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1. Introduction

A well-known principle in the theory of Lie groupoids asserts that the tranverse geometry
of a Lie groupoid models the geometry of the associated differentiable stack. This statement
(which applies in many geometric contexts) has been made more precise from a categorical
perspective in the the work of Pronk [2121]: the 2-category of differentiable stacks can be
obtained, up to equivalence, from the category of Lie groupoids by formally identifying Lie
groupoids that are Morita equivalent, i.e. whose transverse geometry is the same. The
identification of Morita equivalent Lie groupoids is achieved by taking the 2-categorical
localization of the category of Lie groupoids at a class of maps known as Morita equivalences.
In turn, various descriptions of this 2-categorical localization exist in the literature: for
example, its mapping groupoids can be described in terms of bibundles and intertwiners
between those [99], or in terms of zig-zags · ∼← · → · of maps, where the left map is either a
Morita equivalence or is restricted to be a hypercover.

The aim of this paper is to extend these results to higher stacks and higher groupoids, i.e.
simplicial objects satisfying certain horn-filling conditions. In particular, we will show how
higher categories of stacks can be obtained from categories of higher groupoids by formally
inverting a set of Morita equivalences between them. In the differential-geometric setting,
these higher groupoids are known as Lie n-groupoids, which are simplicial manifolds X for
which the manifold Xk of k-simplices maps to the manifold of Λi[k]-horns by a surjective

submersion and a diffeomorphism for k > n (see eg. [11, 88, 2626]). The category GpdLie
n of Lie

n-groupoids comes equipped with classes of hypercovers and Morita equivalences, which
reduce to the usual notions of hypercovers and Morita equivalences between Lie groupoids
when n = 1.

For higher n, the 2-categorical localization of GpdLie
n at the Morita equivalences is

only a rough approximation to a richer (and better behaved) object: its simplicial (or

∞-categorical) localization GpdLie
n [W−1

Mor], which in fact turns out to be an (n+1)-category,
agreeing with the 2-categorical localization when n = 1. The mapping spaces of this
simplicial localization GpdLie

n [W−1
Mor] have analogous descriptions as in the case of ordinary

groupoids: on the one hand, the space of maps between two Lie n-groupoids X and Y can
be described as the classifying space of the category of spans

X X̃ //∼oo Y

where the left map is a hypercover (see e.g. [1313]). Given two spans X
∼← X̃ → Y and

Y
∼← Ỹ → Z, there is a composed span X

∼← X̃ ×Y Ỹ → Z, and one can use this to define
a (coherently associative) composition structure on these mapping spaces, yielding a model

for the ∞-categorical localization GpdLie
n [W−1

Mor] (see e.g. [1111], [1919]). On the other hand,
the mapping space between two Lie n-groupoids X and Y has a description in terms of
X–Y -bibundles (see Section 66). However, contrary to the classical case, the bibundles
we obtain are more general objects than ordinary smooth manifolds: they are certain
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(n− 1)-stacks, carrying homotopy coherent (and coherently commuting) actions of X and
Y .

Such higher-categorical analogues of stacks of groupoids (over the site of smooth mani-
folds) can be organized into an ∞-category Sh∞(Mfd) of stacks (of spaces) over smooth
manifolds. Explicitly, this ∞-category Sh∞(Mfd) can be modeled by the simplicially
enriched category sSh(Mfd) of simplicial sheaves on the site of smooth manifolds, en-
dowed with a model structure in which the weak equivalences are the maps that induce
isomorphisms on sheaves of homotopy groups [1515]. There is an obvious functor

GpdLie
n ⊆ Fun(∆op,Mfd) // sSh(Mfd) (1)

sending each Lie n-groupoid X to the simplicial sheaf that is represented in degree k by
the manifold Xk. This functor sends Morita equivalences to weak equivalences in this
model structure and therefore induces a functor of ∞-categories

GpdLie
n [W−1

Mor]
// Sh∞(Mfd). (2)

Our main result can then be formulated as follows:

Theorem. The above functor GpdLie
n [W−1

Mor] → Sh∞(Mfd) is fully faithful (i.e. induces
weak equivalences on mapping spaces), with essential image consisting of the n-geometric
stacks in the sense of Simpson [2424]. In particular, given two Lie n-groupoids X and Y ,
the space of maps MapGpdLie

n [W−1
Mor]

(X,Y ) admits the following three models:

(1) the nerve of the category of spans of Lie n-groupoids X
∼← X̃ → Y where the left

map is a hypercover (or a Morita equivalence).
(2) the space of maps MapsSh(Mfd)(X

∧, Y ∧) beween the fibrant replacements of X and
Y in the Joyal model structure on simplicial sheaves.

(3) the quasicategory (in fact, the Kan complex) of X–Y -bibundles as defined in
Definition 6.16.1.

This theorem is very much of a (higher) categorical, rather than a differential-geometric
nature. As such, it naturally generalizes to various other contexts, some of which are
of a more homotopy-theoretic flavour. For example, in the setting of derived algebraic
geometry, one can consider ‘derived Artin n-groupoids’, i.e. (smooth) n-groupoid objects
taking values in derived schemes. In this case, derived schemes already have a homotopy
theory of their own, which means that derived Artin n-groupoids already form a higher
category before localizing at the Morita equivalences. In particular, a derived scheme does
not necessarily determine a sheaf of sets, so that the functor (11) has to be refined to a
functor of the form

GpddArt
n ⊆ Fun(N(∆)op,Schd) // Fun(N(∆)op,Sh∞(Schd))

colim // Sh∞(Schd)

from the ∞-category of derived Artin n-groupoids to the ∞-category of stacks (of spaces)
over derived schemes. This functor sends Morita equivalences to equivalences of stacks,
and therefore determines a functor

GpddArt
n [W−1

Mor]
// Sh∞(Schd) (3)

In fact, the above functor factors over a certain simplicial category of ‘higher (derived)
Artin groupoids’, constructed by Pridham [2020], which is shown to be equivalent to the
full sub-∞-category of Sh∞(Schd) on the higher Artin stacks. Although this simplicial
category has the property that Morita equivalences between higher groupoids are indeed
homotopy equivalences, it is not entirely clear whether it is universal with this property,
i.e. whether it is also equivalent to GpddArt

n [W−1
Mor].
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For this reason, we will take a different route and use an explicit description of
GpddArt

n [W−1
Mor] in terms of ∞-categories of spans (discussed in [1919]), similar to the case

of Lie n-groupoids. Using this description of localizations of categories of ‘geometric’
n-groupoids, we give a proof of our main result, which in particular implies that the
functors (22) and (33) are fully faithful:

Theorem (5.15.1). Let X be an ∞-topos together with a subcategory X0−geom of ‘0-geometric
stacks’ and a set P of ‘smooth’ maps between them (see Assumption 3.63.6). The colimit
functor | − | : Gpdgeom

n ⊆ Fun(N(∆)op,X)→ X induces a functor

Gpdgeom
n [W−1

Mor]
// X

which is fully faithful with essential image given by the n-geometric stacks.

In the end, this result mostly involves categorical and simplicial methods, instead of
geometric ones. For example, the description of Gpdgeom

n [W−1
Mor] in terms of spans reduces

the proof to a repeated application of Quillen’s Theorem A, using a certain ‘refinement of
hypercovers’ construction (appearing in [2020]) in each step. Even if the original category of
n-groupoid objects is just an ordinary category (as in the case of Lie n-groupoids), the
intermediate stages appearing in this procedure involve ∞-categories of spans. To deal
with these objects, we decided to work with quasicategories instead of simplicial categories
or model categories. The use of quasicategories also allows us to compare the mapping
spaces of Gpdgeom

n [W−1
Mor] (or its essential image in X) with certain categories of bibundles.

More precisely, we show the following:

Proposition (6.36.3). Let X and Y be geometric n-groupoids in X. Then the mapping space
MapGpdgeom

n [W−1
Mor]

(X,Y ) ' MapX(|X|, |Y |) can be identified with the ∞-category (which is

in fact a Kan complex) of X–Y-bibundles in the sense of Definition 6.16.1.

Outline. We will use Section 22 to elaborate a bit on its content in the setting of Lie
n-groupoids discussed above, which may hopefully serve as a guiding example for the rest
of the paper. Section 33 is a recollection of the basic notions and results involving stacks
and geometric stacks (following e.g. [2424, 2525]). Section 44 recalls the notions of n-groupoid
objects, geometric n-groupoid objects (e.g. Lie n-groupoids) and hypercovers between
them (based on e.g. [11, 88, 2020]); its two main results are topos-theoretic variations of the
well-known fact that taking the realization of a simplicial space sends hypercovers to
equivalences and preserves homotopy pullbacks along Kan fibrations (see Proposition 4.94.9
and 4.124.12). Section 55 is devoted to a proof of our main result stated above (Theorem 5.15.1).
We included a brief discussion of bibundles in Section 66, where we prove Proposition 6.36.3,
and conclude some examples of this theorem in Section 77.

Conventions. Throughout, we will use quasicategories as our chosen model for ∞-
categories. We will use S to denote the ∞-category of spaces (i.e. the coherent nerve of
the simplicial category of Kan complexes), C/c to denote the usual over-∞-category of C
in the sense of Joyal and C/c to denote the ‘alternative slice construction’ of [1616, Section
4.2.1]. We will denote by ∆{i1, ..., ik} ⊆ ∆[n] the subface of the n-simplex whose vertices
are i1, ..., ik.

2. Example: Lie n-groupoids

In this section we will summarize the main results and definitions that appear in the
rest of the text, in the familiar setting of differential topology. Let Mfd be the category
of (Hausdorff, second countable) smooth manifolds and let sSh(Mfd) be the category
of simplicial sheaves with respect to the usual open cover topology. A simplicial sheaf
F : Mfdop → sSet induces a sheaf on Rn, for each n ≥ 0; we will say that a map of
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simplicial sheaves F → G is a weak equivalence if the map Fx → Gx of stalks at each
x ∈ Rn is a weak equivalence of simplicial sets, for each n ≥ 0 (or equivalently, if F → G
induces isomorphisms on homotopy sheaves). These are the weak equivalences in a model
structure due to Joyal [1515], in which the cofibrations are the monomorphisms.

Although any simplicial sheaf is weakly equivalent to a simplicial sheaf which is repre-
sented in each simplicial degree by a coproduct of manifolds (cf. [66]), there is a particular
class of more ‘geometric’ simplicial sheaves, which are represented by Lie n-groupoids. Re-
call that a Lie n-groupoid is a simplicial manifold X : ∆op → Mfd satisfying the following
version of the Kan condition: for each horn inclusion Λi[k] → ∆[k], the map of smooth
manifolds

Xk = X
(
∆[k]

)
// X
(
Λi[k]

)
is a surjective submersion and a diffeomorphism when k > n, where for any simplicial set
K, we define

X(K) := lim
[j]∈∆/K

Xj ∈ Sh(Mfd).

For K = Λi[k], this limit is representable by a manifold because of the Kan conditions

for lower-dimensional horn inclusions (cf. [88, 2626]). Let GpdLie
n ⊆ Fun(∆op,Mfd) be the

category of Lie n-groupoids and maps of simplicial manifolds between them, and note that
we can (and will) think of GpdLie

n as a full subcategory of the category sSh(Mfd). Let us
say that a map of Lie n-groupoids X → Y is a Morita equivalence if it induces a weak
equivalence of simplicial sheaves.

In addition to the Morita equivalences, there are obvious analogues of the usual notions
of Kan fibrations and trivial Kan fibrations for Lie n-groupoids:

Definition 2.1 ([88, 2626]). A map between Lie n-groupoids Y → X is said to be a Kan
fibration (of height m) if for each horn inclusion Λi[k]→ ∆[k], the map

Y
(
∆[k]

)
// X
(
∆[k]

)
×X(Λi[k] Y

(
Λi[k]

)
is a surjective submersion (and a diffeomorphism when k > m). Similarly, it is said to be
a trivial Kan fibration, or a hypercover (of height m) if the map

Y
(
∆[k]

)
// X
(
∆[k]

)
×X(∂∆[k]) Y

(
∆[k]

)
(4)

is a surjective submersion between smooth manifolds (and a diffeomorphism if k > m).

Any map f : Y → X between Lie n-groupoids factors as a section of a hypercover (of
height n − 1), followed by a Kan fibration (of height n): indeed, such a factorization
is provided by the usual path fibration Y ×X X∆[1] → X, where X∆[1] is the simplicial
manifold given by

(
X∆[1]

)
n

= X
(
∆[n]×∆[1]

)
(see the discussion above Definition 4.264.26).

Lemma 2.2. Let f : Y → X be a map of Lie n-groupoids. Then the following are
equivalent:

(1) f is a Morita equivalence.
(2) the path fibration Y ×X X∆[1] → X is a hypercover.

Proof. Since a hypercover is clearly a Morita equivalence and the Morita equivalences
satisfy the 2-out-of-3 property, it follows that (2) implies (1). For the converse, it suffices
to prove that a Kan fibration and Morita equivalence Y → X between Lie n-groupoids
is a hypercover. Assuming that the map (44) is a surjective submersion between smooth
manifolds for each boundary inclusion ∂∆[k]→ ∆[k] with k < m, we will show that the
map

p : Y
(
∆[m]

)
// X
(
∆[m]

)
×X(∂∆[m]) Y

(
∆[m]

)
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is a surjective submersion between smooth manifolds. Since the target is a manifold by
[2626, Lemma 2.4], it suffices to check that for every point y in the domain, there exists a
local section of p whose value at p(y) is y. To do this, let U be a generic (small) open
neighbourhood of p(y) and consider the diagram

Y
(
∆[m+ 1]

)
d0vv ��

∗

��

y
//

ỹ

22

Y
(
∆[m]

)
��

Z

d0

vv

U //

22

Y
(
∂∆[m]

)
×X(∂∆[m]) X

(
∆[m]

)
(5)

where Z = Y
(
Λ0[m+ 1]

)
×X(Λ0[m+1])X

(
∆[m+ 1]

)
. To find a diagonal for the front square

(possibly after shrinking U), observe that there exists a dotted local section U → Z of
the map d0, since the map Y → X induces trivial Kan fibrations on stalks. The resulting
maps ∗ → Z and y : ∗ → Y

(
∆[m]

)
together determine a map

∗ // Y
(
∂∆[m+ 1]

)
×X(∂∆[m+1]) X

(
∆[m+ 1]

)
which admits a dotted lift ỹ : ∗ → Y

(
∆[m+ 1]

)
. Since Y → X was a Kan fibration, the

back face of (55) admits a diagonal lift, which yields a diagonal for the front face after
composing with d0 : Y

(
∆[m+ 1]

)
→ Y

(
∆[m+ 1]

)
. �

Remark 2.3. Since condition (2) can be formulated purely in terms of simplicial manifolds,
it will be more convenient to take this as the definition of a Morita equivalence in the rest
of the paper. As a third alternative definition of Morita equivalences, one can consider
the following construction: associated to any Lie n-groupoid X is a Lie (n− 1)-groupoid

MapR
X whose manifold of k-simplices is given by the submanifold of X

(
∆[k + 1]

)
on those

(k + 1)-simplices whose restriction to the face ∆{0, ..., k} are full degenerate. This Lie

(n− 1)-groupoid comes with an obvious map MapR
X → X0 ×X0 which one can think of as

realizing MapRX as the union of all mapping spaces MapX(x, y) for x, y ∈ X0.
Using this, a map f : Y → X of Lie n-groupoids is a Morita equivalence if and only if it

satisfies the following two conditions:

(3a) f is essentially surjective, i.e. the map Y
(
{0}
)
×X({0}) X

(
∆[1]

)
→ X({1}) is a

surjective submersion.
(3b) f is fully faithful, i.e. the map over Y0 × Y0

MapR
Y

// MapR
X ×X0×X0

Y0 × Y0

is a Morita equivalence of Lie (n− 1)-groupoids (the codomain is a Lie (n− 1)-
groupoid by (3a)).

Indeed, this follows from the corresponding result (see e.g. for Kan complexes by passing
to stalks. Inductively, this reduces being a Morita equivalence to n+ 2 essential surjectivity
conditions (on arrows in degree ≤ n+ 1).

By construction, the inclusion GpdLie
n → sSh(Mfd) sends Morita equivalences to weak

equivalences and therefore induces a functor on localizations

GpdLie
n [W−1

Mor]
// sSh(Mfd)[W−1].

As discussed in the introduction, we are more interested in the simplicial (or∞-categorical)
localizations of these two relative categories, rather than their 1-categorical localizations.
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To describe the simplicial localization of the category of Lie n-groupoids, note that in light
of Lemma 2.22.2 the localization of GpdLie

n at the hypercovers is equivalent to its localization
at the Morita equivalences. The fact that the hypercovers between Lie n-groupoids are
stable under base change results in the following description of the mapping spaces of
GpdLie

n [W−1
Mor] (see e.g. [1313]): for any two Lie n-groupoids X and Y , the space of maps

between them is the classifying space of the category whose objects are spans X
∼← X̃ → Y ,

where X̃ → X is a hypercover, and whose morphisms are commuting diagrams of the form

X̃

��

∼

|| ""

X Y.

X̃ ′
∼

bb <<

There is a similar description of the mapping spaces in sSh(Mfd)[W−1], at least between
locally fibrant simplicial sheaves (in the sense of [33, 1212]), of which Lie n-groupoids are
particular examples. The resulting mapping spaces tend to be much larger than the
mapping spaces in GpdLie

n [W−1
Mor], as they also include spans whose tip need not be

representable by a Lie n-groupoid. Nonetheless, Theorem 5.15.1 asserts that the functor
GpdLie

n [W−1
Mor]→ sSh(Mfd)[W−1] induces weak equivalences on mapping spaces.

The fact that sSh(Mfd) is a simplicial model category allows for various other de-
scriptions of its simplicial localization sSh(Mfd)[W−1]. For example, one may also re-
alize sSh(Mfd)[W−1] as the full simplicially enriched subcategory of sSh(Mfd) on the
fibrant simplicial sheaves (in the Joyal model structure). Consequently, the functor

GpdLie
n → sSh(Mfd) sending each Lie n-groupoid to a fibrant replacement X∧ of X induces

weak equivalences on mapping spaces

MapGpdLie
n [W−1](X,Y ) ' MapsSh(Mfd)(X

∧, Y ∧)

so that GpdLie
n [W−1] can be identified with the full simplicial subcategory of sSh(Mfd) on

those fibrant simplicial sheaves that can be represented by Lie n-groupoids, up to weak
equivalence.

The simplicial category sSh(Mfd)[W−1] is a model for the ∞-category Sh∞(Mfd) of
stacks on the site of smooth manifolds, which is a prototypical example of an ∞-topos.
For each Lie n-groupoid, the simplicial sheaf X∧ is a model for the associated stack of X,
which can be thought of a the (homotopy) quotient of the Lie n-groupoid in the∞-category
Sh∞(Mfd). More precisely, it will be useful to think of a Lie n-groupoid X as a certain
simplicial diagram in Sh∞(Mfd), i.e. as a bisimplicial sheaf which happens to be constant
in one simplicial direction, and to think of the functor X 7→ X∧ as the composite functor

GpdLie
n ⊆ Fun(N(∆)op,Sh∞(Mfd))

colim // Sh∞(Mfd).

For every Lie n-groupoid X, there is a canonical map q : X0 → colimX, which given an
atlas for the stack colimX. There is a canonical groupoid object in Sh∞(Mfd) associated
to this map q (its Čech nerve), whose stack of arrows is given by X0 ×colimX X0. In turn,

this stack arises as the colimit of the Lie (n− 1)-groupoid MapR
X from Remark 2.32.3 (see

Lemma 5.85.8).
This observation can be reversed to provide the following alternative (inductive) de-

scription of the essential image of the above functor (see Proposition 5.45.4): let us say that a
stack is (n− 1)-geometric if it arises as the colimit of a Lie (n− 1)-groupoid. Then a stack
F is n-geometric if and only if it arises as the quotient of a (homotopy coherent) groupoid
object G in (n − 1)-geometric stacks, where the source and target map d0, d1 : G1 → G0

are surjective submersions (see Definition 3.93.9). In fact, Theorem 5.15.1 implies that formally
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inverting the Morita equivalences between such groupoid objects also results in the full
sub-∞-category of Sh∞(Mfd) on the n-geometric stacks. We can therefore summarize the
situation as follows:

Corollary 2.4. The following three ∞-categories (or simplicial categories) are equivalent:

(1) the full sub-∞-category of Sh∞(Mfd) on the n-geometric stacks, i.e. the full sim-
plicial subcategory of sSh(Mfd) on those fibrant simplicial sheaves that are weakly
equivalent to Lie n-groupoids.

(2) the simplicial (or ∞-categorical) localization of GpdLie
n at the Morita equivalences

(or equivalently, at the hypercovers).
(3) the simplicial (or ∞-categorical) localization at the Morita equivalences of the

category of (homotopy coherent) groupoid objects in the ∞-category of (n − 1)-
geometric stacks, whose source and target map are surjective submersions.

Remark 2.5. The ∞-categorical localization of the ∞-category of groupoid objects
in (n − 1)-geometric stacks can be constructed in the same way as the localization

GpdLie
n [W−1

Mor] and has mapping spaces given by classifying spaces of the ∞-categories of

spans X ← X̃ → Y , where the left map is a hypercover (see Definition 4.174.17). Alternatively,
the mapping space between two groupoids (and more generally, between n-groupoids) X
and Y can also be described as the space of bibundles between them; we will come back to
this in Section 66.

3. Preliminaries on geometric stacks

In this section we will recall the basic homotopy theory of (higher) stacks (tracing back
at least to the seventies [33, 1515]) and geometric stacks (due to Simpson [2424]), both of which
are natural generalizations of the classical notion of a (geometric) stack in groupoids [55].
For simplicity, we will formulate the theory of geometric stacks at the level of toposes,
rather than sheaves and sites.

3.1. Toposes and stacks.

Definition 3.1. An ∞-topos X is an ∞-category X which arises as a left exact reflective
localization of a presheaf ∞-category. In other words, an ∞-category X is an ∞-topos if
there exists a small ∞-category C, together with an adjunction

L : Fun(Cop, S)
//
X : i? _oo

so that the right adjoint i is fully faithful and the left adjoint L preserves finite limits.

Remark 3.2. The presentation of an ∞-topos X as a reflective subcategory of some
Fun(Cop, S) can be modeled directly at the model-categorical level: one simply takes a
suitable Bousfield localization of the covariant model structure on sSet/Cop or the projective
(or injective) model structure on the category Fun(C[C]op, sSet) of simplicial presheaves on
the simplicial category associated to C. The resulting model category is usually called a
model topos [2323].

The main examples of ∞-toposes arise by considering stacks on sites (or a homotopical
variant thereof, like simplicial sites and model sites).

Example 3.3. Let C be a site and consider a functor F : Cop → S to the ∞-category of
spaces. If {Ui → V } is a cover of an object V in C, then there is an associated augmented
cosimplicial diagram of spaces

F (V ) //
∏
i F (Ui)

//

//

∏
i,j F (Uij)oo

//

//

// ∏
i,j,k F (Uijk) · · ·oo

oo
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where Uij = Ui ×V Uj , and similarly for n-fold fiber products. The functor F is a stack
(or satisfies descent) if the above diagram realizes F (V ) as the (homotopy) limit of the
solid cosimplicial diagram of spaces. If F is a sheaf of sets, we can think of F as a stack
by considering each set F (V ) as a discrete space and if F is a stack of groupoids, we can
think of F as a stack by taking the classifying space of each groupoid F (V ).

The full sub-∞-category Sh∞(C) ⊆ Fun(Cop, S) on those functors that satisfy descent
is an ∞-topos. Indeed, the inclusion Sh∞(C) ⊆ Fun(Cop, S) admits a left adjoint L
preserving finite limits, which sends a functor F to its associated stack. Under certain
finite dimensionality conditions on the site C (see e.g. [1616, Theorem 7.2.3.6]), the category
Sh∞(C) can be modeled by the Joyal model structure on simplicial sheaves [1515], or by
the local model structure on simplicial presheaves [1212]; in general, these model categories
describe the further subcategory Sh∧∞(C) ⊆ Sh∞(C) (which is also an ∞-topos) of functors
satisfying descent with respect to hypercovers.

For some of the (defining) properties of ∞-toposes, see [2323] or [1616, Section 6.1]. One
such property is the fact that∞-toposes have a good notion of ‘surjections’ (more precisely,
effective epimorphisms). Since such maps will appear frequently later on, let us quickly
recall their basic theory. Let ∆+ be the category of (possibly empty) finite linear ordinals,
i.e. the augmented simplex category which can be depicted as

[−1]
d0
// [0]

d0
//

d1
// [1]s0oo

d0
//

d2
//

d1 // [2] · · ·
s1oo

s0oo

Alternatively, one can identify ∆+ with the cone of the simplex category. There is an
obvious inclusion i : ∆→ ∆+, as well as the inclusion j : [1]→ ∆+ classifying the map
[−1]→ [0]. Consider the associated composite of adjunctions

Fun(N(∆)op,X)
i! //

Fun(N(∆+)op,X)
j∗
//

i∗
oo Fun(∆[1]op,X)

j∗
oo (6)

where i! takes the left Kan extension along (the opposite of) i and j∗ takes the right Kan
extension along (the opposite of) j. Since i : ∆ → ∆+ realizes ∆+ as the cone of ∆,
the left Kan extension of a simplicial object X along (the opposite of) i is simply the
associated colimiting cocone of X. We will usually denote the object (i!X)−1 (i.e. the
colimit of X) by |X|.

The composite right adjoint sends an arrow X0 → X−1 in H to its Čech nerve Č•(f)
(see [1616, 6.1.2.11]), which is the simplicial object given in degree n by

Čn(f) ' X0 ×X−1
X0 ×X−1

· · · ×X−1
X0 (n times).

Upon applying the composite left adjoint to this simplicial object, we obtain the natural
map X0 → |Č•(f)| from X0 to the colimit of the Čech nerve of f in X.

Definition 3.4 ([1616, Section 6.2.3]). A map f : X → Y is called an effective epimorphism
if the counit map |Č•(f)| → Y is an equivalence.

Example 3.5.

(1) Consider a diagram ∆[2]→ X of the form

Y
g

##
X

h
//

f
;;

Z.



HIGHER STACKS AS A CATEGORY OF FRACTIONS 9

If g and f are effective epimorphisms, then so is h and when h is an effective
epimorphism, then so is g [1616, Corollary 6.2.3.12]. In particular, any morphism
admitting a section (up to homotopy) is an effective epimorphism.

(2) The class of effective epimorphisms is stable under base change [1616, Remark
6.2.3.7].

(3) If X is a simplicial object in X, then the canonical map f : X0 → |X| is an effective
epimorphism: indeed, by the triangle identities for the composite adjunction of
(66), the counit map from X0 → |Č•(f)| to f : X0 → |X| admits a section (up to
homotopy).

(4) When X = S is the ∞-category of spaces, an effective epimorphism is just a map
inducing a surjection on π0. When X = Sh∞(C) is the category of stacks on a site,
a map is an effective epimorphism if and only if the induced map on π0-sheaves is
an epimorphism.

3.2. Geometric stacks. We will now recall the notion of an n-geometric stack, introduced
by Simpson [2424]. Informally, one defines n-geometric stacks inductively, starting with
a class of 0-geometric stacks (often given by objects like manifolds, schemes or derived
schemes) and defining an n-geometric stack to be an object X that can be covered by a
0-geometric stack M , in such a way that the fibers of M → X vary smoothly over M . In
particular, it requires an a priori notion of 0-geometric stacks and smooth maps between
them, subject to the following conditions (see also [2525]):

Assumption 3.6. Let X be an ∞-topos. Fix a full subcategory X0−geom ⊆ X of 0-
geometric stacks in X, as well as a class P of smooth maps between them, such that the
following conditions hold:

(1) the smooth maps are stable under homotopy and finite composition.
(2) the full subcategory X0−geom ⊆ X is closed under all pullbacks along smooth maps.

The base change of a smooth map is again smooth.
(3) Given maps f : Z → Y and g : Y → X in X0−geom, the map g is smooth if the

composite gf is smooth and f is both smooth and an effective epimorphism.
(4) If p : Y → X is an effective epimorphism whose target is 0-geometric, then there

exists a triangle in X of the form

U //

q
  

Y

p
~~

X

where the map q is a smooth effective epimorphism between 0-geometric stacks.

Example 3.7. When X = Sh∞(Mfd), one can take X0−geom = Mfd and take the smooth
maps to be either the submersions or the etale maps. Note that the open inclusions do not
satisfy condition (3) and that the set of all C∞-maps does not satisfy condition (2). Some
more examples are discussed in Section 77.

While the first three conditions of Assumption 3.63.6 concern the behaviour of the 0-
geometric objects and smooth maps themselves, condition (4) relates arbitrary effective
epimorphisms in X to smooth maps. For certain applications it will be useful to consider
the following relative version of condition (4):

Variant 3.8. Let A ⊆ X be a full sub-∞-category of X which is closed under limits and
contains X0−geom. We will say that condition (4) holds relative to A if it holds for any
effective epimorphism Y → X in A whose codomain is 0-geometric.

Definition 3.9 (Simpson, [2424]). Let (X,X0−geom, P ) be as in Assumption 3.63.6.
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(a0) We call a morphism X → Y in X 0-smooth if for any 0-geometric stack U with a
map to Y , the base change X ×Y U → U is equivalent to a smooth map between
0-geometric stacks.

(bn) We say an object X ∈ X is n-geometric if it admits an atlas: there is an object
U ∈ X0−geom and a map U → X which is (i) an effective epimorphism and (ii)
(n− 1)-smooth.

(an) We call a morphism X → Y n-smooth if for any U ∈ X0−geom with a map to Y , the
pullback X ×Y U is an n-geometric stack which admits an atlas by a 0-geometric
stack V , so that the composite map V → X ×Y U → U is smooth.

Remark 3.10. The above list is traditionally extended to include the notion of n-
representable maps [2525]. In the case where the 0-geometric stacks are not closed under
pullbacks in X (e.g. when X0−geom = Mfd), this notion is not so useful because maps
between 0-geometric stacks need not be 0-geometric.

Remark 3.11. Let p : Y → U be a map from an n-geometric stack to a 0-geometric stack.
If there exists an atlas V → Y so that the composite V → Y → U is smooth, then for
every atlas W → Y , the composite W → Y → U is smooth (this follows from part (3) of
Assumption 3.63.6).

The following lemma summarizes the basic properties of smooth maps:

Lemma 3.12 ([2525]). Under the assumptions from 3.63.6, the following hold:

(1) The n-smooth maps are stable under homotopy, composition and base change. If
the codomain of an n-smooth map is n-geometric, then its domain is n-geometric
as well.

(2) Let f : Y → X be a map of stacks and let p : Z → X be an effective epimorphism.
If the base change f∗Z → Z is n-smooth, then f is n-smooth.

(3) Let f : Y → X be a k-smooth map between n-geometric stacks. Then f is n-smooth.

Furthermore, in the situation of Variant 3.83.8 assertions (2) and (3) hold when all objects
involved are contained in A ⊆ X.

Proof. It is straightforward to verify (1) (see also [2525]). For (2), let U ∈ X0−geom and let
g : U → X be a map. Since p : Z → X is an effective epimorphism (in A), by part (4) of
Assumption 3.63.6 (relative to A) there exists a commuting diagram in X

V

p′

��

g′
// Z

p

��

U
g
// X

in which p′ is a smooth effective epimorphism in X0−geom. The base change of the above
commuting diagram along the map f : Y → X now yields a commuting diagram

f∗V
f∗(g′)

//

f∗(p′)

��

f∗Z

f∗(p)

��

f∗U
f∗(g)

// Y

The object f∗V is equivalent to the pullback V ×Z f∗Z, which is n-geometric since
f∗Z → Z was assumed n-smooth. The map f∗(p′) : f∗V → f∗U is a base change of p′

and hence a 0-smooth effective epimorphism. The composition of this map with an atlas
W → f∗V provides an atlas W → f∗U for f∗U , which shows that f∗U is n-geometric.
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The composite map W → f∗U → U is equivalent to the composition W → f∗V → V → U ,
which is the composition of three smooth maps.

For (3), let p : U → X be an atlas for the n-geometric stack U (in A). By (2), it
suffices to show that the k-smooth map U ×X Y → U is in fact n-smooth. But the map
U ×X Y → Y is (n− 1)-smooth with an n-geometric target, so that U ×X Y is n-geometric
(hence U ×X Y → U is also n-smooth). �

Remark 3.13. Using the above properties, one easily sees that the full subcategory of
n-geometric stacks, together with the class of n-smooth maps between them, also satisfies
the conditions of Assumption 3.63.6.

Let X ∈ X be an n-geometric stack and let p : U → X be an atlas for X. The Čech
nerve of the map p yields a groupoid object G : N(∆)op → X with the property that
G0 = U and that the two maps d0, d1 : G1 → U are (n − 1)-smooth (in particular, G1 is
(n − 1)-geometric). Conversely, consider any groupoid object G : N(∆)op → X with the
property that d0, d1 : G1 → G0 are smooth maps between (n− 1)-geometric stacks. Then
the associated map p : G0 → |G| is effective epimorphism by Example 3.53.5. Furthermore,
since any groupoid object G in an ∞-topos X is equivalent to the Čech nerve of G0 → |G|
[1616, Theorem 6.1.0.6], the map p is (n− 1)-smooth: indeed, the base change of p along
itself is equivalent to the (n− 1)-smooth map d0 : G1 → G0. Composing p with an atlas of
G0 now provides an atlas for |G|, so that |G| is an n-geometric stack.

In other words, the n-geometric stacks are precisely those stacks that arise as the
quotients of smooth groupoid objects in the category of (n − 1)-geometric stacks. In
Section 55 we will give an iteration of the above procedure, which realizes each n-geometric
stack as the colimit of a k-groupoid object with values in (n− k)-geometric stacks.

4. Higher groupoids

In this section we will recall the notion of an n-groupoid object (in an ∞-topos) and
the notion of a geometric n-groupoid object, defined in terms of the data 3.63.6.

4.1. Simplicial homotopy in toposes.

Definition 4.1. Let X : N(∆)op → C be a simplicial object in an ∞-category C and let
K be a simplicial set. If it exists, we denote by X(K) the matching object of X associated
to K, obtained as the limit in C of the diagram

N(∆nd/K)op // N(∆)op X // C

where ∆nd/K is the full subcategory of ∆/K on the nondegenerate simplices of K.

Example 4.2. The category ∆nd/∆[k] has the identity map as a terminal object, so that
X(∆[k]) ' Xk. For any injective map of simplicial sets i : K → L, there is a natural functor
∆nd/K → ∆nd/L (over ∆) which induces (if it exists) a natural map X(L) → X(K)
called the matching map associated to i. More generally, if p : Y → X is a map of simplicial
objects in C and i : K → L is an injective map of simplicial sets, then the relative matching
map of p with respect to i is (if it exists) the map associated to the square

Y (L) //

��

Y (K)

��

X(L) // X(K)

from Y (L) to the pullback.
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Remark 4.3. Let C be an ∞-category with all small limits. Then restriction along the
opposite of the Yoneda embedding yields an equivalence of ∞-categories

FunR(PSh∞(N(∆))op,C)
' // Fun(N(∆)op,C)

between the category of limit-preserving functors Fun(N(∆)op, S)op → C and the category
of simplicial objects C [1616, Theorem 5.1.5.6]. If X : N(∆)op → C is a simplicial object in C,
denote the resulting limit preserving functor by X(−) : Fun(∆op, S)op → C. The value of
this functor on a simplicial set K (viewed as a discrete simplicial space) is precisely X(K),
since any simplicial set is the colimit of its category of nondegenerate elements.

Remark 4.4. If K → K ′ and K → L are two inclusions of simplicial sets with pushout
L′, then the square of inclusions of posets

∆nd/K //

��

∆nd/K
′

��

∆nd/L // ∆nd/L
′

is cocartesian. It follows from [1616, Proposition 4.2.3.8, Remark 4.2.3.9] that the corre-
sponding square of matching objects

X(L′) //

��

X(K ′)

��

X(L) // X(K)

is cartesian (more precisely, if X(K), X(K ′) and X(L) exist, then X(L′) exists and fits
into the above pullback square).

Remark 4.5. Let C = N(A◦) be the ∞-category associated to a simplicial combinatorial
model category A. Then there is an equivalence of ∞-categories N(Fun(∆op,A)◦) →
Fun(N(∆)op,C) where Fun(∆op,A) carries the Reedy model structure [1616, Proposition
4.2.4.4]. If X : ∆op → A is a Reedy fibrant (and cofibrant) diagram with associated
diagram X ′ : N(∆)op → C, and K is a simplicial set, then X ′(K) can be modeled by the
realization XK = lim[n]∈(∆nd/K)op Xn in the sense of [1010, §16.3].

Definition 4.6. Let X be an ∞-topos and 0 ≤ n ≤ ∞. A map of simplicial objects
Y → X in X is said to be a Kan fibration of height n if for each horn inclusion Λi[k]→ ∆[k],
the relative matching map

Y (∆[k]) ' Yk // X(∆[k])×X(Λi[k]) Y (Λi[k])

is an effective epimorphism if k ≤ n and an equivalence if k > n. A simplicial object X is
called an n-groupoid in X if X → ∗ is a Kan fibration of height n.

Similarly, a map of simplicial objects Y → X in X is said to be a hypercover of height n
if for each boundary inclusion ∂∆[k]→ ∆[k], the map

Y (∆[k]) ' Yk // X(∆[k])×X(∂∆[k]) Y (∂∆[k])

is an effective epimorphism if k ≤ n and an equivalence if k > n.

Remark 4.7. In light of Remark 3.23.2 and 4.54.5, the above definition admits an analogous
formulation in terms of model categories: one simply picks a model category A presenting
X and considers Reedy fibrations between Reedy fibrant diagrams for which the relevant
matching maps are effective epimorphisms (which is a property invariant under weak
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equivalences) or weak equivalences. All results in this section can be proven in terms of
model categories, at the cost of having to add Reedy fibrancy hypotheses at various points.

Remark 4.8. If F,G : I→ C are two diagrams in an ∞-category C, recall that a natural
transformation φ : F → G between them is said to be cartesian (or equifibered) if each
map j → i in I induces a cartesian square

F (j) //

φj

��

F (i)

φi

��

G(j) // G(i).

A natural transformation of simplicial objects p : Y → X is a Kan fibration of height 0 if
and only if it is cartesian.

The next two propositions give the basic properties of Kan fibrations and hypercovers
(of finite height) that we will need:

Proposition 4.9. Let p : Y → X be a hypercover of height n <∞ in an ∞-topos X. Then
the induced map of colimits |Y | → |X| is an equivalence.

This result is elementary when H = S is the category of spaces and follows, using
Boolean localization [1414], when X arises from the Joyal model structure on simplicial
objects in an ordinary topos [1515]. Before going into the proof, let us recall the following
simple construction:

Construction 4.10. Let X : N(∆op) → X be a simplicial object in X. For each k,
restriction along the inclusion τ : N(∆≤k)→ N(∆) induces a functor

τ∗ : Fun(N(∆op),X)/X // Fun(N(∆op
≤k),X)/τ∗X

which admits a right adjoint, sending V → τ∗X to the base change τ∗V ×τ∗τ∗X X of the
right Kan extension along τ . Let

coskk : Fun(N(∆)op,X)/X // Fun(N(∆)op,X)/X

be the composition of τ∗ with this right adjoint. For a map of simplicial objects p : Y → X,
the induced map q : Y → coskk(p) (over X) is given in degree j by the map

Y (∆[j]) // Y (skk∆[j])×X(skk∆[j]) X(∆[j]).

This can be checked directly, or follows immediately by picking a model-categorical
presentation A of X, in which case the above coskeleton construction for simplicial objects
in A is well-known .

In any case, note that the map q : Y → coskk(p) is an equivalence in degrees ≤ k. If p
is a hypercover, then q is a degreewise effective epimorphism and the map coskk(p)→ X
is a hypercover of height k. If p is itself a hypercover of height k, then q is a degreewise
equivalence (in other words, p is k-coskeletal).

Proof (of Proposition 4.94.9). We will mimic the proof of [77, A.4] (and the variant thereof
in [1616, 6.5.3.9]). We proceed by induction on the height n, the case n = −1 being trivial
since in that case p : Y → X is a natural equivalence. Let us suppose that the proposition
holds for hypercovers of height n − 1 and let p : Y → X be a hypercover of height n.
Taking the (n−1)-coskeleton yields a map q : Y → coskn−1(p) =: U in Fun(N(∆)op,X)/X.
As mentioned above, the map q is an equivalence in degrees ≤ n − 1 and an effective
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epimorphism in degrees ≥ n. For the rest of the proof, it will be useful to identify the map
q in Fun(N(∆)op,X)/X with a diagram

α : N(∆op × [2]) // X

classifying Y → U → X. Let α : N(∆op
+ × [2])→ X be the left Kan extension of α along

the obvious inclusion. It follows from [1616, Proposition 4.3.2.9] that α classifies a diagram
of augmented simplicial objects Y → U → X, each of which is a colimit diagram (i.e.
Y −1 = |Y | is the colimit of Y ).

We need to prove that the composite map Y −1 → U−1 → X−1 is an equivalence. Since
U → X is a hypercover of height n− 1 (Construction 4.104.10), the map U−1 → X−1 is an
equivalence. To prove that Y −1 → X−1 is an equivalence, we will show that it is a retract
of U−1 → X−1 in X/X−1.

To this end, let us denote by ∆++ the cone of ∆+ and denote extra initial object by
[−2] (so that ∆++ looks like [−2]→ [−1]→ [0] · · · , proceeding as ∆). There is an obvious
functor [2]→∆op

++ sending i to [−i]. Let

W : N(∆op
+ ×∆op

++) // X

be the right Kan extension of α along N(∆op
+ × [2])→ N(∆op

+ ×∆op
++). For each n ≥ −1,

a simple cofinality argument shows that the object Wn,• is given by the Čech nerve of the
map Yn → Un

· · · Yn ×Un Yn
//

// Yn //oo Un // Xn (7)

together with the additional map Un → Xn which witnesses that the entire augmented
simplicial object sits over Xn. Now recall that there are functors

δ : ∆+
// ∆+ ×∆++; [m] � // ([m], [m])

ιk : ∆+
// ∆+ ×∆++; [m]

� // ([m], [k])

together with natural transformations ι−2 → δ → ι0. Restricting W along the opposite of
these functors yields a ∆[2]-diagram of augmented simplicial objects

ι∗0W = Y // δ∗W // ι−2W = X

which in degree −1 is our original diagram Y −1 → U−1 → X−1. Each of the above three
augmented simplicial objects is a colimit diagram. This holds by construction for Y and X,
and for δ∗W , this follows from the following argument. By construction, U−1 is the colimit
of W

∣∣N(∆op × {−1}). Since the inclusion N(∆op × {−1}) ⊆ N(∆op ×∆op
+ ) is cofinal, it

follows that U−1 is the colimit of the entire diagram W
∣∣N(∆op ×∆op

+ ). However, for each

k ≥ 0 the diagram W
∣∣N({k} ×∆op

+ ) is given by the left part of (77), which is a colimit
diagram since Yn → Un was an effective epimorphism. It follows from [1616, 4.3.3.9] that
U−1 is the colimit of the bisimplicial object W

∣∣ mmN(∆op ×∆op). But the the diagonal

map δ : N(∆op) → N(∆op ×∆op) is cofinal, so we conclude that δ∗W−1 = U−1 is the
colimit of δ∗W

∣∣N(∆op).

To show that Y −1 is a retract of U−1 over X−1, it therefore suffices to prove that the
simplicial object Y is a retract of δ∗W

∣∣N(∆op) overX. Unfortunately, such a retraction may
not exist at the level of simplicial objects. However, it will exist at the level of semisimplicial
objects (i.e. without the degeneracies). Since the inclusion N(∆op

s ) → N(∆op) of the
semisimplicial category is cofinal [1616, 6.5.3.7], this will be enough to prove that Y −1 is a
retract of U−1 over X−1.

Let us denote the underlying semisimplicial object of a simplicial object Y by Y s. It
follows from [1616, 6.5.3.8] that the map Y s → Xs is n-coskeletal whenever Y → X is a
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hypercover of height n. In particular, to construct a retraction δ∗W
∣∣N(∆op

s )→ Y s over
Xs, it will suffice to construct a retraction (up to homotopy)

ι∗0W //

$$

δ∗W //

��

ι∗0W

zz

ι∗−2W

where all of the above objects are restricted to N(∆op
s,≤n). To construct this retraction (up

to homotopy), let us consider the functor

f : ∆s,≤n // ∆+ ×∆++

given by f([n]) = ([n], [n]) and f([m]) = ([m], [−1]) for all m < n. One easily sees that this
is (only) functorial with respect to the face maps in degrees ≤ n (using that [−1] is initial
in ∆+). The functor f comes equipped with natural transformations ιn ← f → δ (with
ιn and δ restricted to N(∆s,≤n)). Unwinding the definitions, one obtains a commuting

diagram of N(∆op
s,≤n)-indexed diagrams over X = ι∗−2W of the form

δ∗W

ι∗0W

99

//

%%

f∗W

'
OO

'
��

ι∗nW // ι∗0W.

The vertical two arrows are levelwise equivalences since the map Yk → Uk is an equivalence
in degrees k ≤ n− 1, so that its Čech nerve is essentially constant. On the other hand, the
canonical map ι∗0W → ι∗nW associated to the map [n]→ [0] in ∆ has a retraction (over
ι∗−2W ), which is obtained by picking a section of the map [n]→ [0]. It follows that δ∗W is

a retract of Y = ι∗0W over ι∗−2W = X, as we needed to show. �

Remark 4.11. The analogue of this lemma when n =∞ holds if and only if the∞-topos is
hypercomplete (see [1616, Section 6.5.2]): indeed, suppose that p : Y → X is a hypercover of
infinite height and factor p as Y → coskn(p)→ X. The second map induces an equivalence
on colimits by the previous proposition and the map |Y | → |coskn(p)| is (n− 1)-connective
[1616, Lemma 6.5.3.10] (i.e. its (n − 2)-truncation is terminal in X/|coskn(p)|). It follows
that |Y | → |X| is (n− 1)-connective for all n ≥ 0, which means that it is an equivalence if
X is hypercomplete.

Conversely, if f is n-connective for all n, then (essentially by definition of n-connectivity
[1616, Definition 6.5.1.10]) the map of constant simplicial diagrams cst(f) : cst(Y )→ cst(X)
is a hypercover, whose induced map of colimits is f . It follows that any ∞-connective map
is an equivalence, which means precisely that X is hypercomplete.

Proposition 4.12. Let p : Y → X be a Kan fibration of height n < ∞ between two
simplicial objects in an ∞-topos X. Then p is a realization fibration, i.e. for any map of
simplicial objects X ′ → X, the natural map of colimits |Y ×X X ′| → |Y | ×|X| |X ′| is an
equivalence.

Example 4.13. Recall from Remark 4.84.8 that Kan fibrations of height 0 are cartesian
natural transformations. Such Cartesian natural transformations are always realization
fibrations: indeed, if F → G is a cartesian natural transformation of J-diagrams in X and
G′ → G is another natural transformation, then the base change F ′ = F ×G G′ → G′ is a
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cartesian transformation as well. By (Rezk) descent (see [2222] or [1616, Theorem 6.1.3.9(4)]),
the natural transformation

F ′(j)
' // G′(j)×G(j) F (j)

' // G′(j)×G(j)

(
G(j)×colimG colimF

)
is an equivalence. Since the target is naturally equivalent to G′(j) ×colimG colimF and
base change in an ∞-topos X preserves all small colimits, the result follows.

The proof of Proposition 4.124.12 consists of a descent argument (as in [2222]) to reduce to a
simpler statement about Kan fibrations over simplices, which is proven by a well-known
simplicial argument.

Notation 4.14. If S ∈ X is an object, let us denote by [k]S : N(∆)op → X the image of S
under the functor X→ Fun(N(∆)op,X) taking the left Kan extension along the inclusion
{[k]} → N(∆)op. A map S → T in X induces a map [k]S → [k]T and a map [k]→ [k′] in
∆ induces a map [k]S → [k′]S . Observe that the colimit |[k]S | is equivalent to S (being
the composition of two left Kan extensions).

Lemma 4.15. The following statements are equivalent for 0 ≤ n <∞:

(1) for any ∞-topos X, a Kan fibration p : Y → X of height n is a realization fibration.
(2) for any ∞-topos X, a Kan fibration p : Y → [k]S of height n is a realization

fibration.
(3) for any ∞-topos X, a Kan fibration p : Y → [k]S of height n and maps [m]→ [k]

in ∆ and T → S in X, the map |Y ×[k]S [m]T | → |Y | ×S T is an equivalence.
(4) for any ∞-topos X and a Kan fibration p : Y → [k]∗ of height n, the maps

α : {0} → [k] and β : {k} → [k] in ∆ induce equivalences |α∗Y | → |Y | and
|β∗Y | → |Y | in X.

Proof. It is easy to see that (1)⇒ (2)⇒ (3)⇒ (4). To see that (2)⇒ (1), let p : Y → X be
a Kan fibration of height n, let f : X ′ → X be a map of simplicial objects and let Y ′ denote
the levelwise pullback X ′ ×X Y . Observe that for any X ∈ Fun(N(∆)op,X), there exists
a colimit diagram V : J� → Fun(N(∆)op,X) with cone object V (∗) = X, such that each
V (j) with j ∈ J is of the form [k]S for some [k] ∈∆, S ∈ X. Taking the base change of the
diagram V over X with X ′, Y and Y ′ yields a diagram J×∆[1]×∆[1]→ Fun(N(∆)op,X)
whose value at fixed j ∈ J is given by the cartesian square

Y ′ ×X V (j) //

��

Y ×X V (j)

��

X ′ ×X V (j) // V (j).

The natural transformation Y ×XV (−)→ V (−) is cartesian (see Remark 4.84.8), which means
that colimJ Y ×X V (−) ' Y by descent, and similarly for X ′ ×X V (−) and Y ′ ×X V (−).
Furthermore, the right vertical map in the above square is a Kan fibration of height n over
an object [k]S and therefore a realization fibration by (2).

This implies (a) that the above square of simplicial diagrams in X remains cartesian
after taking the colimit and (b) that the natural transformation |Y ×X V (−)| → |V (−)| of
J-diagrams in X is cartesian as well. Example 4.134.13 (for the cartesian map of J-indexed
diagrams |Y ×X V (−)| → |V (−)|) shows that taking the colimit over J gives the desired
equivalence |Y ′| → |X ′| ×|X| |Y |.

To see that (3)⇒ (2), let p : Y → [k]S be a Kan fibration of height n and let Z → [k]S be
a map. We can realize Z → [k]S as the colimit of a diagram U : J→ Fun(N(∆)op,X)/[k]S
such that each U(j) is a map [m]T → [k]S induced by maps [m]→ [k] in ∆ and T → S in
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X. By assumption (3) it follows that the natural transformation of J-diagrams in X∣∣U(−)×[kS ] Y
∣∣ //

∣∣U(−)
∣∣×|[k]S | |Y |

is a levelwise equivalence. Taking the colimit over J and using that base change in X

preserves colimits, one finds that the map |Z ×[k]S Y | → |Z| ×|[k]S | |Y | is an equivalence.
Finally, to see that (4)⇒ (3), suppose that p : Y → [k]S is a map and [m]→ [k] and

T → S are maps in ∆ and X. Since [k]S : N(∆)op → X naturally sits over its colimit S,
we may replace X by the ∞-topos X/S and assume that S = ∗. The map [m]T → [k]∗
factors as [m]T → [k]T → [k]∗ and gives a composite pullback diagram

Y ′′ //

��

Y ′ //

��

Y

��

[m]T // [k]T // [k]∗

Because taking the product with T preserves coproducts, the map [k]T → [k]∗ can be
identified with the projection map T × [k]∗ → [k]∗. Consequently, it is a Kan fibration of
height 0 and a realization fibration by Example 4.134.13. The right square therefore remains
cartesian after taking the colimit over N(∆)op, so it suffices to show that the map Y ′′ → Y ′

induces an equivalence of colimits (as the map [m]T → [k]T does too). Replacing X by
X/T and T by ∗, this follows from assumption (4) and a simple 2-out-of-3 argument. �

Proof (of Proposition 4.124.12). It remains to prove part (4) of the previous lemma. Let
Y → [k]∗ be a Kan fibration of height n. We will show that base change Y0 → Y of the
map {0} → [k]∗ induces an equivalence on colimits; the other case proceeds similarly.

Let h : [k] × [1] → [k] be the homotopy from the constant map with value 0 to the
identity map on [k] and consider the base change h∗Y → [k]∗ × [1]∗. Note that the base
change to [k]∗ × {0} yields the map Y0 × [k]∗ → [k]∗ and the base change to [k]∗ × {1}
yields p : Y → [k]∗.

Consider the Kan fibration Γ(∆[1], h∗Y )→ [k]∗ given by

(h∗Y )∆[1] ×([1]∗×[k]∗)∆[1] {id[1]} × [k]∗ → [k]∗

(see Example 4.224.22 for the definition of the cotensor of a simplicial object in X and a
simplicial set). The map Y0 → Y now fits into a commuting diagram

Y0

ww ��
%%

Y0 × [k]∗ Γ(∆[1], h∗Y )
ev0

oo
ev1

// Y

A simple exercise in simplicial combinatorics shows that the bottom two maps are hyper-
covers of height n and therefore induce equivalences upon taking colimits over N(∆)op,
by Proposition 4.94.9. Since the map Y0 → Y0 × [k]∗ induces an equivalence upon taking
colimits as well, the result follows. �

Remark 4.16. If X is a hypercomplete ∞-topos, then Proposition 4.124.12 also holds for
n = ∞. Indeed, in that case X/S is hypercomplete for any S ∈ X, as long as X is
hypercomplete (this follows e.g. from the characterization of hypercompleteness in Remark
4.114.11). The proof of Lemma 4.154.15 then shows that the four given statements are equivalent for
n =∞ and all hypercomplete ∞-toposes. Invoking Remark 4.114.11 rather than Proposition
4.94.9 in the above proof then yields the desired result.
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4.2. Geometric groupoids. Let X be an ∞-topos, together with a full subcategory
X0−geom ⊆ X and a class P of smooth maps as in Assumption 3.63.6. In this situation, there
is an obvious ‘geometric’ analogue of the notion of an n-groupoid object.

Definition 4.17. Let p : Y → X be a map of simplicial objects in X and 0 ≤ n ≤ ∞. We
will say that p is a geometric Kan fibration of height n if it is a Kan fibration of height n
such that the relative matching map

Y (∆[k]) ' Yk // X(∆[k])×X(Λi[k]) Y (Λi[k])

is 0-smooth for all k ≤ n. If in addition the map Y0 → X0 in X is 0-smooth, we will say
that the map p is a smooth Kan fibration (of height n).

We will say that a simplicial object X in X is a geometric n-groupoid if it is an n-
groupoid object in X0−geom ⊆ X and the maps Xk → X(Λi[k]) are smooth for all k ≤ n.
Let Gpdgeom

n ⊆ Fun(N(∆)op,X) be the full sub-∞-category on the geometric n-groupoids.
A map p : Y → X of simplicial objects in X is a smooth hypercover of height n if it is a

hypercover of height n and all maps

Y (∆[k]) ' Yk // X(∆[k])×X(∂∆[k]) Y (∂∆[k])

are 0-smooth.

Variant 4.18. Recall from Remark 3.133.13 that the full subcategory Xm−geom ⊆ X of
m-geometric stacks, together with the class Pm of m-smooth maps between them also
satisfies the conditions of Assumption 3.63.6. Taking this as input of the above definition
yields a notion of m-geometric n-groupoid (i.e. a simplicial object in Xm−geom whose
matching maps for horn inclusions are m-smooth maps), m-geometric (resp. m-smooth)
Kan fibration and m-smooth hypercover. For m = 0 these notions reproduce the above
notions. Furthermore observe that a map Y → X of simplicial objects in X0−geom is an
m-geometric Kan fibration if and only if it is a (0-) geometric Kan fibration (see Lemma
3.123.12), and similarly for the other two classes of maps.

Example 4.19. When X = Sh∞(Mfd), X0−geom is the class of smooth manifolds and P
is the class of submersions, this retrieves the notions of Lie m-groupoids, Kan fibrations
and hypercovers from Section 22.

Remark 4.20. If X is a geometric n-groupoid in X, then for any horn Λi[k], the object
X(Λi[k]) is 0-geometric. Indeed, this follows from the usual inductive argument (see e.g.
[88, Lemma 2.4], [2626, Lemma 2.1]), by realizing the inclusion {i} → Λi[k] as an iterated
pushout of lower-dimensional horn inclusions and invoking Remark 4.44.4.

We record the following basic properties of the above classes of maps:

Lemma 4.21. The following statements hold:

(1) The classes of of geometric (resp. smooth) Kan fibrations and smooth hypercovers
of height n are stable under base change.

(2) Let p : Y → X be a geometric Kan fibration of height ∞ between two geometric
n-groupoids. Then p is a geometric Kan fibration of height n.

(3) Let p : Y → X be a smooth hypercover of height ∞. Then p is a smooth Kan
fibration, which is of height n <∞ if and only if p is a hypercover of height n− 1.

Proof. To avoid having to go in the ∞-categorical details involving the functoriality of the
relative matching objects, let us invoke Remark 4.54.5 and pick a model-categorical presenta-
tion A for X, so that the Reedy model structure on Fun(∆op,A) presents Fun(N(∆)op,X)
and the usual relative matching maps present the ∞-categorical relative matching maps
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(at least for Reedy fibrations). Let p : Y → X and q : Z → X be Reedy fibrations between
Reedy fibrant objects.

For (1), observe that the relative matching maps of the base change q∗Y → Z are
(homotopy) base changes of the relative matching maps of p. If the latter are equivalences
or smooth maps, so are their homotopy base changes.

For (2), let k > n and consider an inclusion Λi[k]→ ∆[k]. Since Y and X are n-groupoid
objects, the horizontal maps in the square

Y (∆[k]) //

��

Y (Λi[k])

��

X(∆[k]) // X(Λi[k])

are trivial fibrations, so that the matching map is an equivalence. This implies that p is a
(geometric) Kan fibration of height n.

For (3), consider the inclusions of simplicial sets Λi[k] ⊆ ∂∆[k] ⊆ ∆[k] and observe that
the first map is the pushout of an inclusion ∂∆[k − 1] → ∆[k − 1]. Associated to these
maps of simplicial sets is a diagram

Y (∆[k])
µk // X(∆[k])×X(∂∆[k]) Y (∂∆[k])

��

µ′
// X(∆[k])×X(Λi[k]) Y (Λi[k])

��

Y (∆[k − 1])
µk−1

// X(∆[k − 1])×X(∂∆[k−1]) Y (∂∆[k − 1])

in which the vertical maps restrict to the face opposite i. Using Remark 4.44.4, one sees that
the right square is (homotopy) cartesian. Since p is a hypercover and 0-smooth maps and
effective epimorphisms are stable under homotopy base change and composition, it follows
that the top horizontal composite is a 0-smooth effective epimorphism, so that p is a Kan
fibration.

If p is a hypercover of height n− 1, then the horizontal maps are equivalences for all
k > n, so that p is a Kan fibration of height n. Conversely, if p is a Kan fibration of
height n, then the top horizontal map is an equivalence for all k > n. Since the map µk is
an effective epimorphism, it follows that both µk and µ′ are equivalences [1616, Example
5.2.8.16]. The right vertical map in the above diagram is an effective epimorphism (the
total composite of the above diagram is an effective epimorphism), so it follows that the
homotopy base change of µk−1 along an effective epimorphism is an equivalence. But
then µk−1 is itself an equivalence [1616, Proposition 6.2.3.14] and we conclude that p is a
hypercover of height n− 1. �

Example 4.22. Let × : Fun(N(∆)op, S)op×Fun(N(∆)op, S)op → Fun(N(∆)op, S)op be the
opposite of the product functor and observe that this functor preserves small limits in each
of its variables. It follows that for each limit preserving functor X : Fun(N(∆)op, S)op → X

with values in an ∞-topos, the composite Fun(N(∆)op, S)op × Fun(N(∆)op, S)op → X

preserves limits in each variable. Precomposition with × therefore yields a functor

FunR(Fun(N(∆)op, S)op,X)× Fun(N(∆)op, S)op // FunR(Fun(N(∆)op, S)op,X)

sending a pair (X,K) to XK(−) := X(K × −). When X : N(∆)op → X is a simplicial
object in X and K is a simplicial set (viewed as a discrete simplicial space), we denote by
XK the corresponding simplicial object under the equivalence of Remark 4.34.3. Note that
this construction is functorial in X and K.
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When X is a geometric n-groupoid object in X, the map X∆[m] → X∂∆[m] is a geometric
Kan fibration of height n for all m ≥ 0 and of height 0 when m ≥ n. Indeed, for any horn
inclusion Λi[k]→ ∆[k], the map

X∆[m](∆[k]) // X∂∆[m](∆[k])×X∂∆[m](Λi[k]) X
∂∆[m](∆[k])

is equivalent (by construction) to the map X(∆[m] × ∆[k]) → X(K), where K is the
subcomplex of ∆[m]×∆[k] given by

K = ∂∆[m]×∆[k] ∪∆[m]× Λi[k].

The inclusion of K into ∆[m]×∆[k] is a finite composition of pushouts of horn inclusions,
each of which is in dimension ≥ max(k,m + 1) since K ⊆ ∆[m] × ∆[k] induces an
isomorphism of skeleta in dimension max(k − 2,m− 1). From this the assertion follows.

A similar argument shows that for any horn inclusion Λi[m]→ ∆[m], the map X∆[m] →
XΛi[m] is a smooth hypercover of height n− 1.

Corollary 4.23. Let X be a geometric n-groupoid and let X → cst|X| be the natural map
to the constant diagram whose value is the colimit of X. For each finite simplicial set K,
the map XK → (cst|X|)K induces an equivalence on colimits.

Proof. The proof is by induction on the dimension of K: if K is of dimension 0, then
the result follows from the fact that N(∆)op is sifted, so that colimits over it commute
with finite products. Now assume that the result holds for all simplicial sets of dimension
n− 1 and let K be of dimension n, with (n− 1)-skeleton K(n−1). Then there is a cube of
simplicial objects in X of the form

XK //

��

vv

∏
X∆[n]

q

��

iuu

(cst|X|)K //

��

∏
(cst|X|)∆[n]

p
��

XK(n−1)
//

kvv

∏
X∂∆[n]

juu

(cst|X|)K(n−1)
//
∏

(cst|X|)∂∆[n]

where the products run over the (finite) set of nondegenerate n-simplices of K. The front
and back face are cartesian squares and the vertical maps p and q are Kan fibrations in X (of
finite height). It follows from Proposition 4.124.12 that the front and back face remain cartesian
after taking the colimit. But by assumption the maps i, j and k induce equivalences on
colimits (the map i since the natural map X∆[n] → X induces an equivalence on colimits),
so that the map on pullbacks is an equivalence as well. �

Example 4.24. Recall that there exists a functor f : ∆→∆ sending each [n] to [0]? [n] =
[1 + n], together with natural transformations of endofunctors of ∆

id∆
∂0
// f

σ{0}//
cst[0].

∂{0}
oo

The restriction of a simplicial object X along f is usually denoted by Dec0(X), and fits
into a diagram

X Dec0(X)
d0oo

d{0}

// cst(X0).
s{0}
oo



HIGHER STACKS AS A CATEGORY OF FRACTIONS 21

For any map p : Y → X of simplicial objects in X, let p′ : Dec0(Y )→ Dec0(X)×X Y be
the natural map associated to the square

Dec0(Y )
Dec0(p)

//

d0

��

Dec0(X)

d0

��

Y
p

// X.

If p is a geometric Kan fibration of height n, then p′ is a smooth Kan fibration of height
n−1. Indeed, one easily checks that p′ is smooth in degree 0 and that the relative matching
map of p′ with respect to Λi[k]→ ∆[k] agrees with the relative matching map of p with
respect to Λ1+i[1 + k].

Remark 4.25. Let X : N(∆)op → X be an n-groupoid in X. Then the degeneracy
map s{0} : cst(X0)→ Dec0(X) induces an equivalence on colimits. Indeed, the map s{0}
has a retraction, given by the map d{0} restricting to the initial vertex of each [0] ? [n].
Furthermore, there is a functor

h : ([0] ? [n])× [1] // [0] ? [n] h
∣∣
([0]?[n])×{0} = 0 h

∣∣
([0]?[n])×{1} = id

depending naturally on [n].
The natural transformation h induces a map h∗ : X → X∆[1], such that the composition

d1h
∗ : X → X∆[1] → X is given by s{0}d{0} and d0h

∗ is the identity map. Since both

d0, d1 : X∆[1] → X are hypercovers of height n (Example 4.224.22), it follows that h∗ induces
an equivalence on colimits. This implies that the composite s{0}d{0} induces an equivalence
on colimits, so at the level of colimits, d{0} is a two-sided homotopy inverse for s{0}.

Let f : X → Y be a map of geometric n-groupoids. Using the (functorial) exponential
construction of Example 4.224.22, we obtain a commuting diagram

X

f

��

s0 // X∆[1]

f∆[1]

��

(d1,d0)
// X ×X

f×f
��

π1 // X

f

��

Y
s0
// Y ∆[1]

(d1,d0)
// Y × Y

π1

// Y.

Let Pf = X ×Y Y ∆[1] be the pullback of the right vertical map and the last two bottom
horizontal maps. Then the top horizontal composition (which is the identity on X) factors
(up to homotopy) as a map σ : X → Pf , followed by the base change Pf → X × Y → X

of the smooth hypercover d1 = π1(d1, d0) : Y ∆[1] → Y × Y → Y . Let p be the composite
map Pf → X × Y → Y where the first map is the base change of (d1, d0) : Y ∆[1] → Y × Y
and the second map is the projection. Then p is the composition of two geometric Kan
fibrations and unraveling the definitions, one sees that the composition pσ is homotopic
to f . This provides a factorization (up to homotopy) of any map f : X → Y between
geometric n-groupoids as a section (up to homotopy) of a smooth hypercover, followed by
a geometric Kan fibration Pf → Y of height n (the path fibration).

Definition 4.26. A map f : X → Y between geometric n-groupoids is called a Morita
equivalence if the induced path fibration Pf = X ×Y Y ∆[1] → Y is a smooth hypercover
(of height n− 1 by Lemma 4.214.21).

Remark 4.27. The∞-category Gpdgeom
n , together with the classes of Morita equivalences,

geometric Kan fibrations (of height n) and smooth hypercovers (of height n− 1) forms
something rather close to a category of fibrant objects in the sense of Brown [33] (see
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also [11]). However, Gpdgeom
n need not be closed under pullbacks along geometric Kan

fibrations, for the simple reason that X0−geom is not necessarily closed under pullbacks.
Instead, Gpdgeom

n does admit pullbacks along smooth Kan fibrations and in particular
along hypercovers, which is all we need. Note that one can replace any map by a geometric
Kan fibration, but not necessarily by a smooth Kan fibration.

5. Geometric stacks as a category of fractions

Let (X,X0−geom, P ) be as in Assuption 3.63.6 and consider the composite functor

Gpdgeom
n

// Fun(N(∆)op,X)
|−|
// X (8)

sending a geometric n-groupoid object to its colimit in X. It follows from Proposition
4.94.9 that this functor sends smooth hypercovers to equivalences in X, so by the 2-out-of-3
property it sends the Morita equivalences to equivalences in X as well. Consequently, the
above functor induces a functor

Gpdgeom
n [W−1

Mor]
// X

from the ∞-categorical localization of Gpdgeom
n at the Morita equivalences. The aim of

this section is to give a proof of the following result:

Theorem 5.1. Let (X,X0−geom, P ) be as in Assumption 3.63.6 and let 0 ≤ n < ∞. The
colimit functor | − | : Gpdgeom

n → X induces a functor

Gpdgeom
n [W−1

Mor]
// X (9)

which is fully faithful with essential image given by the n-geometric stacks.

Remark 5.2. In the setting of Variant 3.83.8, where Condition (4) of 3.63.6 holds reltive to a
full subcategory A ⊆ X, this result still holds when A contains all colimits of geometric
n-groupoid objects (see Remark 5.95.9).

To prove this theorem, we will use the explicit model for the localization Gpdgeom
n [W−1

Mor]
constructed in [1919], using that the localization of Gpdgeom

n at the Morita equivalences is
equivalent to its localization at the set W of hypercovers (by the 2-out-of-3 property).
Since hypercovers are stable under base change, this localization can be decribed explicitly
in terms of spans: in particular, the space of maps from X to Y in Gpdgeom

n [W−1
Mor] is

equivalent to the groupoid completion of the ∞-category SpanWGpdgeom
n

(X,Y ) of spans

X ← X̃ → Y , where the left map is a hypercover (of height (n− 1)):

Definition 5.3. Let C be a quasicategory and let W be a class of maps in C, closed under
homotopy and composition. For any two objects c, d ∈ C, the quasicategory SpanWC (c, d)
is the full sub-∞-category

SpanWC (c, d) ⊆ Fun(Λ0[2],C)×Fun({1,2},C) {(c, d)}
consisting of those spans c ← c̃ → d for which the left map is contained in W . If W
contains all maps in C (resp. only the equivalences), we will denote this ∞-category simply
by SpanC(c, d) (resp. Spaneq

C (c, d)).

The functor (88) then induces a functor

SpanWGpdgeom
n

(X,Y ) // Spaneq
X (|X|, |Y |)

whose target is a Kan complex, equivalent to the mapping space MapX(|X|, |Y |). In light
of [1919, Corollary 3.13], to show that (99) is fully faithful, it suffices to show that each of
these functors is a Kan-Quillen equivalence. This is proven in Section 5.35.3 by a repeated use
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of Quillen’s Theorem A. The main technical ingredient that goes into this proof is a result
about refinements of hypercovers (and n-groupoid objects) with values in m-geometric
stacks to hypercovers (and (n+ 1)-groupoid objects) in (m− 1)-geometric stacks, which is
essentially due to Pridham [2020] (although some extra care is needed when X0−geom does
not have pullbacks). We will start by recalling this refinement of hypercovers.

5.1. Refinements of hypercovers. In this section we will recall how hypercovers by
simplicial objects in Xm−geom can be refined to hypercovers in X0−geom and that n-groupoid
objects in Xm−geom can be refined to (n+ 1)-groupoid objects in X(m−1)−geom, following
the discussion in [2020].

Proposition 5.4. Let X : N(∆)op → Xm−geom be an m-geometric n-groupoid (see Variant
4.184.18), with m ≥ 1. Then there exists an (m − 1)-geometric (n + 1)-groupoid object Y ,
together with an (m− 1)-smooth hypercover p : Y → X of height n. In particular, the map
p induces an equivalence on colimits |Y | → |X|.

The proof of the proposition uses the following construction: associated to an object
U ∈ X and a natural number j is a simplicial diagram

Ranj(U) : N(∆)op // X

which is the right Kan extension of the constant diagram along {[j]} → ∆op. Since for
every [k] ∈∆op, the comma category [k]/{[j]} is just the discrete set of maps [j]→ [k] in
∆, it follows (see [1616, Definition 4.3.2.2]) that the value of Ranj(U) on an object [k] ∈∆
is naturally equivalent to the product

∏
[j]→[k] U .

Lemma 5.5. If f : U → V is a map of stacks, then the induced map Ranj(U)→ Ranj(V )
has the following two properties:

(a) the relative (homotopy) matching map with respect to ∂∆[k]→ ∆[k] is an equiva-
lence for k > j and the base change of a finite product of copies of f if k ≤ j + 1.

(b) the relative (homotopy) matching map with respect to a horn inclusion Λi[k]→ ∆[k]
is an equivalence if k > j + 1 and the base change of a finite product of copies of f
if k ≤ j + 1.

Proof. For any k we can decompose Hom([j], [k]) as the disjoint union of Hom([j], ∂∆[k])
and the set of surjective maps [j] � [k] (which is empty if k > j). The relative matching
map with respect to the boundary inclusion ∂∆[k]→ ∆[k] can then be identified with the
map ∏

[j]→[k] U '
∏

[j]→∂∆[k] U ×
∏

[j]�[k] U
//
∏

[j]→∂∆[k] U ×
∏

[j]�[k] V.

Assertion (a) follows immediately from this. For assertion (b), one applies the same
argument, using that Hom([j], [k]) is the disjoint union of Hom([j],Λi[k]) together with

the set of all maps [j]→ [k] whose image contains the set {0, ..., î, ..., k} (which is empty if
k > j + 1). �

Proof (of Proposition 5.45.4). We will prove by increasing induction on −1 ≤ j ≤ n that
there exists a (m− 1)-smooth hypercover Y (j) → X (of height n) such that

(?j) Y
(j)
k is an (m − 1)-geometric stack for all k ≤ j. Furthermore, Y (j) is an m-

geometric n-groupoid if j < k and an (m − 1)-geometric (n + 1)-groupoid if
j = n.

Clearly one can take Y (−1) = X and Y (n) is the desired (m−1)-geometric (n+1)-groupoid.
Fix 0 ≤ j ≤ n and suppose that Y (j−1) has been constructed. By replacing X with

Y (j−1), we may assume that X consists of (m− 1)-geometric stacks in degrees k ≤ j − 1.
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Now let φ : U → Xj be an atlas for the m-geometric stack appearing in degree j and
consider the map of simplicial objects

π : Y (j) := Y := X ×Ranj(Xj) Ranj(U) // X

The relative matching maps of π are base changes of the relative matching maps of
Ranj(U)→ Ranj(Xj) and the matching maps of Y are compositions of relative matching
maps and the matching maps of X. It follows from part (a) of Lemma 5.55.5 that π is
a hypercover of height j ≤ n, whose relative matching maps are (m − 1)-smooth. In
particular, Y0 is an (m − 1)-geometric stack. Furthermore, it follows from part (b) of
Lemma 5.55.5 that the matching maps

Yk // Y (Λi[k])

remain (m − 1)-smooth effective epimorphisms and remain equivalences if both k > n
(so that the matching maps in X were equivalences) and k > j + 1 (so that the relative
matching maps of Y → X were equivalences). In particular, Y remains an m-geometric
n-groupoid when j < n and becomes an (m− 1)-geometric (n+ 1)-groupoid in the final
stage where j = n.

It remains to show that Yk is an (m− 1)-geometric stack for all k ≤ j. Observe that
each Yk fits into a pullback diagram

Yk //

��

U×Hom([j],[k])

��

Xk
δ
// X
×Hom([j],[k])
j

where the bottom map is the diagonal. Since the right map is (m− 1)-smooth, it follows
that Yk is an (m − 1)-geometric stack for all k < j. When k = j, one can form the
composite pullback

P //

��

Yj //

��

U×Hom([j],[j])

��

U // Xj
δ
// X
×Hom([j],[j])
j

along the atlas of Xj . Since the right vertical map is (m− 1)-smooth, the stack P is an
(m− 1)-geometric stack. Since U → Xj is an (m− 1)-smooth effective epimorphism, so is
the map P → Yj . This implies that Yj is an (m− 1)-geometric stack as well. �

Lemma 5.6 ([2020, Proposition 4.5]). Let Z → X be a height n hypercover of a simplicial
object X in X0−geom and suppose that the relative matching maps are (m+ 1)-smooth in
degrees ≤ n. Then there exists a map V → Z such that

• the map V → Z is a hypercover of height n whose relative matching maps are
m-smooth.

• the composite V → Z → X is a hypercover of height n whose relative matching
maps are m-smooth.

Proof. The proof is similar to the previous proof: we show by induction on −1 ≤ j ≤ n
that there exists a height n hypercover V (j) → Z, whose relative matching maps are
m-smooth, such that the composite map V (j) → Z → X induces maps

V (j)(∆[k]) // V (j)(∂∆[k])×X(∂∆[k]) X(∆[k])
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which are m-smooth for all k ≤ j. Clearly one can take V (−1) = X and V (n) is the desired
refinement V → Z.

Fix 0 ≤ j ≤ n and suppose that V (j) has been constructed. Replacing Z by V (j), we
may assume that Z → X has the property that the map

Z(∆[k]) // Z(∂∆[k])×X(∂∆[k]) X(∆[k])

is m-smooth for all k ≤ j − 1. Let φ : U → Zj be an atlas for the (m+ 1)-geometric stack
Zj appearing in degree j and consider the map of simplicial objects

π : V (j) := V := Z ×Ranj(Zj) Ranj(U) // Z

The relative matching maps of π are (homotopy) base changes of the relative matching
maps of Ranj(U)→ Ranj(Xj) and the matching maps of V are compositions of relative
matching maps and the matching maps of Z. It follows from part (a) of Lemma 5.55.5 that
π is a height n hypercover whose relative matching maps are all m-smooth. Furthermore,
the composite V → Z → X is a height n hypercover for which the maps

Vk // V (∂∆[k])×X(∂∆[k]) Xk

are m-smooth in degrees < j and (m+ 1)-smooth in degrees > j. In degree j, this map is
the base change along V (∂∆[j])→ Z(∂∆[j]) of the composite map

U // Zj // Z(∂∆[j])×X(∂∆[j]) Xj .

This is an (m + 1)-smooth map between m-geometric stacks (note that Z(∂∆[j]) →
X(∂∆[j]) is m-smooth by inductive assumption, while Xj is 0-geometric). By Lemma
3.123.12, it is m-smooth. �

5.2. The essential image. As an immediate consequence of Proposition 5.45.4, we obtain:

Corollary 5.7. For any n-geometric stack X, there is a geometric n-groupoid G : ∆op →
X0−geom such that |G| ' X.

In other words, any n-geometric stack can be presented as the colimit of a geometric
n-groupoid object with values in 0-geometric stacks. Conversely, we have:

Lemma 5.8. Let p : Y → X be a smooth Kan fibration of height n between geometric
m-groupoids in X0−geom. Then the induced map |Y | → |X| on colimits is an n-smooth
map. If X is a geometric n-groupoid, then |X| is an n-geometric stack.

Proof. If p : Y → X is a smooth Kan fibration of height n, to see that |p| is n-smooth
it suffices to prove that the base change along the effective epimorphism X0 → |X| is
n-smooth (see Lemma 3.123.12(2)). Using Proposition 4.124.12, this base change is the colimit of
the map of simplicial objects p′ : Y ×X cst(X0)→ cst(X0), which is a smooth Kan fibration
of height n. In other words, we may reduce to the case where X is the constant simplicial
diagram on a 0-geometric stack X0.

We now proceed by induction on the number n. For n = 0, if p : Y → X = cst(X0) is
of height 0, then the domain Y is essentially constant with value Y0. The map |p| then
agrees with the map Y0 → X0 in X0−geom, which was smooth by assumption.

Now suppose that a smooth Kan fibration of height n− 1 determines an (n− 1)-smooth
map. We will first show that any geometric n-groupoid Z determines an n-geometric
stack: indeed, it follows from Example 4.244.24 that the map Dec0(Z)→ Z is a smooth Kan
fibration of height n − 1. This implies that the induced map Z0 ' |Dec0(Z)| → |Z| is
(n− 1)-smooth. Since it is clearly an effective epimorphism (Example 3.53.5), it follows that
|Z| is n-geometric.
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Finally, let p : Y → X = cst(X0) be a smooth Kan fibration of height n. Since X is
constant, the object Y is a geometric n-groupoid and |Y | is n-geometric, with atlas given
by the map Y0 → |Y |. The composite map Y0 → |Y | → X0 is smooth by assumption,
which shows that |p| is n-smooth. �

Remark 5.9. From the way Lemma 3.123.12 is used in the proofs of Lemma 5.65.6 and Lemma
5.85.8, it follows that their proofs apply in the relative setting of Variant 3.83.8 as well, assuming
that all colimits of geometric n-groupoids (and therefore all n-geometric stacks) are
contained in A ⊆ X. Under this assumption on A, Theorem 5.15.1 also applies when condition
(4) of 3.63.6 holds only relative to A. See Section 77 for an example of this situation.

Let us also record the following corollary, which will be used later in the proof.

Corollary 5.10. Let X be a geometric n-groupoid in X and let X → cst|X| be the induced
map to the constant diagram whose value is the colimit of X. This map is a hypercover of
height n− 1, each of whose matching maps are (n− 1)-smooth.

Proof. The geometric Kan fibration p : X∆[m] → X∂∆[m] of height n (Example 4.224.22)
induces a smooth Kan fibration p′ : Dec0(X∆[m]) → Dec0(X∂∆[m]) ×X∂∆[m] X∆[m] of
height n− 1 (Example 4.244.24). Since p is in particular a realization fibration and the colimit
of Dec0(Y ) is simply Y0 (Remark 4.254.25), it follows that the colimit of p′ is given by

Xm
// X(∂∆[m])×|X∂∆[m]| |X∆[m]|.

Using that the map |XK | → |X|K is an equivalence for any finite simplicial set K
(Corollary 4.234.23), the above map can be identified with the relative matching of X → cst|X|
corresponding to the boundary inclusion ∂∆[m]→ ∆[m]. But the map p′ is a smooth Kan
fibration of height n− 1, so its colimit is (n− 1)-smooth by the previous lemma. Similarly,
when m ≥ n the map p is a Kan fibration of height 0, so that the map p′ is an equivalence.
This implies that the above maps are equivalences for m ≥ n, so that X → cst|X| is a
hypercover of height n− 1. �

5.3. Fully faithfulness. Since Gpdgeom
n is an ∞-category with hypercovers in the sense

of [1919], proving that the functor Gpdgeom
n [W−1

Mor]→ X is fully faithful reduces to verifying
the hypothesis of [1919, Corollary 3.13]: we have to show that for every two geometric
n-groupoids, the functor

SpanWGpdn
(X,Y )

|−|
// Spaneq

X (|X|, |Y |);
(
X ← X̃ → Y

)
� //

(
|X| '←− |X̃| → |Y |

)
is a Kan-Quillen equivalence (where the map X̃ → X is a hypercover of height (n−1)). To
see this, it will be useful to decompose the above functor as follows: for each 0 ≤ m ≤ n−1,
let

Dm ⊆ SpanFun(N(∆)op,X)(X,Y )

be the full subcategory of the category of spans X ← Z → Y between X and Y in
Fun(N(∆)op,X) on those spans for which the map Z → X is a hypercover of height n− 1,

whose relative matching maps are m-smooth. Since D0 agrees with SpanWGpdn
(X,Y ), the

functor | − | : SpanWGpdn
(X,Y )→ Spaneq

X (|X|, |Y |) factors over the sequence of inclusions
Dm ⊆ Dm+1 as

SpanWGpdn
(X,Y ) = D0

// D1
// · · · // Dn−1

|−|
// Spaneq

X (|X|, |Y |). (10)

We will show that each of the above functors is a Kan-Quillen equivalence.

Lemma 5.11. For each 0 ≤ m < n − 1, the inclusion Dm → Dm+1 is a Kan-Quillen
equivalence.
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Proof. Fix a span α =
[
X ← Z → Y

]
in Dm+1. By Quillen’s Theorem A [1616, Theorem

4.1.3.1], it suffices to prove that Dm/α = Dm ×Dm+1
Dm+1/α is weakly contractible. By

Lemma 5.125.12, it suffices to prove that there is an object π in the category Dm/α such that
all products with π exist.

Our first aim will be to argue that objects in Dm/α are essentially determined by an
object over Z, the ‘tip of the span’. Indeed, let sX := Fun(N(∆)op,X) be the ∞-category
of simplicial objects in X and consider the composite functor

SpansX(X,Y ) // sX/Y = Fun(∆[1], sX)×Fun({1},sX) {Y }
dom // sX.

Passing to the over-category of the span α, this induces a composite functor

SpansX(X,Y )/α //
(
sX/Y

)
/[Z → Y ] // sX/Z. (11)

The first map is a base change of the map given in [1919, Lemma 3.11(1)] and therefore a
trivial fibration. The second map fits into a diagram(

sX/Y )/[Z → Y ] //
(
sX/Y

)
/[Z → Y ] // sX/Z

where the first map is a categorical equivalence [1616, 4.2.1.5] and the composite map is
a trivial fibration. It follows that (1111) is a categorical equivalence. We may therefore
replace the full subcategory Dm/α ⊆ SpansX(X,Y )/α with its essential image under this
equivalence, which is the full subcategory of sX/Z on those maps U → Z such that the
composite U → Z → X is a height n− 1 hypercover whose matching maps are m-smooth.
The construction of Lemma 5.65.6 provides an object π : V → Z in this full subcategory
Dm/α ⊆ sX/Z.

To see that all products with π in Dm/α exist, let φ : U → Z be any object in
Dm/α ⊆ sX/Z. It suffices to show that the product of π and φ in sX/Z remains an object
of Dm/α. In other words, we have to prove that the composite map U ×Z V → U → X is
a height n− 1 hypercover whose matching maps are m-smooth. But the map π : V → Z is
such a hypercover by construction (see 5.65.6), so the base change U ×Z V → U is such a
hypercover as well. It follows that the map U ×Z V → U → X is the composition of two
hypercovers of height n− 1, whose matching maps are m-smooth. This implies that Dk/α
admits binary products with the object π : V → Z, so that it is weakly contractible. �

Lemma 5.12. Let C be an ∞-category and let c ∈ C be an object. If C admits products
with c, then C is weakly contractible.

Proof. The functor c× (−) : C→ C comes equipped with a natural projection map to the
identity functor and with a natural transformation to the constant functor with value
{c}. Since the identity functor is equivalent (via a zig-zag of natural transformations) to a
contant functor, the ∞-category C is weakly contractible. �

Lemma 5.13. The functor | − | : Dn−1 → Spaneq
X (|X|, |Y |) is a Kan-Quillen equivalence.

Proof. In fact, we will show that this functor is a left adjoint. To this end, note that the
colimit functor | − | : Fun(N(∆)op,X)→ X factors as

Fun(N(∆)op,X)
i! // Fun(N(∆+)op,X)

ev−1
// X

where i : N(∆)op → N(∆+)op is the inclusion into the opposite of the augmented simplex
category and i! takes the left Kan extension along i, so that (i!X)−1 ' |X| is the colimit
of X. Let us denote by

E ⊆ SpanFun(N(∆+)op,X)(i!X, i!Y )

the full subcategory consisting of spans α :=
[
i!X ← Z → i!Y

]
such that
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(1) the span i∗α =
[
X ← Z

∣∣N(∆)op → Y
]

is contained in Dn−1, i.e. the map

Z
∣∣N(∆)op → X is a height n hypercover whose relative matching maps are

(n− 1)-smooth.
(2) Z is a colimit diagram.

In other words, an object in E can be depicted (slightly informally) as a diagram

X•

��

Z•

��

//woo Y•

��

|X| |Z| //
'
oo |Y |

where the map w is an (n − 1)-smooth hypercover, which implies that |Z| → |X| is an
equivalence. The functor | − | : Dn−1 → Spaneq

X (|X|, |Y |) then factors as

Dn−1
i! // E

ev−1
// Spaneq

X (|X|, |Y |).

The left Kan extension functor i! admits a right adjoint i∗, which simply restricts spans
between i!X and i!Y in Fun(N(∆+)op,X) to spans between X and Y in Fun(N(∆)op,X).
Under this functor, the full subcategory E is send to Dn−1 by definition.

It remains to show that ev−1 : E→ Spaneq
X (|X|, |Y |) admits a right adjoint. This functor

fits into a commuting diagram

E
ev−1

//

��

Spaneq
X (|X|, |Y |)

��

// {(i!X, i!Y )}

η

��

Fun(N(∆+)op × Λ0[2],X)
f∗
// Fun(K,X) // Fun(N(∆+)op × {1, 2},X)

(12)

where K = N(∆+)op×{1, 2}∪{[−1]}×Λ0[2]. The middle vertical functor sends a diagram
α =

[
|X| ← B → |Y |

]
to the K-indexed diagram which can be depicted as

X•

��

Y•

��

|X| B //oo |Y |

i.e. whose value on {[−1]} × Λ0[2] is α and whose value on N(∆+)op × {1, 2} is given by
i!X and i!Y . The fibers of the bottom two categories in (1212) over η are isomorphic to
SpanFun(N(∆+)op,X)(i!X, i!Y ) and SpanX(|X|, |Y |), of which the top two quasicategories
are full subcategories.

The restriction functor f∗ admits a right adjoint f∗, given by right Kan extension. Since
the inclusion K ⊆ N(∆+)op × Λ0[2] is fully faithful, this right adjoint restricts to a right
adjoint

f∗ : SpanX(|X|, |Y |) // SpanFun(N(∆+)op,X)(i!X, i!Y )

between the fibers over η ([1818, Proposition 7.3.2.5]). It remains to show that this restricted
right adjoint sends the full subcategory Spaneq

X (|X|, |Y |) ⊆ SpanX(|X|, |Y |) to the full
subcategory E ⊆ SpanFun(N(∆+)op,X)(i!X, i!Y ). To this end, observe that under right Kan

extension along K ⊆ N(∆+)op × Λ0[2], the span |X| ← B → |Y | is sent to the span of
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augmented simplicial objects

X•

��

X• × Y• ×|Y |×|X| Boo //

��

Y•

��

|X| Boo // |Y |.

To see that this is contained in E when the map B → |X| is an equivalence, observe that
the colimit of X• × Y• ×|Y |×|X| B is B, since colimits are stable under base change. It
remains to prove that the map of simplicial objects X• × Y• ×|Y |×|X| B → X• is a height
n− 1 hypercover whose matching maps are given by (n− 1)-smooth maps. Replacing B by
the equivalent object |X|, we may assume that B → |X| is the identity map. In that case,
the map q : X• × Y• ×|Y |×|X| |X| → X• is the base change of the map of simplicial objects
π : Y• → cst|Y |. But π was a hypercover of height n − 1 whose relative matching maps
were (n− 1)-smooth by Corollary 5.105.10. It follows that q is a hypercover of height n− 1
whose relative matching maps are (n− 1)-smooth, so that the above diagram is contained
in E. �

Proof (of Theorem 5.15.1). The functor Gpdgeom
n [W−1

Mor]→ X is fully faithful by Lemma 5.115.11,
Lemma 5.135.13 and [1919, Corollary 3.13]. Its essential image is identified with the n-geometric
stacks by Corollary 5.75.7 and Lemma 5.85.8. �

6. Bibundles

The manoeuvre used in Lemma 5.135.13 can be varied to yield a description of mapping
spaces between stacks in terms of bibundles, which we will outline in this section. To
describe this in more detail, let us consider the category ∆[1] := ∆/[1] of nonempty linear

orders over [1]. There is a natural functor j : ∆[1] → (∆+)×2 sending α : [n] → [1] to

(α−1(0), α−1(1)), one of whose components may be the empty linear order [−1]. This
functor is fully faithful, with essential image given by the full subcategory of (∆+)×2 on
all objects except ([−1], [−1]): an inverse is given by the join functor

([n], [m]) � //

(
[n] ? [m]→ [0] ? [0] = [1]

)
.

Throughout the rest of this section, we will tend to identify ∆[1] with its essential image

in (∆+)×2.

Definition 6.1. Let X,Y : N(∆)op → X be two simplicial objects in X. We will say that
a functor P : N(∆[1])

op → X is an X–Y-bibundle if it satisfies the following conditions:

(1) the restriction P
∣∣{−1}×N(∆)op agrees with Y and P

∣∣N(∆)op×{−1} agrees with
X.

(2) for each n ≥ 0, the restriction P
∣∣{[−1] → [n]

}op × N(∆)op induces a cartesian
natural transformation Pn,• → P−1,• = Y• of simplicial objects (see Remark

4.84.8) and the restriction P
∣∣N(∆)op ×

{
[−1]→ [n]

}op
induces a cartesian natural

transformation P•,n → P•,−1 = X• of simplicial objects in X.
(3) the augmented simplicial object P

∣∣{0} ×N(∆+)op is a colimit diagram.

Let Bib(X,Y ) ⊆ Fun(N(∆[1])
op,X) ×Fun(N(∆)op,X)×2 {(X,Y )} denote the full sub-∞-

category on the bibundles.
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Unwinding the above definitions, one sees that a bibundle is given in low degrees by a
solid diagram of the form

X1 ×X0
P0,0 ×Y0

Y1

π2×1
//

λ×1
//

1×ρ
��

1×π1

��

P0,0 ×Y0
Y1

//

ρ

��

π1

��

Y1

����

X1 ×X0
P0,0

π2 //

λ
//

��

P0,0

��

// Y0

��

X1
//

// X0
// |Y |

(13)

in which the middle column realizes X0 as the quotient of P0,0 by the action of Y on it.
To relate this to the usual definition of bibundles, note that when X and Y are groupoid
objects, the map λ specifies an action of X on P0,0 (over Y0), while ρ specifies an action of
Y on P0,0 (over X0). The fact that the action of Y on P0,0 extends to an action of Y on
the entire simplicial object P•,0 witnesses the fact that the action of Y commutes with
the action of X. Finally, the fact that the augmented simplicial diagram P0,• is a colimit
diagram shows that the (homotopy) quotient of P0,0 by the Y -action is X0, which means
that P0,0 → X0 is a principal Y -bundle.

Lemma 6.2. The following assertions hold:

(a) for each n ≥ 0, the augmented simplicial object P
∣∣{n} × N(∆+)op is a colimit

diagram.
(b) the ∞-category Bib(X,Y ) of X–Y-bibundles is a Kan complex.

Proof. For (a), note that the second half of part (2) of Definition 6.16.1 implies that for each
n ≥ 0,m ≥ −1, the square

Pn,m //

��

P0,m

��

Pn,−1
// P0,−1

is cartesian. It follows that the natural transformation of augmented simplicial objects
Pn,• → P0,• is a cartesian natural transformation whose codomain is a colimit diagram. It
then follows from descent (see [2323]) that Pn,• is a colimit diagram.

For (b), let P → Q be a map of bibundles. Since for all n ≥ 0, the maps Pn,• → Y•
and Qn,• → Y• are cartesian, it follows from the pasting lemma for pullbacks that
the natural transformation of simplicial diagrams Pn,• → Qn,• is cartesian as well. This
cartesian transformation extends to a natural transformation between augmented simplicial
diagrams, each of which is a colimit diagram. It follows from descent that this natural
transformation of augmented simplicial diagrams is cartesian as well, so that the natural
map Pn,m → Qn,m ×Qn,−1

Pn,−1 is an equivalence. But the map P•,−1 → Q•,−1 is just
the identity map on the simplicial object X•, from which we conclude that P → Q is a
natural equivalence. �

Proposition 6.3. Let X and Y be two simplicial objects in an ∞-topos X. Then there is
an equivalence of spaces MapX(|X|, |Y |) ' Bib(X,Y ).

At an informal level, this equivalence can be described as follows: given an X–Y -bibundle
P as in Diagram (1313), the left Kan extension of P along the inclusion N(∆[1])op →
N(∆+ ×∆+)op produces the extended diagram in (1313), with the dashed arrows to |Y |
added. The bottom row of this diagram then yields a map |X| → |Y | from the colimit
of the simplicial diagram X to |Y |. Conversely, given |X| → |Y | one can reconstruct the
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bottom row and right column of the extended diagram (1313), from which one can obtain P
by right Kan extension.

Proof. Let Bib ⊆ Fun(N(∆[1])
op,X) be the full sub-∞-category consisting of diagrams

P : N(∆[1])
op → X satisfying conditions (2) and (3) of Definition 6.16.1. Let us denote by

K+ ⊆ N(∆+×∆+)op the full subcategory on the elements (−1, n) and (n,−1), for n ≥ −1
and by K the intersection K+ ∩N(∆[1])

op. Observe that K is the disjoint union of two
copies of N(∆)op, so that restriction along K ⊆ N(∆[1])

op induces a categorical fibration

Bib // Fun(K,X) ∼= Fun(N(∆)op,X)×2

whose fiber over (X,Y ) is exactly Bib(X,Y ). Now let D ⊆ Fun(N(∆+×∆+)op,X) denote
the full sub-∞-category of those diagrams Z : N(∆+ ×∆+)op → X for which

(i) Z is the right Kan extension of its restriction to K+.
(ii) the restriction of Z to {−1} ×N(∆+)op is a colimit diagram.

It follows from condition (i) that restriction along j : N(∆[1])
op ⊆ N(∆+ ×∆+)op induces

a functor j∗ : D→ Bib. On the other hand, condition (ii), condition (3) from Definition 6.16.1
and [1616, Proposition 4.3.2.9] imply that j∗ : D→ Bib realizes the domain as the∞-category
of all left Kan extensions of diagrams in Bib to all of N(∆+ ×∆+)op. In particular, j∗ is
a trivial fibration.

Now let E be the full sub-∞-category of Fun(K+,X) on those diagrams Z : K+ → X

whose restriction to {−1} × N(∆+)op is a colimit diagram. In light of condition (ii),
restricting to K+ induces a trivial fibration D→ E, so that we obtain a diagram of trivial
fibrations over Fun(K,X) ∼= Fun(N(∆)op,X)×2 of the form

Bib

''

D
∼oooo ∼ // //

��

E

p
ww

Fun(N(∆)op,X)×2

In particular, the space Bib(X,Y ) of X–Y -bibundles is weakly equivalent to the fiber of
the map p : E ⊆ Fun(K+,X)→ Fun(K,X) over the pair (X,Y ). At an informal level, this
map p sends a diagram X → |Y | ← Y to the pair (X,Y ).

To identify the fiber p−1(X,Y ) of the map p with MapX(|X|, |Y |), note that K+ is
given by the pushout N(∆+)op

∐
{−1}N(∆+)op. It follows that the quasicategory E is

given by the pullback

E //

��

FunLan(N(∆+)op),X)

ev−1

��

Fun(N(∆+)op),X)
ev−1

// X

where FunLan(N(∆+)op),X) ⊆ Fun(N(∆+)op),X) is the full sub-∞-category of colimit

diagrams. The restriction functor FunLan(N(∆+)op),X) → Fun(N(∆)op),X) is a trivial
fibration. If Y is a lift of Y under this trivial fibration (so that Y gives a colimiting cocone
Y → |Y |), then the fiber of E over Y is weakly equivalent to its fiber over Y . From this it
follows that for any X : N(∆)op → X, there is weak equivalence

{X} ×Fun(N(∆)op,X) Fun(N(∆+)op,X)×Fun({−1},X) {|Y |}
∼ // p−1(X,Y ).

Finally, recall from [1616, Proposition 4.2.1.2] that there is a natural categorical equivalence
N(∆)×∆[1]

∐
N(∆)×{1}{−1} → N(∆+). Precomposition with this categorical equivalence
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yields a zig-zag of categorical equivalences

Fun(N(∆)op,X)∆[1] ×Fun(N(∆)op,X)×2 {X, cst(|Y |)} ·∼oo ∼ // p−1(X,Y )

The domain of this categorical equivalence is a model for the mapping space in the functor
category Fun(N(∆)op,X) from the diagram X to the constant diagram on |Y |. This space
is equivalent to the mapping space MapX(|X|, |Y |) from the colimit of X into |Y | by the
universal property of the colimit. We conclude that p−1(X,Y ), and therefore Bib(X,Y ),
is equivalent to MapX(|X|, |Y |). �

Remark 6.4. Let f : |X| → |Y | be a map and let P : N(∆[1])
op → X be the associated

bibundle under the equivalence of 6.36.3. The diagonal of P provides a simplicial object in X

that maps both to X and to Y , and the resulting span of simplicial objects X ← δ∗P → Y
is precisely the value of the right adjoint of Lemma 5.135.13 on f .

Corollary 6.5. Let X and Y be two geometric n-groupoid objects. If P is an X–Y -
bibundle, then P0,0 is (n−1)-geometric (and consequently, the entire diagram P : N(∆[1])

op →
X takes values in (n− 1)-geometric stacks).

Proof. Unwinding the equivalence of Proposition 6.36.3, one sees that for any map |X| → |Y |,
the associated bibundle P has P0,0 given by the pullback X0 ×|Y | Y0. Since the map
Y0 → |Y | is (n− 1)-smooth by Lemma 5.85.8, it follows that P0,0 is (n− 1)-geometric. All
other values of P are pullbacks of P0,0 along maps Xn → X0 and Yn → Y0 and are therefore
(n− 1)-geometric as well. �

This corollary is particularly interesting when n = 1, in which case it reproduces the
description of mapping spaces between 1-geometric stacks in terms of bibundles between
groupoid objects, which can be described completely in terms of 0-geometric objects.

7. Examples

In this section we give some more examples of the data of Assumption 3.63.6 and unpack
Theorem 5.15.1 in these cases.

Example 7.1. We have already encountered the situation where X = Sh∞(Mfd) is the
category of sheaves on the site of smooth manifolds, where X0−geom is the subcategory of
smooth manifolds and P is the class of submersions or étale maps. Theorem 5.15.1 asserts
that higher differentiable (or étale) stacks can be modeled by higher (étale) Lie groupoids
up to Morita equivalence. There are obvious variations of this theme, replacing smooth
manifolds by real or complex analytic manifolds, topological spaces (with smooth maps
given by maps that admit local sections through every point in the domain, or just the
étale maps), or schemes (with smooth or étale maps).

In each of these cases, one can replace the input data by the full subcategory Xm−geom

of m-geometric stacks and the m-smooth maps (Remark 3.133.13). Theorem 5.15.1 then shows
that one can model (n + m)-geometric stacks by smooth n-groupoids in m-geometric
stacks, up to Morita equivalence. For example, one finds that the full subcategory of
Sh∞(Mfd) on the 2-differentiable stacks can be modeled either by localizing the category
of Lie 2-groupoids at the Morita equivalences, or by localizing the 2-category of ‘stacky
Lie groupoids’ (i.e. groupoid objects in the 2-category of differentiable stacks, cf. [2626]) at
the Morita equivalences.

Example 7.2. Let E be a topos and let X = E∞ be the ∞-topos modeled by the Joyal
model structure on Fun(∆op,E). Take X0−geom to be the category of all 0-truncated
objects in X (equivalent to the category E itself) and the smooth maps to simply be all
maps. The only nontrivial part of Assumption 3.63.6 to check is part (4): but for this, observe
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that any fibrant object F in the Joyal model structure on simplicial sheaves admits an
effective epimorphism from its sheaf of objects F0.

The category of geometric n-groupoids can now be identified with the (ordinary) category
of the locally fibrant simplicial sheaves (in the sense of Brown [33]) which are n-truncated,
in the sense that horn inclusions in dimension > n yield isomorphisms of sheaves. Theorem
5.15.1 reproduces the well-known result (see e.g. [1414], where it is also shown when n =∞)
that the localization of this category at the hypercovers gives a model for n-truncated
objects in X. Indeed, let U → X be an effective epimorphism with U a 0-truncated object.
If X in n-truncated, the pullback U ×X U is an (n− 1)-truncated object, so that the map
U → X is (n − 1)-truncated. Using this, a simple inductive argument shows that the
class of n-geometric objects in X is just the class of n-truncated objects in X and that the
n-smooth maps are given by the n-truncated maps.

Example 7.3. Let Mfdét be the category of smooth manifolds and étale maps between
them. The category X = Sh∞(Mfdét) is studied in [44], where it is shown to admit a
fully faithful left adjoint Sh∞(Mfdét) → Sh∞(Mfd), whose image is defined to be the
category of étale differentiable ∞-stacks (i.e. those stacks that can be obtained as colimits
of diagrams in Mfdét). To connect to Example 7.17.1, let us define X0−geom ⊆ X to consist
of all (small) disjoint unions of smooth manifolds, and let the smooth maps just be all
maps between them (all maps are étale on each summand). Notice that X0−geom just
consists of coproducts of representable sheaves of sets and that any subobject of an object
in X0−geom is again in X0−geom (a subobject of a representable sheaf is representable by
an open subset). It follows from this that all sheaves of sets on Mfdét are 1-geometric with
respect to this datum and that all epimorphisms of sheaves are 1-smooth. The argument of
Example 7.27.2 now shows that all n-truncated objects in Sh∞(Mfdét) are (n+ 1)-geometric
(and conversely, an (n+ 1)-geometric object is (n+ 1)-truncated).

In particular, Theorem 5.15.1 asserts that all n-truncated objects in Sh∞(Mfdét) can be
modeled by (n+1)-groupoids with values in coproducts of smooth manifolds and étale maps
between them, up to Morita equivalence. The image of such an (n+ 1)-groupoid under
the embedding Sh∞(Mfdét)→ Sh∞(Mfd) yields an étale (n+ 1)-groupoid in Sh∞(Mfd) in
the sense of Example 7.17.1 (except that we now allow arbitrary coproducts of manifolds in
X0−geom). In other words, we find that all truncated étale differentiable ∞-stacks in the
sense of [44] can be presented by higher étale Lie groupoids (which was anticipated in [44,
Remark 6.1.11]).

Example 7.4. Example 7.17.1 has obvious analogues in derived geometry. For example, one
can take X = Sh∞(CAlg≥0

k ) to be the category of stacks on the simplicial (or model) site
of (finitely presented) simplicial k-algebras, for k a commutive ring. Let X0−geom consist
of derived schemes and P to be the set of smooth maps between those (see [2525] for an
extensive account). Then n-geometric stacks are ‘derived n-Artin stacks’ and Theorem 5.15.1
reproduces the result from [2020] that such stacks can be presented by smooth n-groupoid
objects with values in derived schemes. It also shows that the localization of the category
of such n-groupoids constructed in [2020] indeed presents the ∞-categorical localization.

Example 7.5. Let T be a (multi-sorted) algebraic theory and let X = Fun(N(T), S) be
the ∞-topos of space-valued functors on N(T). The ∞-category of T-algebras in spaces
is the (reflective) full subcategory of X on those functors N(T)→ S that preserve finite
products. Define X0−geom to be the subcategory of all set-valued functors N(T) → Set
that preserve finite products (i.e. T-algebras in sets), with all maps between them as the
smooth maps. This only satisfies part (4) of Assumption 3.63.6 relative to the full subcategory
AlgT ⊆ X of T-algebras in spaces (see Variant 3.83.8). Since this subcategory is closed under
all N(∆)op-indexed colimits, we may still apply Theorem5.15.1 (see Remark 5.95.9).
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The category Gpdgeom
n can now be identified with the full subcategory Gpdgeom

n ⊆
Fun(∆op,AlgT) on those simplicial T-algebras (in sets) whose underlying simplicial set is
an n-truncated Kan complex. Furthermore, a map between two such simplicial T-algebras
is a smooth hypercover iff the underlying map of Kan complexes is a trivial Kan fibration.
Theorem 5.15.1 shows that the localization of the n-truncated fibrant simplicial T-algebras
at the trivial Kan fibrations is a full subcategory of Fun(N(T), S). Since the subcategory
of Fun(N(T), S) on the T-algebras in spaces is closed under sifted colimits, it follows
that Gpdgeom

n [W−1] is a full subcategory of the ∞-category of T-algebras in n-truncated
spaces. The essential image (i.e the n-geometric objects) can be identified along the
lines of Example 7.27.2: one uses an inductive argument to prove that the n-geometric
objects are precisely the T-algebras in n-truncated spaces, while the n-smooth maps are
those maps of T-algebras whose underlying map of spaces is n-truncated. In particular,
this reproduces the result of [22] that T-algebras in spaces may be rigidified, at least for
truncated T-algebras. Similarly, one can combine this example with Example 7.27.2 to obtain
a similar model for truncated T-algebras in the ∞-topos E∞ associated to a topos E in
terms of truncated, locally fibrant simplicial T-algebras in E (localized at the hypercovers
between them).

Example 7.6. Let CAlgsm
k be the ∞-category of small augmented E∞-algebras over a

field k of characteristic zero (i.e. connective augmented dg-Artin algebras over k, see e.g.

[1717]) and let X = Fun(CAlgsm
k , S) be the ∞-category of space-valued functors on Art≥0

k .
The category CAlgsm

k has finite products (the terminal object is k), but only admits
pullbacks along small maps ; such maps are finite compositions of base changes of the maps
k → k n k[m] associated to the split square zero extension of k by the m-th suspension of
the k-module k (for m ≥ 1).

Let X0−geom be the class of all prorepresentable functors, i.e. all functors obtained as
filtered colimits of corepresentable functors. Note that such pro-representable functors
are examples of formal moduli problems (see [1717, Definition 1.1.14]), which are functors
F such that F (k) is contractible and such that F preserves pullbacks along small maps.
Define a map F → G between such formal moduli problems to be formally smooth if for
each small map A→ B in CAlgsm

k , the induced map of spaces F (A)→ F (B)×G(B) G(A)
induces a surjection on path components [1717, Definition 1.5.6].

The prorepresentable functors and formally smooth maps between them satisfy the
conditions of Assumption 3.63.6, relative to the full subcategory FormMod ⊆ X on the formal
moduli problems (Variant 3.83.8): condition (2) follows from the fact that the prorepresentable
functors are precisely those formal moduli problems whose value on k[ε] := knk[0] is discrete
[1717, Corollary 2.3.6] and Condition (4) holds relative to FormMod by [1717, Proposition
1.5.8]. Furthermore, the realization of a geometric n-groupoid X is always a formal moduli
problem (so that Remark 5.95.9 applies). Indeed, this follows from the fact that for any small
map A → B in CAlgsm

k , the induced map of simplicial spaces X(A) → X(B) is a Kan
fibration of height n and thus a realization fibration (Proposition 4.124.12).

Consequently, invoking Theorem 5.15.1, the category of geometric n-groupoids with values
in prorepresentable functors yields – after localizing at the formally smooth hypercovers – a
full subcategory of the∞-category of formal moduli problems. To identify this subcategory
(i.e. the n-geometric objects), one can again proceed as in Example 7.27.2: indeed, an inductive
argument shows that the n-geometric objects are precisely those formal moduli problems
whose value on k[ε] is n-truncated, while the n-smooth maps between them are the formally
smooth maps F → G whose induced map of spaces F (k[ε])→ G(k[ε]) is an n-truncated
effective epimorphism.
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kasparov (d’après une conjecture d’a. connes). Annales scientifiques de l’École Normale Supérieure,
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