗(g) containing the images µ(f∗F ) with F ∈ ModωA. Because

µ(f∗F ) ' C∗(g, (f∗F )∨) ' C∗(g, f!(F
∨)) ' f∗(F∨)

by the commuting diagrams (7.137.13) and (7.147.14), and because ModωA is generated by A
itself, we find that the essential image agrees with the thick subcategory of Cohop

C∗(g)

generated by f∗(A). �

For any good Lie algebroid g, Proposition 7.167.16 provides a fully faithful inclusion

Ind(µ) : Repg ' Ind
(
Repωg

) � � // Ind
(
Cohop

C∗(g)

)
= QC!

(
C∗(g)

)
.

Its essential image can also be identified using the following observation:

Lemma 7.18. Suppose that A is coherent and eventually coconnective and let
f : B −→ A be an object of CAlgsm

k /A. Then the following stable subcategories of
Ind(Cohop

B ) are equivalent:

(C1) The smallest stable subcategory that is closed under colimits and contains
f∗(A).

(C2) The subcategory of those E ∈ Ind(Cohop
B ) such that f !(E) is contained in the

full subcategory ModA ⊆ Ind(Cohop
A ) (see Diagram (7.67.6)).

Proof. Note that f ! and the inclusion ModA ⊆ Ind(Cohop
A ) of (7.67.6) both preserve

colimits. It follows that C2 is closed under colimits. Consequently, C1 ⊆ C2 as soon
as f !f∗(A) is quasi-coherent, i.e. an A-module.

Assuming this for the moment, we also find that C2 ⊆ C1. Indeed, by Lemma 7.87.8,
Ind(Cohop

B ) admits a set of compact generators of the form f∗(F ), with F ∈ Cohop
A .

Consequently, f ! : Ind(Cohop
B ) −→ Ind(Cohop

A ) detects equivalences and preserves
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colimits, so that the adjoint pair (f∗, f
!) is monadic [1919, Theorem 4.7.3.5]. This

means that every E ∈ Ind(Cohop
B ) arises as the colimit of its bar resolution

. . . //
//

//
(f∗f

!)2(E)
//
// (f∗f

!)(E) // E.

If f !(E) is contained in ModA, then each term in the bar resolution is contained in
C1 ⊆ C2, so that E ∈ C1.

To see that f !f∗(A) is a quasi-coherent A-module, note that it can be described
by the limit-preserving functor CohA −→ S sending F to

MapCohC∗(g)

(
f∗(A), f∗(F )

)
' MapModA

(
f∗f∗(A), F

)
.

Our goal is to argue that this functor is of the form described in Remark 7.57.5. To this
end, let us assume that A is modelled by a cofibrant dg-algebra and that B = C∗(g)
arises from a very good dg-Lie algebroid g. Diagrams (7.137.13) and (7.147.14) then show
that f∗(A) ∈ CohB can be modelled at the chain level by

µ
(
U(g)

)
= C∗

(
g,U(g)∨

)
.

Because g is a very good dg-Lie algebroid over A, the PBW theorem shows that
U(g)∨ ∼= SymA(g∨) is a connective dg-A-module, which is freely generated without
differential by finitely many generators in each degree. In particular, it is cofibrant
as a dg-A-module. It follows that C∗

(
g,U(g)∨

)
is a free graded C∗(g)-module with

generators in degrees ≥ 0, and is therefore cofibrant as a dg-C∗(g)-module. We
conclude that

f∗f∗(A) ' A⊗C∗(g) C
∗(g,U(g)∨

) ∼= U(g)∨.

Note that we can model every coherent A-module F by a graded-free dg-A-module
with finitely many generators in each degree and no generators in degrees� 0. Since
U(g)∨ has the same finiteness properties, there is an isomorphism of dg-A-modules

HomA

(
U(g)∨, F

) ∼= U(g)⊗A F.

Both U(g)∨ and U(g) are cofibrant dg-A-modules, so the mapping complex and
the tensor product already compute their derived functors. Applying the functor
Ω∞ : ModA −→ S taking underlying spaces (e.g. applying the Dold-Kan correspon-
dence to connective covers), we find that the pro-coherent sheaf f !f∗(A) is given by
the limit-preserving functor CohA −→ S

F 7→ MapA
(
U(g)∨, F

)
' Ω∞

(
U(g)⊗A F

)
.

By Remark 7.57.5, this means that f !f∗(A) is contained in ModA ⊆ Ind
(
Cohop

A

)
. �

Corollary 7.19. Suppose that A is cofibrant, coherent and eventually coconnective,
and let g be a good Lie algebroid over A. Then the functor µ : Repωg −→ CohC∗(g)

of Proposition 7.167.16 induces a natural equivalence

Ind(µ) : Repg
∼ // QC!

(
C∗(g)

)
×QC!(A) ModA.

Proof. Passing to ind-completions, Proposition 7.167.16 identifies Repg with the ind-

completion of the thick subcategory of Cohop
C∗(g) generated by f∗(A). This ind-

completion can be identified with the full subcategory C1 ⊆ QC!(C∗(g)) of Lemma
7.187.18. Lemma 7.187.18 shows that this subcategory is equivalent to the ∞-category
of pro-coherent sheaves whose restriction to A is quasi-coherent, i.e. to the fiber
product QC!(C∗(g))×QC!(A) ModA. �

We will now deduce Theorem 7.17.1 from the functoriality of the equivalence provided
by Corollary 7.197.19.
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Proof (of Theorem 7.17.1). We will follow the proof of Theorem 6.16.1. Corollary 7.197.19
provides a natural equivalence

LieAlgdgood
A

Rep∗=Ind(Repω∗ )

''

F(C∗(−))

77PrL.Ind(µ)∼

��

Here Rep∗ sends a good Lie algebroid to its ∞-category of representations and
a map g −→ h to the induction functor. The functor F :

(
CAlgsm

k /A
)op −→ PrL

sends a map of small extensions f : B −→ B′ to the adjoint pair

f∗ × id : QC!
(
B′
)
×QC!(A) ModA

//
QC!

(
B
)
×QC!(A) ModA : f ! × id.oo

These functors are indeed adjoint by Lemma 7.187.18: this implies that both f∗ and f !

preserve the category of pro-coherent sheaves whose restriction to A is quasi-coherent.
Precomposing with the duality functor D (3.23.2), we obtain a natural diagram(

CAlgsm
k /A

)op

h

��

F

##��

Fun(CAlgsm
k /A, S)

D!

// LieAlgdA Rep∗

// PrL

'w�

commuting up a natural equivalence, given by the inverse of

RepD(B)

Ind(µ)
// QC!

(
C∗D(B)

)
×QC!(A) ModA // QC!(B)×QC!(A) ModA.

The second functor arises from the unit map B −→ C∗D(B), which is an equivalence
by Corollary 4.24.2.

Now consider the left Kan extension of the functor F along the Yoneda embedding
h. By its universal property, there is a natural transformation of this left Kan
extension to the functor RepD!

. When X = colimα∈CX h(Bα) is the colimit of a
diagram of corepresentables, this natural transformation is given at X by

lim
CX

(
QC!(Bα)×QC!(A) ModA

)
∼ // lim

CX

(
RepD(Bα)

)
// RepD!(X). (7.20)

Here we take the limits of the diagram of ∞-categories and right adjoint functors f !

between them. When X is a formal moduli problem, we can proceed as in the proof
of Theorem 6.16.1: we can assume that CX is sifted, so that the second functor in (7.207.20)
is an equivalence by Lemma 2.132.13. Furthermore, CX is in particular contractible, so
that the limit of the constant diagram on ModA is just ModA itself (and similarly

for QC!(A)). We conclude that the domain of (7.207.20) can be identified with

lim
CX

(
QC!(Bα)

)
×QC!(A) ModA ' QC!(X)×QC!(A) ModA.

Since D!(X) ' TA/X for any formal moduli problem, we obtain a natural diagram

RepTA/X QC!(X)×QC!(A) ModA
∼oo � � // QC!(X)

where the left functor is an equivalence and the right functor is fully faithful. This
proves Theorem 7.17.1. �
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8. Pro-coherent Lie algebroids

Theorem 7.17.1 provides a geometric interpretation of the ∞-category of represen-
tations of a Lie algebroid in terms of pro-coherent sheaves on the corresponding
formal moduli problem. This puts forward the theory of pro-coherent sheaves as
a variant of the theory of quasi-coherent sheaves that is much more well-behaved
from the point of view of deformation theory. For example, for every map of small
extensions B −→ B′, the restriction functor

f ! : QC!(B) // QC!(B′)

admits both a left and right adjoint, corresponding roughly to induction and
coinduction of Lie algebroid representations under Koszul duality. In contrast, the
functor f∗ : QC(B) −→ QC(B′) only admits a right adjoint.

However, the relation between Lie algebroid representations and pro-coherent
sheaves discussed in Section 77 is not perfect: because we have only discussed
Lie algebroid representations on (quasi-coherent) A-modules, we can only give a
Lie-algebraic description of those pro-coherent sheaves whose restriction to A is
quasi-coherent. One would expect the full ∞-category of pro-coherent sheaves on
X to correspond to the ∞-category of pro-coherent representations of TA/X .

The purpose of this section is to describe some refinements of the results from
the previous sections to the setting of pro-coherent Lie algebroids and their rep-
resentations. Our main observation is that (in certain cases) pro-coherent Lie
algebroids can be conveniently described in terms of the tame homotopy theory
of dg-Lie algebroids. This homotopy theory is transferred from the tame model
structure on dg-A-modules and its weak equivalences form a strict subclass of the
quasi-isomorphisms. Unfortunately, the resulting ∞-category is only well-behaved
when A is coherent (Definition 7.27.2) and bounded (see Warning 8.148.14).

Definition 8.1. A connective commutative dg-k-algebra A is (strictly) bounded
if it is concentrated in degrees [0, n], for some n ≥ 0. Note that being bounded
is not invariant under quasi-isomorphisms; a connective dg-algebra is eventually
coconnective if and only if it is quasi-isomorphic to a bounded dg-algebra.

With respect to the tame homotopy theory, a dg-Lie algebroid is A-cofibrant if
its underlying graded A-module is graded-projective. In particular, the analyses of
Section 33 and Section 44, which essentially only rely on the PBW theorem, can be
applied almost verbatim to the tame setting. Consequently, we obtain the following
analogues of Theorem 5.15.1 and Theorem 7.17.1:

Theorem 8.2. Suppose that A is a cofibrant, bounded and coherent commutative
dg-k-algebra. Then there is an equivalence of ∞-categories

MC: LieAlgd!
A

//
FMP!

A : TA/oo

between the ∞-category of pro-coherent Lie algebroids over A and the ∞-category
of pro-coherent formal moduli problems CAlgsm,coh/A −→ S (see Section 11).

Theorem 8.3. Let A be a cofibrant, bounded and coherent commutative dg-k-
algebra and let X be a pro-coherent formal moduli problem on A. Then there is an
equivalence

QC!(X)
∼ // Rep!

TA/X

between the ∞-categories of pro-coherent sheaves on X and pro-coherent TA/X-
representations. For any map f : X −→ Y of pro-coherent formal moduli problems,
this equivalence identifies the functor f ! : QC!(Y ) −→ QC!(X) with the restriction
functor from TA/Y -representations to TA/X-representations.
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Example 8.4. Suppose that A = k is coherent (e.g Noetherian) and eventually
coconnective. Then one can always find a (strictly) bounded model for A to which
the theorems apply. In this case, Theorem 8.28.2 provides an equivalence between
Lie algebras in Ind(Cohop

k ), defined by explicit point-set models, and formal moduli

problems CAlgsm,coh
k /k −→ S.

Example 8.5. The main type of dg-algebra A to which the above theorems apply
is as follows. Suppose that k is eventually coconnective and Noetherian, i.e. π0(k) is
Noetherian and each πn(k) is finitely generated over π0(k). We can assume that k
is modelled at the chain level by a bounded cdga. Suppose that A is a commutative
dg-k-algebra which is free without differential, such that:

(i) A has finitely many generators.

(ii) Each generator is either in degree 0 or in odd degree.

Then A is cofibrant over k, bounded and coherent. In particular, if k is eventually
coconnective and Noetherian, then the derived zero locus of any map Ank −→ Amk
over Spec(k) can be modelled by a commutative dg-algebra A with these properties.

We will start in Section 8.18.1 by recalling the tame model structure on dg-A-
modules. Section 8.28.2 describes the relation between this model structure and the
∞-category of pro-coherent sheaves on A. We then discuss the induced homotopy
theory on dg-Lie algebroids (in Section 8.38.3) and their representations (in Section
8.48.4). Most importantly, we describe how one can modify the proofs of Theorem 5.15.1
and Theorem 7.17.1 to establish Theorem 8.28.2 and Theorem 8.38.3.

8.1. Tame dg-A-modules. Recall that for any commutative dg-algebra A, the
category of dg-A-modules can be endowed with the tame, or contraderived model
structure (see e.g. [11, 2525]). In this model structure, a map of dg-A-modules E −→ F
is

• a fibration if it is degreewise surjective.

• a cofibration if it is a monomorphism, whose cokernel is projective as a graded
A-module.

• a weak equivalence if for any graded-projective dg-A-module P , the map on
hom-complexes HomA(P,E) −→ HomA(P, F ) is a quasi-isomorphism.

We will denote the associated∞-category by Mod!
A and refer to it as the∞-category

of tame dg-A-modules. This terminology is supposed to emphasize that Mod!
A

depends on the explicit cdga A, i.e. quasi-isomorphic cdgas may have non-equivalent
∞-categories of tame dg-A-modules.

The tame model structure is stable and symmetric monoidal for the usual tensor
product over A, and the usual projective model structure is a (symmetric monoidal)
right Bousfield localization of the tame model structure. It follows that there is a
fully faithful, symmetric monoidal left adjoint functor of ∞-categories

ModA // Mod!
A.

Furthermore, Mod!
A is a presentable ∞-category, since the tame model structure is

combinatorial:

Lemma 8.6. Let T≤n be the set of graded-free dg-A-modules T satisfying the
following two conditions:

(i) T has no generators in (homological) degree > n

(ii) T has finitely many generators in each individual degree.
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Let T =
⋃
n T
≤n. Then the collection of cone inclusions

{
T −→ T [0, 1] : T ∈ T

}
is a

set of generating cofibrations for the tame model structure. In particular, the tame
model structure is cofibrantly generated.

Proof. Suppose that p : E −→ F is a map with the right lifting property against all

T −→ T [0, 1] with T ∈ T. To see that p is a trivial fibration, let C ⊆ Moddg
A be the

full subcategory of graded-projective dg-A-modules P for which

HomA(P,E) −→ HomA(P, F )

is a trivial fibration. Then T ⊆ C and we have to show that C contains all graded-
projective dg-A-modules. To this end, let us make the following observations:

(1) C is closed under retracts.

(2) Let P −→ Q be a cofibration such that P and Q/P are contained in C. Then
Q is contained in C.

(3) If {P0 −→ . . . −→ Pα −→ . . . } is a (transfinite) sequence of cofibrations
between objects in C, then the colimit colimPα is contained in C as well.

By (1), it suffices to verify that C contains all graded-free dg-A-modules. To see this,
suppose that Q is a graded-free dg-A-module, with set of generators S = {yi}. Let
B ⊆ P (S) be the poset of subsets S′ ⊆ S which generate a sub dg-A-module of Q
that is contained in C. It follows from (3) that any chain in B has an upper bound.
By Zorn’s lemma, B admits a maximal element S0. Let P = A

〈
S0

〉
be its A-linear

span and consider the quotient Q/P . We claim that Q/P is trivial, so that Q ∈ C.
Indeed, Q/P has a set of generators S \ S0. If there exists a generator y ∈ S \ S0

of degree n, one can find a set S′ ⊆ S \ S0 containing y such that

• A
〈
S′
〉

is closed under the differential.

• S′ contains finitely many generators in each degree ≤ n and no generators in
degrees > n.

Indeed, one can proceed inductively, in each step choosing (finitely many) generators
whose A-linear span includes the differentials of the (finitely many) generators
chosen before.

The resulting dg-A-module A
〈
S′
〉
⊆ Q/P is contained in T. Using (2), it follows

that A
〈
S0 ∪ S′

〉
⊆ Q is contained in C as well. This contradicts maximality of S0,

so we conclude that S \ S0 is empty and Q/P = 0. �

Remark 8.7. Let E be a dg-A-module and consider its connective cover

τ≥0E = (. . . −→ E1 −→ Z0(E) −→ 0)

Then the map τ≥0E −→ E is a tame weak equivalence if and only if [T,E] = 0 for
any T ∈ T≤−1. We will say that E is a connective tame dg-A-module if it satisfies

these equivalent conditions. The full subcategory Mod!,≥0
A on the connective tame

dg-A-modules determines an accessible t-structure on Mod!
A.

One can easily verify that a map between connective tame dg-A-modules is a
tame weak equivalence if and only if it is a quasi-isomorphism. It follows that the

fully faithful inclusion ModA −→ Mod!
A induces an equivalence Mod≥0

A −→ Mod!,≥0
A

on connective objects.

8.2. Tame modules and pro-coherent sheaves. We do not know of a good
homotopy theoretic interpretation of the ∞-category of tame dg-modules over a
general dg-algebra A. However, when A is bounded and coherent, the ∞-category
Mod!

A is very well-behaved, and can be identified with the∞-category of pro-coherent

sheaves on A (Corollary 8.98.9). In particular, Mod!
A is a compactly generated ∞-

category, and we have an explicit identification of its compact generators, analogous
to the case where A is discrete, as treated in e.g. [2222]:
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Proposition 8.8. Suppose that A is bounded and coherent and let K≤0 be the set
of (weak equivalence classes of) dg-A-modules E such that

(i) E is contained in the set T≤0 of Lemma 8.68.6, i.e. graded-free, with generators
of degree ≤ 0 and finitely many generators in each degree.

(ii) its A-linear dual E∨ = HomA(E,A) is eventually coconnective, i.e. πi(E
∨)

vanishes for i� 0.

Then K≤0 is a set of compact generators for Mod!
A.

Corollary 8.9. Let A be bounded and coherent and consider the functor

(−)∨ : Mod!
A

// Modop
A

sending a tame dg-A-module to its A-linear dual. This functor restricts to an
equivalence between the full subcategory K≤0 ⊆ Mod!

A and the opposite of the full

subcategory Coh≥0
A ⊆ ModA of connective coherent A-modules. In particular, there

is an equivalence of stable ∞-categories

Mod!
A ' Ind

(
Cohop

A

)
= QC!(A).

Proof. The functor (−)∨ : Moddg
A −→ Moddg,op

A is a left Quillen functor from the
tame model structure to the projective model structure, whose right adjoint is
given by (−)∨ as well. For any (cofibrant) object E ∈ K≤0, the dual E∨ is graded-
free, with finitely many generators in each nonnegative degree. In particular, it is
cofibrant. Since A is bounded, the derived unit map E −→ E∨∨ is an isomorphism.
The full subcategory of Mod!

A on the compact generators is therefore equivalent to
its essential image under (−)∨ in Modop

A . Unwinding the definitions, this essential

image is exactly the opposite of Coh≥0
A . �

Example 8.10. Let f : A −→ B be a weak equivalence of bounded coherent cdgas

and consider the Quillen pair f ! : Moddg
A � Moddg

B : f! between the tame model
structures, where f ! sends E to B ⊗A E. This Quillen pair is a Quillen equivalence.
Indeed, note that f ! preserves the compact generators from Proposition 8.88.8, since
f !(E)∨ ∼= B ⊗A (E∨) for any E ∈ K≤0. On compact objects, f ! is therefore given
by the composite of equivalences

f ! : Mod!,ω
A

(−)∨
// Cohop

A

B⊗A(−)
// Cohop

B

(−)∨
// Mod!,ω

B

This implies that f ! : Mod!
A −→ Mod!

B is an equivalence as well.

The remainder of this section is devoted to the proof of Proposition 8.88.8.

Lemma 8.11. Suppose that A is bounded and that E is an object in K≤0. Let n0

be an integer such that πi(E
∨) = 0 for all i ≥ n0. Then the following hold:

(1) For any indexing set I, the map
⊕

I HomA(E,A) −→ HomA(E,
⊕

I A) is an
isomorphism.

(2) Let F be a dg-A-module which is graded-free, with generators xi. Let F (n) be
the quotient of F by the submodule generated by the xi of degree < n. Then
for all n > 1:

π0HomA(E,F (n)) = 0.

(3) For every m ≤ −n0, the map

π0HomA(E,F ) // π0HomA(E,F (m))

is an isomorphism.
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Proof. For (1), we can write E =
⊕

n≥0A
⊕in [−n] at the level of graded A-modules.

The map
⊕

I HomA(E,A) −→ HomA(E,
⊕

I A) is then given by⊕
I

∏
n≥0A

⊕in [n] //
∏
n≥0

⊕
I A
⊕in [n].

This map is an isomorphism in each degree, since A is concentrated in nonnegative
degrees.

For assertion (2), note that F (n) is graded-free on the generators xi of degree
≥ n. Since E only has generators in degree ≤ 0, the complex HomA(E,F (n)) is
trivial in degree 0 when n > 1.

For (3), consider the tower of fibrations between graded-free dg-A-modules

F // . . . // F (−2) // F (−1) // F (0).

The natural map F −→ limn≤0 F
(n) to the (homotopy) limit of this tower can be

identified with the map ⊕
n

⊕
In
A[n] //

∏
n

⊕
In
A[n].

Here In denotes the set of generators of F of degree n. Because A is bounded, this
map is an isomorphism.

For every m < −n0, the fiber of the map HomA(E,F (m)) −→ HomA(E,F (m+1))
can be identified with

HomA

(
E,
⊕
Im

A[m]
)
∼=
⊕
Im

HomA

(
E,A[m]

) ∼= ⊕
Im

E∨[m].

By our assumption on E, the homotopy groups of this complex vanish in all degrees
≥ −1. This implies that the map

π0HomA(E,F ) ∼= π0

(
limn≤0 HomA(E,F (n))

)
// π0HomA(E,F (m))

is an isomorphism for all m ≤ −n0. �

Lemma 8.12. Suppose that A is bounded and coherent. Let C ⊆ Mod!
A be the

smallest full subcategory of Mod!
A that contains the objects in K≤0 and is closed

under colimits and extensions. Then C = Mod!
A.

Proof. By Lemma 8.68.6, it suffices to show that C contains all objects T ∈ T, which
are of the form

⊕
n≥n0

A⊕kn [−n] without differential. The dual of such a T is

given by the (projectively) cofibrant dg-A-module
⊕

n≥n0
A⊕kn [n] and the map

T −→ T∨∨ is an isomorphism. Consider the Postnikov tower of T∨

T∨ // . . . // τ≤n(T∨) // τ≤n−1(T∨) // · · · // π0(T∨).

Because A is coherent, each πi(T
∨) is a coherent A-module and admits an al-

most finite resolution Yi
∼−→ πi(T

∨) [1919, Proposition 7.2.4.17]. One can use these
resolutions to resolve the entire Postnikov tower by

T∨ // . . . // Pn // Pn−1
// . . . // P0

where Pn =
⊕n

i=0 Yi[i], equipped with a certain differential. The sequence of Pn
becomes stationary in each individual degree, so that there is a homotopy equivalence
T∨ −→ P∞ =

⊕
i Yi[i]. Taking the dual, one finds that T = T∨∨ is homotopy

equivalent to the colimit of the sequence

P∨0 // P∨1 // . . . .

This is a sequence of cofibrations whose associated graded consists of the Yi[i]
∨.

Each Yi[i]
∨ is contained in K, because its dual is Yi[i] ' πi(T∨)[i]. This implies that

the (homotopy) colimit T is contained in the category C. �
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Proof (of Proposition 8.88.8). By Lemma 8.128.12, the objects of K≤0 generate Mod!
A. To

prove that any E ∈ K≤0 is compact, it suffices to show that for any set S and any
collection of graded-free dg-A-modules {Pα}α∈S , the map⊕

α π0HomA(E,Pα) // π0HomA

(
E,
⊕

α Pα

)
is an isomorphism. Using the filtration of Lemma 8.118.11, we obtain commuting squares⊕

α π0HomA(E,Pα)

��

// π0HomA

(
E,
⊕

α Pα

)
��⊕

α π0HomA(E,P
(n)
α )

φn // π0HomA

(
E,
⊕

α P
(n)
α

)
for all n ∈ Z. We will prove by decreasing induction on n that φn is an isomorphism;
this proves that the top map is an isomorphism, because the vertical maps become
isomorphisms for all m smaller than a certain n0, by Lemma 8.118.11. We can start the
induction at n = 2, where both objects are zero by Lemma 8.118.11.

For the inductive step, suppose that φn is an isomorphism. To prove that φn−1

is an isomorphism as well, let Fα denote the fiber of the map P
(n−1)
α −→ P

(n)
α . It

suffices to check that the map⊕
α HomA(E,Fα) // HomA

(
E,
⊕
Fα

)
is a quasi-isomorphism. But each Fα is just given by a direct sum

⊕
A[n− 1], so

the result follows from (a shift of) Lemma 8.118.11. �

8.3. Pro-coherent Lie algebroids. Suppose that A is an eventually coconnective,

coherent commutative k-algebra and let CAlgsm,coh
k /A be the∞-category of iterated

square zero extensions of A by connective coherent A-modules. Recall from the
introduction that a pro-coherent formal moduli problem is a functor

X : CAlgsm,coh
k /A // S

satisfying the Schlessinger conditions: X(A) is contractible andX preserves pullbacks

along the maps A −→ A⊕ E[1], where E ∈ Coh≥0
A .

The purpose of this section is to show that such pro-coherent formal moduli
problems can be described (in suitable cases) in terms of Lie algebroids. To this end,
note that for any connective commutative dg-algebra A, the tame model structure
on dg-A-modules can be transferred to a semi-model structure on dg-Lie algebroids,
by [2323, Remark 4.26]:

Proposition 8.13. The category of dg-Lie algebroids over A carries the tame semi-
model structure, in which a map is a weak equivalence (fibration) if and only if it is

a tame weak equivalence (fibration). The forgetful functor LieAlgddg
A −→ Moddg

A /TA
is a right Quillen functor to the tame model structure, which preserves cofibrant
objects and all sifted homotopy colimits.

Warning 8.14. The tame homotopy theory of dg-Lie algebroids is only well-behaved
when A is both cofibrant over k (Remark 2.72.7) and bounded coherent (Proposition
8.88.8). There is some conflict between cofibrancy and being bounded: for example, A
cannot have any generators of degree 2 (cf. Example 8.58.5).

Definition 8.15. Let A be a cofibrant connective cdga over k, which is bounded and
coherent. The∞-category of pro-coherent Lie algebroids over A is the∞-categorical
localization

LieAlgd!
A := LieAlgddg

A

[
{tame w.e.}−1

]
.
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This is a locally presentable ∞-category by the argument of Remark 2.52.5.

Note that the projective semi-model structure on dg-Lie algebroids is a right
Bousfield localization of the tame semi-model structure, so that there is a fully
faithful left adjoint functor

LieAlgdA
� � // LieAlgd!

A.

The remainder of this section is devoted to the proof of Theorem 8.28.2, relating
pro-coherent Lie algebroids over a cofibrant, bounded and coherent dg-k-algebra A
to pro-coherent formal moduli problems.

Proof (of Theorem 8.28.2). The proof of Theorem 8.28.2 is essentially a copy of the proof
of Theorem 5.15.1. We will therefore only give an outline of the argument, pointing
out the changes that need to be made to the statements appearing in the previous
sections.

Step 1: Chevalley-Eilenberg complex. For any cofibrant commutative dg-algebra A,
the results of Section 22 and Section 33 hold verbatim for the tame semi-model
structure on dg-Lie algebroids, as long as the condition of being ‘A-cofibrant’ is
taken with respect to the tame model structure. In particular (cf. Proposition 3.13.1),
the Chevalley-Eilenberg complex is the left adjoint in an adjoint pair

C∗ : LieAlgd!
A

// (
CAlgk/A

)op
: D.oo (8.16)

Here CAlgk/A is the usual ∞-category of commutative k-algebras over A, i.e. cdgas
up to quasi-isomorphism. The right adjoint sends B −→ A to the dual of the map
between cotangent complexes LA −→ LA/B (over k); this dual is now computed
in pro-coherent sheaves, rather than ModA (i.e. with respect to the tame model
structure).

Step 2: Koszul duality. Let A be a cofibrant dg-k-algebra and suppose that g is a
dg-Lie algebroid whose underlying graded A-module is of the form

g =
⊕
n<0

A⊕kn [n]. (8.17)

Note that all such g are (tamely) A-cofibrant, so that the value of the left adjoint in
(8.168.16) is still computed by the Chevalley-Eilenberg complex C∗(g) (i.e. one does not
have to cofibrantly replace g). Lemma 4.44.4 then identifies the unit map g −→ DC∗(g)
of the adjunction (8.168.16) with

g // L∨C∗(g)/A.

Here the dual is taken in with respect to the tame model structure. For g as in
(8.178.17), C∗(g) is a connective cdga, so that LC∗(g)/A is a connective dg-A-module.

In particular, it is contained in the subcategory ModA ⊆ QC!(A) (Remark 8.78.7).
The computations of Section 44 then provide an equivalence LC∗(g)/A ' g∨ in

ModA ⊆ QC!(A).
It follows that the derived unit map g −→ DC∗(g) can be identified with the

map of dg-A-modules g −→ g∨∨ (cf. Proposition 4.14.1). Because A is bounded, this
map is an isomorphism. Consequently (cf. Corollary 4.24.2), the left adjoint C∗ in
(8.168.16) is fully faithful on all tame dg-Lie algebroids of the form (8.178.17).

Step 3: axiomatic deformation theory. Under our assumption that A is bounded
and coherent, the ∞-categories Mod!

A and LieAlgd!
A are compactly generated, by

Proposition 8.88.8 and Proposition 8.138.13. We are therefore in the position to apply
the machinery developed by Lurie [1717] (cf. Section 55). The good pro-coherent Lie
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algebroids are now modelled by those dg-Lie algebroids that are obtained from
finitely many pushouts along

Free
(
∂φ : K[−2] −→ TA

)
// Free

(
φ : K[−2,−1] −→ TA

)
(8.18)

with K in the subcategory K≤0 ⊆ Mod!
A of compact generators, as in Proposition

8.88.8. In particular (cf. Lemma 5.95.9), they are all of the form (8.178.17), so that we obtain
a fully faithful functor

C∗ : LieAlgd!,good
A

� � //
(
CAlgk/A

)op
.

The functor C∗ sends the maps (8.188.18) to the maps A −→ A⊕E[1], where E = K∨

is the A-linear dual of an object in K≤0. By Proposition 8.88.8, these are exactly
the maps A −→ A ⊕ E[1] where E is a connective coherent A-module. Arguing
as in the proof of Theorem 5.15.1, it follows that C∗ yields an equivalence between

the good pro-coherent Lie algebroids over A and the ∞-category CAlgsm,coh
k /A of

small extensions of A by coherent A-modules. Theorem 8.28.2 now follows by applying
Proposition 5.45.4. �

8.4. Pro-coherent representations. Suppose that A is a bounded, coherent and
cofibrant dg-k-algebra. Just as the tame model structure on dg-Lie algebroids over
A provides a good model for the ∞-category of pro-coherent Lie algebroids, one can
describe their ∞-categories Rep!

g of pro-coherent representations using the tame
model structure as well.

Lemma 8.19. Let g be a (tame) A-cofibrant dg-Lie algebroid. Then the following
assertions hold:

(1) The category Repdg
g carries a combinatorial model structure whose weak equiv-

alence (fibrations) are the tame weak equivalences (fibrations) of dg-A-modules.
For every f : g −→ h, induction and restriction form a Quillen pair

f∗ = U(g)⊗U(h) − : Repdg
g

//
Repdg

h : f !
oo

which is a Quillen equivalence when f is a tame weak equivalence between
(tame) A-cofibrant dg-Lie algebroids.

(2) The category Repdg
g carries a model structure whose weak equivalences (cofibra-

tions) are the tame weak equivalences (cofibrations) of dg-A-modules. This is
a monoidal model category, which is Quillen equivalent to the model category
from (1). Every f : g −→ h between A-cofibrant dg-Lie algebroids, induces a
symmetric monoidal left Quillen functor

f ! : Repdg
h

// Repdg
g .

In particular, it gives rise to a symmetric monoidal left adjoint functor
f ! : Rep!

h −→ Rep!
g between closed symmetric monoidal ∞-categories.

(3) The functor of ∞-categories (e.g. constructed via fibrations, as in Section 6.26.2)

Rep! : LieAlgd!,op
A

// PrL
sym.mon./Mod!

A

preserves all limits.

Proof. The PBW filtration also applies to dg-Lie algebroids which are A-cofibrant
for the tame model structure on dg-A-modules. The proof of Lemma 2.102.10 can
therefore be applied to show (1) (the existence of the model structure follows from
Quillen’s path object argument). Similarly, the proof of Lemma 2.112.11 yields (2).

For (3), one applies the same proof as in Lemma 2.132.13. Indeed, let BiMod!
A be the

∞-category associated to the category of dg-A-bimodules (over Q), endowed with
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the model structure transferred from the tame model structure on left dg-A-modules.
This is a cofibrantly generated monoidal model category, with generating cofibrations
with cofibrant domains. By [1919, Theorem 4.1.8.4], the ∞-category Alg(BiMod!

A)
can be modelled by the transferred model structure on associative algebras in this
monoidal model category. Forgetting the symmetric monoidal structure, the functor
Rep! now decomposes as

LieAlgd!,op
A

U // Alg
(
BiMod!

A

)op LMod // Ĉat∞/ModA.

The second functor preserves limits by [1919, Theorem 4.8.5.11]. To see that the first

functor preserves sifted limits, it suffices to show that U : LieAlgd!
A −→ BiMod!

A

preserves sifted colimits. This follows from [2323, Theorem 4.22, Remark 4.26]. As in
the proof of Lemma 2.132.13, the fact that U also preserves finite products follows from
the fact that U(F (V )) ∼= TA(V ) for any cofibrant dg-A-module. �

In the remainder of this section, we will outline the proof of Theorem 8.38.3,
identifying pro-coherent sheaves on a pro-coherent formal moduli problem X with
pro-coherent representations of TA/X .

Proof (of Theorem 8.38.3). The proof of Theorem 7.17.1 essentially carries over verbatim
to this situation. In fact, the argument simplifies because we can work with the
∞-category QC!(X) of all pro-coherent sheaves on a formal moduli problem, rather
than the subcategory of pro-coherent sheaves that restrict to quasi-coherent sheaves
on A. Again, let us only indicate the structure of the proof.

Step 1: representations of good Lie algebroids. For every dg-Lie algebroid whose
underlying dg-A-module is tamely cofibrant, the adjunction

K(g)⊗C∗(g) (−) : Moddg
C∗(g)

//
Repdg

g : C∗(g,−)oo

is a Quillen adjunction between the usual projective model structure on dg-C∗(g)-
modules and the model structure on g-representations described in Lemma 8.198.19(1).

Let Φg : ModC∗(g) −→ Rep!
g denote the left derived functor between ∞-categories.

When g ∈ LieAlgd! is compact, Φg(C∗(g)) = K(g) ' A is a compact object in

Rep!
g, from which one deduces that Φg is fully faithful (cf. Lemma 6.36.3). Moreover,

Φg identifies Mod≥0
C∗(g) with the full subcategory of connective pro-coherent g-

representations (cf. Lemma 6.46.4 and Corollary 6.56.5).

Step 2: naturality. The constructions of Section 6.26.2 carry over to the tame setting
verbatim (taking ‘A-cofibrant’ with respect to the tame model structure every-

where). In particular, they show that the functor Φg : ModC∗(g) −→ Rep!
g depends

functorially on the tame Lie algebroid g.

Step 3. As in the beginning of Section 7.27.2, consider the (natural) right adjoint to

Φg and precompose this with the natural functor (−)∨ : Rep!
g −→ Rep!,op

g taking
A-linear duals. The result is a natural transformation µ (cf. Diagram 7.157.15), whose
value on a map of pro-coherent Lie algebroids f : g −→ h is given by

Rep!
g

(−)∨
//

f∗

��

Rep!,op
g

f!

��

C∗(g,−)
// Modop

C∗(g)

f∗

��

Rep!
h

(−)∨
// Rep!,op

h C∗(h,−)
// Modop

C∗(h).

(8.20)

Here the left vertical functor is induction along U(g) −→ U(h) and the right vertical
functor restricts a module along C∗(h) −→ C∗(g).
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Step 4: Koszul duality. Let g be a good pro-coherent Lie algebroid and let f : 0 −→ g
denote the zero map. The proof of Proposition 7.167.16 shows that the functor µ
is fully faithful on the compact objects in Rep!

g. Note that Rep!
g has a set of

compact generators given by the free representations f∗(E) = U(g) ⊗A E, where

E ∈ Mod!,ω
A is a compact object in the tame model structure on dg-A-modules. By

naturality (8.208.20), the natural transformation µ sends such a free representation to
the C∗(g)-module f∗(E

∨). By Proposition 8.88.8, the duals E∨ of the compact tame
dg-A-modules coincide with the coherent A-modules. Since the thick subcategory of
ModC∗(g) generated by f∗(CohA) coincides with CohC∗(g) by Lemma 7.87.8, we obtain
an equivalence

µ : Rep!,ω
g

// Cohop
C∗(g)

for any good pro-coherent Lie algebroid g. This equivalence is natural in g, i.e. it
intertwines induction of representations with the direct image of coherent modules.

Step 5: globalizing. Finally, we proceed as in the proofs of Theorem 6.16.1 and Theorem
7.17.1: passing to ind-completions and precomposing with the duality functor D (8.168.16),
we obtain a diagram(

CAlgsm,coh
k /A

)op

��

Ind(Cohop)=QC!

##��

Fun(CAlgsm,coh
k /A, S)

D!

// LieAlgd!
A

Rep!
∗

// PrL

∼v~ (8.21)

commuting up to a natural equivalence, given by inverse of the composite equivalence

Rep!
D(B) ' Ind

(
Rep!,ω

D(B)

)
Ind(µ)

// Ind(Cohop
B )

∼ // Ind(Cohop
C∗D(B)).

For every X : CAlgsm,coh
k /A −→ S, the ∞-category QC!(X) is defined via left Kan

extension (see Definition 7.107.10), so that we obtain a natural functor

QC!(X) // Rep!
D!(X).

When X is corepresentable, this functor is simply the natural equivalence from
Diagram (8.218.21). Furthermore, the domain and codomain of this natural functor both

preserve sifted colimits in X: for Rep!
D!(X) this follows from the fact that D! preserves

colimits by definition and that Rep! preserves sifted colimits by Lemma 8.198.19. Since
any pro-coherent formal moduli problem X is a sifted colimit of corepresentable
functors, the above functor becomes an equivalence. The theorem then follows from
the fact that D!(X) ' TA/X for any X ∈ FMP!

A. �
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