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Abstract. Infinitesimal deformations are governed by partition Lie algebras. In characteristic
0, these higher categorical structures are modelled by differential graded Lie algebras, but in

characteristic p, they are more subtle.

We give explicit models for partition Lie algebras over general coherent rings, both in the
setting of spectral and derived algebraic geometry. For the spectral case, we refine operadic

Koszul duality to a functor from operads to divided power operads, by taking ‘refined linear

duals’ of Σn-representations. The derived case requires a further refinement of Koszul duality
to a more genuine setting.
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1. Introduction

Infinitesimal deformations over a field k of characteristic zero are governed by differential
graded Lie algebras. This paradigm, which was formalised by Lurie [DAG X] and Pridham
[Pri10], was recently generalised to arbitrary fields, cf. [BM19].

Over E∞-rings, formal moduli are equivalent to spectral partition Lie algebras. These are
chain complexes with extra structure, which is parametrised by a sifted-colimit-preserving monad
Lieπk,E∞

satisfying the following formula on coconnective V :

(1) Lieπk,E∞
(V ) =

⊕
r

(
C̃•(Σ|Πr|⋄, k)⊗ V ⊗r

)
hΣr .

Here C̃•(Σ|Πr|⋄, k) denotes cochains on the doubly suspended rth partition complex.
While useful for conceptual arguments as in [BW20], this abstract definition can be somewhat

elusive in concrete instances of deformation theory. In this work, we construct concrete models
for spectral partition Lie algebras over general (coherent) rings R, complementing the familiar
differential graded Lie algebra models in characteristic zero. To this end, we introduce an operad
in the ordinary category of chain complexes:

LieπR,E∞
:= LiesR ⊗ Sur∨R.

Here LiesR is the usual (shifted) R-linear Lie operad with LiesR(r) concentrated in degree 1− r,
where it is spanned by the Lie words in r letters x1, . . . , xr which involve each letter exactly
once, modulo antisymmetry and the Jacobi identity.

The PD surjections operad Sur∨R is the operad of (nonunital) E∞-R-algebras with divided
powers which is inspired by the surjections operad of McClure–Smith [MS03]. In homological de-
gree −d ≤ 0, Sur∨R(r) is given by a free R-module spanned by exhaustive sequences (u1, . . . , ur+d)
of elements in {1, . . . , r} satisfying uj ̸= uj+1 for all j.

The category of LieπR,E∞
-algebras in chain complexes comes with a notion of ‘tame weak

equivalence’, finer than the usual notion of a quasi-isomorphism; inverting these gives the ∞-
category of spectral partition Lie algebras. This is surprising as algebras over operads are defined
using orbits, whereas the spectral partition Lie algebra monad involves homotopy fixed points.

In the setting of simplicial commutative rings, formal moduli are equivalent to derived partition
Lie algebras, which are parametrised by a sifted-colimit-preserving monad Lieπk,∆ satisfying a
similar formula to (1), but with strict fixed points.

Modelling derived partition Lie algebras is slightly more involved than in the spectral setting.
First, we construct an operad LieπR,∆ in cosimplicial R-modules. The component LieπR,∆(r)

d is
given by R-valued functions on the set P (r)d of pairs

(σ, S) = ([σ0 < . . . < σt] , S0 ⊆ . . . ⊆ Sd) ,

where [σ0 < . . . < σt] is a strictly increasing chain of partitions of r = {1, . . . , r} with σ0 =

1 2 3 . . . r and σt = 123 . . . r , and S0 ⊆ . . . ⊆ Sd = {0, . . . , t} is an increasing chain of

subsets. Here, we also allow the case t = −1. One can think of (σ, S) as a levelled tree, together
with a nested collection of sets of marked levels.

To equip a cosimplicial R-module g• with a restricted LieπR,∆-algebra structure, we must spec-

ify an element {a1, . . . , ar}(σ,S) ∈ gd for any tuple a = (a1, . . . , ar) of elements in gd and all pairs
(σ, S) ∈ P (r)d. But there is more: we must also specify an element γ(σ,S)(a1, . . . , ar) with

|Σa,σ| · γ(σ,S)(a1, . . . , ar) = {a1, . . . , ar}γ(σ,S),

where Σa,σ ⊂ Σr is the group of symmetries of a fixing the chain of partitions σ. These operations
satisfy compatibility properties, which we will describe in detail.
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Simplicial-cosimplicial restricted LieπR,∆-algebras come with a notion of ‘tame weak equiva-
lence’; inverting these gives the ∞-category of derived partition Lie algebras.

Spectral partition Lie algebras and derived partition Lie algebras do not arise as algebras
over an R-linear ∞-operad. Because of this, our constructions require a twofold refinement of
operadic Koszul duality, which is of independent interest. First, we introduce a divided power
refinement of ∞-operads, which we call ‘divided power (PD) ∞-operads’. These allow us to
take ‘continuous duals’ of the Σn-representations appearing in an ∞-operad. Second, we study
Koszul duality for ‘derived ∞-operads’; here, the group actions are more genuine, which lets us
treat structures like simplicial commutative rings.

Throughout, we rely on the formalism pro-coherent sheaves, which originated in Deligne’s
[Har66, Appendix] and is closely related to the theory of ind-coherent sheaves [Gai13].

1.1. Statement of Results. Before stating our main results, we will briefly recall the formalism
of pro-coherent modules.

Pro-coherent modules. Any finite-dimensional k-vector space V can be recovered from its
linear dual MapVectk

(V, k); if dim(V ) =∞, this is no longer true. However, we can take ‘contin-
uous duals’ and send V to the pro-finite k-vector space lim←−W⊂V f.d.

MapVectk
(W,k); this induces

an equivalence Vectk
∼−→ Pro(Vectfink )op.

More generally, fix a coherent E∞-ring R (cf. [HA, Proposition 7.2.4.18]) and write ModR for
the ∞-category of R-module spectra. We can then refine the above construction and assign to
every R-module a pro-coherent R-module. This gives a functor ι : ModR −→ QC∨

R to the stable
∞-category of pro-coherent R-modules which we recall in Definition 2.16. We state several key
properties of QC∨

R:

(1) QC∨
R admits a closed symmetric monoidal structure;

(2) The functor ι : ModR → QC∨
R is a symmetric monoidal left adjoint, which is fully faithful

on connective R-modules. If R is eventually coconnective, then ι is in fact fully faithful on
all of ModR, and it is an equivalence when R is a discrete regular Noetherian ring;

(3) The essential image of ι is not closed under taking duals. In fact, QC∨
R is compactly gener-

ated by all ‘continuous duals’ M∨ := MapQC∨
R
(ι(M), R) of coherent R-module spectra M .

If R is discrete, then ModR can be obtained from the category of ChR of chain complexes
by inverting quasi-isomorphisms. On the other hand, QC∨

R is modelled by ChR with its tame
model structure (cf. [Bec14]). It has more cofibrations, but fewer weak equivalences, than the
usual model structure on ChR. Indeed, a map of complexes f : M → N is a tame weak
equivalence precisely if for all (possibly unbounded) complexes P of finitely generated free R-
modules, the induced map of complexes Hom(P,M)→ Hom(P,N) is a quasi-isomorphism.

Pro-coherent symmetric sequences. Classically, the Koszul dual KD(O) of an augmented
∞-operad O over R is formed in two steps: first, we form the bar construction Bar(1,O, 1), then
we take the R-linear dual to obtain KD(O).

We refine the second step by taking ‘continuous duals’ of symmetric sequences. For this, we
introduce the ∞-category sSeq∨R of pro-coherent symmetric sequences in Definition 3.17, which
is the home of continuous linear duals of symmetric sequences.

The nth term of a pro-coherent symmetric sequence is a pro-coherent R[Σn]-module. In partic-
ular, pro-coherent modules are just pro-coherent symmetric sequences concentrated in degree 0.

If R is an ordinary ring, we will model sSeq∨R by equipping the category sSeqR of symmetric
sequences in ChR with the tame model structure in Definition 4.21.

Warning 1.1. Note that sSeq∨R is usually not equivalent to symmetric sequences in QC∨
R, as

the spaces BΣn have infinite homological dimension.
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Pro-coherent composition. Let OpaugR denote the ∞-category of augmented ∞-operads, i.e.
augmented algebra objects in (sSeqR, ◦), the monoidal ∞-category of symmetric sequences
equipped with the usual composition product ◦.

For O ∈ OpaugR , the bar construction 1 ◦O 1 = Bar(1,O, 1) admits a coherently associative
comultiplication (cf. [DAG X, Section 4.3] or Section 3.4), which is informally given by

1 ◦O 1 ≃ 1 ◦O O ◦O 1→ 1 ◦O 1 ◦O 1 ≃ (1 ◦O 1) ◦ (1 ◦O 1).

To continuously dualise this map, we construct a monoidal product on sSeq∨R and prove in
Propositions 3.18 and 3.19:

Proposition 1.2 (Pro-coherent composition product). Let R be a coherent E∞-ring. Then
sSeq∨R admits a monoidal structure ◦, the pro-coherent composition product, which preserves
small colimits in the first and sifted colimits in the second variable.
If X,Y are ‘continuous duals’ of symmetric sequences of almost finite type, we have

(2) X ◦ Y ≃
⊕
n

(
Xn ⊗ Y ⊗n

)
hΣn .

Remark 1.3. If Y ∈ sSeq∨R is concentrated in degree zero, then so is X ◦ Y for any X ∈ sSeq∨R.
Hence QC∨

R is left-tensored over (sSeq∨R, ◦
)
; the action

(
sSeq∨R, ◦

)
↷ QC∨

R preserves sifted colimits.

For R a discrete coherent ring, we will give an explicit model for this composition product:

Theorem 4.29 (Point-set model for pro-coherent ◦ ). The composition product

(3) X ◦ Y =
⊕
n

(
Xn ⊗ Y ⊗n

)
Σn

on the model category sSeqR induces a monoidal structure on its ∞-categorical localisation. The
resulting monoidal ∞-category is equivalent to sSeq∨R with the monoidal structure ◦ of (2).

Remark 1.4. It is somewhat surprising that formula (3) agrees with formula (2) on continu-
ous duals of suitably finite symmetric sequences, as (3) involves strict orbits while (2) involves
homotopy fixed points. This phenomenon relies on two facts: first, invariants and coinvariants
agree on projective R[Σn]-modules via the norm; second, on bounded above complexes of finite
projective R[Σn]-modules, invariants and homotopy fixed points are equivalent.

Divided power operads and their algebras. We define a new notion of ∞-operad:

Definition 1.5 (Divided power operads). Let R be a coherent E∞-ring. A PD ∞-operad is an

algebra object in (sSeq∨R, ◦). Write OppdR and Opaug,pdR for the ∞-categories of PD ∞-operads
and augmented PD ∞-operads, respectively.

If R is discrete, consider the category OpR of ordinary operads in chain complexes over
R; these are often called dg-operads. In Theorem 4.33, we prove that inverting tame weak

equivalences in OpR gives the ∞-category OppdR .
In Theorem 4.35, we show that if P ∈ OpR is a dg-operad with tamely cofibrant underlying

symmetric sequence, then the ∞-category AlgP(QC∨(R)) of pro-coherent algebras over the cor-
responding PD ∞-operad P can be obtained from P-algebras in chain complexes by inverting
tame weak equivalences.

Refined Koszul Duality. Using that the continuous R-linear duality functor (sSeqR, ◦)op →
(sSeq∨R, ◦) is lax monoidal, we offer a refinement of the classical operadic Koszul duality con-
struction of Ginzburg–Kapranov [GK95], Fresse [Fre04], Salvatore [Sal98], and Ching [Chi05]:
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Theorem 3.49 (Refined Koszul duality for operads). Let R be a coherent E∞-ring spectrum.
Then there is a commuting diagram of ∞-categories

Oppd,augR Oppd,aug,opR

OpaugR Opaug,opR

KDpd

υ

KD

ι

where the bottom functor sends an augmented ∞-operad to its classical Koszul dual ∞-operad,
given by the Spanier–Whitehead dual of its bar construction.

Example 1.6 (Partition Lie algebras). Over a field R = k, the refined Koszul dual of the

nonunital E∞-operad Enu
∞,k is a divided power ∞-operad Lieπk,E∞

= KDpd(Enu
∞,k) which induces

the spectral partition Lie algebra monad of [BM19, Construction 1.18] on QC∨
k ≃ Modk. In fact,

our setup gives a definition of spectral partition Lie algebras over any coherent E∞-ring; their
relation to deformation theory is the subject of future work.

We also offer a divided power refinement of Koszul duality for algebras:

Theorem 3.51 (Refined Koszul duality for algebras). Let R be a coherent E∞-ring and P an
augmented ∞-operad over R. There is a commuting diagram

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op

AlgP(ModR) AlgKD(P)(ModR)
op

KDpd

υ

KD

ι

where the bottom functor sends a P-algebra A its classical Koszul dual algebra, given by the
Spanier–Whitehead dual of its bar construction.

Given a dg-operad P over a coherent ring R, one can construct a new dg-operad KD(P) via
the chain-level bar construction, cf. Construction 4.38. This generalisation of quadratic duality
is due to Ginzburg–Kapranov [GK95] and studied in depth by Getzler–Jones [GJ94] and Fresse
[Fre04] (see also [LV12] for a textbook account).

Theorem 4.39 (Chain models for Koszul duality). Fix a coherent ring R. Let P be an augmented
dg-operad over R with tamely cofibrant underlying symmetric sequence and let P denote the
corresponding PD ∞-operad.

Then the chain-level dual operad KD(P) is a model for the Koszul dual PD∞-operad KDpd(P).
Furthermore, inverting tame weak equivalences gives rise to a commuting square of ∞-categories
in which the vertical functors are equivalences

AlgP[W
−1
tame] AlgKD(P)[W

−1
tame]

op

AlgP(QC∨
R) AlgKDpd(P)(QC∨(R))op.

KDP

≃ ≃

KDpd
P

Explicit Models for Spectral Partition Lie Algebras. Theorem 4.39 lets us give explicit
models for spectral partition Lie algebras, using the following notation:

Notation 1.7 (Nondegenerate sequences). Given r ≥ 0, a nondegenerate sequence in r is an
(ordered) sequence u = (u1, . . . , ur+d) of elements in r = {1, . . . , r} such that each 1, . . . , r
appears in the sequence and uα ̸= uα+1 for all α. If u does not exhaust all of r or if uα = uα+1

for some α, then u is said to be degenerate.
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For the sake of exposition, we suppress signs; they are specified in the main text:

Definition 4.43 (Spectral partition L∞-algebra). Let R be a discrete coherent ring. A spectral
partition L∞-algebra is a chain complex of R-modules g, together with the following algebraic
structure: given r ≥ 2 and a nondegenerate sequence u = (u1, . . . , ur+d), there is an operation

{−, . . . ,−}u : g⊗r g

of homological degree −1− d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr, let σ(u) =
(
σ(u1), . . . , σ(ur+d)

)
. Then

{x1, . . . , xr}σ(u) = ±{xσ−1(1), . . . , xσ−1(r)}u
(b) Differential. For each nondegenerate sequence u = (u1, . . . , ur+d) in r and each tuple

x1, . . . , xr ∈ g, we have

∂{x1, . . . , xr}u =

r∑
i=1

±{x1, . . . , ∂(xi), . . . , xr}u

+

r+d+1∑
α=1

r∑
v=1

v ̸=uα−1,uα+1

±{x1, . . . , xr}u+=(u1,...,uα−1,v,uα,...,ur+d)

+

r−2∑
k=2

∑
σ∈UnShu(k,r−k)

±
{
{xσ(1), . . . , xσ(k)}v(k,σ), xσ(k+1), . . . , xσ(r)

}
w(k,σ)

In the third row, we sum over the set UnShu(k, r − k) of (k, r − k)-unshuffles σ which are
compatible with u in the following sense: if we decompose the subsequence of u consisting
of all ui ∈ {σ(1), . . . , σ(k)} into intervals

u1 =
(
uα(1), uα(1)+1, . . . , uα(1)+β(1)

)
, . . . , un =

(
uα(n), uα(n)+1, . . . , uα(n)+β(n)

)
separated in u by elements in {σ(k + 1), . . . , σ(r)}, then uα(i)+β(i) = uα(i+1) for all i.

Define v(k, σ) to be the sequence in k given by applying σ−1 to the sequence(
uα(1), . . . , uα(1)+β(1)−1, uα(2), . . . , uα(i)+β(i)−1, uα(i), . . . , uα(n)+β(n)

)
.

Define w(k, σ) as the sequence of elements of r − k + 1 obtained from u by replacing each
σ(k + i) (for i = 1, . . . , r − k) by 1 + i and replacing each of the intervals u1, . . . ,un by a
single copy of 1.

If v(k, σ) or w(k, σ) is degenerate, the corresponding term is zero.

Theorem 4.44 (Chain models for spectral partition Lie algebras I). Inverting tame weak equiv-
alences on the category of spectral partition L∞-algebras gives the ∞-category AlgLieπR,E∞

(QC∨
R).

In particular, when R = k is a field, localising spectral partition L∞-algebras at the weak equiv-
alences gives the ∞-category of partition Lie algebras from [BM19, Definition 5.32].

We also provide a second model as algebras over a certain dg-operad LieπR,E∞
with tamely

cofibrant underlying symmetric sequence. Two ingredients are needed:

(1) The usual (shifted) Lie operad LiesR;

(2) The PD surjections operad Sur∨R.

The dg-operad LiesR is familiar. In weight r, LiesR(r) sits in homological degree 1− r, where
it is generated by Lie words w(c1, . . . , cr) in r letters involving each letter exactly once, modulo
Jacobi identity and antisymmetry. For example, LiesR(3) is a free R-module generated by the
Lie words [c1, [c2, c3]], [c3, [c1, c2]] in degree −2.
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The dg-operad Sur∨R constructed in Appendix A is an analogue of the Barratt–Eccles operad
(and the surjections operad [MS03]) for (nonunital) E∞-R-algebras with divided powers. The
Koszul dual of Sur∨R is the shifted Lie operad, see Theorem A.14. Here Sur∨R(r) is a coconnective
chain complex, which in homological degree −d is a free R-module spanned by all nondegenerate
sequences (u1, . . . , ur+d) in r.

Example 1.8. Let k be a field. Then each Sur∨R(r) is a chain complex of finitely generated free
k[Σr]-modules. For any bounded above chain complex V , we have

Sur∨R ◦V =
⊕
r

(
Sur∨R(r)⊗ V ⊗r

)
Σr

∼=
⊕
r

(
Sur∨R(r)⊗ V ⊗r

)Σr ≃
⊕
r

(V ⊗r)hΣr

The second isomorphism uses that the norm map is an isomorphism on finitely generated free
k[Σr]-modules, and the third that Sur∨R(r)⊗ V ⊗r is Σr-fibrant.

We then define the dg-operad LieπR,E∞
as a levelwise tensor product:

LieπR,E∞
:= LiesR ⊗lev Sur

∨
R .

We spell out the resulting structure of a LieπR,E∞
-algebra in Corollary 4.53, and deduce:

Theorem 1.9 (Chain models for spectral partition Lie algebras II, cf. Theorem 4.50). Inverting
tame weak equivalences on the category of dg-algebras over LieπR,E∞

gives an equivalence

AlgLieπ
R,E∞

[W−1
tame] ≃ AlgLieπR,E∞

(QC∨
R).

In particular, when R = k is a field, localising Lieπk,E∞
-algebras at weak equivalences gives the

∞-category of partition Lie algebras from [BM19, Definition 5.32].

The Derived Setting. There is a second, more algebraic, generalisation of classical algebraic
geometry based on simplicial commutative rings (rather than connective E∞-rings). Here, formal
moduli are controlled by derived partition Lie algebras. To construct point-set models for these
objects, we implement the above programme in a more genuine setting. We briefly outline our
main results, but will leave detailed statements to the main text.

Let R be a coherent commutative ring. Given n ≥ 0, write R for the constant Σn-Mackey
functor corresponding to R, thought of as a genuine Σn-spectrum, and consider the ∞-category
ModΣn

R of R-modules in SpΣn .
In Definition 3.56, we assemble these into the ∞-category of derived symmetric sequences

sSeqgenR , which admits a composition product ◦, cf. Construction 3.63. Passing to algebra objects

leads to the ∞-category OpgenR of derived ∞-operads over R.
Identifying ModR with derived sequences in degree zero, we see that ModR is left-tensored

over sSeqgenR ; for any derived∞-operad O, we obtain an∞-category of O-algebras AlgO(ModR).

Example 1.10 (Simplicial commutative rings). The unique operadCom in sets withCom(r) = ∗
for all r gives rise to a derived ∞-operad ComR such that AlgComR

(ModR) is the ∞-category

of simplicial commutative R-algebras.

The bar construction of an augmented derived ∞-operad O is again equipped with a comul-
tiplication. To dualise it ‘continuously’, we introduce the ∞-category sSeqgen,∨R of pro-coherent
derived symmetric sequences in Definition 3.72.

Definition 3.76 gives sSeqgen,∨R a sifted-colimit-preserving product ◦ satisfying

X ◦ Y ≃
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Writing Opgen,pdR = Alg(sSeqgen,∨R , ◦) for the ∞-category of derived divided power operads, we
construct a Koszul duality functor

KDpd : Opgen,augR → Opgen,pd,aug,opR
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in Definition 3.84, and give a version for algebras in Definition 3.85.

Example 1.11. For k a field, KDpd(Comnu
k ) defines derived partition Lie algebras.

Using symmetric sequences in simplicial-cosimplicial R-modules, we construct point-set mod-
els for the monoidal ∞-categories (sSeqgenR , ◦) and (sSeqgen,∨R , ◦) in Theorem 5.15. This allows

us to model derived (PD) ∞-operads in Theorem 5.19, and their algebras in Theorem 5.20.
We give an explicit construction of the refined Koszul duality functor for derived ∞-operads in
Theorem 5.43. In Definition 5.31, we construct a cosimplicial restricted operad

LieπR,∆.

Here LieπR,∆(r)
d is dual to the set of nested chains of partitions of r of length d, i.e. the set of pairs(

σ, S
)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
where σ is a nondegenerate chain of partitions of r and S0 ⊆ · · · ⊆ Sd = {0, . . . , t} is an increasing
set of subsets. We allow d = −1 in this definition.

The explicit description of derived Koszul duality allows us to construct explicit point-set
models for derived partition Lie algebras in Theorem 5.33 of the main text:

Theorem 1.12 (Simplicial-cosimplicial models for partition Lie algebras). Inverting tame weak
equivalences on the category of simplicial-cosimplicial restricted LieπR,∆-algebras induces an equiv-
alence of ∞-categories

Algsc,res
Lieπ

R,∆
[W−1

tame] Alggen,pdLieπR,∆
(QC∨

R).
≃

Hence when R = k is a field, the localisation of the category of simplicial-cosimplicial restricted
algebras over Lieπk,∆ at the weak equivalences is equivalent to the ∞-category of partition Lie
algebras from [BM19, Definition 5.47].

In Construction 5.34, we describe simplicial-cosimplicial restricted LieπR,∆-algebras over a field
R = k as simplicial-cosimplicial modules with explicit operations satisfying relations we specify.

1.2. Outline. We provide a brief outline of the structure of the paper. In the first half, we
give an∞-categorical treatment of (derived) PD∞-operads and their algebras; in particular, we
define the (derived) PD ∞-operad whose algebras are spectral (derived) partition Lie algebras.
The second half of the paper provides explicit point-set models for these ∞-categorical objects.

We will start by collecting some results on∞-categories of pro-coherent modules in Section 2.
Most importantly, we show that a polynomial functor between (coherent) additive ∞-categories
admits a natural extension to a sifted-colimit-preserving functor between the corresponding ∞-
categories of pro-coherent modules.

In Section 3, we use this machinery to develop the theory of PD∞-operads and their algebras.
In particular, this leads to a refinement of the usual Koszul duality for operads (Section 3.4).
In Section 3.4 we also provide a few more details on the ∞-categorical bar construction, to fill
in some gaps in the literature (as pointed out in [DCH22]). Section 3.5 discusses the derived
analogues of ∞-operads and PD ∞-operads over a simplicial commutative ring.

Section 4 provides chain models for PD ∞-operads over a discrete coherent ring. In par-
ticular, we describe the tame homotopy theory of chain complexes that is used to present the
∞-categories of pro-coherent modules and symmetric sequences. Using this, we give chain com-
plex models for spectral partition Lie algebras.

Similarly, the∞-categories of derived PD∞-operads and their algebras admit concrete models
in terms of simplicial-cosimplicial R-modules, which are discussed in Section 5. This allows for
an explicit description of derived partition Lie algebras in terms of simplicial-cosimplicial algebras
with divided power operations.
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Finally, Appendix A gives a detailed construction of the PD surjections operad; this is used
in Section 4 to provide a chain model for the spectral partition Lie PD ∞-operad and also to
produce a cofibrant model for the Lie operad. Appendix B describes free algebras in monoidal
∞-categories where the tensor product does not preserve colimits in the second variable (such
as the composition product).

1.3. Acknowledgements. The authors wish to thank Damien Calaque, Jacob Lurie, Zhouhang
Mao, Denis Nardin, Pelle Steffens, and Bruno Vallette for helpful conversations related to this
paper. The first author would also like to thank Merton College, Oxford, for its support. The
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2. Functors on pro-coherent modules

The main goal of this section is to study sifted-colimit-preserving functors on pro-coherent
modules, which will be a key ingredient for our subsequent treatment of refined Koszul duality
via divided power ∞-operads.

2.1. Pro-coherent modules. We begin by discussing pro-coherent modules over additive ∞-
categories. This general framework will allow us to give a uniform treatment of several examples
of interest, including pro-coherent modules over a ring and pro-coherent symmetric sequences.
First, we recall several preliminary definitions.

An∞-category A is additive if it admits finite products and coproducts and hA is an additive
category, cf. [SAG, Definition C.1.5.1]. This implies that products and coproducts agree; we call
them ‘direct sums’ and denoted them by ⊕.

Definition 2.1 (Modules over additive∞-categories). Given a small additive∞-category A, the
∞-category of (left) A-modules is the initial presentable stable ∞-category receiving a functor
from A that preserves finite direct sums:

(4) A ModA .

Stabilising [HTT, Proposition 5.3.6.2], we can identify ModA with the full subcategory of
Fun(Aop,Sp) spanned by the functors M : Aop −→ Sp preserving finite direct sums. The fully
faithful universal functor (4) then arises from the Yoneda embedding, using that all mapping
spaces in A are grouplike E∞-spaces in an essentially unique way, cf. [SAG, Section C.1.5].

Example 2.2. Let R be a connective E1-ring spectrum in the sense of [HA, Definition 7.2.4.16]
and consider the additive ∞-category VectωR of finitely generated free left R-modules of the
form R⊕n. The inclusion VectωR ↪→ ModVectωR

can then be identified with the usual inclusion
VectωR ↪→ ModR into the ∞-category of left R-modules. For a general additive ∞-category A,
we will therefore refer to objects in A as finitely generated free A-modules.

Remark 2.3. Our formalism is not well adapted to non-connective rings, as we only remember
the mapping spaces (not spectra) between objects in VectωR.

Example 2.4. Let Ai be a set of small additive categories and write
⊕

i Ai ⊆
∏

i Ai for the full
subcategory spanned by tuples of objects Vi ∈ Ai such that almost all Vi are the zero object.
Then

⊕
i Ai is additive and Mod⊕

i Ai
≃

∏
i ModAi .
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Definition 2.5 ((Co)connective modules). An A-module is said to be (co)connective if the
corresponding functor Aop −→ Sp takes values in (co)connective spectra. In particular, the
essential image of A ↪→ ModA consists of connective A-modules. This defines a t-structure
(ModA,≥0,ModA,≤0) on ModA.

Example 2.6 (Opposite ∞-category). If A is an additive ∞-category, then so is Aop. We write
V ∨ ∈ Aop for the object corresponding to V ∈ Aop. One can identify ModAop with the dual
stable presentable ∞-category of ModA, i.e. the full subcategory of Fun(ModA,Sp) spanned by
the left adjoints. We will denote the induced pairing between left and right A-modules by

−⊗A − : ModAop ×ModA −→ Sp .

For V ∨ ∈ Aop and W ∈ A, the spectrum V ∨⊗AW is simply the spectrum corresponding to the
grouplike E∞-space MapA(V,W ). In these terms, a right A-module M is connective if and only
if M ⊗A − is a right t-exact functor.

We introduce several standard finiteness conditions in this generalised setting:

Definition 2.7 (Finiteness conditions). Let A be a small additive ∞-category. An A-module
M is said to be:

(1) perfect if it is a compact object in ModA;

(2) almost perfect if for each n, there exists a perfect A-module N and a map N −→ M with
n-connective cofibre;

(3) coherent if it is almost perfect and eventually coconnective, which means that M belongs
to ModA,≤N for some N ≫ 0.

We will denote the full subcategories of ModA spanned by the perfect, almost perfect and
coherent A-modules by PerfA, APerfA and CohA respectively.

Remark 2.8. The full subcategory PerfA,≥0 ⊆ ModA of connective perfect A-modules is the
smallest subcategory of ModA that contains A and is closed under finite colimits and retracts.
Similarly, the full subcategory APerfA,≥0 ⊆ ModA of connective almost perfect A-modules is the
smallest subcategory that contains A and is closed under geometric realisations. In fact, every
connective almost perfect A-moduleX can be obtained as the geometric realisation of a simplicial
object X• in A, and the cofibre of the natural map X0 → |X•| ≃ X is always 1-connective.

Definition 2.9 (Coherence). An additive ∞-category A is said to be left coherent if the t-
structure on ModA restricts to a t-structure on APerfA. We will say that A is coherent if both
A and Aop are left coherent.

Example 2.10 (Coherent En-rings). If R is a connective En-ring spectrum as in Example 2.2,
then VectωR is (left) coherent if and only if R is a (left) coherent E1-ring spectrum in the sense
of [HA, Proposition 7.2.4.18].

Lemma 2.11. Let f : A0 −→ A be an additive functor between additive ∞-categories and let
f! : ModA0 ⇆ ModA : f∗ be the induced adjoint pair. If f∗ detects equivalences and f∗(A) ⊆
APerfA0 , then X ∈ ModA is almost perfect if and only if f∗(X) ∈ ModA0 is almost perfect.
Since f∗ commutes with truncation, it then follows that A is coherent if A0 is coherent.

Proof. The functor f∗ sends almost perfect A-modules to almost perfect A0-modules, because it
preserves realisations and sends A into APerfA0

. On the other hand, note that f! sends APerfA0

to APerfA. If f∗(X) belongs to APerfA0
, we can write X as a colimit of a simplicial diagram

Bar•(f!f
∗, f!f

∗, X), which belongs to APerfA. □

Example 2.12 (Genuine equivariant spectra). Let G be a finite group and write A(G) for
its spectral Burnside ∞-category, with objects given by finite G-sets and morphism spaces
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MapA(G)(X,Y ) given by the group completions of the E∞-spaces of spans X ←− Z −→ Y

of G-sets (with disjoint union). Note that ModA(G) ≃ SpG is the∞-category of spectral Mackey
functors [Bar17], or equivalently, genuine G-spectra [GM11, Nar16]. Then A(G) is a coherent ad-
ditive∞-category. Indeed, this follows by applying Remark 2.11 where A0 is the free additive∞-
category on the set of orbits {G/H} and f∗ : ModA(G) −→ ModA0

=
∏

H<G Sp simply evaluates
a spectral Mackey functor at G/H. The condition of Lemma 2.11 follows from the fact that each
MapA(G)(X,Y ) is an almost perfect spectrum (as it has finitely generated homotopy groups).

The following example is of key significance in our treatment of derived ∞-operads:

Notation 2.13 (Constant Mackey functors). Given a finite group G and an abelian group A,

let A ∈ SpG be the Eilenberg–Mac Lane spectrum corresponding to the constant Mackey functor
on A. Recall that this constant Mackey functor sends a finite G-set X to the abelian group
Map(X,A)G ∼= Map(X/G,A) consisting of of G-invarant functions X → A; restriction maps
correspond to precomposition and transfers to summation over fibres. In particular, A sends all
orbits G/H to the Eilenberg–Mac Lane spectrum of A. This assignment sends direct sums of

abelian groups to direct sums in SpG, so taking its sifted-colimit-preserving extension provides a
colimit-preserving functor ModZ,≥0 −→ SpG;A 7−→ A defined on connective Z-module spectra.

Lemma 2.14. The functor ModZ,≥0 −→ SpG;A 7−→ A has a lax symmetric monoidal structure,

where the symmetric monoidal structure on SpG is given by Day convolution.

Proof. Recall that for any ∞-category C and a presentable ∞-category V, left Kan extension
along the inclusion i : C −→ PΣ(C) into the sifted-colimit completion of C defines a fully faithful
functor i! : Fun(C,V) −→ Fun(PΣ(C),V), whose essential image consists of those functors that
preserve sifted colimits. If C is symmetric monoidal and V is closed symmetric monoidal, then
i! becomes a symmetric monoidal functor with respect to Day convolution. In particular, i!
preserves E∞-algebras, i.e. if F : C −→ V is a lax symmetric monoidal functor, then its sifted-
colimit preserving extension i!(F ) is lax symmetric monoidal as well.

Applying this to ModZ,≥0 = PΣ(Vect
ω
Z), it remains to verify that VectωZ −→ SpG;A 7−→ A is

lax symmetric monoidal. This functor admits a factorization

VectωZ SpG,♡ SpG

over the heart of SpG, i.e. the category of Mackey functors A(G) −→ Ab with values in (discrete)

abelian groups. The inclusion SpG,♡ ↪→ SpG is lax symmetric monoidal and one readily verifies
that sending A to the corresponding constant Mackey functor is lax symmetric monoidal. □

Example 2.15 (Cohomological Mackey functors). If R is a connective E1-ring spectrum over

Z, then R defines an associative algebra in SpG, and we let ModGR = ModR(Sp
G) denote the

corresponding category of left modules. Let us point out that R differs from the E1-algebra
denoted trivG(R) in [PSW22, Example 3.7], whose modules are the (R-linear) derived Mackey

functors A(G) −→ ModR of Kaledin. The t-structure on SpG induces a left and right complete

t-structure on ModGR, in which an object M is (co)connective if and only if each M(X) is a
(co)connective spectrum for any finite G-set X.

Write R[OG] ⊆ ModGR,≥0 for the full (additive) subcategory spanned by the free R-modules
generated by finite G-sets X, i.e. of R-modules of the form R⊗Σ∞

+X. The objects of R[OG] are

compact projective generators for ModGR,≥0, which implies that there is an equivalence

ModR[OG] ModGR = ModR(Sp
G).∼
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We then use Lemma 2.11 (as in Example 2.12) to show that R[OG] is a coherent additive ∞-
category if R is a coherent E1-ring spectrum over Z.

When R is a discrete ring, the objects in R[OG] are all contained in the heart of the t-structure,
i.e. they correspond to R-modules in the (ordinary) category of Mackey functors A(G) −→ Ab
with values in discrete abelian groups. Indeed, since all suspension spectra of finite G-sets are
dualisable in SpG, we have that(

R⊗ Σ∞
+X

)
(Y ) ≃ HomSpG

(
Σ∞

+ Y,R⊗ Σ∞
+X

)
≃ HomSpG

(
Σ∞

+ (X × Y ), R
)
≃ R(X × Y )

so that R⊗ Σ∞
+X corresponds to the Mackey functor Y 7→ Map(X × Y,R)G.

Following Yoshida [Yos83], the category R[OG] can then be identified explicitly as follows:

it is the full subcategory of the (ordinary) category Mod♡R[G] of discrete R[G]-modules spanned

by the R[G]-modules obtained as R-linearisations of finite G-sets. We will denote such an R-
linearisation of a G-set X by R[X]. This identification of R[OG] is then induced by the functor

evG : R[OG] −→ Mod♡R[G] evaluating at the free G-set G ∈ A(G). Indeed, this functor sends

R⊗ Σ∞
+X to R[X] and one readily verifies that it is fully faithful, using that

MapR[OG]

(
R⊗ Σ∞

+X,R⊗ Σ∞
+ Y

)
≃ MapSpG

(
Σ∞

+ (X), R⊗ Σ∞
+ Y

)
≃ R(X × Y ) = R[X × Y ]G

and likewise that MapR[G]

(
R[X], R[Y ]

)
≃ MapSetG(X,R[Y ]) ≃ R[X × Y ]G.

After these recollections, we can now turn to the main topic of this subsection:

Definition 2.16 (Pro-coherent modules). Let A be a coherent additive ∞-category. We define
the ∞-category of pro-coherent (left) A-modules as

QC∨
A = Ind

(
CohopAop

)
.

More explicitly, one can identify QC∨
A with the ∞-category Funex(CohAop ,Sp) of exact functors

M : CohAop −→ Sp.

Coherent modules are generally not preserved by (nonabelian) left derived functors such as
tensor products. It will therefore be convenient to give a slightly different presentation of pro-
coherent modules in terms of almost perfect modules.

Definition 2.17 (Convergent functors). Let C be a stable ∞-category with a left complete
t-structure. If V is an ∞-category with sequential limits, a functor F : C −→ V is said to be
convergent if for any object X ∈ C, the natural map

F (X)
≃−→ lim

m
F (τ≤mX)

is an equivalence. Write Funconv(C,V) ⊆ Fun(C,V) for the full subcategory spanned by the
convergent functors.

Remark 2.18. Note that a functor F : C −→ V as above is convergent if and only if it preserves
limits of all towers . . . −→ X1 −→ X0 in C with the property that for each m ≥ 0, the tower
. . . −→ τ≤mX1 −→ τ≤mX0 is eventually constant.

Lemma 2.19. Let C be a small stable ∞-category equipped with a left complete t-structure,
and write C+ ⊂ C for the full subcategory of eventually coconnective objects. Given another ∞-
category V with small limits, restriction determines an equivalence Funconv(C,V) ≃ Fun(C+,V),
with inverse given by right Kan extension.

Proof. Since right Kan extension along the fully faithful inclusion C+ ↪→ V defines a fully faithful
functor Fun(C+,V) −→ Fun(C,V), it suffices to verify that a functor is convergent if and only
if it is right Kan extended from C+. This follows from Remark 2.18 and the fact that for any
X ∈ C, its Postnikov tower defines a right cofinal functor N −→ C+

X/. □
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Since CohAop ≃ APerf+Aop , we obtain a new characterisation of coherent modules:

Corollary 2.20. Let A be a coherent additive∞-category. Then there is an equivalence QC∨
A ≃

Funex,conv(APerfAop ,Sp).

Remark 2.21. The exact functors CohAop −→ Sp and APerfAop −→ Sp are determined by
their restriction to connective objects, as all objects are eventually connective.

Definition 2.22 (Dually almost perfect modules). We say that a pro-coherent A-module M
is dually almost perfect if the corresponding convergent exact functor M : APerfAop −→ Sp is
corepresentable by an almost perfect Aop-module. Write APerf∨A ⊆ QC∨

A for the full subcategory
spanned by these objects, and observe that there is a (formal) equivalence of ∞-categories

(−)∨ : APerfopAop APerf∨A .
≃

We will now describe the relation between the ∞-categories of A-modules and pro-coherent
A-modules, their difference being controlled by t-structures. We start by endowing pro-coherent
modules with a t-structure.

Lemma 2.23 (Pro-coherent t-structure). Let A be a coherent additive ∞-category. Then QC∨
A

carries a left complete, accessible t-structure such that a pro-coherent module M is connective if
and only if M : CohAop −→ Sp is right t-exact.

Proof. The existence of the desired t-structure follows immediately from [HA, Proposition 1.4.4.11].
It is left complete because the connective objects are closed under products and the intersection⋂

n QC∨
A,≥n contains only the zero object [HA, Proposition 1.2.1.19]. □

Remark 2.24. Note that a pro-coherent module M is connective if and only if the associated
exact convergent functorM : APerfAop −→ Sp is right t-exact. Indeed, for eachX ∈ APerfAop,≥0

the spectrumM(X) arises as the limit of a tower of connective spectraM(τ≤nX) with connective
fibres.

Remark 2.25 (Relation to ind-coherent modules). Let R be a coherent commutative ring with
dualising complex ωR. Then Serre duality gives an equivalence QC∨

R ≃ Ind(CohR). However,
this equivalence does not identify the t-structure of Lemma 2.23 with the t-structure on ind-
coherent sheaves from [GR17, Proposition 1.2.2]. Instead, the induced t-structure on Ind(CohR)
has connective objects generated by ωR under colimits and extensions.

Using the pairing ModAop ×ModA −→ Sp from Example 2.6, every left A-module M deter-
mines an exact functor (−) ⊗A M : CohAop −→ Sp. We obtain a functor ι from A-modules to
pro-coherent A-modules, which is part of an adjunction

ι : ModA QC∨
A : υ .

Observe that ι : ModA −→ QC∨
A is the unique colimit-preserving extension of its restriction to A.

In terms of Corollary 2.20, this restriction sends each V to the convergent functor APerfAop −→
Sp corepresented by V , which we view as an object in Aop.

Proposition 2.26. Let A be a coherent additive ∞-category. Then ι exhibits ModA as the right
completion of QC∨

A.

Proof. If M is a connective A-module, then (−)⊗A M : CohAop −→ Sp is right t-exact, and so

ι is a right t-exact functor. To verify that ι restricts to an equivalence ModA,≥0
≃−−→ QC∨

A,≥0,
first note that we can identify

ModA,≥0 ⊆ Fun(Aop,Sp≥0) and QC∨
A,≥0 ⊆ Fun(APerfAop,≥0,Sp≥0)
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with the full subcategories spanned by additive functors and right exact convergent functors,
respectively, using Remark 2.24. In fact, note that every right exact functor F : APerfAop,≥0 −→
Sp≥0 is automatically convergent, because the cofibre of each F (X) −→ F (τ≤mX) is the (m+2)-

connective spectrum F
(
τ≥m+1X[1]

)
.

Unravelling the definitions, we can identify the functor ι : ModA,≥0 −→ QC∨
A,≥0 with the

functor taking left Kan extension along Aop −→ APerfAop

Fun⊕(A
op,Sp≥0) Funrex(APerfAop,≥0,Sp≥0).

In particular, ι is fully faithful, so it only remains to check that restriction along Aop −→
APerfAop detects equivalences. This holds as any right exact functor F : APerfAop,≥0 −→ Sp≥0

preserves geometric realisations as for any simplicial diagram X• in APerfAop,≥0 and eachm ≥ 0,

the natural map |skmF (X•)|
≃−→ F |skm(X•)| −→ F |X•| has an (m+ 1)-connective cofibre. □

Remark 2.27 (The bounded case). Let A be a coherent∞-category such that there is an n such
that HomA(V,W ) is n-coconnective for all V,W ∈ A. Then there are inclusions of full subcate-
gories Aop ⊆ CohAop ⊆ ModAop , and ι can then be identified with the functor Fun⊕(A

op,Sp) −→
Funex(CohAop ,Sp) taking left Kan extension. Hence ι is fully faithful and preserves compact ob-
jects.

Example 2.28. If R is a coherent connective E1-ring as in Example 2.2, set QC∨
R := QC∨

VectωR
.

Then ι is fully faithful if and only if R is eventually coconnective. One implication follows directly
from Remark 2.27. For the converse, unravelling the definitions shows that for any connective
E1-ring R and a left module M ∈ ModR, the unit map M −→ υ(ι(M)) can be identified with

M limn→∞

(
τ≤nR⊗R M

)
.

Applying this to M =
⊕

k≥0R[−k] shows that R is eventually coconnective if ι is fully faithful.
If R is furthermore Noetherian, then ι is an equivalence if and only if R is discrete regular

Noetherian, as in this case, any finitely generated R-module admits a finite free resolution and

the inclusion PerfRop
≃−→ CohRop is an equivalence.

2.2. Extended functors. We will now consider sifted-colimit-preserving functors QC∨
A −→

QC∨
B between categories of pro-coherent modules. Our aim is to construct such functors as exten-

sions of functors A −→ B, thereby generalising a method of the first author and Mathew [BM19,
Section 3.2], which is related to the work of Illusie [Ill71, Section I-4] and Kaledin [Kal15, Section 3].

Notation 2.29. If C,V are two ∞-categories with sifted colimits, let FunΣ(C,V) be the full
subcategory of Fun(C,V) spanned by the sifted-colimit-preserving functors.

We start by recalling that for any small additive∞-category A, the objects in A form compact
projective generators for ModA,≥0. Given another ∞-category V with sifted colimits, restriction
along A ↪→ ModA,≥0 therefore defines an equivalence [HTT, Proposition 5.5.8.15]

(5) FunΣ
(
ModA,≥0,V

)
Fun

(
A,V

)
.≃

The inverse is given by left Kan extension, and sends a functor F : A −→ V to its nonabelian
left derived functor.

When A is a small coherent additive ∞-category, there is a similar method for producing
functors out of pro-coherent modules, where on the right hand side of (5), we need to enlarge A

to also include some non-connective objects.

We will use the following notion from [SAG, Appendix C]:
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Definition 2.30 (op-prestable∞-categories). An∞-category C is said to be op-prestable if Cop

is a prestable ∞-category in the sense of [SAG, Definition C.1.2.1]. In other words, C is op-
prestable if there is a fully faithful embedding ι : C ↪→ D into a stable ∞-category, with essential
image closed under finite limits and extensions. If ι is initial among such embeddings, we call D
the stable envelope of C; this is the case precisely if every object in D is an iterated suspension
of objects in C.

Definition 2.31 (The ∞-category APerf∨A,⪕ 0). Let APerf∨A,⪕ 0 ⊆ APerf∨A be the full subcat-

egory spanned by modules M∨ with M ∈ APerfAop,≥0 connective. Note that APerf∨A,⪕ 0 is an

op-prestable ∞-category with stable envelope APerf∨A.
Likewise, let Perf∨A,⪕ 0 ⊆ PerfA be the full subcategory of perfect A-modules with connective

dual Aop-module. Then PerfA is the stable envelope of Perf∨A,⪕ 0.

Remark 2.32. Note that APerf∨A,⪕ 0 is generally different from APerfA,≤0, the full subcategory
of almost perfect modules which are coconnective in the t-structure considered in Lemma 2.23.
For example, take A = Vectωk[ϵ] as in Example 2.2. The augmentation k[ϵ]→ k induces a functor

QC∨
k[ϵ] → QC∨

k ≃ Modk which preserves (dually) almost perfect objects. In QC∨
k ≃ Modk,

these are just complexes bounded below (above) with finite-dimensional homotopy groups. The
discrete k[ϵ]-module k is connective almost perfect, and so k∨ belongs to APerf∨A,⪕ 0. How-
ever, k∨ is not almost perfect, as k is not dually almost perfect since k ⊗k[ϵ] k does not have
bounded above homotopy.

Note also that APerf∨A,⪕ 0 can be different from APerf∨A,≤0, the full subcategory of dually
almost perfect modules which are coconnective. For example, take k[ϵ1] the trivial square-zero
extension of k by a class in degree 1. Then k[ϵ1]

∨ = k[ϵ1] belongs to APerf∨A,⪕ 0, but is not
coconnective as there is a nonzero map Σk[ϵ1]→ k[ϵ1].

Recall that a simplicial object in an ∞-category is called m-skeletal if it is the left Kan
extension of its restriction to ∆op

≤m.

Notation 2.33 (Finite stable geometric realisations). If C is an op-prestable ∞-category and V

admits geometric realisations, then a functor F : C −→ V is said to preserve finite stable geometric
realisations if the following condition holds: ifX• is a simplicial object in C such that the image in
the stable envelope of C is m-skeletal for some m and has its geometric realisation contained in C,
then the natural map |F (X•)| −→ F (|X•|) is an equivalence. We write Funσ(C,V) ⊆ Fun(C,V)
for the full subcategory spanned by the functors preserving finite stable geometric realisations.

Remark 2.34. If C is already stable, we will also refer to finite stable geometric realisations as
finite geometric realisations.

Definition 2.35 (Regular functors). Let A be a coherent additive ∞-category. If V is an ∞-
category with sequential colimits, then a functor F : APerf∨A −→ V is said to be regular if

the composite APerfAop
≃−→ (APerf∨A)

op −→ Vop, V 7→ F (V ∨) is convergent in the sense of
Definition 2.17. Write Funreg

(
APerf∨A,V

)
⊆ Fun

(
APerf∨A,V

)
for the full subcategory spanned

by the regular functors.

We begin by restricting from pro-coherent to dually almost perfect modules:

Proposition 2.36. Let A be a coherent additive ∞-category and V a presentable ∞-category.
Restriction determines an equivalence of ∞-categories

FunΣ
(
QC∨

A,V
)

Funσ,reg
(
APerf∨A,V

)
,≃

the inverse of which is given by left Kan extension.
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Proof. Recall that each QC∨
A is compactly generated by CohopAop . The proof of [BM19, Propo-

sition 3.8] then shows that restriction and left Kan extension determine an adjoint equivalence
Funσ

(
CohopAop ,V

)
⇆ FunΣ

(
QC∨

A,V
)
, where the domain is the full subcategory of functors

preserving finite geometric realisations. Hence, it suffices to verify that restriction and left
Kan extension determine an adjoint equivalence Funσ

(
CohopAop ,V

)
⇆ Funσ,reg

(
APerf∨A,V

)
.

This follows from (the opposite of) Lemma 2.19 and the fact that given an m-skeletal sim-
plicial diagram X∨

• in APerf∨A, there is a sequence of m-skeletal diagrams (τ≤nX•)
∨ in CohopAop

with colimit X∨
• . □

In a second step, we restrict even further from APerf∨A to the ∞-category APerf∨A,⪕ 0 of duals
of connective almost perfect modules (cf. Definition 2.31):

Proposition 2.37. Let A be a coherent additive ∞-categories and V an ∞-category with sifted
colimits. Then restriction determines a commuting square

FunΣ
(
QC∨

A,V
)

Funσ,reg
(
APerf∨A,⪕ 0,V

)
FunΣ

(
ModA,V

)
Funσ

(
Perf∨A,⪕ 0,V

)
≃

ι∗

≃

where the horizontal functors have inverses given by left Kan extension.

The proof of Proposition 2.37 requires two auxiliary observations.

Lemma 2.38. Let A be an additive ∞-category and M ∈ APerfA,≥n. There is a right cofinal
functor ∆ −→ (APerfA,≥n+1)M/ such that the underlying cosimplicial diagram is 1-coskeletal
and the above diagram exhibits M as its limit.

Proof. Since M is almost perfect and n-connective, there exists a cofibre sequence V [n] −→
M −→ M0 of A-modules with V ∈ A and M0 ∈ APerfA,≥n+1, cf. Remark 2.8. Let M• be the

‘Čech conerve’ of the map M −→ M0. This determines a functor ϕ : ∆ −→ (APerfA,≥n+1)M/

with the desired two properties. It remains to verify that ϕ is right cofinal. To this end, let N
be an (n + 1)-connective almost perfect module equipped with a map f : M −→ N . We have
to show that the over-category ∆/f is contractible. Note that the projection ∆/f −→ ∆ is the
right fibration classifying the simplicial space

∆op S; [n] Map(Mn, N)×Map(M,N) {f}.

We have to check that the geometric realisation of this simplicial space is contractible, for
which it suffices to show that the natural map |Map(M•, N)| −→ Map(M,N) is an equiva-
lence. Since M• is the Čech conerve of M −→ M0, the above diagram is the Čech nerve of the
map Map(M0, N) −→ Map(M,N). It therefore suffices to verify that this map of spaces induces
a surjection on π0. In other words, for any map g : M −→ N , we need to provide a null-homotopy
of the composition V [n] −→ M −→ N . This follows immediately from the assumption that N
was (n+ 1)-connective and that Hom(V,−) : ModA −→ Sp is t-exact for all V ∈ A. □

Lemma 2.39. Let A be a coherent additive∞-category and V an∞-category with sifted colimits.
For any functor F : APerf∨A −→ V, the following are equivalent:

(1) F preserves finite geometric realisations.

(2) F is left Kan extended from its restriction to APerf∨A,⪕ 0, which preserves finite stable
geometric realisations.

Proof. Set X = APerf∨A. Given m ≥ 0, write Xm = APerf∨≥−m,A ⊆ X for the full subcategory
spanned by those dually almost perfect modules with (−m)-connective duals. Note that each
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Xm is op-prestable, with stable envelope X, and there is a colimit sequence of ∞-categories
X0 X1 X2 . . . X.

Arguing as in [BM19, Proposition 3.10], it suffices to verify inductively that for all m, the
functor F

∣∣
Xm

preserves finite stable geometric realisations if and only if it is right Kan extended

from Xm−1 and the restriction F
∣∣
Xm−1

preserves finite stable geometric realisations. First, if

F
∣∣
Xm

preserves finite stable geometric realisations, we have to prove that for every M ∈ Xm, the

map colimMα∈(Xm−1)/M F (Mα) → F (M) is an equivalence in V. Using the opposite of Lemma
2.38, we can replace the colimit in the domain by a finite stable geometric realisation; the result
then follows from the assumption that F preserves such geometric realisations.

For the converse, let M• be a finite simplicial diagram in Xm with M−1 = |M•| contained
in Xm as well. There exists a fibre sequence in X of the form M−1,0 −→ M−1 −→ V [m], with
V ∈ A and M−1,0 ∈ Xm−1. For all p ≥ 0, the composite Mp −→ M−1 −→ V [m] has fibre Mp,0

in Xm−1 as well. Let M•,• be the bisimplicial diagram arising as the Čech nerve of the natural
transformation M•,0 −→M•, so that Mp = colimqMp,q. We then have a commuting square

F (M−1) = F (colimp,qMp,q) colimp F (colimqMp,q) = colimp F (Mp)

colimq F (colimqMp,q) colimp,q F (Mp,q).

Assuming that F
∣∣Xm is left Kan extended from Xm−1, the two vertical maps are equivalences by

the opposite of (the proof of) Lemma 2.38. For each q ≥ 0, |M•,q| is the finite stable geometric
realisation of a simplicial diagram in Xm−1. Since F

∣∣
Xm−1

preserves such geometric realisations

by assumption, the bottom horizontal map is an equivalence. This implies that the top horizontal
map is an equivalence, i.e. F

∣∣
Xm

preserves finite stable geometric realisations. □

Proof (of Proposition 2.37). The bottom equivalence follows in exactly the same way as [BM19,
Proposition 3.13]. For the top equivalence, it suffices by Proposition 2.36 to verify that restriction
and left Kan extension define an adjoint equivalence

Funσ,reg
(
APerf∨A,V

)
Funσ,reg

(
APerf∨A,⪕ 0,V

)
.≃

It suffices to verify that F : APerf∨A −→ V is regular and preserves finite geometric realisations
if and only if it is left Kan extended from APerf∨A,⪕ 0 and its restriction to APerf∨A,⪕ 0 is regular
and preserves finite stable geometric realisations. This follows from Lemma 2.39 by unravelling
the regularity conditions in (1) and (2). □

We will now use Proposition 2.37 to construct functors QC∨
A −→ V, respectively ModA −→ V

from functors A −→ V, thereby generalising [BM19, Section 3.2] to coherent rings:

Definition 2.40 (Right extendable functors). Let A be a coherent additive ∞-category and V

an ∞-category with small limits and colimits. A functor F : A −→ V is:

(1) right extendable if its right Kan extension FR : PerfA,⪕ 0 −→ V along the inclusion A ↪→
PerfA,⪕ 0 preserves finite stable geometric realisations.

(2) coherently right extendable if its right Kan extension FR : APerf∨A,⪕ 0 −→ V along the

inclusion A ↪→ APerf∨A,⪕ 0 is regular and preserves finite stable geometric realisations.

Construction 2.41 (Right-left extension). Given a right-extendable functor F as in Defini-
tion 2.40 (1), the right-left derived functor of F is given by the sifted-colimit-preserving functor

FRL : QC∨
A V provided by Proposition 2.37.
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If F is coherently right-extendable, the coherent right-left derived functor of F is the sifted-
colimit-preserving functor FRL : QC∨

A → V provided by Proposition 2.37.

Remark 2.42. In the setting of Definition 2.40, restriction along A −→ ModA defines an
equivalence between the full subcategory of Fun(A,V) spanned by the right extendable functors
and the full subcategory of Fun(ModA,V) on those functors that preserve sifted colimits and
also finite totalisations of diagrams in A, by Proposition 2.37 and Remark 2.8.

Likewise, restriction along A −→ QC∨
A defines an equivalence between the full subcategory of

Fun(A,V) on the coherently right extendable functors and the full subcategory of Fun(QC∨
A,V)

on those functors that preserve all sifted colimits and also totalisations of cosimplicial diagrams
in A.

Generalising [BM19, Theorem 3.26], our main source of examples comes from functors of finite
degree [EML54], or a mild generalisation thereof:

Proposition 2.43. Let A be a coherent additive ∞-category and V a stable ∞-category with
small limits and colimits, equipped with a right complete t-structure such that V≤0 is closed
under countable direct sums. Then:

(1) Let F : A −→ V be a functor of finite degree with values in V≤0. Then F is coherently right
extendable.

(2) More generally, let F1 −→ F2 −→ . . . be a countable sequence of functors Fi : A −→
V as in (1). Then F := colimi Fi is coherently right extendable and the natural map
colimi

(
FRL
i

)
−→ FRL is an equivalence.

Proof. For (1), consider the opposite functor F op : Aop → Vop, which is also a functor of finite
degree r. As in [BM19, Proposition 3.34], the left Kan extension F ′ : ModAop,≥0 → Vop preserves
sifted colimits and is r-excisive. Theorem 3.35 and Proposition 3.36 in [BM19] together imply
that F ′ preserves finite stable totalisations. It also preserves limits of Postnikov towers: indeed,
since F op : Aop → Vop takes values in connective objects, each map F ′(M) → F ′(τ≤nM) has
(n+1)-connective fibres, so that the tower forM converges by left completeness of the t-structure
on Vop. We conclude that the restriction of F ′ to APerfAop is convergent and preserves finite
stable totalisations. Passing to opposite categories, we see that FR : APerf∨A → V is regular and
preserves finite stable geometric realisations.

For (2), the previous argument gives a functor F ′ := limi F
′
i : APerfAop,≥0 → Vop which

preserves finite stable totalisations and limits of Postnikov towers. We claim that F ′ is the
left Kan extension of F op : Aop → Vop; dually, this means that FR ≃ colimi F

R
i , which implies

assertion (2). For the claim, note that F ′ agrees with F op on Aop, so that it suffices to show
that F ′ preserves geometric realisations. For any simplicial diagram M• in APerfA, we have

|F ′(M•)| =
∣∣ limi F

′
i (M•)

∣∣ limi

∣∣F ′
i (M•)

∣∣ limi F
′
i

(
|M•|

)
= F ′(|M•|

)
.≃ ≃

The first equivalence uses that geometric realisations commute with limits of towers of connective
objects in Vop; this in turn follows from the fact that geometric realisations commute with
countable products, since Vop is left complete and connective objects are closed under products.
The second equivalence follows because each F ′

i preserves sifted colimits by construction. Passing
to opposite categories, we deduce that the functors FR

i , F
R : APerf∨A → V have the desired

properties. □

Proposition 2.43 lets us extend certain functors between additive ∞-categories:

Definition 2.44. Let A,B be additive ∞-categories. A functor F : A → B is called locally
polynomial if it arises as the colimit of a sequence F1 → F2 → . . . of functors from A to B, such
that:
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(1) For each X ∈ A, the sequence F1(X)→ F2(X)→ . . . is eventually constant.

(2) Each Fi : A→ B→ Perf(B) is a functor of finite degree, i.e. there exists an r ≥ 0 such that
the cross-effect crr+1 : A

×r+1 → Perf(B) vanishes.

The composition of two locally polynomial functors is again locally polynomial.

Notation 2.45. Write Addcoh,poly for the (non-full) subcategory of Cat∞ spanned by coherent
additive ∞-categories and locally polynomial functors between them.

Corollary 2.46. Let F : A → B be a locally polynomial functor between coherent additive
∞-categories. Then the following diagram admits a unique extension as indicated

(6)

A ModA QC∨
A

B ModB QC∨
B

F

ι

F ′ F ′′

ι

such that F ′ preserves sifted colimits and finite totalisations and F ′′ preserves sifted colimits
and all totalisations of cosimplicial diagrams in A.

Proof. Uniqueness follows immediately from Remark 2.42. For existence, we may assume without
restriction that F has finite degree r. Indeed, if F is a sequential colimit of finite degree functors
Fi, we can simply take the sequential colimit of the extensions F ′

i and F ′′
i , which has the desired

properties by Proposition 2.43.
For the existence of F ′′, we will apply Proposition 2.43. Indeed, note that QC∨

B = Ind
(
CohopBop

)
admits a second, right complete t-structure, such that F takes values in coconnective objects: the
connective part of this t-structure is the ind-completion of (CohBop,≤0)

op, and its coconnective
part is the ind-completion of (CohBop,≥0)

op. We will not use this second t-structure elsewhere.
For the existence of F ′, it suffices to show that F ′′ maps PerfA,≤0 into PerfB,≤0; the desired

extension F ′ is then the left Kan extension of the following composite:

PerfA,≤0 PerfB,≤0 ModB .
F ′′

To see that F ′′ preserves the duals of perfect connective objects, we observe that the functor
F ′′ : APerf∨A,⪕ 0 → APerf∨B,⪕ 0 is opposite to an r-excisive functor APerfAop,≥0 → APerfBop,≥0

sending Aop to Bop.
Such functors preserve perfect objects. Indeed, write E ⊂ APerfAop,≥0 for the full subcategory

of all M for which F ′′(M) perfect. Given a cofibre sequence X → V → C with X ∈ E and V ∈
Aop, we form the strongly coCartesian cube with ‘initial legs’ X → V . Its colimit V ⊕X . . .⊕X V
can be identified with V ⊕ C ⊕ . . . ⊕ C. Hence F (C) perfect, as it is a retract of the perfect
module F (V ⊕ C ⊕ . . . ⊕ C). As E also contains 0 and is closed under retracts, we conclude
PerfAop,≥0 ⊂ E. □

Example 2.47 (Divided orbits). Given a coherent E1-ring R and a finite group G, we will
write R[G] = R ⊗ Σ∞

+G for the associated group ring, which is again coherent. The evident
map R[G]→ R induces a limit-preserving functor ModR → ModR[G]. Restricting its left adjoint
induces an additive functor

(−)hG : PerfR[G] → PerfR,

which on underlying spectra takes homotopy orbits. We right-left extend using Corollary 2.46
to obtain a functor

(−)dG : QC∨
R[G] −→ QC∨

R .

The functor (−)dG behaves like a mix between homotopy orbits and fixed points.
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Indeed, if V ∈ APerfR[G],≥0 is almost perfect and connective, we can write V = |V•| as a
realisation of a simplicial diagram in VectR[G] and compute

VdG ≃ |(V•)hG| ≃ VhG.
If, on the other hand, we have V ∈ APerf∨R[G],⪕ 0, then we can find a cosimplicial diagram

V • in VectR[G] with V ≃ Tot(V •). As the norm is an equivalence on objects in VectR[G], we

compute VdG ≃ Tot(V •
hG) ≃ Tot((V •)hG) ≃ Tot(V •)hG ≃ V hG. In fact, since the functors (−)dG,

(−)hG, and (−)hG are exact, we obtain identifications VdG ≃ VhG for all V ∈ APerfR[G] and

VdG ≃ V hG for all V ∈ APerf∨R[G].

Example 2.48 (Derived orbits and genuine fixed points). For a coherent E1-ring spectrum

R over Z and a finite group G, let ModGR = ModR(Sp
G) be the ∞-category from Example

2.15. Recall that taking genuine G-fixed points defines a functor (−)G : ModGR −→ ModR that
preserves both limits and colimits; in terms of spectral Mackey functors, this simply evaluates
at the trivial G-orbit G/G ∈ A(G). Its left adjoint is the functor

trivG : ModR ModGR; M R⊗R M

where R⊗RM denotes the spectral Mackey functor given by (R⊗RM)(X) = R(X)⊗RM . One
can think of this as an R-linearised version of endowing M with the trivial G-action.

The constant spectral Mackey functor R has the rather special feature that trivG also preserves
limits: indeed, since the genuine H-fixed points jointly detect limits, this follows from the fact
that trivG(M)H = R(G/H) ⊗R M ≃ M . We will denote by (−)G : ModGR −→ ModR the
corresponding left adjoint to trivG.

These three functors restrict to (adjoint) functors between finitely generated free objects

(−)G : R[OG] −→ VectωR, trivG : VectωR −→ R[OG], (−)G : R[OG] −→ VectωR .

Indeed, one readily verifies that (R ⊗ Σ∞
+ (G/H))G and (R ⊗ Σ∞

+ (G/H))G are both equivalent
to R. When R is a discrete ring, Example 2.15 identifies R[OG] with the ordinary category of
R[G]-modules R[X] induced by finite G-sets, and the above three functors coincide with taking
(strict) G-coinvariants, trivial G-modules and G-invariants, respectively.

Using Corollary 2.46, we then obtain colimit-preserving functors

(−)G : QC∨
R[OG] −→ QC∨

R (−)G : QC∨
R[OG] −→ QC∨

R

taking derived orbits and derived genuine fixed points. Note that the derived genuine fixed points
functor (−)G behaves as expected on dually almost perfect objects: for any cosimplicial diagram
V • in R[OG] one has that Tot(V •)G ≃ Tot((V •)G).

2.3. Monoidal structures. Corollary 2.46 provides the main source of functors between cate-
gories of pro-coherent modules for us. To express the functoriality of these derived functors, let
PrSt,Σ ⊂ Cat∞ be the (non-full) subcategory of (large) ∞-categories on the stable presentable

∞-categories with sifted-colimit-preserving functors between them. Both PrSt,Σ and Addcoh,poly

are closed under finite products.

Theorem 2.49. There is a natural transformation of symmetric monoidal functors

Addcoh,poly PrSt,Σ

Mod

QC∨

ι

sending each coherent additive ∞-category A to QC∨
A and each polynomial functor to its (right-

left) derived functor.



PD OPERADS AND EXPLICIT PARTITION LIE ALGEBRAS 21

Proof. The entire diagram can be described as a single product-preserving functor F : Addcoh,poly →
Ar

(
PrSt,Σ

)
to the arrow category. To construct F , consider the subcategory X ⊆ Fun(∆[2],Cat∞)

consisting of sequences of the form A→ ModA → QC∨
A, with maps between them given by nat-

ural diagrams as in (6), where F is polynomial and F ′ (respectively F ′′) preserves sifted colimits
and totalisations of coskeletal (respectively all) cosimplicial diagrams in A. The functor F then

arises from the zig-zag Addcoh,poly
≃←− X→ Ar

(
PrSt,Σ

)
, where the left functor is an equivalence

by Corollary 2.46.
To see that F preserves finite products, it suffices to verify that the natural maps A × B →

ModA×ModB and A×B→ QC∨
A×QC∨

B extend to equivalences

ModA×B ≃ ModA×ModB QC∨
A×B ≃ QC∨

A×QC∨
B .

The first equivalence follows from ModA×B,≥0 ≃ ModA,≥0×ModB,≥0, which holds because both
∞-categories have A × B as compact projective generators. This implies that the natural map
CohAop×Bop → CohAop × CohBop is an equivalence as well, and the second equivalence follows
by ind-completing. □

Remark 2.50. If F :
⊕

i Ai → B is a polynomial functor which is additive in the k-th variable,
then its extension FRL :

∏
i QC∨(Ai)→ QC∨

B preserves sifted colimits in each variable and small
colimits in the k-th variable.

Example 2.51 (Monoidal structure on pro-coherent modules). Let R be a coherent En+1-
algebra. Then the En-monoidal structure ⊗R on ModR restricts to a tensor product on the
additive ∞-category VectR. Since this is linear in each variable, this determines an En-algebra
in Addcoh,poly. By Theorem 2.49, QC∨

R inherits an En-monoidal structure, which preserves
colimits in each variable by Remark 2.50, and the functor ι : ModR → QC∨

R is En-monoidal.
More explicitly, Proposition 2.37 can be used to realise QC∨

R as an En-monoidal localisation of
Fun(APerfRop,⪕ 0,Sp), equipped with the Day convolution product.

In the presence of a symmetric monoidal structure on QC∨
A satisfying mild conditions, dually

almost perfect modules and almost perfect modules are related by duality:

Proposition 2.52. Let A be a coherent additive∞-category equipped with a nonunital symmetric
monoidal structure ⊗ which preserves finite sums in each variable, and moreover satisfies the
following conditions:

(1) The nonunital closed monoidal structure on QC∨
A, constructed as in Example 2.51, admits

a unit 1, which is eventually connective.

(2) Every object in A is dualisable, with dual contained in A.

Then taking duals determines an equivalence

(−)∨ := Hom(−,1) : APerfA (APerf∨A)
op.≃

Proof. It suffices to show that (−)∨ : QC∨
A → (QC∨

A)
op preserves totalisations of cosimplicial

objects in A. This will imply the result because (−)∨ restricts to an equivalence on A by (1)
and preserves small colimits.

So let M• be a cosimplicial diagram in A. As QC∨
A ⊂ Fun((APerf∨A,⪕ 0)

op,Sp) is a reflec-

tive subcategory, it is enough to prove that for any object N ∈ APerf∨A,⪕ 0, the natural map∣∣Hom (
N, (M•)∨

)∣∣ Hom
(
N,Tot(M•)∨

)
is an equivalence; this implies that Tot(M•)∨ is

the geometric realisation of (M•)∨. We can identify the above map with the composite map∣∣Hom
(
N ⊗M•,1

)∣∣ Hom
(
Tot(N ⊗M•),1

)
Hom

(
N ⊗ Tot(M•),1

)
.
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The second map is an equivalence since ⊗ preserves totalisations of cosimplicial diagrams in A by
Corollary 2.46, and the first map is an equivalence because Hom(−,1) : APerf∨A,⪕ 0 → Sp is right
t-exact up to a shift, by our assumption that 1 is eventually connective (cf. Remark 2.24). □

2.4. O-monoidal structures. Given a (coloured) ∞-operad O⊗ → N(Fin∗), which we infor-
mally also call O, Theorem 2.49 shows that O-monoidal structures on A and B induce canonical
O-monoidal structures on QC∨

A and QC∨
B, respectively. We have seen that the right-left extension

of a strong monoidal polynomial functor A→ B is again strong monoidal, and will now establish
a refinement to (op)lax O-monoidal functors, which is needed for our treatment of PD operads:

Proposition 2.53. Let A,B be O-algebras in Addcoh,poly and let F : A → B be an (op)lax O-
monoidal functor with Fx : Ax → Bx of finite degree for each colour x ∈ O. Then FRL : QC∨

A →
QC∨

B admits a natural (op)lax O-monoidal structure.

The proof relies on two observations concerning Kan extensions of lax O-monoidal functors
along O-monoidal functors: namely, there is a canonical lax O-monoidal structure on the right
Kan extension, and in good cases also on the left Kan extension.

Lemma 2.54. Let ϕ : C0 → C be an O-monoidal functor. If F : C0 → D is a lax O-monoidal
functor, then the following two assertions are equivalent:

(1) For every colour x ∈ O, there exists a functor Gx : Cx → Dx and a natural transformation
Fx → Gx ◦ϕx exhibiting Gx as the right Kan extension of Fx : C0,x → Dx along ϕx : C0,x →
Cx.

(2) There exists a lax O-monoidal functor G : C⊗ → D⊗ and a natural transformation F → G◦ϕ
over O⊗ exhibiting G as the right Kan extension (relative to O⊗) of F : C⊗

0 → D⊗ along
ϕ : C⊗

0 → C⊗.

In this case, the fibre of the natural transformation G → F ◦ ϕ over a colour x ∈ O exhibits a
right Kan extension of Fx along ϕx.

We make use of the Day convolution product, cf. [Gla16] and [HA, Section 2.2.6]: recall
that for any small O-monoidal ∞-category C and any presentably O-monoidal ∞-category D ∈
AlgO(Pr

L), there is another presentably O-monoidal∞-category Fun(C,D) such that O-algebras
in Fun(C,D) are lax O-monoidal functors C→ D, with fibre over x ∈ O given by Fun(C,D)x =
Fun(Cx,Dx).

We will apply this in particular when the target is spaces, and the O-monoidal structure arises
from the cartesian product.

Proof. Unraveling the definitions, we have to verify that the map

AlgC⊗(D)×Alg
C
⊗
0
(D) AlgC⊗

0
(D)F/

∏
x∈O

Fun(Cx,Dx)×Fun(C0,x,Dx) Fun(C0,x,Dx)Fx/

preserves and detects terminal objects. As the Yoneda embedding D→ P(D) is O-monoidal for
the Day convolution product on P(D), the above map is the pullback of the same map with D

replaced by P(D), along a fully faithful functor. Since the Yoneda embedding preserves limits,
it then suffices to verify that the corresponding map for P(D) preserves and detects terminal
objects. Consequently, we may assume that D ∈ AlgO(Pr

L) is an O-monoidal presentable ∞-
category. In this situation, consider the O-monoidal categories Fun(C0,D) and Fun(C,D) given
by Day convolution. Since F is an O-algebra in Fun(C0,D), we can form the pullback of O-
monoidal ∞-categories

Fun(C,D)⊗F/ = Fun(C,D)⊗ ×Fun(C0,D)⊗ Fun(C0,D)⊗F/
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where Fun(C0,D)⊗F/ is the O-monoidal∞-category from [HA, Theorem 2.2.2.4]. The above map

can then be identified with the map

AlgO
(
Fun(C,D)F/

)
→

∏
x∈O

(
Fun(C,D)F/

)
x
.

This map preserves and detects terminal objects by [HA, Corollary 3.2.2.3]. □

Lemma 2.55. Let O be an operad and let ϕ : C0 → C be an O-monoidal functor. Let F : C0 → D

be a lax O-monoidal functor between O-monoidal ∞-categories with the following property: for
every colour x ∈ O and every c ∈ Cx, the diagram

(7) (C0,x)/c = C0,x ×Cx (Cx)/c C0,x Dx
F

admits a colimit, which is preserved by each ψ(d1, . . . , dn,−) : Dx → Dy for ψ ∈ O(y1, . . . , yn, x; y)
and di ∈ Dyi . In this case, the left Kan extension of F along ϕ exists and is lax O-monoidal.

Proof. This is essentially a consequence of [HA, Proposition 3.1.3.3]; we include an argument for
the reader’s convenience. We can endow P(D) with the Day convolution O-monoidal structure
and let V be the left Bousfield localisation of P(D) at the natural maps from the colimits of (7),
computed in P(D), to the representable presheaf on their colimit in D. Our assumptions imply
that V is an O-monoidal localisation of P(D) and that the Yoneda embedding h : D ↪→ V is a
fully faithful O-monoidal functor preserving the colimits (7). As V ∈ AlgO(Pr

L), we can equip
Fun(C,V) with the Day convolution O-monoidal structure, so that left Kan extension defines an
O-monoidal functor Lanϕ : Fun(C0,V)→ Fun(C,V).

As O-algebras for the Day convolution product can be identified with lax O-monoidal functors,
it follows that the left Kan extension of h◦F : C0 → V along ϕ carries a canonical lax O-monoidal
structure. Since the Yoneda embedding h : D ↪→ V is O-monoidal and preserves the colimits (7),
we have that Lanϕ(h◦F ) ≃ h◦Lanϕ(F ), so that Lanϕ(F ) inherits a lax O-monoidal structure. □

Proof (of Proposition 2.53). We first treat the case where F : A → B is lax O-monoidal. The
construction of the lax monoidal structure on FRL : QC∨

A → QC∨
B then proceeds in two steps:

first taking a right Kan extension and then a left Kan extension, we obtain a diagram

A APerf∨A,⪕ 0 QC∨
A

B APerf∨B,⪕ 0 QC∨
B .

F FR FRL

The horizontal functors are all (strong) O-monoidal by Theorem 2.49. Lemma 2.54 implies that
the right Kan extension FR is lax O-monoidal. Next, we note that for every M ∈ QC∨

A, the
over-category (APerf∨A,⪕ 0)/M is sifted (it admits finite sums) and that the O-monoidal structure

on QC∨
B preserves sifted colimits in each variable. Lemma 2.55 shows that the left Kan extension

FRL of FR is lax O-monoidal.
For the oplax O-monoidal case, one instead uses (the opposite of) Lemma 2.55 to show that

FR is oplax O-monoidal, using that for any M ∈ APerf∨A,⪕ 0, the under-category AM/ admits

a right cofinal functor from ∆ and that the tensor product on APerf∨B preserves totalisations.
Next, (the opposite of) Lemma 2.54 shows that the left Kan extension FRL of FR is oplax
O-monoidal. □

Remark 2.56. The exact same proof shows that FRL : ModA → ModB is (op)lax O-monoidal,
and that there is an equivalence FRL ◦ ι ≃ ι ◦ FRL of lax O-monoidal functors ModA → QC∨

B.
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3. PD operads and refined Koszul duality

We proceed to the main abstract contribution of this paper: a twofold refinement of classical
operadic Koszul duality. First, we show that the Koszul dual of an augmented∞-operad O is not
just an ∞-operad, but a divided power (‘PD’) ∞-operad KDpd(O), which controls Koszul duals
of O-algebras. In a second, orthogonal, step, we replace ∞-operads O by derived ∞-operads:
here, the group actions are ‘more genuine’, which means that derived operads can parametrise
structures like simplicial commutative rings. We then set up a refined Koszul duality in this
setting.

3.1. A reminder on ∞-operads. To set the stage, we recall the definition of ∞-operads.
We follow the discussion in [Bra17, Section 4.1.2], which generalises a 1-categorical idea of
Trimble [Tri] to the higher categorical setting. An alternative approach has been proposed
by Haugseng in [Hau17].

Notation 3.1. Recall that the∞-category PrL of presentable∞-categories and colimit-preserving
functors admits the structure of a closed symmetric monoidal ∞-category by [HA, Proposi-
tion 4.8.1.15]. The ∞-category of presentably symmetric monoidal ∞-categories is given by
CAlg(PrL), and can be identified with the ∞-category of commutative algebras in PrL.

Explicitly, a presentably symmetric monoidal ∞-category V is a symmetric monoidal ∞-
category with presentable underlying∞-category and a product⊗ which distributes over colimits.

LetR be an E∞-ring and consider the presentably symmetric monoidal∞-category
(
ModR,⊗R

)
of R-modules. The ∞-category CAlgR(Pr

L) of presentably symmetric monoidal R-linear ∞-
categories is given by the under-category CAlg(PrL)(ModR,⊗R)/.

Definition 3.2 (Symmetric sequences). Let R be an E∞-ring. The ∞-category sSeqR of R-
linear symmetric sequences is the free symmetric monoidal R-linear∞-category generated by an
object 1. The universal symmetric monoidal structure on sSeqR will be denoted by ⊗.

The universal property of sSeqR asserts that for any V ∈ CAlgR(Pr
L), evaluation at 1 defines

an equivalence

ev1 : FunL,⊗R (sSeqR,V)
≃−−→ V,

where the domain is the∞-category of symmetric monoidal R-linear colimit-preserving functors
sSeqR → V. Setting V = sSeqR gives an equivalence

EndL,⊗R (sSeqR)
≃−−→ sSeqR,

which categorifies the well-known identity MapRings(Z[t],Z[t]) ∼= Z[t].

Definition 3.3 (Composition product). The composition product ◦ on sSeqR is the monoidal

structure corresponding to the opposite of the evident monoidal structure on EndL,⊗R (sSeqR)
under the above equivalence. The unit of ◦ is the object 1.

Remark 3.4. The definition of the composition product implies that the inverse of

EndL,⊗R (sSeqR)
≃−−→ sSeqR

sends Y to (−)◦Y . In particular, the composition product preserves colimits in the first variable.
Similarly, for any symmetric sequence X, there are functors

EndL,⊗R (sSeqR) EndLR(sSeqR) sSeqR
evX

preserving sifted colimits and finite sifted limits. Here the first functor forgets the monoidal
structure and the second evaluates at X. This implies that ◦ preserves sifted colimits and finite
sifted limits in its second variable.
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The∞-category sSeqR can be described more explicitly as follows (cf. [Bra17, Section 4.1.2]).
Write BΣ for the (nerve of the) category Fin

∼= of finite sets and bijections. The disjoint union
of finite sets makes (BΣ,⊔) the free symmetric monoidal ∞-category generated by the object
1. We can then identify (sSeqR,⊗) with Fun(BΣ,ModR), equipped with the Day convolution
product of ⊗R and ⊔.

Notation 3.5 (Symmetric sequences in arity r). For each r, let BΣr denote the groupoid of
finite sets of cardinality r and bijections between them; up to equivalence, it has one object with
automorphism group Σr. There is an adjoint pair ιr : Fun(BΣr,ModR) ⇆ sSeqR : evr given
by restriction and left Kan extension, respectively. The left adjoint ιr is fully faithful and a
symmetric sequence is said to be concentrated in arity r if it is contained in its essential image.
The above adjunction then induces an equivalence between symmetric sequences concentrated
in arity r and modules over the group ring R[Σr]. Under this identification, the symmetric
sequence 1⊗r corresponds to the free R[Σr]-module of rank 1. If X is a symmetric sequence, we
will denote its arity r piece by X(r).

Remark 3.6 (Explicit formula for composition product). Let X and Y be symmetric sequences.
Unraveling the definitions, one sees that for each r, there is an R-linear left adjoint functor

ModR[Σr] ≃ Fun(BΣr,ModR) sSeqR sSeqR
ιr (−)◦Y

sending the generating object R[Σr] to the r-fold Day convolution product 1⊗r ◦Y ≃ Y ⊗r. This
implies that for each r, there is a natural equivalence X(r) ◦ Y ≃ X(r) ⊗Σr

Y ⊗r. Since every
symmetric sequence X can naturally be decomposed as X ≃

⊕
rX(r), we then obtain

(8) X ◦ Y ≃
⊕
r

X(r)⊗Σr
Y ⊗r.

For any symmetric sequence X, the functor X ◦ (−) preserves symmetric sequences concen-
trated in arity 0. Consequently, there is a (left) action

◦ : sSeqR×ModR ModR

of
(
sSeqR, ◦

)
on ModR, preserving sifted colimits and finite totalisations.

Definition 3.7 (∞-operads and cooperads). An∞-operad P over an E∞-ring R is an associative
algebra object in sSeqR with respect to the composition product ◦. A P-algebra is a left P-module
in ModR, equipped with the sSeqR-tensored structure described above. We will write OpR for
the ∞-category of R-linear ∞-operads and AlgP for the ∞-category of P-algebras.

Dually, a ∞-cooperad C is an associative coalgebra in sSeqR with respect to the composition
product, and a (conilpotent) C-coalgebra is a left C-comodule in ModR. We will write CoopR
for the ∞-category of ∞-cooperads.

Remark 3.8. The ∞-operads in Definition 3.7 are often referred to as ∞-operads with one
colour. Note that OpR is compactly generated by Theorem B.2.

3.2. The levelwise tensor product. The category of symmetric sequences can be equipped
with yet another symmetric monoidal structure ⊗lev – the levelwise tensor product. Its unit is
the constant symmetric sequence on R, i.e. the R-linearisation of the E∞-operad. This tensor
product is compatible with the composition product in the following sense:

Proposition 3.9. The functor ⊗lev : (sSeqR× sSeqR, ◦ × ◦) → (sSeqR, ◦) has both a natural
lax and oplax monoidal structure with respect to the composition product. In particular, for all
A,B,C,D ∈ sSeqR, there are natural morphisms

(A ◦B)⊗lev (C ◦D)→ (A⊗lev C) ◦ (B ⊗lev D)

(A⊗lev C) ◦ (B ⊗lev D)→ (A ◦B)⊗lev (C ◦D).
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In particular, this implies that the levelwise tensor product of two ∞-operads is again an
∞-operad, and a similar statement holds for ∞-cooperads. The proof requires a preliminary
observation:

Lemma 3.10. Let F : C ⇆ D : G be an adjunction between ∞-categories. Then the induced
functor between endomorphism categories End(D)→ End(C); T 7→ GTF inherits a lax monoidal
structure.

Proof. Let π : M → ∆1 denote the correspondence classifying the adjoint pair (F,G) [HTT,
Section 5.2.2] and let End/∆1(M) denote the category of endofunctors of M compatible with the

projection to ∆1. Restricting such endofunctors to the fibre C over 0, respectively D over 1,
defines monoidal functors End(C)←− End/∆1(M)→ End(D) with respect to composition. The

right functor admits a right adjoint, given by relative right Kan extension over ∆1. Since right
adjoints to monoidal functors are lax monoidal [HA, Corollary 7.3.2.7], we obtain a composite
lax monoidal functor End(D)→ End/∆1(M)→ End(C).

To see that this functor indeed sends T to G ◦ T ◦ F , let X ∈ C ⊆ M. By (the opposite of)
[HTT, Proposition 4.3.1.9], the relative right Kan extension of T : D→ D→M, restricted to C,
can be computed by the right Kan extension of

C×Fun({0},M) Fun(∆
1,M)×Fun({1},M) D D D C

π T G

along the projection q : C ×Fun({0},M) Fun(∆
1,M) ×Fun({1},M) D. Note that q is a cartesian

fibration; its fibre over X ∈ C is given by MX/ ×M D. Each of these fibres has an initial
object, given by the coCartesian arrow uX : X → F (X), so that q admits a left adjoint section
sending X to uX . The right Kan extension along q is then equivalent to the restriction along
this left adjoint; this is precisely GTF , as desired (this argument also shows that the relative
Kan extension exists). □

Proof of Proposition 3.9. Write bisSeqR for the free R-linear symmetric monoidal ∞-category
on two objects 1L and 1R. Explicitly, this is the ∞-category of functors BΣ × BΣ → ModR,
with the Day convolution product. There are three natural fully faithful R-linear symmetric
monoidal functors ιL, ιR,∆! : sSeqR ↪→ bisSeqR, determined by ιL(1) = 1L, ιR(1) = 1R and
∆!(1) = 1L ⊗ 1R. Write ∆∗ for the functor restricting along the diagonal ∆: BΣ → BΣ×2.
Then ∆∗ is right adjoint to ∆!, and also left adjoint (via the norm [HA, Proposition 6.1.6.12]).

Let E ⊆ End⊗,L
R (bisSeqR) be the full monoidal subcategory of symmetric monoidal R-linear

endofunctors which furthermore preserve the essential images of ιL and ιR. Evaluation at 1L

and 1R then determines an equivalence E ≃ sSeq×2
R . The inverse sends a pair (X,Y ) to the

endofunctor of bisymmetric sequences

(9) Z 7−→
⊕
p,q

Z(p, q)⊗Σp×Σq
ιL(X)⊗p ⊗ ιR(Y )⊗q.

Note that the equivalence E ≃ sSeq×2
R identifies composition in E with the opposite of the

composition product on each of the factors of sSeq×2
R . We now consider ∆∗ as the right adjoint

to ∆!; since ∆! is symmetric monoidal, ∆∗ inherits a lax symmetric monoidal structure, so
that conjugation by ∆! and ∆∗ sends symmetric monoidal functors to lax symmetric monoidal
functors:

sSeq×2
R ≃ E Endlax−⊗

R (sSeqR).
T 7→∆∗T∆!

Using Equation (9), one sees that the above functor sends (X,Y ) simply to the endofunctor

(−) ◦ (X ⊗lev Y ). In particular, it takes values in the full subcategory End⊗,L
R (sSeqR) of strong

monoidal endofunctors. Applying Lemma 3.10 shows that the above functor is lax monoidal
with respect to composition, so that ⊗lev is indeed lax monoidal for the composition product.
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Viewing ∆∗ instead as the left adjoint to ∆!, the opposite of Lemma 3.10 provides the desired
oplax monoidal structure. □

We will now consider symmetric sequences and the composition product in the context of
extended functors, cf. Section 2.2.

Definition 3.11. A symmetric sequence of sets X : BΣ → Set is said to be finite if each X(r)
is a finite set, which is empty for all but finitely many r ≥ 0. It is said to be Σ-free if each X(r)
is a (possibly empty) free Σr-set.

Definition 3.12 (Finitely generated free symmetric sequences). Let R be a connective E∞-ring
spectrum. An R-linear symmetric sequence is said to be finitely generated free if it arises as the
R-linearisation of a finite Σ-free sequence of sets. Write R[Σ] ⊆ sSeqR for the full subcategory
of finitely generated free symmetric sequences. One can identify R[Σ] with the smallest full
subcategory of sSeqR which is closed under finite direct sums and contains all objects 1⊗r.

Remark 3.13. The additive∞-categoryR[Σ] can be identified with the direct sum
⊕

r≥0 VectR[Σr]

of the additive categories of finitely generated free R[Σr]-modules.

The objects in R[Σ] are compact generators of sSeqR. Consequently, the fully faithful inclusion
R[Σ]→ sSeqR induces an equivalence ModR[Σ] ≃ sSeqR.

Remark 3.14 (Almost perfect symmetric sequences). The equivalence ModR[Σ] ≃ sSeqR iden-
tifies almost perfect R[Σ]-modules with symmetric sequences X that are almost perfect in the
sense that each X(r) is an almost perfect R[Σr]-module and for each m ≥ 0, τ≤mX(r) is trivial
for all but finitely many r.

Lemma 3.15. The full subcategory R[Σ] ↪→ sSeqR is closed under the Day tensor product ⊗,
the levelwise tensor product ⊗lev and the composition product ◦. Furthermore, ⊗ and ⊗lev are
additive in each variable and ◦ : R[Σ] × R[Σ] → R[Σ] is locally polynomial and additive in the
first variable.

Note that R[Σ] contains the monoidal unit for ⊗ and ◦, but not for ⊗lev.

Proof. It is clear that R[Σ] is closed under ⊗ and ⊗lev, and since both tensor products preserve
colimits in each variable, their restrictions are additive in each variable. Equation (8) then
implies that R[Σ] is closed under the composition product as well. Furthermore, we can write the
composition product functor ◦ as a filtered colimit X ◦Y = colimn Fn(X,Y ), where Fn(X,Y ) =⊕

r≤nX(r)⊗Σr
Y ⊗r.

Since each functor Y 7→ Y ⊗r is of degree r, it follows that Fn is of degree n. On the other
hand, the sequence of Fn(X,Y ) stabilizes since every X ∈ R[Σ] is concentrated in finitely many
arities. □

Combining Lemma 3.15 and Corollary 2.46, we can deduce:

Corollary 3.16. All three tensor products ⊗,⊗lev, ◦ are the right-left extension of their restric-
tion to R[Σ].

3.3. Pro-coherent symmetric sequences and PD operads. Using Definition 3.12, we can
introduce a refined version of symmetric sequences; linear duals of ordinary symmetric sequences
are naturally equipped with this structure.

Definition 3.17 (Pro-coherent symmetric sequences). Let R be a coherent (connective) E∞-ring
spectrum. A pro-coherent symmetric sequence over R is a pro-coherent module over the coherent
additive ∞-category R[Σ]. We will write sSeq∨R for the ∞-category of pro-coherent symmetric
sequences over R.
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Proposition 3.18. Let R be a coherent E∞-ring spectrum. Then the∞-category of pro-coherent
symmetric sequences can be equipped with

(1) a closed symmetric monoidal structure ⊗;
(2) a composition product ◦ preserving sifted colimits in each variable and small colimits in the

first variable;

(3) a sifted-colimit-preserving action ◦ : sSeq∨R×QC∨
R → QC∨

R of
(
sSeq∨R, ◦

)
;

(4) a closed symmetric monoidal structure ⊗lev, together with a lax and oplax monoidal struc-
ture on ⊗lev : sSeq∨R× sSeq∨R → sSeq∨R with respect to the composition product;

which are right-left extended from the corresponding functors on the ∞-category R[Σ]. Further-
more, the natural functors sSeqR → sSeq∨R and ModR → QC∨

R intertwine all of these monoidal
structures.

Proof. Almost all assertions follow from Theorem 2.49 and Lemma 3.15. To see that ⊗lev is
(op)lax monoidal with respect with the composition product, we use Proposition 2.53 and Propo-
sition 3.9. Finally, note that ⊗lev a priori only defines a nonunital symmetric monoidal structure
on sSeq∨R (because it does not have a monoidal unit contained in R[Σ]). However, the image
ι(E∞,R) is easily seen to provide a (connective) unit: indeed, ι(E∞,R) ⊗lev (−) is the right-left
extended functor of its restriction to R[Σ], which is the identity since E∞,R serves as the unit
for ⊗lev in the ∞-category of symmetric sequences. □

The composition product ◦ on sSeq∨R coincides with the usual composition product on ordinary
symmetric sequences. Surprisingly, there are many other pro-coherent symmetric sequences on
which ◦ acts like a restricted composition product :

Proposition 3.19. Given X,Y ∈ sSeq∨R, there is a natural map

ν : X ◦ Y
⊕

r≥0

(
X(r)⊗ Y ⊗r

)hΣr

which is an equivalence whenever X and Y are dually almost perfect (cf. Definition 2.22 for
A = R[Σ]). If R is eventually coconnective, it is furthermore an equivalence when both X and Y
are the colimits of filtered diagrams in APerf∨R[Σ],⪕m := (APerfR[Σ],≥m)∨, for some m.

Proof. Since the composition product is obtained by right-left extension, it suffices to describe
ν when X and Y are contained in APerf∨R[Σ],⪕ 0. In turn, the domain and codomain of ν are

both functors that are right Kan extended from R[Σ] to APerf∨R[Σ],⪕ 0. It therefore remains to
describe ν when X and Y are finitely generated free. In this case, the norm map provides a

natural equivalence ν : X ◦ Y ≃−−→
⊕

r≥0

(
X(r)⊗ Y ⊗r

)
hΣr , because X(r) is Σr-free.

In particular, this implies that the resulting map ν is an equivalence for allX,Y in APerf∨R[Σ],⪕ 0.
As both domain and codomain preserve geometric realisations of skeletal diagrams, ν is an equiv-
alence whenever X and Y are dually almost perfect.

Finally, suppose that X,Y are colimits of filtered diagrams in APerf∨R[Σ],⪕m. Then each

X(r)⊗ Y ⊗r is a filtered colimit of objects in APerf∨R[Σ],⪕m as well. Under the assumption that

R is n-coconnective, R[Σ] is also n-coconnective and one finds that X(r) ⊗ Y ⊗r is a filtered
colimit of n′-coconnective objects for some n′. Taking homotopy fixed points commutes with
such filtered colimits of n′-coconnective objects, so that ν is an equivalence for X and Y as
well. □

Definition 3.20 (PD ∞-operads). Let R be a coherent E∞-ring spectrum. A PD ∞-operad P

over R is an associative algebra in the ∞-category of pro-coherent symmetric sequences, with

respect to the composition product. We will write OppdR for the ∞-category of PD ∞-operads.
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An algebra over a PD ∞-operad P is a pro-coherent R-module A equipped with a left P-
module structure with respect to the composition action. We will denote the ∞-category of
(pro-coherent) P-algebras by AlgP(QC∨

R).

Example 3.21 (Underlying operads). Every ordinary∞-operad gives rise to a PD∞-operad via
the functor ι : sSeqR −→ sSeq∨R. Conversely, every PD ∞-operad has an underlying ∞-operad,
via the right adjoint υ : sSeq∨R −→ sSeqR.

Remark 3.22. The action of pro-coherent symmetric sequences on QC∨
R defines a sifted-colimit-

preserving monoidal functor sSeq∨R → EndΣ(QC∨
R) with respect to the composition product.

Using Lemma 3.10, conjugating by the adjoint pair ι : ModR ⇆ QC∨(R) : υ yields a lax monoidal
functor sSeq∨R → End(ModR). In particular, every PD ∞-operad P determines a monad TP on
ModR. This monad differs from the monad induced by the underlying ∞-operad of P. When
R is eventually coconnective, υ preserves colimits (Remark 2.27) so that TP preserves sifted
colimits.

Example 3.23. Let k be a field, so that QC∨
k ≃ Modk (Example 2.28). Suppose that P is a PD

∞-operad over k which is dually almost perfect. By Proposition 3.19, P determines a monad on
Modk which preserves sifted colimits and is given on eventually coconnective k-modules by

FreeP(V ) =
⊕
r≥0

(
P(r)⊗ V ⊗r

)hΣr
.

We will produce examples of these kinds of ∞-operads by Koszul duality.

3.4. Refined Koszul duality. We will now discuss a refinement of the classical operadic Koszul
duality functor [GK95, Fre04, Sal98, Chi05] to the setting of PD ∞-operads. Recall that the
classical Koszul duality functor is defined in two steps. First, every augmented ∞-operad gives
rise to an ∞-cooperad by the bar construction. One then takes the Spanier–Whitehead dual of
the bar construction to obtain an ∞-operad, usually referred to as the (classical) Koszul dual
∞-operad. We will refine each of these two steps to the setting of PD ∞-operads.

The bar construction for PD operads. Recall that for any monoidal∞-category C with geometric
realisations and totalisations, there is an adjoint pair

Bar : Algaug(C) coAlgaug(C) = Algaug(Cop)op : coBar

given by the ∞-categorical bar construction and cobar construction [HA, Section 5.2.2]. If
A is an augmented algebra in C, the underlying object of Bar(A) can be identified with the
relative tensor product 1 ⊗A 1, computed as the realisation of the two-sided simplicial bar
construction Bar•(1, A,1). We will give a more detailed account of the bar construction below
(see in particular Corollary 3.41), including a few arguments that are not completely worked out
in [HA, Section 5.2.2] (as pointed out in [DCH22]). For now, specialising to the case where C is
the ∞-category of pro-coherent symmetric sequences, we obtain:

Definition 3.24 (Bar construction for PD operads). Let R be a coherent E∞-ring spectrum. We

will write Bar : Oppd,augR ⇆ coOppd,augR : coBar for the∞-categorical bar and cobar construction
in the ∞-category sSeq∨R of pro-coherent symmetric sequences, with respect to the composition
product ◦.

Our next goal will be to relate algebras over an augmented PD ∞-operad P to coalgebras
over its bar construction Bar(P). To do this, we will need a variant of the ∞-categorical bar
construction of [HA, Section 5.2.2] for left modules and left comodules.
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Notation 3.25 (Bimodule∞-categories). Recall that a bimodule∞-category is a triple (C−,Cm,C+)
consisting of monoidal ∞-categories C− and C+, together with commuting left and right actions
C− ↷ Cm ↶ C+; more precisely, it is an algebra in Cat∞ over the coloured operad BM from
[HA, Definition 4.3.1.1].

A left module in Cm is given by a tuple (A,M) consisting of an associative algebra A ∈ Alg(C−)
and a left A-module M ∈ LModA(Cm). We will write LMod(Cm) for the ∞-category of left
modules in Cm. The canonical projection π : LMod(Cm) −→ Alg(C−) is a cartesian fibration
[HA, Corollary 4.2.3.2]. Furthermore, π is a map of right C+-module categories, where C+ acts
trivially on Alg(C−) [HA, Proposition 4.3.2.5, Proposition 4.3.2.6]. On underlying objects, the
tensoring of a left A-module M in Cm with X ∈ C+ is given by the left A-module M ⊗X.

Theorem 3.26. Let (C−,Cm,C+) be a bimodule ∞-category such that C−,Cm and C+ all admit
geometric realisations and totalisations, and such that the units 1C− and 1C+

are both terminal
and initial. Then there is a commuting diagram

LMod(Cm) LComod(Cm) = LMod(Cop
m )op

Alg(C−) coAlg(C−) = Alg(Cop
− )op

π

Bar

π

coBar

Bar

coBar

where the rows are adjunctions. Furthermore, the following assertions hold:

(1) The functor Bar: LMod(Cm) −→ LComod(Cm) preserves coCartesian arrows.

(2) If Cm×C+ −→ Cm preserves geometric realisations in the first variable, then Bar: LMod(Cm) −→
LComod(Cm) is a right C+-linear functor.

Remark 3.27. Given an associative algebraA in C−, we obtain a functor BarA : LModA(Cm) −→
LComodBar(A)(Cm) between fibres. This admits a right adjoint, which first applies the functor
coBar: LComodBar(A)(Cm) −→ LModcoBar(Bar(A))(Cm) and then restricts scalars along the unit
map A −→ coBar(Bar(A)).

We postpone the proof of Theorem 3.26 to the end of this section and first discuss some
applications. To start, suppose that A is an associative algebra in C− with augmentation ϵ : A −→
1. Restriction and induction along ϵ define an adjoint pair (cf. the proof of [HA, Proposition
5.2.2.5])

ϵ! : LModA(Cm) LMod1(Cm) ≃ Cm : ϵ∗.

Explicitly, ϵ! sends each left A-module M to the geometric realisation of the simplicial bar
construction Bar•(1, A,M). Considering Theorem 3.26 in the case where C+ = ∗ then yields:

Proposition 3.28. Let (C−,Cm) be a left module ∞-category as in Theorem 3.26 and suppose
that the left action C− × Cm −→ Cm preserves geometric realisations in the first variable. For
any associative algebra A ∈ Alg(C−), there is an equivalence of comonads on Cm

ϵ! ◦ ϵ∗ ≃ Bar(A)⊗ (−).

Proof. Part (1) of Theorem 3.26 provides a commuting triangle of left adjoints

LModA(Cm) LComodBar(A)(Cm)

Cm.
ϵ!

BarA

forget
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By [Hau20, Corollary 5.8, Corollary 8.9], this induces a natural map of comonads µ : ϵ! ◦ ϵ∗ −→
Bar(A)⊗ (−). It remains to verify that the underlying map of endofunctors of Cm is an equiva-
lence. For eachM ∈ Cm, the map µ can be identified with the natural map |Bar•(1, A, ϵ∗M)| −→
|Bar•(1, A,1)| ⊗M . This map is an equivalence by the assumption that the left action of C−
on Cm preserves geometric realisations in C−. □

Notation 3.29 (Trivial algebras and cotangent fibre). Let P be an augmented PD ∞-operad
with augmentation ϵ : P −→ 1. We denote by cotP : AlgP ⇆ ModR : trivP the adjoint pair
induced by the augmentation ϵ. We will refer to these functors as taking cotangent fibre, respec-
tively trivial P-algebra.

Corollary 3.30. Let P be an augmented PD ∞-operad. Then there is a commuting diagram
of left adjoint functors

AlgP coAlgBar(P)

ModR

BarP

cotP forget

and an equivalence of comonads cotP ◦ triv ≃ Bar(P).

Proof. Apply Proposition 3.28 where C+ = ∗ and C− is the ∞-category sSeq1//1 of augmented
symmetric sequences with the composition product, acting from the left on ModR. □

As another application of Theorem 3.26, we shall give another possible definition of the bar
construction of an associative algebra, due to Lurie [Hea18]; it is more convenient for later
purposes.

Definition 3.31 (Coendomorphisms object). Let C− be a monoidal ∞-category, Cm a left C−-
module ∞-category and M an object in Cm. Consider an object X ∈ C− together with a map
λ : M −→ X ⊗M in Cm. We will say that λ exhibits X as a coendomorphism object of M if for
every object Y in C−, the natural map

MapC−
(X,Y ) MapCm

(X ⊗M,Y ⊗M) MapCm
(M,Y ⊗M)λ∗

is an equivalence. Similarly, let C ∈ Coalg(C−) be an associative coalgebra in C− and denote by
LComodC(M) = LComodC(Cm)×Cm

{M} the space of left C-comodule structures on M . Then
λ ∈ LComodC(M) exhibits C as a coendomorphism coalgebra of M if for each coalgebra D, the
natural map which corestricts the coaction of C onM to a coaction of D onM is an equivalence:

MapcoAlg(C−)(C,D) LComodD(M); f (f ⊗ id) ◦ λ∼

Lemma 3.32 (cf. [Hea18, Proposition 7]). Let (C−,Cm) be a left module ∞-category and M ∈
Cm. Then the following assertions hold:

(1) Let λ ∈ LComodC(M). Then λ exhibits C as a coendomorphism coalgebra of M if and only
if the underlying map M −→ C ⊗M exhibits C as a coendomorphism object of M .

(2) Suppose that M admits a coendomorphism object X. Then M admits a coendomorphism
coalgebra.

Proof. By the dual of [HA, Theorem 4.7.1.34], there exists a monoidal ∞-category C−[M ] with
objects given by tuples of objectsX ∈ C− and mapsM −→ X⊗M in Cm, such that coAlg(C−[M ])
is equivalent to the ∞-category of coalgebras together with a left comodule structure on M . By
definition, a coendomorphism object ofM is an initial object of C−[M ], while a coendomorphism
coalgebra of M is an initial object of coAlg(C−[M ]). The assertions then follow from the fact
that the forgetful functor coAlg(C−[M ]) −→ C−[M ] preserves and detects initial objects. □
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Construction 3.33 (Koszul complex). Let C be a monoidal ∞-category such that the tensor
product preserves geometric realisations in the first variable and the monoidal unit 1 is both
initial and terminal. We consider C as a bimodule ∞-category over itself. If A is an associa-
tive algebra in C, then Theorem 3.26 provides a right C-linear functor BarA : LModA(C) −→
LComodBar(A)(C). Write K(A) for the value of this functor on the free left A-module A; it
follows from part (1) of Theorem 3.26 this is simply given by the trivial comodule 1. Since the
free A-module A has a commuting right A-module structure, we obtain a natural object

K(A) ∈ RModA
(
LComodBar(A)(C)

)
≃ LComodBar(A)

(
RModA(C)

)
such that the underlying right A-module is the terminal object 1. We will refer to K(A) as the
Koszul complex of A.

Proposition 3.34. Let C be a monoidal ∞-category such that the tensor product preserves
geometric realisations in the first variable and the monoidal unit 1 is both initial and terminal.
Then the left Bar(A)-comodule structure on the Koszul complex K(A) ≃ 1 exhibits Bar(A) as
the coendomorphism coalgebra of 1 ∈ RModA(C).

Proof. By Lemma 3.32, it suffices to verify that the right A-linear map 1 −→ Bar(A)⊗1 exhibits
Bar(A) as an endomorphism object of the trivial right A-module 1, i.e. for every object Y ∈ C,
the map

MapC
(
Bar(A), Y

)
MapRModA(C)

(
Bar(A)⊗ 1, Y ⊗ 1

)
MapRModA(C)

(
1, Y ⊗ 1

)
is an equivalence. To see this, using Proposition 3.28 and writing ϵ : A −→ 1 for the augmenta-
tion, the above map can be identified with the composite

MapC
(
ϵ!ϵ

∗(1), Y
)

MapRModA(C)

(
ϵ∗ϵ!ϵ

∗(1), ϵ∗Y
)

MapRModA(C)

(
ϵ∗(1), ϵ∗Y

)
where the first map applies ϵ∗ and the second map restricts along the unit ϵ∗(1) −→ ϵ∗ϵ!ϵ

∗(1).
This composite is an equivalence since (ϵ!, ϵ

∗) is an adjoint pair. □

Finally, we turn to the proof of Theorem 3.26. The argument, which we learned from Lurie,
is a direct modification of the construction of the bar-cobar adjunction in [HA, Section 5.2.2].
We start by recalling some terminology from loc. cit.

Notation 3.35 (Pairings). Recall that a pairing of ∞-categories C and D is a right fibration
λ : M −→ C×D. An object M ∈M with image (C,D) is called left universal if it is terminal in
{C}×CM. The pairing λ is called left representable if every C ∈ C is the image of a left universal
object. We denote by CPair ⊆ Fun(Λ0[2],Cat∞) the full subcategory spanned by the pairings

of ∞-categories, and by CPairL the subcategory of CPair on the left representable pairings and
maps of pairings preserving left universal objects. Both CPair and CPairL are closed under the
cartesian product in Fun(Λ0[2],Cat∞).

There is an equivalence of ∞-categories PairL ≃ Fun([1],Cat∞) [LB15, Proposition 2.2]. By
[HA, Construction 5.2.1.9], this equivalence sends a left representable pairing λ : M −→ C ×D

to the unique functor Fλ : C −→ Dop which admits a natural equivalence

λ−1(C,D) ≃ MapDop

(
Fλ(C), D

)
.

Example 3.36. Let C be a bimodule ∞-category, given by C− ↷ Cm ↶ C+. Because taking
twisted arrow ∞-categories preserves products, one obtains a bimodule object Tw(C) in the
∞-category of left (and right) representable pairings of the form
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Tw(C−) Tw(Cm) Tw(C+)

C− × C
op
− Cm × C

op
m C+ × C

op
+ .

Taking left module objects, we then obtain a map of pairings LMod(Tw(Cm)) −→ Alg(Tw(C−)),
together with a fibrewise right action of Tw(C+) on LMod(Tw(Cm)) [HA, Proposition 4.3.2.5,
Proposition 4.3.2.6].

Lemma 3.37. Let λ : (M−,Mm,M+) −→ (C−,Cm,C+)× (D−,Dm,D+) be a bimodule object in
the ∞-category Pair of pairings and let

A1 ∈ Alg(M−)×Alg(D−) {1} and B1 ∈ Alg(M+)×Alg(D+) {1}
be two algebras with images (A,1) and (B,1) in Alg(C−) × Alg(D−) and Alg(C+) × Alg(D+).
Consider the induced pairing between categories of bimodules

λA,B : A1BModB1(Mm) −→ ABModB(Cm)×Dm

(where we identify 1BMod1(Dm) ≃ Dm). Then the following assertions hold:

(1) If λ is left representable and the ∞-category Dm admits totalisations of cosimplicial objects,
then λA,B is left representable.

(2) Suppose that the pairing λ : Mm −→ Cm × Dm is right representable and that there exist
augmentations A1 −→ 1 and B1 −→ 1 in Alg(M−) and Alg(M+). Then λA,B is right
representable and the associated functor can be identified with

GλA,B
: Dm Cm ABModB(Cm)

Gλ triv

where the second functor is the restriction along the induced augmentations A −→ 1 and
B −→ 1 in Alg(C−) and Alg(C+).

Remark 3.38. Suppose we are in the situation of Lemma 3.37 and fix an object D ∈ Dm. Then
the actions M− ↷ Mm ↶ M+ restrict to actions M−×D− {1}↷ Mm×Dm

{D}↶ M+×D+
{1}

and there is a natural equivalence

A1BModB1

(
Mm ×Dm

{D}
)

A1BModB1(Mm)×Dm
{D}.∼

Proof. Part (1) follows from the following adaptation of [HA, Lemma 5.2.2.40]. For a bimodule
M ∈ ABModB(Cm), we have to show that induced right fibration

EM = {M} ×
ABModB(Cm) A1BModB1(Mm) Dm

is representable (i.e. EM admits a terminal object). To do this, we will proceed in two steps.
First, let us suppose that M = A⊗ V ⊗B is the free A-B-bimodule on an object V ∈ Cm. In

this case, the right fibration EM −→ Dm is representable by the same argument as [HA, Lemma

5.2.2.32]: taking a left representable object Ṽ ∈ {V } ×Cm
Mm, the free bimodule A1 ⊗ Ṽ ⊗ B1

is a terminal object in EA⊗V⊗B .
For a general bimodule M , let M• = A⊗•+1 ⊗M ⊗ B⊗1+• be its bar construction, so that

M = |M•|. Let χM : Dop
m −→ S be the presheaf classified by the right fibration EM −→ Dm. We

claim that χM ≃ limχM• . Assuming this, it follows that χM is representable, because it is a
totalisation of representable presheaves and Dm admits totalisations.
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It suffices to verify the claim at each point D ∈ Dm. To do this, consider the commuting
diagram

FD = A1BModB1(Mm)×Dm
{D} Mm ×Dm

{D}

ABModB(Cm) Cm

g

q p

g′

where the horizontal functors forget the bimodule structure. By [HA, Corollary 5.2.2.39], it
now suffices to check that for every simplicial object N• : ∆

op −→ FD lifting M•, there exists a
geometric realisation in FD that is preserved by q. For any such N•, the image g(N•) is a lift of
the image g′(M•) of the simplicial bar construction, which is split. By [HA, Corollary 4.7.2.11],
g(N•) is a split simplicial object as well. Remark 3.38 now implies that N• admits a realisation
in FB (by monadicity). To see that this realisation is preserved by q, let N+

• : ∆op
+ −→ FB

denote the resulting colimiting cocone. Then g(N+
• ) is split and hence q(N+

• ) is sent to a split
augmented simplicial object by the forgetful functor g′. Again by monadicity, this implies that
q(N+

• ) is a colimiting cocone in ABModB(Cm), as desired.

Part (2) follows from follows from the fact that restriction along the augmentations A1 −→ 1
and B1 −→ 1 yields a functor

(10) Mm ≃ 1BMod1(Mm) A1BModB1(Mm)

that preserves right representable objects (by [HA, Proposition 5.2.1.17]). By definition, such
representable objects are the terminal objects in the fibres over each D ∈ Dm. Remark 3.38 now
identifies the functor between fibres with the functor

Mm ×Dm
{M} A1BModB1

(
Mm ×Dm

{M}
)

restricting along the augmentations of A1 and B1. This functor preserves terminal objects. □

The pairing from Lemma 3.37 has some additional structure in the case where each bimodule
category arises from the natural two-sided action of a monoidal category on itself:

Notation 3.39. If C is a monoidal ∞-category and A ∈ Alg(C) is an associative algebra in C,
then the category ABModA(C) is the underlying category of a nonsymmetric∞-operad (see [HA,
Theorem 3.3.3.9, Theorem 4.4.1.28])

ModAssoc
A (C)⊗ Assoc⊗

with the property that Alg(ModAssoc
A

(
C)
)
≃ Alg(C)A/.

Now suppose that λ : M −→ C×D is a pairing of monoidal∞-categories and let A1 ∈ Alg(M)
be an algebra with image (A,1) in Alg(C) × Alg(D). We obtain a pairing of nonsymmetric
∞-operads

λ⊗A : ModAssoc
A1

(M)⊗ ModAssoc
A (C)⊗ ×Assoc⊗ D⊗

where we identify ModAssoc
1 (D)⊗ ≃ D⊗ [HA, Proposition 3.4.2.1]. Since A can be considered as

an associative algebra in ModAssoc
A (C)⊗, we can consider the nonsymmetric∞-operad E⊗

A defined
as the fiber product

E⊗
A ModAssoc

A1
(M)⊗

Assoc⊗ ModAssoc
A (C)⊗.A
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Lemma 3.40. In the above situation, suppose that λ : M −→ C×D is left representable and that
D admits totalisations. Then E⊗

A is a lax monoidal ∞-category, i.e. the map E⊗
A −→ Assoc⊗ is

a locally cocartesian fibration.

Proof. Consider the map of correspondences

C M D

P(C) P(M) P(D).

Endowing all presheaf categories with the monoidal structure given by Day convolution [HA,
Corollary 4.8.1.12], this gives a diagram of monoidal ∞-categories and monoidal functors.

Considering A and A1 as associative algebras in P(C) and P(M) under the Yoneda embedding,
we can form a similar nonsymmetric ∞-operad

Ê⊗
A = Assoc⊗ ×ModAssoc

A (P(C))⊗ ModAssoc
A1

(
P(M)

)⊗
.

Since the Day convolution product preserves colimits in each argument, this is a fiber product
of monoidal ∞-categories and monoidal functors between them [HA, Theorem 3.4.4.2]. Conse-

quently, Ê⊗
A is a monoidal ∞-category and we obtain a diagram

E⊗
A Ê⊗

A

Assoc⊗

p q

where the top map is fully faithful and q is a cocartesian fibration. We will use this to prove
that p is a locally cocartesian fibration.

To this end, note that the map of ∞-operads E⊗
A −→ Assoc⊗ is a locally cocartesian fibration

if each active morphism α : ⟨n⟩ −→ ⟨1⟩ in Assoc⊗ (there are n! of these) admits locally cocarte-
sian lifts. Let us therefore pick an active morphism α : ⟨n⟩ −→ ⟨1⟩ in Assoc⊗ and n objects
M1, . . . ,Mn in (

E⊗
A

)
⟨1⟩ ≃ {A} ×ABModA(C) A1BModA1(M).

It follows from [HA, Proposition 4.4.3.12] that there exists a q-cocartesian lift of α in Ê⊗
A of the

form (up to a permutation of the Mi)

(11) α̃ :
(
M1, . . . ,Mn

) ∣∣∣M1 ⊗A⊗•
1 ⊗M2 ⊗A⊗•

1 ⊗ · · · ⊗A
⊗•
1 ⊗Mn

∣∣∣
where the target arises from (an iteration of) the bar construction. Here the geometric realization
is computed at the presheaf level, i.e. in the category(

Ê⊗
A

)
⟨1⟩ ≃ {A} ×ABModA(P(C)) A1BModA1

(
P(M)

)
.

To see that α admits a locally p-cocartesian lift, it suffices to verify that there is an initial object

in the full subcategory
(
E⊗
A

)
⟨1⟩ ⊆

(
Ê⊗
A

)
⟨1⟩ that receives a map from the geometric realisation

(11). This is the case if and only if the simplicial diagram given by the bar construction

(12)
∆op {A} ×

ABModA(C) A1BModA1(M);

[k] M1 ⊗A⊗k
1 ⊗M2 ⊗A⊗k

1 ⊗ · · · ⊗A⊗k
1 ⊗Mn
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admits a colimit in the category {A} ×
ABModA(C) A1BModA1(M). By Lemma 3.37, there exists

an object D ∈ D together with an equivalence

{A} ×
ABModA(C) A1BModA1(M) D/D.

∼

Since the forgetful functor D/D −→ D creates colimits, it suffices to show that the image of the
simplicial diagram (12) in D admits a colimit. But this image is simply a constant simplicial
diagram, since the image of A1 in Alg(D) is simply the unit 1. □

Corollary 3.41 ([HA, Proposition 5.2.2.27]). Let λ : M −→ C × D be a pairing of monoidal
∞-categories such that the following conditions hold:

(1) The unit 1 ∈ D is an initial object and the functor M×D {1} −→ C is an equivalence.

(2) The pairing λ is left representable.

(3) The ∞-category D admits totalisations of cosimplicial objects.

Then the induced pairing Alg(λ) : Alg(M) −→ Alg(C)×Alg(D) is left representable.

Proof. Given A ∈ Alg(C), we have to show that the fiber {A} ×Alg(C) Alg(M) admits a terminal
object. To this end, let us start by noting that there exists a unique lift A1 ∈ {A} ×Alg(C)

Alg(M) ×Alg(D) {1}; this follows from the monoidal equivalence M ×D {1} ≃ C. Since the
functor

{A} ×Alg(C)A/
Alg(M)A1/ {A} ×Alg(C) Alg(M)

preserves terminal objects [HA, Proposition 5.2.2.30], it suffices to verify that the domain has a
terminal object. But now we can identify

{A} ×Alg(C)A/
Alg(M)A1/ = {A} ×Alg(ModAssoc

A (C)) Alg
(
ModAssoc

A1
(M)

)
≃ Alg(E⊗

A).

Because E⊗
A is a lax monoidal ∞-category with a terminal object, its category of associative

algebras admits a terminal object as well by [HA, Proposition 3.2.2.1]: indeed, if A is an ∞-
category with a lax monoidal structure, then a terminal object in A also determines a p-terminal
object for p : A⊗ −→ Assoc⊗. □

The technical heart of Theorem 3.26 is the following analogue of Corollary 3.41:

Proposition 3.42. Let λ : (M−,Mm) −→ (C−,Cm) × (D−,Dm) be a left module object in the
∞-category Pair of pairings, such that the following conditions hold:

(1) The unit 1 ∈ D− is an initial object and the functor M−×D− {1} −→ C− is an equivalence.

(2) The pairings M− −→ C− ×D− and Mm −→ Cm ×Dm are both left representable.

(3) The ∞-categories D− and Dm both admit totalisations of cosimplicial objects.

In this case, the pairing LMod(Mm) −→ LMod(Cm) × LMod(Dm) is left representable and the
forgetful functor LMod(Mm) −→ Alg(M−) preserves left representable objects.

Proof. The proof of this result follows the lines of the proof of [HA, Proposition 5.2.2.27]. Let
(A,M) ∈ LMod(Cm) be a tuple of an associative algebra A in C− and a left A-module M in Cm.
Consider the cartesian fibration taking underlying algebras

π : LMod(Mm)×LMod(Cm) {(A,M)} Alg(M−)×Alg(C−) {A} = Alg(M−)A

The target admits a terminal (i.e. left universal) object AL by [HA, Proposition 5.2.2.27] or
Corollary 3.41. We have to prove that the domain admits a terminal object of the form (AL,ML).
We will do this by proving that each fibre of π admits a terminal object and that the change-of-
fibre functors preserve these terminal objects. Then π admits a fully faithful right adjoint; its
value on AL is the desired (AL,ML).
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To see this, note that Alg(M−)A −→ Alg(D−) is a right fibration represented by Bar(A) [HA,
Proposition 5.2.2.27]. In particular, Alg(M−)A admits an initial object A1; its image in Alg(D−)
is the initial object 1. Let A′ ∈ Alg(M−)A be any other lift of A and let f : A1 −→ A′ denote
the unique map in Alg(M−)A. By Lemma 3.43 below, restriction of modules along f defines a
right adjoint functor

f∗ : LModA′(Mm)×LModA(Cm) {M} LModA1(Mm)×LModA(Cm) {M}.

In particular, this implies that the functor f∗ preserves and detects terminal objects. The
codomain LModA1(Mm) ×LModA(Cm) {M} admits a terminal object by a similar, but easier
argument as in Lemma 3.37 or [HA, Lemma 5.2.2.40]. Consequently, each fibre of π admits a
terminal object, which is preserved by all change-of-fibre functors. □

Lemma 3.43. Consider the setting of Proposition 3.42 and let A ∈ Alg(C−) be an associative
algebra. Let f : A1 −→ A′ be a map in the fibre Alg(M−) ×Alg(C−) {A} with domain given by
the initial object. Then the restriction functor f∗ between ∞-categories of modules is the right
adjoint in a relative adjunction

LModA1(Mm) LModA′(Mm)

LModA(Cm).

f!

f∗

Proof. Let N ∈ LModA1(Mm) and consider the bar construction Bar•(A
′, A1, N). If the geo-

metric realisation of Bar•(A
′, A1, N) in LModA′(Mm) exists, then it computes the value of the

putative left adjoint f! on N . It therefore suffices to verify that each Bar•(A
′, A1, N) admits a

geometric realisation in LModA′(Mm). Since LModA′(Mm) is monadic over Mm, it suffices to
verify that the underlying simplicial diagram in Mm is split.

To see this, note that the image of Bar•(A
′, A1, N) under the projection p : Mm −→ Dm is

given by Bar•(p(A
′),1, p(N)). This simplicial diagram is constant on X = p(A′) ⊗ p(N), so

that we can think of Bar•(A
′, A1, N) as a simplicial diagram in the fibre Mm ×Dm

X. Now
consider the right fibration q : Mm ×Dm

X −→ Cm. By [HA, Corollary 4.7.2.11], it suffices to
verify that image of Bar•(A

′, A1, N) in Cm is a split simplicial diagram. This image is simply
the split simplicial diagram Bar•(A,A, q(N)). We conclude that f∗ indeed admits a left adjoint
f!. Furthermore, the image of f!(N) in LModA(Cm) agrees with |Bar•(A,A, q(N))| ≃ q(N), so
that f! and f

∗ form a relative adjunction over LModA(Cm). □

Proof of Theorem 3.26. The commuting square of adjunctions is an immediate consequence of
Proposition 3.42, applied to the pairing Tw(C−) −→ C− × C

op
− and Tw(Cm) −→ Cm × C

op
m (and

its opposite for the cobar functors).
For assertion (1), an inspection of the proof of Proposition 3.42 and [HA, Lemma 5.2.2.40]

shows that Bar: LMod(Cm) −→ LComod(Cm) sends (A,M) to a tuple of a coalgebra and a
comodule, with underlying objects given by the inductions ϵ!(1) and ϵ!(M) along the augmenta-
tion ϵ : A −→ 1. Consider a coCartesian arrow in LMod(Cm) of the form (A,M) −→ (B, f!(M)),
where f : A −→ B is a map of algebras. Denoting the augmentation maps of A and B by ϵA
and ϵB respectively, the image of this arrow under the bar construction is given on underlying
objects by the natural map(

ϵA!(1), ϵA!(M)
) (

ϵB!(1), ϵB!(f!(M))
)
.

This map is coCartesian as soon as the natural map ϵA!(M) −→ ϵB!(f!(M)) is an equivalence,
which follows from transitivity of extension of scalars and the fact that ϵA ≃ ϵB ◦ f .
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For assertion (2) about right C+-linearity of the bar construction, it suffices to verify that
the right action LMod(Tw(Cm)) × Tw(C+) −→ LMod(Tw(Cm)) preserves left universal arrows
(see Notation 3.35). Since Tw(C+) classifies the identity functor on C+, this comes down to the
assertion that for any object X ∈ C+, the natural map Bar(A,M ⊗ X) −→ Bar(A,M) ⊗ X
is an equivalence. This map can be identified with the canonical map

(
ϵ!(1), ϵ!(M ⊗ X)

)
−→(

ϵ!(1), ϵ!(M)⊗X
)
. The map

ϵ!(M ⊗X) =
∣∣Bar•(1, A,M)⊗X

∣∣ ∣∣Bar•(1, A,M)
∣∣⊗X = ϵ!(M)⊗X

is now an equivalence because (−)⊗X preserves geometric realisations. □

Refined Koszul Duality. The Koszul dual of an augmented PD ∞-operad P now arises from the
bar construction Bar(P) by linear duality.

Notation 3.44 (Linear dual symmetric sequences). Let R be a coherent E∞-ring spectrum and
recall that the∞-category sSeq∨R comes equipped with the levelwise tensor product ⊗lev; its unit
is the E∞-operad. If X is a pro-coherent symmetric sequence, we will write X∨ for its dual with
respect to the levelwise tensor product and refer to it as the linear dual of X.

Remark 3.45 (Refined linear duality). The pro-coherent linear duality described above refines
the usual operation of taking R-linear dual symmetric sequences, in the sense that there is a
commuting diagram

sSeq∨,op
R sSeq∨R

sSeqopR sSeqR .

(−)∨

υ

(−)∨

ι

The bottom functor is the usual functor taking the levelwise linear dualX∨(r) = HomR(X(r), R).
If X is an ordinary symmetric sequence, then its dual in sSeq∨R crucially need not arise from a
symmetric sequence, i.e. need not be contained in the essential image of ι.

Informally, X∨ is the pro-coherent symmetric sequence given in each arity r by the continous
R-linear dual of X(r). This is substantiated by the following observation:

Proposition 3.46. Let R be a coherent E∞-ring spectrum. Then (−)∨ : sSeq∨R −→ sSeq∨,op
R

is the right-left extension of the functor R[Σ] −→ R[Σ]op sending a finite type free symmetric
sequence X to the R-linear dual symmetric sequence X∨(r) = HomR(X(r), R). Furthermore, it
restricts to an equivalence

(−)∨ : APerf∨R[Σ] APerfopR[Σ] .
≃

Proof. When X is finitely generated free, X∨(r) = HomR(X(r), R) indeed defines an object
in R[Σ]. Furthermore, there are canonical maps in the ∞-category of symmetric sequences
E∞ −→ X ⊗levX

∨ and X∨ ⊗levX −→ E∞ exhibiting X∨ as the dual of X. Consequently, they
remain dual in pro-coherent symmetric sequences as well. The result now follows from (the proof
of) Proposition 2.52. □

Proposition 3.47. Let R be a coherent E∞-ring spectrum. Then (−)∨ : sSeq∨,op
R −→ sSeq∨R is

lax monoidal with respect to the extended composition product ◦. Furthermore, it restricts to a
(strong) monoidal equivalence APerf∨R[Σ] ≃ APerfopR[Σ].

In particular, (continuous) linear duality sends PD ∞-cooperads to PD ∞-operads and re-
stricts to an equivalence between the∞-categories of almost perfect PD∞-cooperads and dually
almost perfect PD ∞-operads.
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Proof. Consider the functor F : sSeq∨,op
R −→ Fun(sSeq∨,op

R , Slarge) sending each pro-coherent
symmetric sequence X to the (large) presheaf Map(X ⊗lev −,E∞). This takes values in the
essential image of the Yoneda embedding, and the corresponding functor precisely sends X 7→
X∨. We endow the (large) presheaf category Fun

(
sSeq∨,op

R , Slarge
)
with the Day convolution

product with respect to ◦. Since the Yoneda embedding is a fully faithful monoidal functor, it
suffices to endow the functor F with a lax monoidal structure. By the universal property of Day
convolution [HA, Section 2.2.6], such a lax monoidal structure is equivalent to a lax monoidal
structure on the functor adjoint to F

sSeq∨,op
R × sSeq∨,op

R sSeq∨,op
R S .

⊗lev Map(−,E∞)

The first functor is lax monoidal by Proposition 3.18 and the second functor is lax monoidal since
E∞ is an algebra with respect to ◦ (and the Yoneda embedding C −→ Fun(Cop, S) is monoidal
for the Day convolution product).

For the final assertion, we have to verify that the natural map µ : X∨ ◦Y ∨ −→ (X ◦Y )∨ is an
equivalence when X and Y are dually almost perfect. Since ◦ and (−)∨ preserve sifted colimits
and finite totalisations, we may assume that X,Y ∈ APerf∨R[Σ],⪕ 0. Using furthermore that both

functors preserve totalisations of diagrams in R[Σ], we can reduce to the case where X and Y
are contained in R[Σ]. In this case the result follows by inspection. □

Definition 3.48 (Koszul dual PD operad). Let R be a coherent E∞-ring. If P is an augmented

PD∞-operad, we define its Koszul dual PD∞-operad KDpd(P) = Bar(P)∨ to be the linear dual
of the bar construction.

Theorem 3.49 (Refined Koszul duality for operads). Let R be a coherent E∞-ring spectrum.
Then there is a commuting diagram of ∞-categories

Oppd,augR Oppd,aug,opR

OpaugR Opaug,opR

KDpd

υ

KD

ι

where the bottom functor sends an augmented ∞-operad to its classical Koszul dual ∞-operad,
given by the Spanier–Whitehead dual of its bar construction.

Proof. The functor ι is monoidal with respect to the composition product and preserves geometric
realisations. Consequently, it commutes with the bar construction. The result then follows
from the fact that linear duality in pro-coherent symmetric sequences provides a lax monoidal
refinement of Spanier–Whitehead duality of ordinary symmetric sequences (Remark 3.45). □

Since linear duality preserves pro-coherent symmetric sequences concentrated in arity 0, it
furthermore sends coalgebras over ∞-cooperads to algebras over ∞-operads:

Definition 3.50 (Koszul dual algebra). Let R be a coherent E∞-ring and P an augmented

R-linear PD∞-operad, with Koszul dual KDpd(P). If A is a P-algebra, we define its Koszul dual

KD(P)-algebra to be the linear dual of its bar construction KDpd(A) = BarP(A)
∨ (Corollary

3.30).
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Theorem 3.51. Let R be a coherent E∞-ring spectrum and P an augmented ∞-operad over R.
Then there is a commuting diagram of ∞-categories

AlgP(QC∨
R) AlgKDpd(P)(QC∨

R)
op

AlgP(ModR) AlgKD(P)(ModR)
op

KDpd

υ

KD

ι

where the bottom functor sends a P-algebra A its classical Koszul dual algebra, given by the
Spanier–Whitehead dual of its bar construction.

Proof. The proof of Theorem 3.49 carries over, using instead that ι commutes with the bar
construction of Theorem 3.26. □

We will now illustrate how Theorem 3.49 and Theorem 3.51 concretely refine the usual Koszul
duality for ∞-operads and their algebras.

Definition 3.52 (Almost finitely presented ∞-operads). Let R be a connective E∞-ring spec-
trum. An augmented ∞-operad P is said to be connective if each P(r) is a connective spectrum.
A connective augmented operad P is almost of finite presentation if it defines an almost com-
pact object in the compactly generated ∞-category OpaugR,≥0 of connective augmented operads,

in the sense of [HA, Definition 7.2.4.8]: this means τ≤mP is a compact object in the ∞-category
OpaugR,≥0,≤m of augmented ∞-operads that are connective and m-coconnective, for each m ≥ 0.

Proposition 3.53. Let R be a coherent E∞-ring spectrum and let P be a connective augmented
∞-operad over R which is almost of finite presentation. Then the Koszul dual PD ∞-operad
KDpd(P) is dually almost perfect. The induced monad KDpd(P) : QC∨

R −→ QC∨
R preserves sifted

colimits and dually almost perfect objects, and the resulting monad on APerf∨R can be identified
with

KDpd(P)(V ) ≃
⊕
r

(
KD(P)pd(r)⊗ V ⊗r

)hΣr ≃
(
cotP ◦ trivP(V ∨)

)∨
.

Notice that the above differs from the free algebra over the classical Koszul dual KD(P), even
for finitely generated free R-modules.

Proof. Note that the bar construction restricts to a functor Bar: OpaugR,≥0 −→ sSeqR,≥0 from

connective augmented operads to connective symmetric sequences (indeed, this is simply the
bar construction for augmented algebras in the monoidal ∞-category sSeqR,≥0). This functor
preserves colimits and sends a free augmented ∞-operad Free(X) to X, so that it preserves
almost compact objects for formal reasons.

It follows that the bar construction of an almost finitely presented connective augmented ∞-
operad P is almost perfect as a symmetric sequence, so that its Koszul dual is dually almost
perfect. The dually almost perfect symmetric sequences are closed under the composition prod-
uct, so that the free KDpd(P)-algebra functor preserves dually almost perfect objects. Since
linear duality is an equivalence on dually almost perfect symmetric sequences (Proposition 3.47),

there is an equivalence of monads KDpd(P) ≃ (−)∨ ◦Bar(P)◦ (−)∨. The formulas for the monad

KDpd(P) then follow from Proposition 3.19 and Corollary 3.30. □

One can verify that the nonunital E∞-operad is almost finitely presented. In particular, its
bar construction is the symmetric sequence

Bar(Enu
∞,R)(r) ≃ R ∧ Σ|Πr|◦

of reduced-unreduced suspensions of the partition complex; this is indeed an almost perfect
symmetric sequence (which is all we need).
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Definition 3.54 (The spectral Lie PD operad). The spectral partition Lie PD ∞-operad is the

PD Koszul dual LieπR,E∞
= KDpd(Enu

∞).

Corollary 3.55. The monad associated to the spectral partition Lie PD∞-operad agrees (over
a field k) with the spectral partition Lie monad from [BM19, Definition 5.32] and is given on
dually almost perfect objects by

LieπR,E∞
(V ) =

⊕
r

(
Hom(Σ|Πr|◦, R)⊗ V ⊗r

)
hΣr .

3.5. Derived operads and derived PD operads. In this section, we will describe a derived
refinement of the notion of ∞-operad and PD ∞-operad over a coherent simplicial commutative
ring, which also accounts (in a rather strict way) for the genuine equivariant homotopy theory
of the symmetric group actions. We will first discuss the derived version of classical ∞-operads
and then turn to the pro-coherent setting.

Derived operads. Recall that the∞-category of symmetric sequences over R is generated by free
Σr-modules, for various r. We will now introduce an∞-category of derived symmetric sequences
over R that will be generated by Σr-orbits.

Definition 3.56 (Derived symmetric sequences). Let R be a simplicial commutative ring. We
define the ∞-category of derived symmetric sequences to be

sSeqgenR ≃
∏
r≥0

ModΣr

R

where ModΣr

R is the ∞-category from Example 2.15. In other words, a derived symmetric se-
quence over R has an arity r component given by a module over the constant cohomological
Mackey functor R in the ∞-category of genuine Σr-spectra.

Let us point out that the definition of the ∞-category sSeqgenR also makes sense when R is

an E∞-algebra (or even an E1-algebra) over Z. However, we will only be interested in the case
where R is a simplicial commutative ring, because in that case we can endow sSeqgenR with a

strict version of the composition product (see Construction 3.63, which proceeds by induction
from the case of a discrete ring R).

Notation 3.57. Recall from Example 2.15 that each ModΣr

R ≃ ModR[OΣr ]
can be obtained as

the ∞-category of modules over the full additive subcategory R[OΣr
] ⊆ ModΣr

R spanned by the
free R-modules on finite Σr-sets.

Write R[OΣ] :=
⊕

r≥0R[OΣr ] for the sum of all of these additive∞-categories (Example 2.4).

One can identify R[OΣ] ⊆ sSeqgenR with the full subcategory spanned by the R-linearisations R[X]

of finite symmetric sequences of sets (Definition 3.11) and Example 2.4 shows that

sSeqgenR ≃ ModR[OΣ]

coincides with the ∞-category of modules over the additive ∞-category ModR[OΣ]. Example
2.15 shows that R[OΣ] is coherent if R is a coherent simplicial ring.

Example 3.58. Let R be a (discrete) commutative ring. It follows from Example 2.15 that

R[OΣ] can be identified with the full subcategory of the (ordinary) category sSeq♡R of symmetric
sequences of discrete R-modules, spanned by the symmetric sequences R[X] with X a finite
symmetric sequence of sets.

Lemma 3.59. There is a natural sifted-colimit-preserving functor SCR −→ Add sending R 7→
R[OΣ].
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Proof. It suffices to show that in each individual arity r, the assignment R 7→ R[OΣr
] extends to

a functor SCR −→ Add preserving sifted colimits. To see this, notice that ModΣr

R = ModR(Sp
Σr )

depends functorially on the simplicial commutative ring R, via

F : SCR CAlg(ModZ,≥0) CAlg(SpΣr ) PrL.
R 7→R Mod

Here the first functor sends a simplicial commutative rings to the corresponding E∞-ring spec-
trum over Z, the second functor sends this to the corresponding constant Mackey functor and
the last functor sends A ∈ CAlg(SpΣr ) to the (stable) presentable ∞-category ModA(Sp

Σr ).
The first two functors manifestly preserve sifted colimits (which are computed on the underlying
object) and the last functor preserves sifted colimits by [HA, Corollary 4.8.5.13].

For any map of simplicial rings R −→ R′, the induced left adjoint functor ModΣr

R −→ ModΣr

R′

simply induces along R −→ R′. In particular, this sends the full subcategory R[OΣr
] to R′[OΣr

].
One then obtains SCR −→ Add;R 7→ R[OΣr

] as a diagram of full subcategories. This preserves
sifted colimits because the functor Add −→ PrL;A 7→ ModA preserves colimits and detects
equivalences, by the universal property discussed in Definition 2.1. □

Example 3.60 (Borel derived symmetric sequences). For any simplicial commutative ring R,
there is a fully faithful inclusion R[Σ] ↪→ R[OΣ] with essential image given by R-linearised finite
Σ-free symmetric sequences of sets. This induces a fully faithful inclusion sSeqR −→ sSeqgenR .
We will refer to the essential image of the inclusion as the Borel derived symmetric sequences.

Example 3.61. There is a functor sSeq(Set) −→ sSeqgenR sending a set-valued symmetric se-

quence X to its R-linearisation R[X]. This functor is uniquely characterized by the fact that it
preserves coproducts and sends a symmetric sequence in arity r of the form Σr/H to the object
R[Σr/H] in R[OΣ].

Example 3.62 (Discrete symmetric sequences). Let R be a discrete commutative ring and let

sSeq♡R denote the category of symmetric sequences of discrete R-modules, i.e. the heart of the t-
structure on sSeqR provided by Definition 2.5. Every discrete symmetric sequence X determines
a derived symmetric sequence Xgen, given by the additive functor R[OΣ]

op −→ Sp sending each
R[S] to the discrete abelian group HomsSeq♡

R
(R[S], X). This encodes the data of all fixed points

X(r)H with H < ΣR.

Just like on symmetric sequences, there is a plethora of monoidal structures on derived sym-
metric sequences.

Construction 3.63 (Monoidal structures on derived symmetric sequences). If R is a discrete
ring, then the full subcategory R[OΣ] ⊆ sSeqR is closed under the monoidal structures ◦, ⊗
and ⊗lev from Section 3.1. Note that for every map of rings f : R −→ S, the induced functor
R[OΣ] −→ S[OΣ] preserves these monoidal structures, as well as all the compatibilities between
them, e.g. the natural transformation exhibiting ⊗lev as (op)lax monoidal with respect to ◦.
We can then define all of these structures for a simplicial commutative ring R as well, using
functoriality over polynomial rings and extending by sifted colimits (using Lemma 3.59).

As in Lemma 3.15, all of these monoidal structures are given by locally polynomial func-
tors. If R is a coherent simplicial commutative ring, Theorem 2.49 shows that they extend to
monoidal structures ◦,⊗,⊗lev on sSeqgenR , which preserve sifted colimits and finite totalisations.
Furthermore, all of these monoidal structures preserve all colimits in the first variable.

Definition 3.64 (Derived ∞-(co)operads). Let R be a coherent simplicial commutative ring.
We define a derived ∞-operad over R to be an associative algebra in sSeqgenR with respect to

the derived composition product ◦. Likewise, a derived ∞-cooperad is a coalgebra in sSeqgenR .
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We will write OpgenR and coOpgenR for the ∞-categories of derived ∞-operads and ∞-cooperads,
respectively.

Example 3.65. The inclusion R[Σ] ↪→ R[OΣ] is preserves the composition product. Conse-
quently, the inclusion sSeqR −→ sSeqgenR of the Borel derived symmetric sequences preserves the
composition product and its right adjoint is lax monoidal for the composition product. It follows
that there is an adjoint pair OpR ⇆ OpgenR where the left adjoint includes R-linear ∞-operads
into the derived∞-operads and the right adjoint sends each derived∞-operad to the underlying
‘Borel operad’.

Example 3.66 (Algebraic operads). Let R be a discrete coherent ring. Then there is an adjoint

pair F : sSeqgenR,≥0 ⇆ sSeq♡R : (−)gen where the right adjoint is as in Example 3.62. The left

adjoint is the nonabelian derived functor of the inclusion R[OΣ] −→ sSeq♡R. This functor is
monoidal for the composition product, so that (−)gen is lax symmetric monoidal. Consequently,
every classical R-linear operad P determines a derived∞-operad Pgen. This construction can be
understood more concretely in terms of our point-set models, see Remark 5.12.

Example 3.67 (Derived commutative operad). Applying the previous example to the commu-
tative operad gives a derived ∞-operad that we will denote by Com. Unraveling the definitions,
Com is the derived symmetric sequence given in each arity r by the free R-module on the point,
equipped with the trivial Σr-action. Using this, one easily sees that the derived symmetric
sequence underlying Com is the unit for the levelwise tensor product.

Remark 3.68 (Formula for derived composition product). For a coherent simplicial ring R,
the r-fold Day convolution product of a derived symmetric sequence Y admits a genuine Σr-
equivariant structure. More precisely, there is a functor

sSeqgenR

∏
q≥0 Mod

Σr×Σq

R = ModR[OΣr×Σ]; Y Y ⊗r

obtained by left-right extending a polynomial functor Tr : R[OΣ] −→ R[OΣr×Σ]: when R is a
discrete ring, Tr simply sends the linearisation R[K] of a finite symmetric sequence of sets to
R[K⊗r] and one extends to general simplicial commutative rings by sifted colimits (Lemma 3.59).
The composition product on sSeqgenR can then be identified with

X ◦ Y ∼=
⊕
r≥0

(
X(r)⊗M⊗r

)
Σr

where we take the tensor product of X(r) and Y ⊗r in
∏

q Mod
Σr×Σq

R and then take genuine Σr-

orbits (Example 2.48). Indeed, both functors are obtained as left-right extensions and coincide
on R[OΣ].

The derived composition product ◦ restricts to an action ◦ : sSeqgenR ×ModR −→ ModR, where
we identify ModR with the full subcategory of derived symmetric sequences concentrated in arity 0.

Example 3.69. Let X be a symmetric sequence of sets and let R[X] be the associated derived
symmetric sequence (Example 3.61). The induced endofunctor of ModR is the right-left extended
functor of the functor sending a finitely generated free R-module V to

⊕
r≥0

(
X(r)+ ∧ V ⊗r

)
Σr
.

Definition 3.70 (Algebras over derived operads). Let R be a simplicial commutative ring and
P a derived ∞-operad. We define a P-algebra to be a left P-module in ModR with respect to
the composition product. Likewise, a coalgebra over a derived ∞-cooperad is a left comodule in
ModR with respect to the composition product. We will write AlgP(ModR) and coAlgC(ModR)
for the ∞-categories of (co)algebras.



PD OPERADS AND EXPLICIT PARTITION LIE ALGEBRAS 44

Example 3.71 (Derived commutative algebras). The monad associated to the derived commuta-
tive∞-operad is the right-left extension of the functor sending a finitely generated free R-module
V to the symmetric algebra SymR(V ) =

⊕
n≥0(V

⊗n)Σn
. In particular, the ∞-category of con-

nective algebras over the derived ∞-operad Com is the ∞-category of simplicial commutative
R-algebras.

Derived PD operads. We will now discuss a version of derived ∞-operads with divided powers,
following the discussion in Section 3.3.

Definition 3.72 (Pro-coherent derived symmetric sequences). Let R be a coherent simplicial
commutative ring. A derived pro-coherent symmetric sequence over R is a pro-coherent module
over the additive ∞-category R[OΣ]. We will denote the ∞-category of pro-coherent derived
symmetric sequences by sSeqgen,∨R .

Remark 3.73. The fully faithful inclusion sSeqR ↪→ sSeqgenR of the Borel derived symmetric

sequences extends to a fully faithful inclusion sSeq∨R ↪→ sSeqgen,∨R between pro-coherent objects.

Recall that the ∞-category sSeqgen,∨R is (often) a further enlargement of the ∞-category of
derived symmetric sequences, which also contains the continuous R-linear duals of almost perfect
derived symmetric sequences. We start by studying the operation of taking R-linear dual pro-
coherent derived symmetric sequences. To this end, note that we can use Theorem 2.49 to
endow sSeqgen,∨R with the levelwise tensor product. The unit for this tensor product is the
derived symmetric sequence Com, given in each arity by the trivial Σr-representation on R.

Notation 3.74 (Linear dual pro-coherent derived symmetric sequences). Let R be a coherent
simplicial commutative ring. If X is a pro-coherent derived symmetric sequence, we will write
X∨ for its dual with respect to the levelwise tensor product and refer to it as the R-linear dual
of X.

We have the following analogue of Proposition 3.46.

Proposition 3.75. Let R be a coherent simplicial commutative ring and consider the functor
(−)∨ : sSeqgen,∨R −→ sSeqgen,∨,op

R taking R-linear duals. This functor is the right-left extension of

the equivalence R[OΣ] −→ R[OΣ]
op

sending each R-linearised finite symmetric sequence of sets
R[X] to the R-linear dual symmetric sequence R[X]∨(r) = HomR

(
R[X](r), R

)
. Furthermore, it

restricts to an equivalence

(−)∨ : APerf∨R[OΣ] APerfopR[OΣ] .
≃

In particular, the image of ι : sSeqgenR −→ sSeqgen,∨R is typically not closed under duality.

Proof. Notice that the symmetric sequence R[X]∨ indeed defines an object in R[OΣ] (isomorphic
to R[X] itself) and that the resulting functor (−)∨ : R[OΣ] −→ R[OΣ]

op
is an equivalence. We

claim that R[X]∨ is indeed the dual of R[X] with respect to the levelwise tensor product. For
each arity r, there are canonical maps in R[OΣ] of the form Com(r) −→ X(r) ⊗lev X(r)∨ and
X(r)∨ ⊗lev X(r) −→ Com(r) exhibiting X∨ as the dual of X. The result now follows from
Proposition 2.52. □

By Theorem 2.49, the composition product on derived symmetric sequences (Construction
3.63) extends to a composition product on pro-coherent derived symmetric sequences. For ap-
plications to Koszul duality, we will be more interested in a version of the composition product
based on strict invariants, rather than strict orbits:
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Definition 3.76 (Restricted composition product). Let R be a simplicial commutative ring.
Conjugating the composition product onR[OΣ] by the self-equivalence (−)∨ : R[OΣ] −→ R[OΣ]

op

yields another monoidal structure, usually referred to as the restricted composition product. Ex-
plicitly, this monoidal structure on R[OΣ] can be identified with

X ◦̄Y = (X∨ ◦ Y ∨)∨ ∼=
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Here X(r) ⊗ Y ⊗r defines an object in R[OΣr×Σ], as in Remark 3.68 and (−)Σr takes genuine
Σr-fixed points.

This has properties analogous to the usual composition product; for example, the levelwise
tensor product ⊗lev is both lax and oplax monoidal with respect to ◦̄. The norm maps

(
X(r)⊗

Y ⊗r
)
Σr
−→

(
X(r)⊗ Y ⊗r

)
Σr determine a natural map

Nm: X ◦ Y −→ X ◦̄Y.

This endows the identity functor with the structure of a lax monoidal functor
(
R[OΣ], ◦

)
−→(

R[OΣ], ◦̄
)
(see e.g. [Fre00]). Note that the norm map is an equivalence if X is Σ-free or Y

is concentrated in arity ≥ 1. All of these properties and structures are verified directly when
R is a discrete ring and hold for simplicial commutative rings by taking sifted colimits (as in
Construction 3.63).

Using the results from Section 2.2, the various products considered above can now be extended
to pro-coherent derived symmetric sequences:

Proposition 3.77. Let R be a coherent ring. Then the monoidal structures ◦, ◦̄,⊗ and ⊗lev

all admit right-left extensions to monoidal structures on the categories sSeqgenR and sSeqgen,∨R .
Furthermore, these monoidal structures have the following properties:

(1) Each of the four monoidal structures ◦, ◦̄,⊗ and ⊗lev preserves sifted colimits and all col-
imits in the first variable.

(2) There is a commuting square of left adjoint functors

sSeqR sSeqgenR

sSeq∨R sSeqgen,∨R

ι ι

where the horizontal functors include the Borel (pro-coherent) derived symmetric sequences.
All of these functors are (symmetric) monoidal with respect to ◦, ◦̄,⊗ and ⊗lev. Here we
identify ◦̄ = ◦ on symmetric sequences and pro-coherent symmetric sequences.

(3) The functor ⊗lev is both lax and oplax monoidal with respect to ◦ and ◦̄.
(4) There is a natural norm map Nm: X ◦Y −→ X ◦̄Y that endows the identity functor with the

structure of a lax monoidal functor. The norm map is an equivalence if X is a pro-coherent
Borel derived symmetric sequence or if Y is concentrated in arity ≥ 1.

Proof. The proof of Proposition 3.18 carries over mutatis mutandis. Note that the horizontal
fully faithful inclusions in (2) are induced by the fully faithful inclusion R[Σ] −→ R[OΣ]. The
full subcategory R[Σ] is closed under each of the four tensor products and furthermore the two
composition products ◦ and ◦̄ coincide on R[Σ] (since the norm map is an equivalence on Borel
derived symmetric sequences). Theorem 2.49 then implies that the functors in the diagram are
(symmetric) monoidal for each of the four products. □
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Example 3.78. When R is a coherent simplicial ring, the monoidal structure ◦̄ on sSeqgen,∨R is
given by the formula

X ◦̄Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

Here X(r)⊗Y ⊗r defines an object in QC∨
R[OΣr×Σ] (using Remark 3.68) and (−)Σr is the derived

genuine fixed points functor from Example 2.48.
In particular, when X ≃ Tot(X•) and Y ≃ Tot(Y •) arise as totalisations of cosimplicial

diagrams in R[OΣ], the value is given by the derived strict invariants

X ◦̄Y ≃ Tot
(⊕

r≥0

(
X•(r)⊗ (Y •)⊗r

)
Σr

)
.

Definition 3.79 (Derived PD operads). Let R be a coherent simplicial commutative ring. A
derived PD ∞-operad over R is defined to be an associative algebra in sSeqgen,∨R with respect to
the restricted composition product ◦̄. We will denote the ∞-category of derived PD ∞-operads

by Opgen,pdR .

Remark 3.80. By part (4) of Proposition 3.77, there is a forgetful functor from derived PD
∞-operads to algebras in sSeqgen,∨R with respect to the composition product ◦. This forgetful
functor is an equivalence for derived PD ∞-operads without operations in arity 0.

The restricted composition product ◦̄ induces an action of sSeqgen,∨R on QC∨(R).

Definition 3.81 (Algebras over derived PD operads). An algebra over a derived PD ∞-operad
P is a left P-module in QC∨

R with respect to the ◦̄-action. We will write AlggenP (QC∨
R) for the

∞-category of P-algebras.

Example 3.82 (Divided power algebras). The derived commutative ∞-operad Com from Ex-
ample 3.71 admits a nonunital version Comnu. Since Comnu is trivial in arity 0, its image in
sSeqgen,∨R has the structure of a derived PD∞-operad. The corresponding monad on QC∨

R is the
right-left extension of the functor sending a finitely generated free R-module V to the divided
power algebra ΓR(V ) =

⊕
r≥1(V

⊗r)Σr .

3.6. Refined Koszul duality for derived PD operads. Finally, we shall discuss a refinement
of the classical Koszul duality for∞-operads to the setting of derived∞-operads. As a first step,
the∞-categorical bar construction yields a functor from augmented derived∞-operads to derived
∞-cooperads and from derived algebras to derived coalgebras

Bar: Opgen,augR coOpgen,augR Bar: AlggenP (ModR) coAlgBar(P)(ModR).

If P is a derived ∞-operad, then we define its (refined) Koszul dual to be the pro-coherent R-
linear dual of its bar construction. This carries the structure of a derived PD ∞-operad by the
following observation:

Proposition 3.83. Linear duality induces oplax monoidal functors(
sSeqgen,∨R , ◦

) (
sSeqgen,∨,op

R , ◦̄
) (

sSeqgen,∨R , ◦̄
) (

sSeqgen,∨,op
R , ◦

)(−)∨ (−)∨

restricting to (strong) monoidal equivalences between almost perfect (dually almost perfect) objects.

Proof. Let us only treat the first case and write F : R[OΣ] −→ R[OΣ]
op ⊆ sSeqgen,∨,op

R for the
functor taking R-linear duals. By Proposition 3.75, linear duality is the right-left extension of
F . The construction of the restricted composition product (Definition 3.76) implies that F is a
strong monoidal functor. Since ◦̄ preserves sifted colimits in each variable, the right extension
FR : APerf∨R[OΣ],⪕ 0 −→ sSeqgen,∨,op

R remains strong monoidal. By (the opposite of) Lemma
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2.54, the left extension FLR then inherits an oplax monoidal structure. It is strong monoidal on
dually almost perfect objects by the construction and the fact that ◦̄ and ◦ both preserve finite
geometric realisations and totalisations in each variable. □

Definition 3.84 (Koszul duality for derived operads). Let R be a coherent simplicial commuta-
tive ring and P an augmented derived ∞-operad over R. We define the Koszul dual derived PD
∞-operad of P to be the pro-coherent R-linear dual of the bar construction KDpd(P) = Bar(P)∨.

This refines the Koszul duality of Theorem 3.49: Koszul duality fits into a commuting square
where the vertical arrows include the Borel derived (PD) ∞-operads

OpaugR

(
Oppd,augR

)op
Opgen,augR

(
Opgen,pd,augR

)op
.

KDpd

KDpd

Definition 3.85. Let R be a coherent simplicial commutative ring and P an augmented derived
∞-operad over R. If A is a P-algebra, then we define its Koszul dual KDpd(P)-algebra to be the

pro-coherent R-linear dual of the bar construction KDpd(A) = BarP(A)
∨.

Let us give a more explicit description of the monad associated to the Koszul dual of a derived
∞-operad satisfying some finiteness conditions:

Definition 3.86 (Almost finitely presented derived ∞-operads). Let R be a simplicial commu-
tative ring. An augmented derived ∞-operad P over R is said to be connective if its underlying
derived symmetric sequence is connective. A connective augmented derived ∞-operad P is said
to be almost finitely presented if it defines an almost compact object in the∞-category Opgen,augR,≥0

of connective augmented derived ∞-operads, in the sense of [HA, Definition 7.2.4.8].

We can then describe the monad induced by KDpd(P) in terms of the adjunction

cotP : AlggenP (QC∨
R) ⇆ QC∨

R : trivP

arising from the augmentation map of derived ∞-operads P −→ 1:

Proposition 3.87. Let R be a coherent simplicial commutative ring and P an almost finitely
presented augmented derived ∞-operad over R. Then KDpd(P) is dually almost perfect. The

induced monad KDpd(P) : QC∨
R −→ QC∨

R preserves sifted colimits and dually almost perfect
objects, and the resulting monad on APerf∨R can be identified with

KDpd(P)(V ) ≃
⊕
r

(
KD(P)pd(r)⊗ V ⊗r

)Σr ≃
(
cotP ◦ trivP(V ∨)

)∨
.

Proof. The proof of Proposition 3.53 carries over verbatim. The first formula for the monad
KDpd(P) follows from Example 3.78. The second equivalence follows from Proposition 3.28
(applied to C− = (sSeqgen,∨R )1//1 acting on Cm = QC∨

R) and the fact that linear duality gives
a monoidal equivalence between dually almost perfect and almost perfect pro-coherent derived
symmetric sequences. □

One can verify that the nonunital commutative derived∞-operad is almost finitely presented.
In particular, its bar construction is the derived symmetric sequence Bar(Comnu)(r) ≃ R[Σ|Πr|◦]
of reduced-unreduced suspensions of the nerve of the partition complex; this is indeed an almost
perfect derived symmetric sequence (which is in fact all that we need), arising as the geometric
realisation of a simplicial diagram of derived symmetric sequences as in Example 3.61.
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Definition 3.88 (The derived partition Lie PD operad). The (derived) partition Lie PD ∞-

operad is the Koszul dual LieπR,∆ = KDpd(Comnu).

Corollary 3.89. The monad associated to the derived partition Lie PD∞-operad agrees (over a
field k) with the partition Lie monad from [BM19, Definition 5.47] and is given on dually almost
perfect objects by

LieπR(V ) =
⊕
r

(
Hom(Σ|Πr|◦, R)⊗ V ⊗r

)
Σr .

4. Chain models for PD operads

In the previous section we have given an ∞-categorical discussion of PD ∞-operads over
coherent E∞-ring spectra. Every PD∞-operad determines a sifted-colimit-preserving monad on
the ∞-category of pro-coherent R-modules, which can be constructed as a right-left extended
functor and can be described by a formula involving the divided orbits of Example 2.47.

The purpose of this section is to provide explicit point-set models for these ∞-categorical
constructions in the case where R is a discrete coherent ring. In particular, we give a presentation
of PD ∞-operads and their algebras in terms of chain complexes of R-modules. As a motivation
for all the constructions appearing in this section, we shall give the following example:

Example 4.1. Let k be a field and let Enu denote the (nonunital) Barratt–Eccles operad, given
by Enu(r) = C∗(EΣr). In particular, each Enu(r) is given by a chain complex of finitely generated
free k[Σr]-modules, in nonnegative degrees. For any chain complex V , the composition product
Enu(r) then computes the free nonunital E∞-algebra

Enu ◦ V =
⊕
r>0

(
Enu(r)⊗ V ⊗r

)
Σr
≃

⊕
r>0

V ⊗r
hΣr

.

The last equivalence uses that Enu(r) is a projective resolution of the trivial Σr-representation.
On the other hand, consider the linear dual Enu,∨ of the Barratt–Eccles operad. This does not

admit an obvious operad structure, but in Appendix A, we construct a dg-operad Sur∨ whose
underlying symmetric sequence is chain homotopic to Enu,∨. Leaving this issue aside, note that
Enu,∨ ◦ V does not compute the free E∞-algebra

⊕
r>0 V

⊗r
hΣr

on V , even though Enu,∨ is quasi-

isomorphic to Enu. Indeed, even though Enu,∨(r) is a chain complex of finitely generated free
k[Σr]-modules, it is not a projective resolution of the trivial Σr-representation; instead it is an
injective resolution. Consequently, for any bounded above complex V we now have that

Enu,∨ ◦ V =
⊕
r>0

(
Enu,∨(r)⊗ V ⊗r

)
Σr

∼=
⊕
r>0

(
Enu,∨(r)⊗ V ⊗r

)Σr ≃
⊕
r>0

(V ⊗r)hΣr

computes a free nonunital E∞-algebra with divided powers. Here the second isomorphism uses
that Enu,∨(r) is a complex of finitely generated free k[Σr]-modules, so that the norm map is an
isomorphism (which also holds for Enu) and the last equivalence uses crucially that Enu,∨(r) is
an injective resolution of the trivial Σr-representation.

Remark 4.2. Notice that the above computation is not in conflict with the standard homotopy
theory for operads from e.g. [Hin97, BM03]: even though the symmetric sequence Enu,∨ consists
of complexes of free Σr-modules, it is not Σ-cofibrant in the usual sense and is hence usually
excluded from considerations.

We will show that the ∞-category of PD ∞-operads over R can be described by a homotopy
theory of dg-operads in which more dg-operads are Σ-cofibrant, and hence fewer dg-operads are
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weakly equivalent to one another. In particular, in Section 4.4 we will describe a dg-operad
controlling the theory of spectral partition Lie algebras, which is Σ-cofibrant (only) in this more
liberal sense.

We start by discussing a chain model for the ∞-category of pro-coherent R[G]-modules and
the divided orbits functor for a finite group G; in fact, for our later description of the∞-category
of derived ∞-operads, we will simultaneously treat pro-coherent modules over the additive ∞-
category R[OG] from Example 2.15.

4.1. Chain models for pro-coherent modules. Throughout this section, we fix a discrete
coherent ring R, a finite group G and a full subcategory F ⊆ OG of the orbit category. We will
only make use of the extreme cases where F contains only the trivial subgroup (later in this
section) and where F = OG (in Section 5).

Definition 4.3. AG-set is said to be F-admissible, or briefly admissible, if each orbit is contained
in F , and a subgroup H < G is said to be admissible if G/H is an admissible orbit. If R is a
ring, then an R-linear G-representation V is said to be a (finite) F-admissible representation if
V ∼= R[S] is the R-linearisation of an (finite) F-admissible G-set. We will denote by R[F ] the
full subcategory of the category of (discrete) R-linear G-representations spanned by the finite
F-admissible representations.

Similar to Example 2.15, R[F ] is a (discrete) coherent additive category. The formalism of
Section 2.1 gives rise to a fully faithful functor of ∞-categories

ι : ModR[F ] −→ QC∨ (
R[F ]

)
.

We will give model-categorical presentations of these ∞-categories in terms of chain complexes.

Notation 4.4. We denote the category of chain complexes of (discrete)R[G]-modules byChR[G].
This category is naturally enriched and tensored over the category ChR of chain complexes of
R-modules. We will write HomR[G](X,Y ) for the mapping complex. If X is a chain complex,
denote the n-fold suspension by X[n] and the cone of the n-fold suspension by X[n, n+ 1].

Definition 4.5. A complex P of R[G]-modules is said to be F-quasifree if it is given in each
degree by an F-admissible G-representation. It is F-quasiprojective if it is the retract of an
F-quasifree complex of R[G]-modules.

A map of complexes of R[G]-modules X −→ Y is is said to be an F-tame weak equiva-
lence if the induced map on mapping complexes HomR[G](P,X) −→ HomR[G](P, Y ) is a quasi-
isomorphism for every F-quasiprojective object P .

Taking P = R[G/H], one sees that every F-tame weak equivalence induces quasi-isomorphisms
on H-fixed points for all admissible H < G.

Proposition 4.6. Let R be a ring, G a finite group and F ⊆ OG a full subcategory. Then the
category ChR[G] can be endowed with the following two combinatorial model structures:

(1) the F-projective model structure, the weak equivalences of which are maps inducing quasi-
isomorphisms on H-fixed points and fibrations are maps inducing surjections on H-fixed
points, for all F-admissible subgroups H < G.

(2) the F-tame model structure, in which the weak equivalences are the F-tame weak equiv-
alences, the cofibrations are degreewise split monomorphisms with an F-quasiprojective
cokernel and the fibrations are maps inducing surjections on H-fixed points, for all ad-
missible subgroups H < G.

Furthermore, both model structures are naturally enriched over ChR, equipped with the projective
model structure.
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Warning 4.7. Since these model structures are enriched overChR, their associated∞-categories
are stable. However, unlike for many of the usual model structures on chain complexes, a short
exact sequence in ChR[G] need not define a cofibre sequence in the associated stable ∞-category
(because H-fixed points are not exact).

Proof. We will only prove part (2), following the argument in [Nui17] (see also [Bec14]); part
(1) follows a similar, but more classical proof. We first observe that for a map p : X −→ Y , the
following four properties are equivalent:

(a) p has the right lifting property against the cofibrations.

(b) the map HomR[G](P,X) −→ HomR[G](P, Y ) is an acyclic fibration for all F-quasifree
complexes P .

(c) the map HomR[G](T,X) −→ HomR[G](T, Y ) is an acyclic fibration for all bounded above
complexes T of finite F-admissible representations.

(d) p is both a fibration and an F-tame weak equivalence.

The equivalences between (a), (b) and (d) are formal. We write T for the set of complexes T
appearing in (c). The fact that (c) implies the stronger condition (b) relies on an inductive
argument on the G-sets of R-linear generators of P , using that for every generator x ∈ P there
exists a subcomplex x ∈ T ⊆ P with T ∈ T (see [Nui17, Lemma 8.6] for more details).

We then define the following sets of generating cofibrations and trivial cofibrations:

I =
{
T −→ T [0, 1] : T ∈ T

}
J =

{
0 −→ R[S][n, n+ 1] : S ∈ F

}
.

By construction, a map has the right lifting property against J if and only if it is a fibration and
I generates the class of cofibrations. It then remains to verify that a transfinite composition of
pushouts of maps in J is a cofibration and an F-tame equivalence: this is clear, since such maps
are summand inclusions X −→ X ⊕ Y where Y is chain homotopic to zero. □

Remark 4.8. As a consequence of the proof, a map X −→ Y is an F-tame weak equivalence if
and only if HomR[G](T,X) −→ HomR[G](T, Y ) is a quasi-isomorphism for every bounded above
chain complex of F-admissible G-representations.

Example 4.9. Suppose that G is the trivial group. If R = k is a field, then the projective
and tame model structures on Chk are easily seen to coincide (this holds more generally when
R is a regular Noetherian ring, by Example 2.28 and Corollary 4.17 below). In general, these
model structures are different because of complexes of projective modules in negative degrees.
The classical example is given by the two complexes of modules over k[ϵ]/ϵ2

. . . 0 0 k[ϵ]/ϵ2 k[ϵ]/ϵ2 k[ϵ]/ϵ2 . . .

. . . k[ϵ]/ϵ2 k[ϵ]/ϵ2 k[ϵ]/ϵ2 0 0 . . .

ϵ ϵ ϵ

ϵ ϵ ϵ

These are quasi-isomorphic, but not tamely equivalent: indeed, their images under the left
Quillen functor inducing along k[ϵ]/ϵ2 −→ k are not quasi-isomorphic.

Example 4.10 (Divided orbits). Let R be a coherent ring, G a finite group and let F ⊆ OG con-

tain only the trivial subgroup. Taking G-orbits gives a left Quillen functor (−)G : ChF−tame
R[G] −→

Chtame
R . It will follow from Remark 4.18 that the left derived functor models the divided orbits

functor (−)dG of Example 2.47.
Concretely, note that on complexes of R[G]-modules that are projectively cofibrant, the left

derived functor simply computes the homotopy orbits. This is in particular the case for a
bounded below chain complex of projective R[G]-modules. However, a bounded above complex
X of finitely generated projective R[G]-modules need not be projectively cofibrant; instead it is
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fibrant in the the injective model structure on G-objects in ChR (with respect to the projective
model structure on ChR). Consequently, its G-orbits coincide with its homotopy fixed points:

XG XG XhG.Nm
∼=

∼

For example, let C∗(EG;R)
≃−→ R be the standard resolution of the trivial module by finite free

R[G]-modules. Then both C∗(EG;R) and the R-linear dual C∗(EG;R) are quasi-isomorphic to
R, but the left Quillen functor (−)G sends C∗(EG;R) to the group homology and C∗(EG;R)
to the group cohomology of G. In particular, the composite quasi-isomorphism C∗(EG;R) −→
R −→ C∗(EG;R) is not a tame weak equivalence.

Example 4.11 (Derived orbits and fixed points). In the case where F = OG, taking G-orbits

gives a left Quillen functor (−)G : ChF−tame
R[G] −→ Chtame

R . Remark 4.18 will show that the left

derived functor models the derived orbits functor (−)G of Example 2.48.
In addition, consider the functor (−)G : ChR[G] −→ ChR. This functor is not a left adjoint,

but it does have a left derived functor: indeed, it preserves F-tame cofibrations and F-tame
trivial cofibrations and hence restricts to a functor between cofibrant objects sending F-tame
weak equivalences to tame weak equivalences. Since (−)G preserves pushouts along cofibrations
(without differentials, cofibrations are summand inclusions) and infinite direct sums, the associ-
ated functor L(−)G of stable ∞-categories preserves colimits. We will later identify L(−)G with
the derived fixed points (Remark 4.18).

Notation 4.12. We will denote the stable ∞-categories associated to the model categories of
Proposition 4.6 by DF (R[G]) and Dtame

F (R[G]). Because the F-projective model structure is a
right Bousfield localisation of the F-tame model structure, there is a fully faithful left adjoint
DF (R[G]) ↪→ Dtame

F (R[G]).

Our goal will be to show that DF (R[G]) and Dtame
F (R[G]) model the ∞-categories of (pro-

coherent) modules over the additive category R[F ] from Definition 4.3. We start by endowing
both ∞-categories with a t-structure that will correspond to the t-structure from Lemma 2.23.

Lemma 4.13. The∞-categories DF (R[G]) and Dtame
F (R[G]) come equipped with a left complete

t-structure, in which an object is connective if and only if it is weakly equivalent to a chain
complex of R[G]-modules concentrated in degrees ≥ 0. Furthermore, the fully faithful functor
ι : DF (R[G]) ↪→ Dtame

F (R[G]) exhibits the domain as the right completion of the target.

Warning 4.14. It is not true (unless only the trivial subgroup is admissible) that an object is
coconnective if and only if it is weakly equivalent to a complex in degrees ≤ 0.

Proof. In the projective case, the connective objects are part of a t-structure on DF (R[G]) in
which a complex X is (co)connective if and only if its fixed points XH have homology con-
centrated in (non-)positive degrees for every admissible H < G. Notice that the (co)connective
objects are indeed closed under extensions because for every short exact sequence X ′ → X → X ′′

with X → X ′′ a fibration, the H-fixed points form a short exact sequence as well.
To treat the tame case, consider a map f : X −→ Y between bounded below chain complexes

of R[G]-modules that induces a quasi-isomorphism on H-fixed points for all admissible H < G.
Then f is also an F-tame weak equivalence. Indeed, for any T as in Remark 4.8, the map
Hom(T,X) −→ Hom(T, Y ) is then isomorphic to

(
T∨ ⊗RX

)
G −→

(
T∨ ⊗R Y

)
G, which is easily

seen to be a quasi-isomorphism by a filtration argument. This implies that ι : DF (R[G]) ↪→
Dtame

F (R[G]) induces an equivalence between full subcategories of connective objects.
In particular, the connective objects in Dtame

F (R[G]) are closed under colimits and extensions
and hence form the connective part of a t-structure. Furthermore, ι exhibits DF (R[G]) as its
right completion, since it restricts to an equivalence between connective objects. Finally, the
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connective objects in Dtame
F (R[G]) are closed under products and every ∞-connective object

is contractible (since this was already the case in DF (R[G])), so that the t-structure is left
complete. □

Proposition 4.15. Let R be a ring, G a finite group and F ⊆ OG a full subcategory. Then the
natural functor R[F ] −→ DF (R[G]) induces a t-exact equivalence of stable ∞-categories

F : ModR[F ] DF (R[G]).
≃

Proof. The functor R[F ] −→ DF (R[G]) sends each finite F-admissible G-representation V to
itself, viewed as a complex concentrated in degree 0. Note that each such V is cofibrant in the
F-projective model structure on ChR[G]. Since HomR[G](V,−) preserves direct sums, it follows
that the objects V form a set of compact connective generators for DF (R[G]).

The universal property of ModR[F ] (Definition 2.1) now gives rise to a sifted-colimit-preserving
functor F . Since F maps the compact generators R[F ] of ModR[F ] to compact generators of
DF (R[G]), it is an equivalence. It identifies the t-structures because in both categories, an object
Y is (co)connective if and only if the spectrum of maps R[G/H] −→ Y is connective for each
admissible subgroup H < G. □

Next, we will provide a set of compact generators for the ∞-category Dtame
F (R[G]), following

the argument in [Nee08, Proposition 7.14], [Nui17, Proposition 8.8].

Proposition 4.16. Let R be a coherent ring, G a finite group and F ⊆ OG. We write K for
the set of complexes of R[G]-modules Q satisfying the following conditions:

(1) Q is a bounded above complex of finite F-admissible G-representations.

(2) the R-linear dual complex Q∨ is m-coconnective for some m: its H-fixed points have van-
ishing homology in degrees > m, for all admissible H < G.

Then K provides a set of compact generators for Dtame
F (R[G]).

Proof. We first verify that every object Q ∈ K is compact. To this end, let Yα be a set of
F-quasifree complexes of R[G]-modules and let Y∞ =

⊕
Yα be their direct sum. Furthermore,

let Y
(n)
α denote the quotient of Yα by its subcomplex in degree < n, so that Yα is the limit of

Y
(n)
α as n→ −∞. Now consider the diagram of abelian groups of homotopy classes of maps

(13)

⊕
α

[
Q,Yα

]
. . .

⊕
α

[
Q,Y

(n)
α

] ⊕
α

[
Q,Y

(n+1)
α

]
[
Q,Y∞

]
. . .

[
Q,Y

(n)
∞

] [
Q,Y

(n+1)
∞

]
.

ϕ ϕn ϕn+1

We have to prove that ϕ is a bijection. First, observe that for each n and α (allowing α = ∞),
there is an isomorphism of bounded below complexes

HomR[G]

(
Q,Y (n)

α

) ∼= (
Q∨ ⊗R Y

(n)
α

)G
.

In particular, this implies that [Q,Y
(n)
α ] = 0 for all n > 0. Furthermore, the fibre Z

(n)
α of

Y
(n)
α −→ Y

(n+1)
α is an F-admissible G-representation, concentrated in a single degree n. Since

(Q∨)H has vanishing homology in a range [0,m] for all admissible subgroups H, the fibre(
Q∨ ⊗R Z

(n)
α

)G −→ HomR[G]

(
Q,Y (n)

α

)
−→ HomR[G]

(
Q,Y (n+1)

α

)
then has homology groups in the range [n, n +m]. Consequently, the horizontal towers in (13)
stabilise for very negative n and converge. It therefore suffices to prove by (descending) induction
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that each map ϕn is bijective. This follows because the induced map on mapping fibres identifies
with the bijection ⊕

α

(
Q∨ ⊗R Z

(n)
α

)G −→ (
Q∨ ⊗R

⊕
α

Z(n)
α

)G
.

Next, consider the class of objects generated by K under colimits and desuspensions. By Remark
4.8, it suffices to show that this class contains any bounded above complex T of finite F-admissible
G-representations. For such T , the R-linear dual T∨ is a nonnegatively graded chain complex of
finite F-admissible G-representations. In particular, T∨ is a cofibrant object with respect to the
F-projective model structure. By Proposition 4.15, T∨ can be considered as an object in the
∞-category ModR[F ]; in this sense, it is an almost perfect module over R[F ].

We will inductively define a chain model for the Postnikov tower of T∨ with respect to the
t-structure on DF (R[G]) of Lemma 4.13

T∨ −→ . . . −→ Pn −→ Pn−1 −→ . . . −→ P0.

To do this, we proceed as follows: let Fn be the fibre of τ≤n(T
∨) −→ τ≤n(T

∨) in the∞-category
ModR[F ]. Since R[F ] is coherent, Fn is an n-connective, almost perfect module over R[F ]. This
implies that Fn can be modelled at the chain level by a complex Qn of finite F-admissible G-
representations, concentrated in degrees ≥ n. Finally, one can then model each τ≤n(T

∨) by
Pn =

⊕n
i=0Qi, with a certain differential.

The upshot of this is the following: each Pn in the above tower is a connective, n-coconnective
chain complex of F-admissible G-representations. Furthermore, the tower of Pn stabilises in each
degree, so that T∨ −→ limPn =

⊕
i≥0Qi is a weak equivalence between cofibrant objects and

hence a chain homotopy equivalence. Dualizing, we then obtain that colimP∨
n −→ T∨∨ ∼= T is a

chain homotopy equivalence as well. Furthermore, each P∨
n −→ P∨

n+1 is an F-tame cofibration
between objects in K, so that the colimit agrees with the homotopy colimit. It follows that T
can be realised as a (filtered) homotopy colimit of objects in K, as desired. □

Corollary 4.17. Let R be a coherent ring, G a finite group and F ⊆ OG a full subcategory.
Then there are natural equivalences, compatible with t-structures

ModR[F ] DF (R[G])

QC∨
R[F ] Dtame

F (R[G]).

ι

≃

≃

Proof. The top equivalence is Proposition 4.15. For the bottom equivalence, consider the full
subcategoryDtame

F (R[G])ω of compact generators. By Proposition 4.16, R-linear duality provides
a fully faithful functor Dtame

F (R[G])ω ↪→ DF (R[G])
op. Using Proposition 4.15, its essential image

can be identified with the full subcategory Coh(R[F ])op of coherent R[F ]-modules. This induces
the desired equivalence QC∨

R[F ] ≃ Dtame
F (R[G]).

Unraveling the definitions, the composite R[F ] ↪→ QC∨
R[F ] ↪→ Dtame

F (R[G]) is simply the
natural inclusion sending a finite F-admissible G-representation to itself, viewed as a complex in
degree 0. This yields the desired commuting square. Since the vertical functors are equivalences
on connective objects, it follows that the bottom equivalence identifies connective objects and
hence preserves the t-structures. □

Remark 4.18. Consider a map of coherent rings f : R −→ S and a map ϕ : G −→ H such that
induction maps FG to FH . This determines a left Quillen functor

F : ChFG−tame
R[G] ChFH−tame

S[H] ; X S[H]⊗R[G] X.
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In particular, it restricts to a functor F : R[FG] −→ S[FH ] (viewed as complexes in degree 0).
The associated left derived functor LF : Dtame

FG
(R[G]) −→ Dtame

FH
(S[H]) preserves colimits and

totalisations of cosimplicial objects in R[FG] (which can simply be computed as total complexes).
Under the equivalence of Corollary 4.17, this means that LF presents the pro-coherent right-left
extension of the functor F : R[FG] −→ S[FH ]. For example, the divided orbits and derived
orbits functors arise in this way (Example 4.10, 4.11). The same argument applies to the derived
functor of G-fixed points discussed in Example 4.11, even though it is not left Quillen.

Remark 4.19. The t-structure on Dtame
F (R[G]) can be described more explicitly when R is a

coherent ring. Indeed, for a complex of R[G]-modules X, the following are equivalent:

(1) X is connective with respect to the t-structure of Lemma 4.13.

(2) π∗ HomR[G](Q,X) = 0 for ∗ < 0 and for every compact generator Q from Proposition 4.16.

(3) For every complex of finite F-admissible G-representations T in nonpositive degree, we have
π∗ HomR[G](T,X) = 0 for ∗ < 0.

The equivalence between (1) and (2) follows from Corollary 4.17 and the equivalence between (2)
and (3) follows from the explicit realisation of T as a homotopy colimit of compact generators,
given in the proof of Proposition 4.16.

Remark 4.20. In the F-tame model structure on ChR[G], geometric realisations of simplicial
objects can be computed by taking normalised chains in the simplicial direction and then taking
total complexes, using direct sums. Using this, the ∞-category APerfR[F ] simply arises from
the dg-category of bounded below complexes of finite F-admissible representations. Dually,
totalisations of cosimplicial objects can be computed by taking normalised chains and then
taking total complexes using direct products. Consequently, the ∞-category APerf∨R[F ] arises
from the dg-category of bounded above complexes of finite F-admissible G-representations. Note
that R-linear duality identifies these two subcategories.

4.2. Explicit PD operads and their algebras. Using the homological algebra from the pre-
vious section, we will now provide explicit chain models for PD ∞-operads. We begin by giving
a description of the ∞-category of pro-coherent symmetric sequences.

Explicit pro-coherent symmetric sequences. Consider the model categories of Proposition 4.6 for
all symmetric groups, using only the case where F ⊆ OΣn

consists of the trivial subgroup. This
yields a model-categorical presentation of the ∞-category of pro-coherent symmetric sequences
over R.

Definition 4.21 (The model category of symmetric sequences). Let R be a coherent ring and let
sSeqR := ChR[Σ] denote the category of symmetric sequences of chain complexes of R-modules.
The tame model structure on sSeqR is the cofibrantly generated model structure whose fibrations
are the surjections and whose cofibrations are injections whose cokernel is given in each arity r
by a complex of projective R[Σr]-modules.

The results from the previous section can now be summarised as follows:

Corollary 4.22. Let R be a coherent ring. Then the standard projective model structure
on symmetric sequence is a right Bousfield localisation of the tame model structure. The
induced fully faithful left adjoint of ∞-categories is equivalent to the fully faithful functor
ι : sSeqR ↪→ sSeq∨R. Furthermore, a map between bounded below symmetric sequences is a
tame weak equivalence if and only if it is a quasi-isomorphism.

Our next goal will be to give a model-categorical description of the various monoidal structures
on sSeq∨R (see Proposition 3.18).
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Lemma 4.23. Let R be a coherent ring. Then the tame model structure on sSeqR satisfies
the pushout-product axiom with respect to the Day convolution product ⊗ and levelwise tensor
product ⊗lev of symmetric sequences of chain complexes. The induced closed symmetric monoidal
structures on the localisation sSeq∨R coincide with those from Proposition 3.18.

Proof. The pushout-product axiom is readily verified in both cases. Write ⊗L and ⊗L
lev for the

induced closed monoidal structures on sSeq∨R. Using Remark 4.20, we see that the restriction of
⊗L (and likewise ⊗L

lev) to dually almost perfect objects can be identified with the composite

(APerf∨R[Σ])
×2

(
APerf×2

R[Σ]

)op
APerfopR[Σ] APerf∨R[Σ] .

(−)∨

≃
⊗L (−)∨

≃

Since each step preserves totalisations of cosimplicial objects, Remark 2.42 implies that ⊗L and
⊗lev are obtained by right-left extension from their restriction to R[Σ]. The result follows from
the fact that both coincide with the usual Day convolution and levelwise tensor product on the
full subcategory R[Σ] ↪→ sSeq∨R. □

We want to carry out a similar analysis for the composition product on pro-coherent symmetric
sequences.

Proposition 4.24. Let ◦ denote the usual composition product on sSeqR and let X be a tamely
cofibrant symmetric sequence. Then the following assertions hold:

(1) The functor (−) ◦X : sSeqR −→ sSeqR is a left Quillen functor.

(2) The functor X ◦ (−) : sSeqR −→ sSeqR preserves tame cofibrations and tame weak equiv-
alences between tamely cofibrant objects.

(3) The functor X ◦ (−) induces a functor of ∞-categories preserving sifted colimits.

Remark 4.25. If X is tamely cofibrant, then the derived functor of X ◦ (−) sends a tamely
cofibrant symmetric sequence Y to

⊕
r(X(r) ⊗ Y ⊗r)dΣr

, where (−)dΣr
is the divided orbits

functor (Example 4.10).

The third assertion requires some preliminary observations. First, note that it can be reduced
to a purely model-categorical assertion as follows:

Lemma 4.26. Let F : M −→ N be a functor between combinatorial model categories preserving
cofibrant objects and weak equivalences between them. Suppose that F preserves all sifted colimits.
Then the induced functor of ∞-categories preserves all sifted colimits if the following condition is
satisfied: for every category I with finite coproducts, the induced functor Fun(I,M) −→ Fun(I,N)
preserves projectively cofibrant objects.

Proof. A functor between∞-categories preserves sifted colimits if and only if it preserves colimits
of diagrams indexed by ordinary categories I with finite coproducts [HNP19, Appendix A].
Since M is a combinatorial model category, every I-diagram in its associated ∞-category can
be rectified to an I-diagram in M itself [HA, Proposition 1.3.4.25]. It therefore suffices to verify
that F preserves homotopy colimits of I-diagrams. This follows from the fact that F preserves
sifted colimits and projectively cofibrant I-diagrams. □

Example 4.27. Let M be a combinatorial monoidal model category. If I has finite coproducts,
then the projective model structure on Fun(I,M) satisfies the pushout-product axiom for the
levelwise tensor product on M. Consequently, the functor Fun(I,M) −→ Fun(I,M) sending
Y 7→ Y ⊗p preserves projective cofibrations.

Example 4.28. Suppose that X ∈ sSeqR comes with a G-action such that each X(q) is a chain
complex of projective R[G × Σq]-modules. If Y −→ Z is a map of G-equivariant symmetric
sequences which is a tame cofibration without G-action, then X ⊗G Y −→ X ⊗G Z is again a
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tame cofibration of symmetric sequences. In other words, the functor X ⊗G (−) : sSeqG
R −→

sSeqR preserves tame cofibrations (ignoring the G-action in the domain). Consequently, for

any category I the functor X ⊗G (−) : Fun(I, sSeqG
R) −→ Fun(I, sSeqR) preserves projective

cofibrations with respect to the tame model structure on sSeqR (ignoring the G-action in the
domain).

Proof (of Proposition 4.24). Part (1) is easily verified. For (2), a combination of Examples 4.27
and 4.28 shows that each functor Y 7→ X(p) ⊗Σp

Y ⊗p preserves tame cofibrations. Taking the
direct sum over p then shows that X ◦(−) preserves tame cofibrations. To prove that it preserves
tame weak equivalences between tamely cofibrant objects, it suffices to verify that it preserves
trivial cofibrations between tamely cofibrant objects.

Up to retracts, every such trivial cofibration is a transfinite composition of maps Y −→ Y ⊕Z,
where Y is tamely cofibrant and Z = R[Σr][n, n + 1] is a contractible complex in some arity
r. Since X ◦ (−) preserves transfinite compositions, it suffices to verify that each X ◦ Y −→
X ◦

(
Y ⊕Z

)
is a trivial cofibration. For each p, consider the Σp-equivariant symmetric sequence

L(p) = X((−) + p) ◦ Y.
The map X ◦ Y −→ X ◦

(
Y ⊕ Z

)
is then obtained as a transfinite composition of inclusions

whose kernels are given by the symmetric sequences L(p)⊗Σp
Z⊗p. We have to prove that these

cokernels are contractible.
Because X and Y are tamely cofibrant, L(p) is given in each arity q by a complex of pro-

jective R[Σp × Σq]-modules. Examples 4.27 and 4.28 show that each L(p) ⊗Σp Z
⊗p is tamely

cofibrant. It remains to verify that it is also tamely weakly contractible. To see this, write
L(p) = limn F

≥−nL(p) as the limit of its brutal truncations, keeping everything in degrees
≥ −n. Since Z is bounded above, we then have that

L(p)⊗Σp Z
⊗p ∼= lim

n

((
F≥−nL(p)

)
⊗Σp Z

⊗p
)
.

But now notice that F≥−nL(p) is a bounded below object that is tamely cofibrant; this implies
that it is projectively cofibrant as well, so that F≥−nL(p)⊗Σp

(−) sends all non-equivariant tame
(trivial) cofibrations of symmetric sequences to tame (trivial) cofibrations. This implies that
each F≥−nL(p)⊗Σp Z

⊗p is tamely weakly contractible in sSeqR, so that the (homotopy) limit
for n→∞ is tamely weakly contractible as well.

Having established (1) and (2), it follows that the composition product can be derived in each
variable. Assertion (3) is then a consequence of Lemma 4.26 and Examples 4.27 and 4.28. □

Theorem 4.29 (Chain models for pro-coherent composition). Let R be a coherent ring. The
composition product on the tame model category sSeqR induces a monoidal structure on its ∞-
categorical localisation. The resulting monoidal ∞-category is equivalent to sSeq∨(R) with the
monoidal structure ◦ of Proposition 3.18.

Proof. By (1) and (2) of Proposition 4.24, the composition product restricts to a monoidal
product on the full subcategory of tamely cofibrant symmetric sequences, which preserves weak
equivalences in each variable. By part (1) and (3) of Proposition 4.24, the resulting monoidal
structure ◦L on the ∞-category sSeq∨ preserves sifted colimits.

By Remark 2.42, ◦L is the right-left extension of its restriction to R[Σ] if it preserves total-
isations of cosimplicial diagrams in R[Σ]. This follows from the same argument as in Lemma
4.23: using Remark 4.20, the restriction of ◦L to dually almost perfect objects can be identified

with the functor sending (X,Y ) 7→
(
X∨ ◦L Y ∨)∨, where (−)∨ takes R-linear dual symmetric se-

quences. Since (−)∨ is an equivalence between dually almost perfect objects and almost perfect
objects, it follows that the restriction of ◦L to APerf∨R[Σ] preserves totalisations. The result now

follows the fact that ◦L restricts to the usual composition product on R[Σ]. □
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Rectification of PD operads and their algebras. Write sSeqc
R for the full subcategory of sSeqR

spanned by those symmetric sequences that are tamely cofibrant. Theorem 4.29 implies that
there is a zig-zag of monoidal functors(

sSeqR, ◦
) (

sSeqc
R, ◦

) (
sSeq∨(R), ◦

)
which exhibits the∞-category sSeq∨(R) as a monoidal localisation of the category of symmetric
sequences of chain complexes of R-modules at the tame weak equivalences. In particular, any
dg-operad P over R defines a PD∞-operad P, i.e. an associative algebra in sSeq∨(R), and every
dg-algebra over such a dg-operad P defines a pro-coherent algebra over the corresponding PD
∞-operad. The goal of this section is to prove that all PD ∞-operads and algebras can be
rectified in this way, or more precisely, that the tame homotopy theory of dg-operads presents
the ∞-category of PD ∞-operads.

We begin by describing the tame homotopy theory of dg-operads and their algebras in more
detail. Since the existence of model structures on categories of algebras is typically a subtle issue
[BM03, BB17], we will use the following remark to circumvent this (following e.g. [Spi01, Fre09]):

Remark 4.30 (Semi-model categories). Recall that a (left) semi-model structure on a pre-
sentable category M consists of classes of weak equivalences, fibrations and cofibrations satisfying
the usual axioms of a Quillen model category, with the following exceptions (see e.g. [Fre09, Ch.
12]): fibrations are only required to have the right lifting property against trivial cofibrations
with cofibrant domain, and only maps with cofibrant domain factor into a trivial cofibration,
followed by a fibration.

We will only deal with cofibrantly generated semi-model structures, where the generating
trivial cofibrations have cofibrant domains. Essentially all model categorical results have an
obvious analogue in this setting. In fact, all such ‘tractable’ semi-model structures are Quillen
equivalent to combinatorial model categories (by a version of Dugger’s theorem [Dug01]); one
can use this to carry over any result that is invariant under Quillen equivalence. Notably, for
any small category I there an equivalence of ∞-categories Fun(I,M)[W−1] −→ Fun(I,M[W−1]

)
[HA, Proposition 1.3.4.25] and Lemma 4.26 applies in this setting as well.

Proposition 4.31. The following categories carry cofibrantly generated semi-model structures
whose weak equivalences and fibrations are (pointwise) tame weak equivalences and fibrations on
the underlying objects:

(1) the category OpR of R-linear dg-operads.

(2) the category AlgP of R-linear dg-algebras over a dg-operad P which is tamely Σ-cofibrant,
i.e. whose underlying symmetric sequence is tamely cofibrant.

(3) for any category I, the category of I-diagrams in OpR or AlgP.

Proof. Part (3) is formal. The existence of the (cofibrantly generated) semi-model structures
(1) and (2) follows from the transfer theorem for semi-model structures [Fre09, Theorem 12.1.4]:
one has to verify that for any map with a cofibrant domain that is a pushout of a generating
trivial cofibration, the map between the underlying symmetric sequences or complexes is also a
trivial cofibration.

For (1), this means that P −→ P⨿ FreeOp(X) is a trivial cofibration of symmetric sequences
whenever P is cofibrant and X is tamely cofibrant and contractible. Using the small object
argument to write P as the retract of an iterated pushout of cell attachments, it will suffice to
verify this assertion in the case where P = FreeOp(Y ) is the free dg-operad on a tamely cofibrant

symmetric sequence. In this case, note that the free operad FreeOp(Y ) = colimn T
(n)(Y ) can be
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written as the colimit of the sequence of maps (cf. Theorem B.2)

(14) in : T
(n−1)(Y ) = 1⊕

(
Y ◦ T (n−2)(Y )

)
1⊕

(
Y ◦ T (n−1)(Y )

)
= T (n)(Y ).

id⊕(Y ◦in−1)

The result then follows by induction, using that the trivial cofibration Y −→ Y ⊕ X induces
trivial cofibrations on iterated composition products (Proposition 4.24).

For (2), we need to verify that A −→ A⨿(P◦X) is a trivial cofibration of complexes whenever
A is a cofibrant algebra and X is a cofibrant contractible complex. Again, one can use the small
object argument to reduce to A = P ◦Y being free on a complex of projective R-modules. Then
P ◦ Y −→ P ◦ (Y ⊕X) is a trivial cofibration of complexes by Proposition 4.24. □

Proposition 4.32. Let I be a small category with finite coproducts. Then the forgetful functors

Fun
(
I,OpR

)
−→ Fun

(
I, sSeqR

)
Fun

(
I,AlgP

)
−→ Fun

(
I,ChR

)
preserve cofibrations with cofibrant domain (for the semi-model structures as in Proposition 4.31).

Proof. In the operad case, say that a map f : P −→ Q in Fun(I,OpR) is good if it is a cofibration
and for each cofibrant I-diagram of symmetric sequences X:

(1) P⨿ FreeOp(X) is a cofibrant I-diagram of symmetric sequences.

(2) P⨿ FreeOp(X) −→ Q⨿ FreeOp(X) is a cofibration of I-diagrams of symmetric sequences.

We have to verify that every cofibration with cofibrant domain is good. To see this, note that
good maps are closed under transfinite compositions and retracts. Furthermore, consider a map
P −→ P ⨿FreeOp(M) FreeOp(N) = Q, where P satisfies condition (1) above and M −→ N is
a cofibration of I-diagrams of symmetric sequences. For every X, there is then a sequence of
monomorphisms

P⨿ FreeOp(X) = F (0) ↪→ F (1) ↪→ F (2) ↪→ . . . −→ colimF (n) = Q⨿ FreeOp(X)

whose associated graded can be identified with P ⨿ FreeOp(X ⊕ N/M), with grading given
by word length in N/M (cf. [BM03, Section 5]). By assumption (1), the associated graded is
cofibrant, so that the above sequence consists of cofibrations and condition (2) is verified as well.
Consequently, every cofibration whose domain satisfies (1) is good.

Finally, note that the initial operad satisfies condition (1), so that all cofibrations with cofi-
brant domain are good. Indeed, this follows from the formula for the free operad FreeOp(Y ) as

the colimit over a sequence of maps in : T
(n−1)(Y ) −→ T (n)(Y ) as in (14). Proposition 4.24 (or

its proof) then shows that each of these maps is a cofibration between cofibrant I-diagrams of
symmetric sequences, so that the colimit of the sequence is a cofibrant I-diagram as well.

In the case of algebras over a dg-operad P whose underlying symmetric sequence is tamely
cofibrant, we proceed in exactly the same way, using that for any P-algebra A and cofibration
M −→ N , there is a filtration on A ⨿P◦M P ◦ N with associated graded A ⨿ P(N/M). In the
last step, one has to prove that P ◦ (−) preserves cofibrations of I-diagrams of complexes of
R-modules; this follows from Proposition 4.24. □

Theorem 4.33 (Rectification of PD∞-operads). Let R be a coherent ring. Then the underlying
∞-category of the tame semi-model structure on dg-operads over R is equivalent to the∞-category

OppdR of PD ∞-operads over R. More precisely, there is a commuting square

OpR[W
−1
tame] OppdR

sSeqR[W
−1
tame] sSeq∨R .

≃

≃
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Proof. Theorem 4.29 exhibits sSeq∨R as the monoidal localisation of sSeqR at the tame weak
equivalences, with respect to the composition product. This gives rise to the above square.

To see that the functor Φ: OpR[W
−1
tame] −→ OppdR is an equivalence, notice that both vertical

functors are monadic right adjoints: for the left functor, this follows from Lemma 4.26 and
Proposition 4.32 and for the right functor, this follows from Theorem B.2. It follows that Φ is
a right adjoint detecting equivalences; to see that it is an equivalence, it suffices to show that it
induces an equivalence between the two monads.

By Theorem B.2, the left monad is the (left) derived functor of the functor sending a symmetric
sequence X of chain complexes to the free operad, given by the colimit of the sequence (14). On
the other hand, Theorem B.2 shows that the right monad takes the free algebra with respect to
◦, which is given by the same construction (14) at the ∞-categorical level. Theorem 4.29 then
implies that Φ induces an equivalence between these two monads. □

Remark 4.34 (Chain models for R-linear∞-operads). The category OpR also admits the stan-
dard semi-model structure whose weak equivalences are the quasi-isomorphisms. This is a right
Bousfield localisation of the tame model structure, whose associated∞-category is equivalent to

the full subcategory OpR ⊆ OppdR spanned by the R-linear ∞-operads.

Theorem 4.35 (Chain models for algebras over PD operads). Let R be a coherent ring and P a
dg-operad over R whose underlying symmetric sequence is tamely cofibrant. Then the underlying
∞-category of the tame model structure on AlgP is equivalent to the ∞-category AlgP(QC∨(R))
of pro-coherent algebras over the associated PD∞-operad P. In other words, there is a commuting
square

AlgP[W
−1
tame] AlgP(QC∨(R))

ChR[W
−1
tame] QC∨(R).

≃

≃

Proof. The proof is similar to Theorem 4.33: Theorem 4.29 provides the desired square of ∞-
categories and shows that the bottom arrow is a (monoidal) equivalence. The vertical functors
are both monadic right adjoints (for the left, this follows from Lemma 4.26 and Proposition 4.32).
It suffices to verify that the top functor induces an equivalence between the two monads. The
left monad is the derived functor of the functor sending a complex of R-modules M to P ◦M .
Theorem 4.29 implies that this derived functor is indeed naturally equivalent to the right monad
P ◦ (−) : QC∨(R) −→ QC∨(R). □

Remark 4.36. The equivalence from Theorem 4.35 is natural in the dg-operad P. In particular,
this implies that any tame weak equivalence P −→ Q between tamely cofibrant dg-operads over
R induces a Quillen equivalence AlgP ⇄ AlgQ.

Remark 4.37. Let P be a tamely Σ-cofibrant dg-operad. The category AlgP also admits
a more standard model structure whose weak equivalences are the quasi-isomorphisms. This
is a right Bousfield localisation of the tame model structure, whose associated ∞-category is
equivalent to the full subcategory of AlgP(QC∨

R) generated under colimits by free P-algebras on
all desuspensions of R.

Note that this is typically not equivalent to an ∞-category of algebras over an operad in
ModR. In particular, a quasi-isomorphism between two tamely Σ-cofibrant dg-operads need not
induce a Quillen equivalence between their categories of algebras, with the standard semi-model
structure.

4.3. Explicit Koszul duality. Finally, we will present the refined Koszul duality functor

KDpd : Oppd,opR −→ OppdR by the classical bar dual operad defined by Ginzburg–Kapranov [GK95].
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Construction 4.38 (Chain-level bar construction). Let R be a ring and let Opaug
R denote the

category of augmented dg-operads over R. If P is an augmented dg-operad, we will denote its
chain-level bar construction by B(P) [GJ94, Section 2].

Recall that B(P) is a coaugmented dg-cooperad, which can be described explicitly as follows
(see e.g. [LV12, Section 6.5] for a textbook account). It is the cofree conilpotent cooperad
CofreecoOpconil(P[1]) generated by the suspension of the augmentation ideal of P −→ 1, whose
underlying symmetric sequence is given by complexes of rooted trees with vertices labelled by
elements of P[1]. The differential is given by the sum ∂ = ∂P + ∂Bar, where ∂P is the differential
induced by the differential on P and the bar differential ∂Bar is given by contracting internal
edges of trees and multiplying the adjacent elements in P[1]. The chain-level bar dual operad is
defined to be the R-linear dual augmented dg-operad KD(P) = B(P)∨.

If A is a dg-algebra over P, then its chain level bar construction BP(A) is the dg-coalgebra
over B(P) defined as follows (see e.g. [LV12, Section 11.2] for a textbook account). Consider the
cofree coalgebra B(P)◦A, whose underlying chain complex consists of trees with vertices labelled
by P[1] and leaves labelled by A. This is endowed with the differential ∂ = ∂A + ∂Bar, where ∂A
is the differential induced by the differentials on A and B(P), while ∂Bar is given by removing
leaf vertices and applying the corresponding element of P[1] to the elements in A labelling the
leaves. The chain-level bar dual algebra is defined to be the R-linear dual KDP(A) = BP(A)

∨,
which is an algebra over KD(P).

Theorem 4.39 (Chain models for Koszul duality). Fix a coherent ring R. Let P be an aug-
mented dg-operad over R with tamely cofibrant underlying symmetric sequence and let P denote
the corresponding PD ∞-operad.

Then the chain-level dual operad KD(P) is a model for the Koszul dual PD∞-operad KDpd(P).
Furthermore, there is a commuting square of ∞-categories in which the vertical functors are
equivalences

AlgP[W
−1
tame] AlgKD(P)[W

−1
tame]

op

AlgP(QC∨
R) AlgKDpd(P)(QC∨(R))op.

KDP

≃ ≃

KDpd
P

Proof. Lemma 4.23 implies that the derived functor of R-linear duals on sSeqR presents the
R-linear dual of pro-coherent symmetric sequences. Our main task will therefore be to prove
that the chain-level bar construction B(P) presents the ∞-categorical bar construction.

To this end, recall that the chain level Koszul complex K(P) is a symmetric sequence of the
form K(P) = B(P) ◦ P, whose elements are given by trees with non-leaf vertices labelled by
P[1] and leaf vertices labelled by P. The differential contracts (internal) edges and multiplies
the labels of the adjacent vertices. Then K(P) becomes a left comodule over B(P) and a right
module over P. Now observe that the category of right P-modules in symmetric sequences admits
a model structure in which the weak equivalences and fibrations are detected on the underlying
object. The canonical map π : K(P) −→ 1 is then a tame weak equivalence and exhibits K(P)
as a cofibrant resolution of 1 as a right P-module (see e.g. [Fre04, Proposition 4.1.4], whose proof
carries over to the present context). This implies that the natural map

1 ◦LP 1 ≃ K(P) ◦P 1
(
B(P) ◦K(P)

)
◦P 1 ≃ B(P) ◦

(
K(P) ◦P 1

)
B(P)coact id⊗π

is an equivalence, where the first map applies the coaction of B(P) and the second maps applies
the natural augmentation to 1 on the second factor. Lemma 3.32 then shows that B(P) represents
the coendomorphism coalgebra of the right P-module 1; by Proposition 3.34, this means that
B(P) represents the ∞-categorical bar construction Bar(P).
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Furthermore, the chain level Koszul complex K(P) represents the Koszul complex K(P) of
Constrution 3.33. By Theorem 4.29 and Lemma 4.23, we thus obtain a commuting diagram of
functors

Algc
P coAlgc

B(P) Algop
KD(P)

AlgP(QC∨
R) coAlgBar(P)(QC∨(R)) AlgKDpd(P)(QC∨(R))op.

K(P)◦P(−) (−)∨

K(P)◦P(−) (−)∨

Here Algc
P and coAlgc

B(P) denote the categories of dg-algebras and coalgebras whose underlying
complex of R-modules is tamely cofibrant. The top functors then preserve tame weak equiva-
lences and the two left horizontal functors can be identified with the chain-level bar construction
BP(−) and the ∞-categorical bar construction BarP(−) of an algebra. Inverting the tame weak
equivalences then gives the desired square from the theorem. □

4.4. Spectral partition Lie algebras. We will now describe various chain models for the PD
∞-operad LieπR,E∞

whose algebras (when R is a field) coincide with the spectral partition Lie
algebras from [BM19]. Since LieπR,E∞

arises as the PD Koszul dual ∞-operad of the nonunital
E∞-operad (Definition 3.54), we have the following:

Proposition 4.40. Let Enu
R be a dg-operad modeling the R-linear nonunital E∞-operad, such

that Enu
R (0) = 0, Enu

R (1) = R · 1 and each Enu
R (r) is a complex of finitely generated projective

R[Σr]-modules. Then the Koszul dual dg-operad

KD(Enu
R ) = B(Enu

R )∨

is a cofibrant object for the tame model structure on OpR, which models the spectral partition
Lie PD ∞-operad LieπR,E∞

. In particular, there is an equivalence of ∞-categories

AlgKD(Enu
R )[W

−1
tame] AlgLieπR,E∞

(QC∨
R).

∼

When R = k is a field, this means that the∞-category AlgLieπR,E∞
(Modk) arises as the localisation

of AlgKD(Ek)
at the quasi-isomorphisms.

For example, one can take Enu
R to be the (nonunital) chains on the Barratt–Eccles operad, or

the surjections operad from [MS03, BF04].

Notation 4.41 (Chain level cobar construction). If C is a coaugmented dg-cooperad, we will
denote its (chain-level) cobar construction by Ω(C). Recall that this is the free dg-operad gener-
ated by the desuspension C[−1] of the coaugmentation ideal, with differential ∂ = ∂C + ∂cobar;
here ∂C is the differential induced by the differential on C and ∂cobar is induced by the partial
cocomposition of C (see e.g. [LV12, §6.5] for more details).

Proof. By Theorem 4.39, KD(Enu
R ) is a dg-operad model for the PD ∞-operad LieπR,E∞

=
KD(Enu

∞). Furthermore, the conditions on Enu
R imply that there is an isomorphism to the chain-

level cobar construction

KD(ER) ∼= Ω(E∨
R).

The cobar construction Ω(E∨
R) defines a cofibrant object in the tame model structure on OpR:

indeed, it can be obtained by a sequence of cell attachments, where in each stage one attaches
generators from the tamely cofibrant complex of R[Σr]-modules E∨

R(r)[−1] (cf. [Hin97, §6]). In
particular, it follows that KD(ER) is tamely cofibrant as a symmetric sequence (Proposition 4.32),
so that AlgKD(Enu

R ) carries a semi-model structure and Theorem 4.35 applies. □
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We will now apply Proposition 4.40 to the surjections operad from [MS03, BF04] and obtain
a combinatorial presentation of spectral partition Lie algebras.

Notation 4.42 (Nondegenerate sequences). Given r ≥ 0, a nondegenerate sequence in r is an
(ordered) sequence u = (u1, . . . , ur+d) of elements in r = {1, . . . , r} such that each 1, . . . , r
appears in the sequence and uα ̸= uα+1 for all α. If u does not exhaust all of r or if uα = uα+1

for some α, then u is said to be degenerate.

Definition 4.43 (Spectral partition L∞-algebras). Let R be a discrete coherent ring. A spectral
partition L∞-algebra is a chain complex of R-modules g, together with the following algebraic
structure: for every r ≥ 2 and every nondegenerate sequence u = (u1, . . . , ur+d), there is an
operation

{−, . . . ,−}u : g⊗r g

of homological degree −1− d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr, let σ(u) =
(
σ(u1), . . . , σ(ur+d)

)
. Then

{x1, . . . , xr}σ(u) = ±(σ,x){xσ−1(1), . . . , xσ−1(r)}u
where ±(σ,x) is the Koszul sign associated to the permutation σ of x1, . . . , xr.

(b) Differential. For each nondegenerate sequence u = (u1, . . . , ur+d) in r and each tuple
x1, . . . , xr ∈ g, we have

∂{x1, . . . , xr}u =

r∑
i=1

(−1)|x1|+···+|xi−1|{x1, . . . , ∂(xi), . . . , xr}u

+

r+d+1∑
α=1

r∑
v=1

v ̸=uα−1,uα+1

±(u+,α){x1, . . . , xr}u+=(u1,...,uα−1,v,uα,...,ur+d)

+

r−1∑
k=1

∑
σ∈UnShu(k,r−k)

±(σ,x) ±||
{
{xσ(1), . . . , xσ(k)}v(k,σ), xσ(k+1), . . . , xσ(r)

}
w(k,σ)

The sign ±(u+,α) is associated to the element v in u+ as in Sign Rule A.5.
In the third row, we sum over the set UnShu(k, r−k) of (k, r−k)-unshuffles σ which are

compatible with u, in the following sense: if we decompose the subsequence of u consisting
of all ui ∈ {σ(1), . . . , σ(k)} into intervals

u1 =
(
uα(1), uα(1)+1, . . . , uα(1)+β(1)

)
, . . . , un =

(
uα(n), uα(n)+1, . . . , uα(n)+β(n)

)
separated in u by elements in {σ(k+1), . . . , σ(r)}, thenwe have uα(i)+β(i) = uα(i+1) for all i.

We then define v(k, σ) to be the sequence in k given by applying σ−1 to the sequence

(15)
(
uα(1), . . . , uα(1)+β(1)−1, uα(2), . . . , uα(i)+β(i)−1, uα(i), . . . , uα(n)+β(n)

)
.

Define w(k, σ) as the sequence of elements of r − k + 1 obtained from u by replacing each
σ(k + i) (for i = 1, . . . , r − k) by 1 + i and replacing each of the intervals u1, . . . ,un by a
single copy of 1.

If either of these sequences is degenerate or of length 1, the corresponding term is zero.
Otherwise, the sign ±|| is dictated by Sign Rule A.7, as follows. There is a unique (non-
ordered) bijection

ϕ : w(k, σ)|| ⋆ v(k, σ)|| u||

between the the concatenation of the linear orders of caesuras (Definition A.4) in w(k, σ)
and v(k, σ) and the caesuras in u, with the following properties: ϕ sends a caesura in
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v(k, σ) to the corresponding caesura in the subsequence (15) of u, and restricts to an
order-preserving map on w(k, σ)||. Then ±|| is the sign of the bijection ϕ.

Theorem 4.44 (Chain models for spectral partition Lie algebras I). Inverting tame weak equiv-
alences on the category of spectral partition L∞-algebras gives the ∞-category AlgLieπR,E∞

(QC∨
R).

In particular, when R = k is a field, localising spectral partition L∞-algebras at the quasi-
isomorphisms gives the ∞-category of partition Lie algebras from [BM19, Definition 5.32].

Proof. Write C for the cooperad given by the linear dual of the surjections operad described
in [BF04]. Proposition 4.40 shows that spectral partition Lie algebras over R can be de-
scribed by algebras over the cobar construction Ω(C). Without differential, Ω(C) is the free
operad generated by the symmetric sequence underlying the coaugmentation ideal C[−1]: this
symmetric sequence is spanned in arity r and degree −1 − d by the Σr-set of nondegenerate
sequences u = (u1, . . . , ur+d) in r.

The equation in (b) then simply asserts that the action of Ω(C) by operations {−, . . . ,−}u is
compatible with the differential. Indeed, note that the differential of u in Ω(C) takes the form
∂C(u) + ∂cobar(u), where the first term is simply the differential of u in C and the second term
uses the partial cocomposition of C. By [BF04, §1.2.3] (see also Appendix A) ∂C(u) is the sum
of all sequences (u1, . . . , uα, v, uα+1, . . . , ur+d) with a certain sign. This accounts for the second
line in the above equation. The third line corresponds to the action by ∂cobar(u), using the
description of the cocomposition in C dual to the formula for the composition in the surjections
operad from [BF04, §1.2.4]. □

In the remainder of this section, we will introduce another model for the spectral partition Lie
PD ∞-operad, which is smaller than the Koszul dual of the Barratt–Eccles operad and closer to
the classical (shifted) Lie operad.

Notation 4.45 (Shifted Lie operad). We will denote by LiesR the dg-operad whose algebras are
shifted dg-Lie algebras, i.e. complexes g such that g[−1] is a dg-Lie algebra. Likewise, write

Lies∞,R = KD(Comnu
R ) = Ω(Comnu,∨

R )

for the dg-operad defining (shifted) L∞-algebras over R. There is a natural map Lies∞,R −→
LiesR taking the quotient by all generating operations in arity ≥ 3.

We will model the PD∞-operad LieπR,E∞
by a modification of the standard (shifted) Lie operad

that also encorporates divided power operations, using the PD surjections operad constructed in
detail in Appendix A:

Definition 4.46 (PD surjections operad, see Appendix A). Let SurR denote the symmetric
sequence underlying the R-linear surjections operad from [MS03, BF04]. Explicitly, SurR(r) is
a chain complex given in degree d by the free R-module on the set of nondegenerate sequences
u = (u1, . . . , ur+d) in r. By Theorem A.1, this symmetric sequence admits the structure of a
cooperad such that the canonical map SurR −→ coCom to the cocommutative cooperad is a
quasi-isomorphism.

We define the PD surjections operad Sur∨R to be the R-linear dual of this cooperad. See Defi-
nition A.13 for more details, including a description of the differential and composition in Sur∨R.

Remark 4.47. Note the substantial difference between the PD surjections operad Sur∨R and
the standard models for the E∞-operad, such as the Barratt–Eccles operad or the surjections
operad: the latter are given in each arity by a projective resolution of the trivial Σr-module, while
Sur∨R(r) is an injective resolution of the trivial Σr-module. In particular, Sur∨R is a tamely Σ-
cofibrant dg-operad such that Sur∨R ◦V ≃

⊕
r≥0(V

⊗r)hΣr for every bounded above complex V of

projective R-modules (cf. Example 4.1). This implies that the canonical map Comnu −→ Sur∨R
cannot be a tame weak equivalence, although it is a quasi-isomorphism.
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Recall that given two dg-operads P and Q, their levelwise (or Hadamard) tensor product
P ⊗lev Q has a natural operad structure. The commutative operad is the unit for this tensor
product.

Definition 4.48 (Spectral partition Lie dg-operad). Let R be a coherent ring. We define the
spectral partition Lie dg-operad LieπR,E∞

to be the tensor product

LieπR,E∞
= LiesR ⊗lev Sur

∨
R .

Remark 4.49. Each LieπR,E∞
(r) provides a resolution of theR[Σr]-module LiesR(r) by a bounded

above complex of finitely generated projectiveR[Σr]-modules. In particular, LiesR(r) −→ LieπR,E∞
(r)

provides an injective resolution of the Σr-action, so that

LieπR,E∞
◦ V ∼=

⊕
r

(
LieπR,E∞

(r)⊗ V ⊗r
)
Σr

∼=
⊕
r

(
LieπR,E∞

(r)⊗ V ⊗r
)Σr ≃

⊕
r

(
LiesR(r)⊗ V ⊗r

)hΣr

for any bounded above complex V of projective R-modules. In particular, this implies that for
any algebra g over LieπR,E∞

, the homotopy groups π∗(g) have the structure of a graded restricted
Lie algebra.

Theorem 4.50 (Chain models for spectral partition Lie algebras). The dg-operad LieπR,E∞

is a tamely Σ-cofibrant model for the spectral partition PD ∞-operad LieπR,E∞
. Consequently,

AlgLieπ
R,E∞

(ChR) admits a semi-model structure whose underlying ∞-category is equivalent to

the ∞-category of spectral partition Lie algebras

AlgLieπ
R,E∞

[W−1
tame] AlgLieπR,E∞

(QC∨
R).

∼

This follows immediately from Proposition 4.40 and the following result:

Proposition 4.51. Let Enu
R be a dg-operad modeling the nonunital E∞-operad as in Proposition

4.40, for example the nonunital Barratt–Eccles operad. There exists a commuting diagram of
dg-operads

KD(Sur∨R) Lies∞,R LiesR

KD(Enu
R ) Lies∞,R ⊗lev Sur

∨
R LieπE∞,R

≃ ≃

≃
f

≃

in which all horizontal arrows are tame weak equivalences and the vertical arrows are quasi-
isomorphisms.

Proof. We shall start by describing the top row. The first map arises from the quasi-isomorphism
of cooperads SurR −→ coComnu

R by taking the cobar construction. Since both of these coop-
erads consist of projectively cofibrant R-modules (ignoring the Σr-action), the induced map be-
tween the cobar constructions is a quasi-isomorphism. Furthermore, the map Lies∞,R −→ LiesR
is a quasi-isomorphism [Fre04, Theorem 6.8]. Since the top row consists of dg-operads in non-
negative degrees, these two quasi-isomorphisms are also tame weak equivalences.

The right square is obtained by taking the levelwise tensor product with ComR −→ Sur∨R.
Note that the map Lies∞,R ⊗lev Sur∨R −→ LieπE∞,R can be identified in arity r with the map
between mapping complexes

HomR

(
SurR(r),Lie

s
∞,R

)
HomR

(
SurR(r),Lie

s
R

)
.

Since each SurR(r) is tamely cofibrant, each of these maps is a tame weak equivalence.
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The map Lies∞,R = KD(Comnu
R ) −→ KD(Enu

R ) can be identified with the Koszul dual of
quasi-isomorphism of dg-operads Enu

R −→ Comnu
R . It then remains to produce the tame weak

equivalence f making the triangle commute. For this, it will be convenient to consider the linear
dual situation and instead produce a map ϕ of conilpotent dg-cooperads

(16)

B(Enu
R )

B(Comnu
R )⊗lev SurR B(Comnu

R )

ϕ

where SurR is the cooperad constructed in Appendix A. Given such a map ϕ, we simply take
f to be its R-linear dual. The resulting map f is then indeed a tame weak equivalence: indeed,
note that both solid maps in (16) are quasi-isomorphisms, so that ϕ is a quasi-isomorphism as
well. Since both the domain and codomain of ϕ are projectively cofibrant symmetric sequences,
it follows that ϕ is a tame weak equivalence as well and its linear dual f remains a tame weak
equivalence.

To produce the lift ϕ, we will proceed by induction: for each n ≥ 0, let Enu,≤n
R denote the

linear quotient of Enu
R by all operations of arity > n that are contained in the kernel of the

map Enu
R −→ Comnu

R . These form a tower of dg-operads such that Enu,≤1
R

∼= Comnu
R and

Enu
R
∼= limn E

nu,≤n
R .

Now recall that the chain-level bar construction of an augmented dg-operad P is given by
the cofree conilpotent cooperad on the suspension P[1] of the augmentation ideal, together with
a certain differential on it (see Construction 4.38). This implies in particular that B(Enu

R ) ∼=
limn B(E

nu,≤n
R ). It therefore suffices to inductively construct a compatible family of maps

ϕn : B(Comnu
R )⊗lev SurR −→ B(Enu,≤n

R ).

The map ϕ1 is just the bottom map in Diagram (16). For the inductive step, note that

I(n+1) Enu,≤n+1
R Enu,≤n

R

is a square zero extension of dg-operads with kernel I(n+1). This implies that the cooperad

B(Enu,≤n+1
R ) is obtained from B(Enu,≤n

R ) by the dual of a cell attachment, adding cogenerators
in arity n+ 1. More precisely, for each n there is a pullback square of conilpotent dg-cooperads

B(Enu,≤n+1
R ) CofreeCoopconil(I(n+1)[1, 2])

B(Enu,≤n
R ) CofreeCoopconil(I(n+1)[2]).

To find an extension of ϕn : B(Comnu
R ) ⊗lev SurR −→ B(Enu,≤n

R ), it then suffices to find a lift
in the following diagram of symmetric sequences

I(n+1)[1, 2]

B(Comnu
R )⊗lev SurR B(Enu,≤n

R ) I(n+1)[2]
ϕn

But now notice that B(Comnu
R ) ⊗lev SurR is a (projectively) Σ-cofibrant symmetric sequence

and that I(n+1) is the part of the kernel of the acyclic fibration Enu
R −→ Comnu

R concentrated

in arity n+ 1. It follows that I(n+1)[1, 2] −→ I(n+1)[2] is an acyclic fibration, so the desired lift
exists. □
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Remark 4.52. There cannot exist a model P
≃−→ LieπE∞

which is bounded below. Indeed, any
such model would be quasi-isomorphic and therefore tamely weak equivalent to the Lie operad,
but LieπE∞

is not tamely weak equivalent to the Lie operad.

The explicit description of the PD surjections operad in Definition A.13 leads to the following
alternative chain level description of spectral partition Lie algebras:

Corollary 4.53 (Explicit spectral partition Lie algebras – chain model II). Let R be a coherent
ring. Then a spectral partition Lie algebra over R can be described by a chain complex of
R-modules g, together with the following algebraic structure: for every r ≥ 2, every operation
λ ∈ Lies(r), and every nondegenerate sequence u = (u1, . . . , ur+d) in r, there is an operation

{−, . . . ,−}λ,u : g⊗r g

of homological degree 1− r − d. Furthermore, these operations satisfy:

(a) Equivariance. For every σ ∈ Σr and all x1, . . . , xr ∈ g,

{x1, . . . , xr}σ(λ),σ(u) = ±(σ,x){xσ(1), . . . , xσ(r)}λ,u
where ±(σ,x) is the Koszul sign associated to the permutation σ of x1, . . . , xr.

(b) Differential. For each λ ∈ Lies(r) and a nondegenerate sequence u in r and x1, . . . , xr ∈ g,
one has

∂{x1, . . . , xr}λ,u =

r∑
i=1

(−1)|x1|+···+|xi−1|{x1, . . . , ∂(xi), . . . , xr}λ,u

+

r+d+1∑
α=1

r∑
v=1

±(u+,α){x1, . . . , xr}λ,u+=(u1,...,uα−1,v,uα,...,ur+d).

Each term where u+ is a degenerate sequence is zero and if u+ is nondegenerate the sign
is as in Sign Rule A.5.

(c) Composition. Let r, s ≥ 2 and take λ ∈ Lies(r) and u = (u1, . . . , ur+d) a nondegenerate
sequence in r, as well as µ ∈ Lie(s) and v = (v1, . . . , vs+e) a nondegenerate sequence in s.
For each 1 ≤ k ≤ r, we then have

{x1, . . . , {xk, . . . , xk+s−1}µ,v, . . . , xr+s−1}λ,u =
∑
w

±||{x1, . . . , xr+s−1}λ◦kµ,w

where λ ◦k µ is the partial composition of λ and µ in the Lie operad. Here the sum runs
over all nondegenerate sequences w = (w1, . . . , wr+s−1+d+e) in r + s− 1 with the following
properties:

- The subsequence ofw with values in {k, . . . , k+s−1} has the form
(
wα(1), . . . , wα(i+s+e)

)
for some i, where

wα(i+1) = v1 + (k − 1), wα(i+2) = v2 + (k − 1), . . . , wα(i+s+e) = vs+e + (k − 1).

- Consider the sequencew′ with values in {1, . . . , k−1, k, k+s, . . . , r+s−1} obtained from
w as follows: remove all elements wα(i+1), . . . , wα(i+s+e) appearing above and replace
all elements wα(1), . . . , wα(i) in the sequence above by k. Then the resulting sequence
w′ (of length r + d) coincides with the sequence u under the obvious order-preserving
bijection

{1, . . . , k − 1, k, k + s, . . . , r + s− 1} ∼= {1, . . . , r}.
Furthermore, the sign ±|| arises from Sign Rule A.7, as follows: there is a (non-ordered)
bijection w|| ∼= u|| ⋆ v|| between the linearly ordered sets of caesuras (Definition A.4) of
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the sequence w and the concatenation of the linear orders of caesuras in u and v. Then
±|| is the sign of this bijection.

Remark 4.54. Suppose that P is an R-linear dg-operad in arity ≥ 1 consisting of complexes of
projective R-modules. Then the levelwise tensor product of P with the Barratt–Eccles operad
produces a tamely Σ-cofibrant replacement P⊗lev E

∼−→ P of P.
On the other hand, the tensor product with the PD surjections operad provides a map P −→

P⊗lev Sur
∨
R which is a quasi-isomorphism, but generally not a tame weak equivalence. In fact,

the same computation as in Remark 4.49 shows that for any bounded above complex of projective
R-modules V , one has (

P⊗lev Sur
∨
R

)
◦ V ≃

⊕
r≥1

(
P(r)⊗ V ⊗r

)hΣr
.

The dg-operad P⊗lev Sur
∨
R therefore models a PD∞-operad over R whose algebras can be seen

as ‘P-algebras with divided powers’.

5. Simplicial-cosimplicial models for derived PD operads

Let R be a coherent ring and recall that the homotopy theory of simplicial commutative
rings over R does not have a good description in terms of chain complexes over R, unless R is
a Q-algebra. More generally, it is complicated to give chain complex models for derived (PD)
∞-operads and their algebras. Instead, we will now introduce simplicial-cosimplicial analogues
of the model categories studied in the previous section.

5.1. Simplicial-cosimplicial models for pro-coherent modules. Throughout, we fix a dis-
crete coherent ring R, a finite group G and F ⊆ OG. We will start by introducing simplicial-
cosimplicial versions of the model categories of complexes of G-representations from Proposition
4.6. The main idea will be to build these as some sort of resolution model structures.

Notation 5.1. For any category C with limits, restricting along the Yoneda embedding yields an
equivalence of categories Fun(∆op,C) ≃ FunR

(
sSetop,C). We can therefore evaluate a simplicial

object X in C on a simplicial set K, and denote the resulting object in C by X(K); it can be
computed explicitly as the limit of X over the category of simplices of K.

Definition 5.2. Let f : Y −→ X be a map of simplicial chain complexes of R[G]-modules. We
will say that f is an F-tame (resp. F-projective) Kan fibration if it satisfies the following two
conditions:

(1) it is a Reedy fibration of simplicial objects, i.e. each map of chain complexes

(17) Y (∆[n]) −→ Y (∂∆[n])×X(∂∆[n]) X(∆[n])

induces surjections on H-fixed points for all admissible H.

(2) for each horn inclusion Λi[n] −→ ∆n, the map

Y (∆[n]) −→ Y (Λi[n])×X(Λi[n]) X(∆[n])

is a fibration of complexes of R[G]-modules whose fiber is connective with respect to the
t-structures of Lemma 4.13. Note that working in the tame or projective setting results in
two different connectivity conditions.

Likewise, f is said to be an F-tame (resp. F-projective) acyclic Kan fibration if it is a Reedy
fibration and each map (17) has a connective fiber.
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If X is a simplicial chain complex, we will write Tot⊕(X) for the total complex of the corre-
sponding bicomplex, using the direct sum.

Lemma 5.3. Let f : Y −→ X be an F-tame Kan fibration of simplicial chain complexes of
R[G]-modules. Then f is an F-tame acyclic Kan fibration if and only if Tot⊕(Y ) −→ Tot⊕(X)
is an F-tame weak equivalence. The same statement holds in the F-projective case.

Proof. Since Tot⊕ is exact, it suffices to verify that a Kan fibrant simplicial chain complex X
is acyclic if and only if Tot⊕(X) ≃ 0 is weakly equivalent to zero. Note that Tot⊕(X) is the
total complex of the bicomplex

[
· · · → F (2) → F (1) → X(0)

]
, where F (n) is the kernel of

X(n) −→ X(Λ0[n]).
Assume that X is acyclic, so that X(0) and all F (n) are connective by assumption. This

means that Tot⊕(X) is connective as well and the spectral sequence associated to Tot⊕(X)
converges to π∗(X) and has E1-page

[
· · · → π∗F (2) → π∗F (1) → π∗X(0)

]
. The fact that X is

an acyclic Kan fibrant object implies that this is exact, i.e. the E2-page vanishes. It follows that
π∗ Tot⊕(X) = 0, and since Tot⊕(X) was connective it follows that Tot⊕(X) ≃ 0.

Conversely, suppose that Tot⊕(X) ≃ 0 and let Z(n) be the fiber of each X(n) −→ X(∂∆[n]).
We will prove by induction that each Z(n) is connective. To this end, consider the sub-
bicomplexes

C(n) =
[
· · · → F (n+ 1)

∂n+1−→ Z(n) −→ 0 −→ · · · → 0
]
.

SinceX is Reedy fibrant, the map dn+1 is surjective, with fiber given by the kernel ofX(n+1) −→
X(∂∆[n+ 1]). Consequently, an inductive argument shows that Tot⊕(C

(n)) ≃ Tot⊕(X) ≃ 0 for
each n. Now note that we have a cofiber sequence of complexes

Z(n)[n] −→ Tot⊕(C
(n)) −→ Tot⊕

[
· · · → F (n+ 1)→ 0→ · · · → 0

]
.

Since X is Kan fibrant, each F (k) is connective so that the cofiber is (n + 1)-connective; since
the middle term is contractible, Z(n) is connective. □

We turn to simplicial-cosimplicial modules, which we will also call sc-modules.

Notation 5.4. Write cModR[G] and scModR[G] the (ordinary) categories of cosimplicial and
simplicial-cosimplicial R[G]-modules. By the classical Dold–Kan correspondence, the normalised
chains functor identifies these categories with the categories of nonpositively graded chain com-
plexes and second quadrant bicomplexes. Write Tot⊕ : scModR[G] −→ ChR[G] for the functor
sending an sc-module to the total complex of the associated bicomplex.

We will say that a map of sc-modules is an F-tame (F-projective) Kan fibration if taking
normalised chains in the cosimplicial direction yields a Kan fibration between simplicial chain
complexes in the sense of Definition 5.2, and similarly for acyclic Kan fibrations.

Theorem 5.5. Let R be a ring, G a finite group and F ⊆ OG a full subcategory. Then the
category scModR[G] can be endowed with the following two cofibrantly generated, simplicial model
structures:

(1) the F-projective model structure, whose (trivial) fibrations are the F-projective (acyclic)
Kan fibrations. Furthermore, a map is a weak equivalence if and only if its image under
Tot⊕ induces quasi-isomorphisms on H-fixed points for all admissible H < G.

(2) the F-tame model structure, whose (trivial) fibrations are the F-tame (acyclic) Kan fi-
brations. Furthermore, a map is a cofibration if and only if in each simplicial-cosimplicial
bidegree, it is given by a split monomorphism whose cokernel is the retract of a F-admissible
G-representation.
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Furthermore, the total complex functor determines a Quillen equivalence

Tot⊕ : scModR[G] ChR[G] : Res

between the F-tame (resp. F-genuine) model structures.

Proof of 5.5. Throughout, we will work with nonpositively graded chain complexes of R[G]-
modules instead of cosimplicial R[G]-modules for simplicity; the two are equivalent by the Dold–
Kan correspondence. We will start by constructing the desired two model structures on the
category sChR[G],≤0 of simplicial diagrams of nonpositively graded chain complexes of R[G]-
modules. Given a set K of maps of simplicial sets and a set L of maps of chain complexes, write
K ⊠ L for the set of maps

T+ ∧M ∪S+∧M S+ ∧N −→ T+ ∧N S
∈K−→ T, M

∈L−→ N,

where ∧ is the evident tensoring of sChR[G],≤0 over pointed simplicial sets. Both model structures
have sets of generating (trivial) cofibrations of the form

I =
{
∂∆[n]→ ∆[n]

}
⊠
{
P → P [0, 1]}

J =
{
Λi[n]→ ∆[n]

}
⊠
{
P → P [0, 1]} ∪

{
∂∆[n]→ ∆[n]

}
⊠

{
0→ P [0, 1]}

for a certain set of dg-R[G]-modules P : in the F-projective case, we take the set of shifted
representations P = R[G/H][k] with H < G admissible and k < 0. In the F-tame case, we use
the set of complexes of finite F-admissible G-representations concentrated in degrees ≤ −1. It
follows from part (3) of Remark 4.19 that a map is an acyclic Kan fibration if and only if it
has the right lifting property against I, and a Kan fibration if and only if it has the right lifting
property against J .

To see that these generating sets determine model structures, we have to verify that iterated
pushouts of maps in J are weak equivalences and that a Kan fibration is a weak equivalence if
and only if it is an acyclic Kan fibration. In the F-projective case, the weak equivalences are
the maps that induce quasi-isomorphisms on H-fixed points after applying Tot⊕. Note that the
maps in J have a domain and codomain that becomes chain homotopic to zero upon applying
Tot⊕; this Tot⊕ preserves colimits, this implies that every iterated pushout of maps in J is a
weak equivalence. Lemma 5.3 shows that an F-projective Kan fibration is acyclic if and only if
it is a weak equivalence.

In the F-tame case, define a map X −→ Y to be an F-tame weak equivalence if for every
nonnegatively graded complex Q of R[G]-modules which is a compact generator as in Proposition
4.16, the induced map of total complexes

Tot⊕
(
HomR[G](Q,X)

)
−→ Tot⊕

(
HomR[G](Q,Y )

)
is a quasi-isomorphism. This is equivalent to hocolim(X) −→ hocolim(Y ) being an equivalence
in Dtame

F (R[G]), by Corollary 4.17. Since all maps in J define injective cofibrations of simplicial
diagrams in ChR[G] and have a domain and codomain whose homotopy colimit is contractible,
it follows that iterated pushouts of maps in J are weak equivalences. On the other hand,
using part (2) of Remark 4.19, one sees that an F-tame Kan fibration X −→ Y is an F-
tame acyclic Kan fibration if and only if HomR[G](Q,X) −→ HomR[G](Q,Y ) is an acyclic Kan
fibration of complexes of abelian groups for every Q as above. Applying Lemma 5.3 after applying
HomR[G](Q,−) then shows that a map is an acyclic F-tame Kan fibration if and only if it is a
weak equivalence and an F-tame Kan fibration.

Note that the form of the sets I and J implies that both of these model structures are
simplicial. Furthermore, the Dold–Kan correspondence (in the simplicial direction) implies that
a simplicial object X is cofibrant if and only if is given by a (tame, respectively projective)
cofibrant object of ChR[G] in every simplicial degree. In the tame case, this means that the
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corresponding simplicial-cosimplicial R[G]-module is degreewise the retract of an F-admissible
G-representation.

It remains to show that Tot⊕ is part of a Quillen equivalence. To see this, note that its
right adjoint Res sends a complex X to the simplicial chain complex given in degree n by the
degree ≤ 0 part of Hom(C∗(∆[n]), X). It follows from this that Res preserves cofibrant objects.
Furthermore, unraveling the definitions shows that Tot⊕ Res(X) can be identified (up to signs)
with the complex

. . .
⊕
n≥0

X1 ⊕
⊕
n≥1

X0

⊕
n≥0

X0 ⊕
⊕
n≥1

X−1

⊕
n≥0

X−1 ⊕
⊕
n≥1

X−2 . . .

 ∂ 1

0 ∂

  ∂ 1

0 ∂



The counit map Tot⊕ Res(X) −→ X is simply the projection onto the zeroth summand, which
is an acyclic fibration. We conclude that the derived counit map is an equivalence.

To see that Tot⊕ is part of a Quillen equivalence, it remains to check that it detects equiv-
alences. In the F-projective case this is obvious. In the F-tame case, it suffices to verify that
every fibrant-cofibrant object X such that Tot⊕(X) is acyclic is itself acyclic. This follows from
Lemma 5.3. □

Remark 5.6. Using the tensoring of scModR[G] over pointed simplicial sets, the cofibrations and
trivial cofibrations of the F-tame model structure can also be generated by the following classes
of maps. The cofibrations are generated by the class of all degreewise split monomorphisms
whose cokernel is isomorphic to

(∆[n]/∂∆[n]) ∧ P.
Here P denotes a cosimplicial diagram of F-admissible G-representations. Likewise, the trivial
cofibrations are generated by the class of degreewise split monomorphisms with cokernel(

∆[n]+/Λ
i[n]+

)
∧ P or (∆[n]/∂∆[n]) ∧

(
P ⊗ C̃∗(∆[1])

)
where P is a cosimplicial diagram of F-admissible G-representations. Here C̃∗(∆[1]) is the
cosimplicial R-module of reduced cochains on ∆[1] (with trivial G-action).

Remark 5.7. Consider the full subcategory sModR[G] ↪→ scModR[G] of sc-modules that are
constant in the cosimplicial direction. This carries an induced model structure, whose weak
equivalences and fibrations are the maps inducing weak equivalences and Kan fibrations on H-
fixed points, for every admissible subgroup H. The resulting ∞-category can be identified with
the ∞-category ModR[F ],≥0 of connective modules over F . In the case where F = OG, this can
be thought of as an R-linear version of Elmendorf’s theorem [Elm83].

Remark 5.8 (Geometric realisations and totalisations). The model structure on scModR[G] is
tensored over the Kan–Quillen model structure in the obvious way. The homotopy colimit of a
pointwise cofibrant simplicial diagram X : ∆op −→ scModR[G] can therefore be computed by
the diagonal of X in the simplicial direction. The image of the diagonal under the functor Tot⊕
simply computes the total complex (using the direct sum).

The homotopy limit of a cosimplicial diagramX : ∆op −→ scModR[G] cannot be computed by
the cosimplicial diagonal in general. However, this does hold when X is a diagram of cosimplicial
R[G]-modules (constant in the simplicial direction). Indeed, in this case the Quillen equivalence
Tot⊕ sends the cosimplicial diagonal to the total complex with respect to the sum; since all sums
involved are finite this coincides the the total complex using the direct product, which computes
the homotopy limit in ChR[G].

5.2. Explicit derived operads, PD operads, and their algebras. We will now use the
homotopy theory described in Theorem 5.5 to describe explicit simplicial-cosimplicial models for
derived ∞-operads, derived PD ∞-operads, and their algebras.
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Simplicial-cosimplicial symmetric sequences. Write sSeqsc
R for the category of symmetric se-

quences of simplicial-cosimplicial R-modules. This can be endowed with a Day convolution
product ⊗, a composition product, and restricted composition product

X ◦ Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr

X ◦̄Y =
⊕
r

(
X(r)⊗ Y ⊗r

)
Σr .

These operations can be computed in each simplicial-cosimplicial degree. In particular, an al-
gebra with respect to the composition product is simply a simplicial-cosimplicial operad (or
sc-operad) over R, while an algebra with respect to the restricted composition product is a
simplicial-cosimplicial restricted operad over R (or sc-restricted operad), see e.g. [Fre00, Iko20,
Ces16].

Recall that the norm map Nm: X ◦Y −→ X ◦̄Y makes the identity a lax monoidal functor and
is an equivalence when Y is in arity ≥ 1 (cf. Definition 3.76). In particular, every sc-restricted
operad has an underlying sc-operad. This defines an equivalence between sc-restricted operads
and sc-operads in arities ≥ 1.

The category sSeqsc
R acts on scModR by both the composition product ◦ and the restricted

composition product ◦̄. If P is an sc-operad, a left module over it in scModR is simply a
simplicial-cosimplicial P-algebra. Likewise, if P is an sc-restricted operad, a left P-module in
scModR is simply a restricted P-algebra. A restricted P-algebra A is in particular an algebra
over the operad underlying P.

Notation 5.9. We will write Opsc
R and Opsc,res

R for the categories of sc-operads and sc-restricted
operads over R. Furthermore, we denote by Algsc

P and Algsc,res
P the categories of algebras and

restricted algebras over an sc-operad, respectively sc-restricted operad P.

Remark 5.10 (Restricted algebras). Suppose that k is a field and P is a (restricted) operad
in arity ≥ 1 coming from an operad S in sets as P = k[S]. In this case, Ikonicoff [Iko20, §3.1]
has given an explicit description of restricted P-algebras as k-vector spaces with operations and
relations. Indeed, a restricted P-algebra A is an ordinary P-algebra (via the norm), and there
are additional operations

γs(a1, . . . ar) ∈ A
for all s ∈ S(r) and all tuples a = (a1, . . . , ar) in A, which satisfy various properties which
generalise the axioms of a divided power algebra (we use a slightly more efficient labelling con-
vention than [Iko20]). To define the element γs(a1, . . . ar), we simply apply the structure map
(P(r)⊗A⊗r)Σr → A to the element∑

ρ∈Σr/Σa,s

[ρ(s)]⊗ aρ(1) ⊗ . . .⊗ aρ(r)

where [ρ(s)] is the basis element in k[S(r)] corresponding to ρ(s) and Σa,s ⊂ Σr consists of all
permutations which fix both s and the tuple a. These operations are compatible with sums,
scalar multiplication and composition in the way one might expect from this equation. In Con-
struction 5.34, we will use this strategy to make our point set models for derived partition Lie
algebras more explicit.

Model structures. We now apply the Constructions from Section 5.1 in the case of the symmetric
groups, taking F = OΣr

to be the full orbit category. Along the lines of Definition 4.3, we will say
that a symmetric sequence of discrete R-modules is admissible if it arises as the R-linearisation
of a symmetric sequence of sets.

Definition 5.11. The tame model structure on sSeqsc
R is the simplicial, cofibrantly generated

model structure whose:
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• cofibrations are the split monomorphisms in each simplicial-cosimplicial degree, with cokernel
given by the retract of an admissible symmetric sequence.

• (trivial) fibrations are (acyclic) Kan fibrations in each arity, for F = OΣr
.

This admits a right Bousfield localisation given by the projective model structure, whose weak
equivalences are maps X −→ Y such that for every H < Σr, the map X(r)H −→ Y (r)H induces
a quasi-isomorphism on total complexes.

It follows from Corollary 4.17 and Theorem 5.5 that the tame model structure on sSeqsc
R

presents the ∞-category sSeqgen,∨R of pro-coherent derived symmetric sequences. Furthermore,

the projective model structure models the full subcategory ι : sSeqgenR ↪→ sSeqgen,∨R of derived
symmetric sequences.

Remark 5.12 (Connective objects). A map between simplicial symmetric sequences (constant
in the cosimplicial direction) is a tame weak equivalence if and only if it induces a weak equiv-
alence on all H-fixed points; these simplicial symmetric sequences model the connective part of
sSeqgen,∨R . The functor sSeq♡R −→ sSeqgenR,≥0 from Example 3.66 then simply sends a symmetric
sequence of discrete R-modules to the corresponding constant simplicial symmetric sequence.
Note that sSeq♡R is not the heart of the t-structure on sSeqgenR .

Lemma 5.13. Let R be a coherent ring. Then the tame and projective model structure on sSeqsc
R

both satisfy the pushout-product axiom with respect to the Day convolution product and levelwise
tensor product. The induced symmetric monoidal structures on sSeqgen,∨R coincide with the ones
from Construction 3.63.

Proof. The pushout-product axiom is readily checked using the sets of generating cofibrations
and trivial cofibrations from Remark 5.6. The resulting symmetric monoidal structures restrict
to the Day convolution and levelwise tensor product on R[OΣ] and preserve totalisations of
cosimplicial diagrams in R[OΣ] by Remark 5.8. The result then follows from Remark 2.42. □

Proposition 5.14. Let ◦̄ denote the restricted composition product on sSeqsc
R , computed level-

wise. If X is a tamely cofibrant simplicial-cosimplicial symmetric sequence, then the following
assertions hold:

(1) The functor (−)◦̄X : sSeqsc
R −→ sSeqsc

R preserves tame cofibrations and trivial cofibrations
and the associated left derived functor between ∞-categories preserves all colimits.

(2) The functor X ◦̄(−) : sSeqsc
R −→ sSeqsc

R preserves tame cofibrations and tame weak equiv-
alences between tamely cofibrant objects, and the associated left derived functor between
∞-categories preserves sifted colimits.

The same assertions apply to the usual composition product.

Proof. We decompose the composition product ◦̄ into several functors, along the lines of Propo-
sition 4.24. First, let r ≥ 0 and consider the functor

scModR[Σr]×sSeq
sc
R scModR[Σ×Σr]; (V,W ) V ⊗W

sending a simplicial-cosimplicial Σr-representation and a simplicial-cosimplicial symmetric se-
quence to a sequence of simplicial-cosimplicial Σr × Σs-representations. This functor is readily
checked to be left Quillen for the tame model structures (where all subgroups are admissible).

Next, consider the functor (−)Σr : scModR[Σ×Σr] −→ sSeqsc
R taking Σr-fixed points. This

preserves transfinite compositions and pushouts along monomorphisms that are split in each
simplicial-cosimplicial degree. Using this and the description of the generating (trivial) cofibra-
tions from Remark 5.6, one sees that (−)Σr preserves cofibrations and trivial cofibrations.
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For (1), notice that X⊗r is tamely cofibrant if X is tamely cofibrant (by Lemma 5.13). The
above two observations then show that the functor sending a simplicial-cosimplicial symmetric

sequence Y to Y ◦̄X =
⊕

r

(
Y (r)⊗X⊗r

)Σr
preserves cofibrations and trivial cofibrations. Since

it preserves pushouts along cofibrations and direct sums, the induced derived functor preserves
all colimits.

For (2), one can observe that the functor sSeqsc
R −→ scModR[Σ×Σr] sending Y 7→ Y ⊗r

preserves tame cofibrations and trivial cofibrations. Since it preserves sifted colimits, the in-
duced functor of ∞-categories preserves sifted colimits as well (Lemma 4.26). By the above two
observations, postcomposing this functor with (X(r) ⊗ (−))Σr yields a functor that preserves
cofibrations and trivial cofibrations, and whose derived functor preserves sifted colimits. The
result follows by taking the direct sum over all r. □

Theorem 5.15. Let R be a coherent ring. The composition product ◦ and the restricted com-
position product ◦̄ on the model category sSeqsc

R induce the monoidal structures ◦ and ◦̄ of
Proposition 3.77 on the underlying ∞-category sSeqgen,∨R .

Proof. By (1) and (2) of Proposition 4.24, ◦ and ◦̄ restrict to monoidal products on the full
subcategory of tamely cofibrant symmetric sequences, which preserve weak equivalences in each
variable. By part (1) and (3) of Proposition 4.24, the resulting monoidal structures ◦L and ◦̄L on
the∞-category sSeqgen,∨R preserve sifted colimits. Furthermore, the restrictions of these monoidal

structures to R[OΣ] coincide with the usual composition product and restricted composition
product. Finally, ◦L and ◦̄L preserve totalisations of cosimplicial diagrams in R[OΣ] by Remark
5.8, so that both are obtained by left-right extension (Remark 2.42) and hence coincide with the
monoidal structures from Proposition 3.77 □

Rectification of derived operads and algebras. Theorem 5.15 shows that the composition product ◦̄
on sSeqgen,∨R can be identified with the left derived functor of the restricted composition product

on sSeqsc
R . We will now show how this can be used to produce point-set models for the ∞-

categories of derived ∞-operads and derived PD ∞-operads.

Proposition 5.16. The following categories carry cofibrantly generated semi-model structures
whose weak equivalences and fibrations are tame weak equivalences and fibrations on the under-
lying objects:

(1) the category Opsc
R of sc-operads.

(2) the category Opsc,res
R of sc-restricted operads over R.

(3) the category Algsc
P of algebras over an sc-operad P whose underlying symmetric sequence

is tamely cofibrant.

(4) the category Algsc,res
P of algebras over an sc-restricted operad P whose underlying symmetric

sequence is tamely cofibrant.

One can also endow these categories with a semi-model structure whose weak equivalences and
fibrations are the ones from the projective model structure.

Proof. We only treat the case (4) of restricted algebras over an sc-restricted operad P whose
underlying symmetric sequence is tamely cofibrant; the other cases are similar. By [Fre09,
Theorem 12.1.4], it suffices to verify the following condition: for a cofibrant P-algebra A, a
generating trivial cofibration V −→W in scModR and a map f : V −→ A in scModR, the map
A −→ A⨿P◦̄V P◦̄W is a trivial cofibration in scModR. To prove this, we use that the pushout
carries an exhaustive increasing filtration

(18) A = F 0 F 1 . . . A⨿P◦̄V P◦̄W
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where each map is a split monomorphism in each simplicial-cosimplicial degree. To see this,
consider the category Fun(Z≥0, scModR) of increasing sequences in scModR, with the Day
convolution product and the Reedy model structure. We can consider A as a P-algebra in
Fun(Z≥0, scModR) given by A in each filtration weight. Likewise, consider V as a constant
sequence and let W ′ denote the sequence given by V in weight 0 and by W in weight ≥ 1.
Then the pushout A ⨿P◦̄V P◦̄W ′ of P-algebras in Fun(Z≥0, scModR) will produce the desired
filtration.

Indeed, note that A being cofibrant implies that it is given in each simplicial-cosimplicial
degree (i, j) by the retract of a free Pj

i -algebra on a projective R-module Xj
i . Because V −→W

is a split monomorphism in each simplicial-cosimplicial degree, we can identify A⨿P◦̄V P◦̄W ′ ∼=
Pj

i ◦̄
(
Xj

i ) ⊕ (W/V )ji
)
, where (W/V )ji has weight 1. This shows that the inclusions in (18) are

split injections in each simplicial-cosimplicial degree.
It therefore suffices to show that the associated graded of the filtration (18) consists of acyclic

tamely cofibrant sc-R-modules in weight ≥ 0. The associated graded can be identified with
the coproduct A ⨿ P◦̄(W/V ). It therefore suffices to prove that for any cofibrant P-algebra A
and any contractible cofibrant sc-module Z, the map A −→ A ⨿ P◦̄Z is an acyclic cofibration
of sc-modules. Using the small object argument and a similar filtration argument to the one
given above, this can be reduced to the assertion that for any cofibrant sc-module X, the map
P◦̄X −→ P◦̄(X ⊕ Z) is an acyclic cofibration of sc-R-modules. This follows from Proposition
5.14. □

Remark 5.17. The proof shows that the forgetful functors Opsc
R −→ sSeqsc

R , Opres
R −→ sSeqsc

R

and Algsc
P −→ scModR preserve cofibrations between cofibrant objects.

Lemma 5.18. Consider the forgetful functors Opsc
R −→ sSeqsc

R , Opsc,res
R −→ sSeqsc

R and
Algsc

P −→ scModR, where P is a simplicial-cosimplicial (restricted) operad whose underly-
ing symmetric sequence is tamely cofibrant. Each of these functors is right Quillen for the model
structures from Proposition 5.16, and the induced functor of ∞-categories preserves geometric
realisations.

Proof. The forgetful functors are right Quillen functors that preserve weak equivalences by con-
struction. It remains to prove that the induced functor of ∞-categories preserves geometric
realisations, which we will only do in the case of P-algebras (the other cases are exactly the
same). Recall that scModR is a simplicial model category and note that the cotensoring over
simplicial sets preserves P-algebras. Using this, there is an adjoint pair

δ∗ : Fun(∆op,Algsc
P) Algsc

P : δ∗

where δ∗ takes the diagonal in the simplicial direction, and δ∗ sends a simplicial-cosimplicial alge-
bra A to the simplicial diagram A∆[•]. This adjoint pair is a Quillen pair when Fun(∆op,Algsc

P)
is endowed with the Reedy (semi-)model structure; furthermore, the right adjoint δ∗ sends every
every fibrant object A to a simplicial diagram that is homotopically constant on A. It follows that
the left derived functor of δ∗ computes the homotopy colimit of a simplicial-cosimplicial diagram
in Algsc

P . Since the forgetful functor Algsc
P −→ scModR commutes with taking the diagonal

and preserves Reedy cofibrant simplicial diagrams by Remark 5.17, the result follows. □

Theorem 5.19 (Rectification of derived ∞-operads and derived PD ∞-operads). Let R be a
coherent ring. Then the underlying ∞-category of Opsc

R with the projective semi-model structure
is equivalent to the ∞-category OpgenR of derived ∞-operads over R. Likewise, the underlying ∞-

category of Opsc,res
R with the tame semi-model structure is equivalent to the ∞-category Opgen,pdR



PD OPERADS AND EXPLICIT PARTITION LIE ALGEBRAS 75

of derived PD ∞-operads over R. More precisely, there are commuting squares

Opsc
R [W−1

proj] OpgenR Opsc,res
R [W−1

tame] Opgen,pdR

sSeqsc
R [W−1

proj] sSeqgenR sSeqsc
R [W−1

tame] sSeqgen,∨R .

≃ ≃

≃ ≃

Proof. Following the same argument as in Theorem 4.33, using Theorem 5.15, Proposition 5.16
and Lemma 5.18. □

Theorem 5.20 (Rectification of algebras: derived setting). Let R be a coherent ring and P a
simplicial-cosimplicial (restricted) operad over R whose underlying symmetric sequence is tamely
cofibrant. Then the underlying ∞-category of the tame semi-model structure on simplicial-
cosimplicial algebras over P is equivalent to the ∞-category AlgP(QC∨(R)) of pro-coherent
algebras over the associated derived (PD) ∞-operad P. In other words, there are commuting
squares

Algsc
P [W−1

tame] AlggenP (QC∨
R) Algsc,res

P [W−1
tame] Alggen,pdP (QC∨

R)

scModR[W
−1
tame] QC∨

R scModR[W
−1
tame] QC∨

R .

≃ ≃

≃ ≃

Proof. Exactly as in Theorem 4.35, we combine Theorem 5.15, Proposition 5.16 and Lemma
5.18. □

5.3. Partition Lie algebras. We will now construct an explicit cosimplicial model for the
derived PD ∞-operad (cf. Definition 3.88) which parametrises derived partition Lie algebras,
freely using the techniques developed in [AB21]. This cosimplicial model is the linear dual of the
subdivided simplicial bar construction of the commutative operad. As the bar construction can
already be computed in pointed simplicial sets, we start by working with symmetric sequences
and operads in this setting.

Let Comnu denote the (nonunital) commutative operad, given by S0 with trivial Σr-action
in each arity ≥ 1 and by a point in arity 0. This is an augmented operad, and we can consider
the simplicial bar construction

Bar•(1,Comnu,1) = . . . Comnu ◦Comnu Comnu 1.

This simplicial bar construction has a well-known description in terms of partition complexes,
which we will now recall.

Notation 5.21. Write Pr for the poset of partitions of r = {1, . . . , r}, ordered by coarsening;
the initial and terminal partitions are given by

0̂ = 1 2 3 . . . n 1̂ = 123 . . . n .

Write N•(Pr)
−[0̂<1̂] ⊆ N•(Pr) for the simplicial subset spanned by the chains of partitions that

do not contain [0̂ < 1̂].

One can then identify Bar•(1,Comnu,1) in arity r with the pointed simplicial set

(19) Bar•(1,Comnu,1)(r) =
N•(Pr)

N•(Pr)−[0̂<1̂]
.

For r = 0, this is the basepoint, and for r = 1 this is S0 by convention. The non-basepoint
simplices of Bar•(1,Comnu,1)(r) are then given by chains of partitions [0̂ = x0 ≤ x1 ≤ · · · ≤
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xn−1 ≤ xn = 1̂]; the simplicial structure maps simply insert identities or remove elements from

such chains, and give the basepoint if the resulting chain no longer begins at 0̂ and ends at 1̂.

Remark 5.22 (Levelled trees). A chain of partitions [x0 ≤ · · · ≤ xt] can be viewed as a levelled
forest, where each leaf is labelled by a subset of r. Indeed, each leaf is labelled by a subset of
r corresponding to a class in x0, and each class of xt determines a tree. In particular, chains
[0̂ = x0 ≤ · · · ≤ xt = 1̂] correspond to levelled trees with leaves labelled by the elements of r.

In these terms, the non-basepoint simplices of Bar•(1,Comnu,1)(r) correspond to levelled
trees, and the simplicial face maps are given by contracting edges between two levels or removing
the root or leaf vertices; this produces the basepoint if the result is no longer a tree with r leaves.

Notation 5.23 (Barycentric subdivision). We will denote the barycentric subdivision of a sim-

plicial set X by sd(X). We abbreviate sd(N•(Pr)
−[0̂<1̂]) as sd(Pr)

−[0̂<1̂]. Finally, we define

Barsd(Comnu)(r) :=
sd(Pr)

sd(Pr)−[0̂<1̂]

as the barycentric subdivision of the simplicial bar construction (19). Explicitly, this is the
quotient of the nerve of the poset of nondegenerate chains of partitions σ = [x0 < · · · < xt] by

the full subcomplex spanned by chains with x0 ̸= 0̂ or xt ̸= 1̂.

Even more explicitly, d-simplices in sd(Pr)
/
sd(Pr)

−[0̂<1̂] corresponds to pairs(
σ, S

)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
,

where σ is a nondegenerate chain of partitions of r and S0 ⊆ · · · ⊆ Sd = {0, . . . , t} is an increasing
set of subsets. We allow t = −1 in this definition, which corresponds to the basepoint. We will
refer to such tuples as nested chains of partitions of r.

Our goal will be to endow the barycentric subdivision Barsd(Comnu) with the structure of a
cooperad in pointed simplicial sets. It will be convenient to describe such cooperads as symmetric
sequences of pointed simplicial sets C together with the following kind of cocomposition maps:
for every partition y of the form

r ∼= r1 ⊔ · · · ⊔ rb,
there is a total cocomposition map

∆y : C(r) C(b) ∧ C(r1) ∧ · · · ∧ C(rb)

which is equivariant with respect to the stabiliser Σy < Σr of y and satisfies obvious associativity
and unitality constraints.

To define these cocomposition maps ∆y, we will need some terminology:

Definition 5.24. Let y be a partition of r of the form r ∼= r1 ⊔ · · · ⊔ rb.
A nondegenerate chain of partitions σ = [x0 < · · · < xt] of r is said to be y-branched if every

class ri of the partition y arises as a class in some partition xα in σ.
Furthermore, σ is said to be y-subbranched if it is contained in a y-branched chain of partitions.

Write Sub(y) ⊆ sd(Pr) for the simplicial subsets spanned by all(
σ, S

)
=

(
[x0 < · · · < xt], S0 ⊆ · · · ⊆ Sd

)
for which [x0 < · · · < xt] is y-subbranched.

Write Unbr(y)−[0̂<1̂] ⊆ sd(Pr) for the simplicial subsets spanned by all nested chains
(
σ, S

)
such that either σ is not y-branched or σ does not contain [0̂ < 1̂].

Notation 5.25. If σ is a degenerate chain of partitions, let ((σ)) be the minimal nondegenerate
chain with a map σ −→ ((σ)); it is obtained by deleting repetitions.
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Construction 5.26 (Ungrafting map). Let y : r ∼= r1 ⊔ · · · ⊔ rb be a partition.
We will define an order-preserving map

ϕy : Sub(y) sd(Pb)× sd(Pr1)× · · · × sd(Prb)

which we will refer to as the ungrafting map (along y).
Start with the map Sub(y)→ sd(Pr,≥y)× sd(Pr,≤y) induced by the map of posets

σ 7→
(
((σ ∨ y)), ((σ ∧ y))

)
.

Next, note that there are isomorphisms Pr,≥y
∼= Pb and Pr,≤y

∼= Pr1×· · ·×Prb . On subdivisions,
this induces an isomorphism sd(Pr,≥y) ∼= sd(Pb) and a map

sd(Pr,≤y) sd
(
Pr1 × · · · × Prb

)
sd(Pr1)× · · · × sd(Prb)

∼=

where the second map sends a nondegenerate tuple (σ1, . . . , σb) of chains to the tuple of nonde-
generate chains ((σi)).

Combining these two maps, we can assign to each nondegenerate chain σ in Sub(y) a tuple
of chains (σb, σr1 , . . . , σrb). We obtain ϕy(σ) from this tuple by removing the maximal partition

1̂ (if it appears) from σri for each class ri of y that does not appear anywhere in σ. Note that
this map preserves subchain inclusions.

Remark 5.27 (Description via levelled trees). Let σ be a chain of partitions of r, corresponding
to a levelled forest where each leaf is labelled by a subset of r. Then σ is y-branched if and only
if for every class ri of the partition y, there is a branch in the forest whose leaves are precisely
labelled by subsets with union ri. These various branches may be of different height.

If σ is y-branched, unraveling the definitions shows that ϕy(σ) is given as follows. The resulting
chain σb in Pb corresponds to the forest obtained by cutting off all ri-labelled branches and
inserting just enough degeneracies on the top to make the result a levelled forest. The chains
of partitions σri of each ri corresponds to the ri-labelled branch, with all of its degeneracies
removed.

For a subchain τ ⊆ σ of such a y-branched chain σ, ϕy(τ) simply takes the corresponding

subchains in Pb and Pri and furthermore removes the endpoint 1̂ from σri whenever ri does not
appear as a class anywhere in τ .

Lemma 5.28. Let y : r ∼= r1 ⊔ · · · ⊔ rb be a partition. The inclusion Sub(y) ↪→ sd(Pr) induces
an isomorphism

Sub(y)

Sub(y) ∩Unbr(y)−[0̂<1̂]

∼=−→ sd(Pr)

Unbr(y)−[0̂<1̂]

and the map ϕy of Construction 5.26 descends to a map

Sub(y)

Sub(y) ∩Unbr(y)−[0̂<1̂]
−→ sd(Pb)

sd(Pb)−[0̂<1̂]
∧ sd(Pr1)

sd(Pr1)
−[0̂<1̂]

∧ · · · ∧ sd(Prb)

sd(Prb)
−[0̂<1̂]

.

Proof. For the first assertion, note that the map is injective by construction. To see that it is

surjective, note that the non-basepoint simplices of sd(Pr)
/
Unbr(y)−[0̂<1̂] correspond to nested
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families of nondegenerate chains [σ0 ≤ · · · ≤ σn], where σn is a nondegenerate chain of partitions

which is y-branched and contains 0̂ and 1̂. This implies that all σi are y-subbranched.
For the second assertion, first suppose that σ is a y-branched chain. If σ does not end in

1̂, then ϕy(σ) defines a chain in Pb not ending in 1̂. On the other hand, if σ does not start at

0̂, then ϕy(σ) defines a chain in at least one Pri that does not start at 0̂. Both assertions are
readily seen by the description of ϕy in terms of levelled trees (Remark 5.27). Furthermore, if
τ ⊆ σ is a subchain of a y-branched chain which is not itself y-branched, then ϕy(τ) contains at

least a chain in one Pri which does not end at 1̂ (by construction). Hence ϕy descends to the
quotient. □

Construction 5.29 (Cocomposition). Let y : r ∼= r1 ⊔ · · · ⊔ rb be a partition. We then define
∆y to be the composite map

sd(Pr)

sd(Pr)−[0̂<1̂]

sd(Pr)

Unbr(y)−[0̂<1̂]

Sub(y)

Sub(y)∩Unbr(y)−[0̂<1̂]

sd(Pb)

sd(Pb)−[0̂<1̂]
∧ sd(Pr1

)

sd(Pr1
)−[0̂<1̂]

∧ · · · ∧ sd(Prb
)

sd(Prb
)−[0̂<1̂]

.

∼=

ϕy

Explicitly, ∆y can be described in simplicial degree d as follows. Following Notation 5.23, a

d-simplex in sd(Pr)
/
sd(Pr)

−[0̂<1̂] corresponds to a nested chains of partitions(
σ, S

)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
.

Then ∆y(σ, S) is the basepoint if σ is not y-branched. If σ is y-branched, then it can be
ungrafted along y, as in Construction 5.26. Write σb and σri for the resulting nondegenerate
chains of partitions of b and ri. These chains are indexed by quotients of Sd (because we have
divided out degeneracies), which we will denote by πb : Sd ↠ Sb,d and πri : Sd ↠ Sri,d

. The
subsets Sα ⊆ Sd are then sent to subsets Sb,α ⊆ Sb,d and Sri,α

⊆ Sri,d
as follows: Sb,α is simply

the image πb(Sα) ⊆ Sb,d. On the other hand, for each ri, Sri,α
⊆ Sri,d

is the subset of all πri(x)
with x ∈ Sα such that the partition x has ri as a union of some of its classes.

In terms of trees, σ determines a levelled tree and each Sα marks some of its levels. We then
mark the same levels in each of the branches and the trunk obtained by ungrafting along y (and
removing degeneracies). Furthermore, one marks the top level of the trunk if in the original tree,
there was a level marked by Sα entirely above the ungrafting line.

Proposition 5.30. The maps ∆y endow Barsd(Comnu) with a cooperad structure.

Proof. We have to check that for any two partitions z ≤ y, cocomposition along y and z are
associative. For any (σ, S) the image under the two cocompositions (1 ◦∆z)∆y and (∆y ◦ 1)∆z

is the basepoint unless σ corresponds to a tree that can both be ungrafted along y and z. If σ
can both be ungrafted along y and z, (1◦∆z)∆y(σ) and (∆y ◦1)∆z(σ) have the same underlying
chains, by coassociativity of ungrafting. Furthermore, the explicit description of the subsets of
‘marked levels’ in each of these trees shows that these marked levels are the same when we first
ungraft along y and then along z or vice versa. □

The R-linearisation of a cooperad in pointed simplicial sets is a cooperad in simplicial R-
modules, and taking R-linear duals gives a cosimplicial restricted operad.

Definition 5.31. Let R be a coherent ring. Write LieπR,∆ for the cosimplicial restricted operad
over R given by

LieπR,∆ = Map∗(Bar
sd(Comnu), R).
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In particular, we see that the cosimplicial R-module LieπR,∆(r)
d has a basis given by nested

chains of partitions of r:(
σ, S

)
=

(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
.

Remark 5.32. Note that Barsd(Comnu)(r) is given in each simplicial degree by a finite Σr-
set. Consequently, the cosimplicial restricted operad LieπR,∆(r) has an underlying symmetric
sequence that is tamely cofibrant, so that the category of algebras over LieπR,∆ carries a semi-
model structure.

Theorem 5.33 (Simplicial-cosimplicial models for partition Lie algebras). The cosimplicial re-
stricted operad LieπR,∆ is a model for the derived partition Lie PD ∞-operad LieπR,∆ of Definition
3.88. Consequently, there is an equivalence of ∞-categories

Algsc,res
Lieπ

R,∆
[W−1

tame] Alggen,pdLieπR,∆
(QC∨

R).
≃

In particular, when R = k is a field, the localisation of the category of simplicial-cosimplicial re-
stricted algebras over Lieπk,∆ at the weak equivalences is equivalent to the ∞-category of partition
Lie algebras from [BM19, Definition 5.47].

Proof. The fact that LieπR,∆ is a cosimplicial model for LieπR,∆ will follow from our point-set
description of Koszul dual PD ∞-operads below (Theorem 5.43). The assertion about algebras
then follows from Theorem 5.20 and the final conclusion follows from Corollary 3.89. □

Adapting [Iko20] to our setting, we can make the simplicial-cosimplicial LieπR,∆-algebras ap-
pearing in Theorem 5.33 more explicit:

Construction 5.34. Let R be a field. A simplicial-cosimplicial restricted LieπR,∆-algebra is a
simplicial object in cosimplicial restricted LieπR,∆-algebras. To equip a cosimplicial R-module

g0 g1 g2 . . .

with the structure of a cosimplicial restricted LieπR,∆-algebra, we must first define a LieπR,∆-
algebra structure on g.

This means that for any nested chain

(σ, S) =
(
[0̂ = x0 < · · · < xt = 1̂], S0 ⊆ · · · ⊆ Sd

)
∈ LieπR,∆(r)

d

and any tuple a = (a1, . . . , ar) in gd, we must specify an element

{a1, . . . , ar}(σ,S) ∈ gd,

depending linearly on each entry of a, satisfying the following properties:

(1) The unique simplex ∗ ∈ LieπR,∆(1)
d satisfies {a}∗ = a for any a ∈ gd;

(2) Given a permutation ρ ∈ Σr and a tuple a = (a1, . . . , ar) as above, we have

{aρ(1), . . . , aρ(r)}(σ,S) = {a1, . . . , ar}ρ(σ,S)

(3) Given a partition y : r ∼= r1 ⊔ . . . ⊔ rb, nested chains (τ, T ) of b, (σi, Si) of ri, and tuples
ai = (ai1, . . . a

i
ri) for all i = 1, . . . b corresponding to a tuple a = (a1, . . . , ar) under y, we

have {
{a1}(σ1,S1), . . . , {ab}(σb,Sb)

}
(τ,T )

=
∑

∆y(σ,S)=((τ,T ),(σ1,S1),...,(σb,Sb))

{a}(σ,S)



PD OPERADS AND EXPLICIT PARTITION LIE ALGEBRAS 80

Moreover, for any tuple a = (a1, . . . , ar) in gd with stabiliser group Σa ≤ Σr and any nested
chain (σ, S) ∈ LieπR,∆(r)

d, we must specify an element

γ(σ,S)(a1, . . . , ar) ∈ gd

These ‘divided operations’ must satisfy the following properties:

(4) Let Σa,σ = Σa ∩ Stab(σ) < Σr be the group of symmetries of a fixing σ. Then

{x1, . . . , xr}(σ,S) =
∣∣Σa,σ

∣∣ · γ(σ,S)(x1, . . . , xr).

(5) For any permutation ρ ∈ Σr, we have

γ(σ,S)(aρ(1), . . . , aρ(r)) = γρ(σ,S)(a1, . . . , ar).

(6) Suppose that a contains (at least) i copies of an element a, indexed by a subset i ⊆ r and
let a(λ,i) be the tuple obtained from a by scaling each of these s copies by λ ∈ R. Writing
Σa,a(λ,i),σ < Σr for the subgroup of permutations fixing a,a(λ,i) and σ, we have

|Σa(λ,i),σ|
|Σa,a(λ,i),σ|

γ(σ,S)(a(λ,i)) = λi · |Σa,σ|
|Σa,a(λ,i),σ|

γ(σ,S)(a).

(7) Suppose that a contains (at least) i copies of an element a = b + c, indexed by a subset
i ⊆ r. For each decomposition i = j + k, form a new tuple a(j,k) from a by replacing the
first j copies of a by b and the last k copies of a by c. Write Σa,i,σ < Σr for the subgroup of
permutations fixing a, σ and the subset i, and Σa,a(j,k),σ < Σr for the permutations fixing
a,a(j,k) and σ. We then have

|Σa,σ|
|Σa,i,σ|

γ(σ,S)(a) =
∑

i=j+k

∑
ρ∈Σa,σ\Σa/Σa(j,k)

|Σa(j,k),σ|
|Σa,a(j,k),σ|

γρ(σ,S)(a(j,k)).

(8) Fix a partition y : r ∼= r1 ⊔ . . . ⊔ rb and tuples ai = (ai1, . . . a
i
ri) with stabiliser Σai

for
i = 1, . . . b, corresponding under y to a tuple a = (a1, . . . , ar) with stabiliser Σa. Write
Σ{ai} ⊂ Σb or the stabiliser of the family of tuples, and Σ{γ(ai)} ⊂ Σb for the stabiliser of
the tuple (γ(σ1,S1)(a1), . . . , γ(σb,Sb)(ab)).

Given (σi, Si) ∈ LieπR,∆(ri)
d and (τ, T ) ∈ LieπR,∆(b)

d, we have

Σ{γ(ai)}

Σ{ai}
· γ(τ,T )

(
γ(σ1,S1)(a1), . . . , γ(σb,Sb)(ab)

)

=
∑

∆y(σ,S)=((τ,T ),(σ1,S1),...,(σb,Sb))

|Σa,σ|
|Σ{ai,},τ ≀ (Σai,σi)i∈s)|

· γρ(σ,S)(a).

Remark 5.35. The description of a cosimplicial restricted LieπR,∆-algebras in Construction 3.63
is an application of the explicit description of restricted algebras over operads given in [Iko20,
Definition 4.1.1, 4.1.4]. To translate between the two descriptions, observe that for any tuple of
elements (a1, . . . , ar) is uniquely determined by a partition y : r ∼= r1 ⊔ · · · ⊔ rb on r, together
with a b-tuple of mutually distinct elements (ar1 , . . . , arb) of A.

The element denoted γ(σ,S)(a1, . . . , ar) above then corresponds to γ[σ,S]y,y(ar1 , . . . , arb) in the
notation of Ikonicoff. By [Iko20, Definition 4.1.1(3)], these γ[σ,S]y,y(ar1 , . . . , arb) with all ari
mutually distinct determine all other operations appearing in loc. cit.
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5.4. Explicit Koszul duality. We will now give a simplicial-cosimplicial model for the Koszul
dual of more general augmented derived∞-operads, similarly to the simplicial-cosimplicial model
for the partition Lie PD ∞-operad in Definition 5.31.

Definition 5.36. An augmented (simplicial-cosimplicial) operad P over R is called reduced if
P(0) = 0 and P(1) = R · 1.

We start by fixing a reduced operad P in discrete R-modules and consider the simplicial bar
construction

Bar(1,P,1) = . . . P ◦P P 1.

This is a simplicial symmetric sequence of R-modules which can be written explicitly as a direct
sum

Bar(1,P,1)(r)d =
⊕

σ∈Bar(1,Comnu,1)(r)d

P(σ).

Here the direct sum is indexed by the non-basepoint d-simplices of the partition complex, i.e.
by chains of partitions σ = [0̂ = x0 ≤ · · · ≤ xd = 1̂]. Each such chain of partitions determines
a levelled tree and we denote by P(σ) the R-module of labellings of this tree by elements of P;
in other words, it is a certain tensor product of P(rα) indexed by the vertices of the tree. The
simplicial structure is obtained by removing levels and composing operations in P, and produces
zero if the result is no longer a tree with r leaves.

As in the previous section, the barycentric subdivision of the simplicial bar construction can
be endowed with the structure of a cooperad.

Notation 5.37 (R-linear barycentric subdivision). Recall that there is an adjoint pair sd: sSet ⇆
sSet : Ex given by the barycentric subdivision and Kan’s Ex-functor. The functor Ex preserves
simplicial symmetric sequences of R-modules, and we will write sd: ssSeqR −→ ssSeqR for its
left adjoint; in other words, this is the R-linear extension of the usual barycentric subdivision.
The natural transformation id −→ Ex is adjoint to an augmentation sd −→ id.

For any reduced operad in discrete R-modules, we will then write Barsd(P) for the R-linear
barycentric subdivision of Bar(1,P,1). Explicitly, this is given by

Barsd(P)(r)d =
⊕

(σ,S)∈Barsd(Comnu)(r)d

P(σ)

where the sum runs over all simplices in the (set-valued) barycentric subdivision from Notation

5.23. Such simplices correspond to nested nondegenerate chains of partitions σ = [0̂ = x0 < · · · <
xt = 1̂] with S0 ⊆ · · · ⊆ Sd = {0, . . . , t}. Here we allow t = −1, corresponding to the basepoint
in Barsd(Comnu)(r); the corresponding summand P(σ) is zero in this case by definition.

Remark 5.38. For any simplicial setK and any cosimplicial symmetric sequence P , one has that
sd(K+∧P ) ∼= sd(K)+∧P . Because the tame model structure on simplicial-cosimplicial symmetric
sequences is simplicial, one sees that for each cofibrant cosimplicial symmetric sequence P , the
augmentation

sd(K+ ∧ P ) ∼= sd(K)+ ∧ P −→ K+ ∧ P
is a tame weak equivalence. Furthermore, the description of the generating (trivial) cofibra-
tions for the tame (or projective) model structure on sSeqsc

R (see Remark 5.6) shows that
sd: sSeqsc

R −→ sSeqsc
R is a left Quillen functor. Combining these two observations, one sees that

the augmentation sd(X) −→ X is a weak equivalence for every tamely cofibrant sc-symmetric
sequence. By adjunction, this means that Y −→ Ex(Y ) is a weak equivalence for every fibrant
sc-symmetric sequence.
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Construction 5.39 (Cocomposition on the subdivided bar construction). Let P be a reduced
operad in discrete R-modules and let y be a partition of the form r ∼= r1 ⊔ · · · ⊔ rb. We define a
map

(20) ∆y : Barsd(P)(r) Barsd(P)(b)⊗ Barsd(P)(r1)⊗ · · · ⊗ Barsd(P)(rb)

as follows. Note that the domain is a direct sum indexed by Barsd(Comnu)(r) while the target
in a direct sum indexed by Barsd(Comnu)(b) ∧ Barsd(Comnu)(r1) ∧ · · · ∧ Barsd(Comnu)(rb).
Then ∆y sends the summand indexed by (σ, S) to the summand indexed by ∆y(σ, S), for the
comultiplication of Construction 5.29. In particular, ∆y sends the summand by (σ, S) to zero if
σ is not y-branched.

If σ is y-branched, it corresponds to a tree than can be ungrafted along y and ∆y(σ, S) is
the tuple consisting of the branches and trunk of this ungrafted tree. Note that the branches
and trunk of the tree associated to σ together contain exactly the same vertices labelled by non-
identity operations in P as the tree σ itself. Consequently, the (σ, S)-summand in Barsd(P)(r) is
naturally isomorphic to the ∆y(σ, S)-summand in Barsd(P)(b)⊗Barsd(P)(r1)⊗· · ·⊗Barsd(P)(rb).
We then define ∆y to be this natural isomorphism.

In other words, the map (20) sends a levelled tree σ with vertices labelled by P (and a nested
family S0 ⊆ · · · ⊆ Sd of marked levels) to zero if it cannot be ungrafted along y, and to the
ungrafting if it can.

As in Proposition 5.30, the associativity of ungrafting then shows:

Corollary 5.40. Let P be a reduced operad in discrete R-modules. The operations ∆y endow
Barsd(P) with the structure of a simplicial cooperad in R-modules.

Remark 5.41. WhenP = Comnu
R is the nonunitalR-linear commutative operad, Barsd(Comnu

R ) ∼=
R ∧ Barsd(Comnu) is simply the R-linear extension of the cooperad in pointed simplicial sets
from Proposition 5.30.

Definition 5.42 (Subdivided bar construction of reduced simplicial-cosimplicial operads). Sup-
pose that P is a reduced simplicial-cosimplicial R-linear operad. We will write Barsd(P) for the
simplicial-cosimplicial cooperad given by

Barsd(P)nd = Barsd(Pn
d )d

with cocomposition given in each simplicial-cosimplicial degree as in Construction 5.39. The
simplicial-cosimplicial dual restricted operad is the R-linear dual

D∆(P) = Barsd(P)∨.

Theorem 5.43. Let P be a reduced sc-operad with projectively cofibrant underlying symmetric
sequence (Definition 5.11). Let P denote the associated augmented derived ∞-operad. Then the

sc-restricted operad D∆(P) is a model for the derived PD ∞-operad KDpd(P).

The proof requires a preliminary construction:

Construction 5.44 (Simplicial-cosimplicial Koszul complex). Suppose that P is a reduced
operad in discrete R-modules. We will define the subdivided Koszul complex of P to be the
symmetric sequence

Ksd(P) = sd
(
Bar(1,P,P)

)
.

Explicitly, Ksd(P)(r)d ∼=
⊕

(σ,S) P(σ) where the sum runs over chains of partitions σ = [x−1 =

0̂ ≤ x0 < · · · < xt = 1̂] with a nested family of subsets S0 ⊆ · · · ⊆ Sd = {−1, . . . , t} which all
contain −1. The simplicial structure maps act on the nested family of subsets S0 ⊆ · · · ⊆ Sd in
the evident way.
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In terms of levelled trees, a d-simplex of Ksd(P)(r) consists of a levelled tree with vertices
marked by P, together with a nested family of marked levels, which all contain the top level (i.e.
the leaves). These levelled trees are almost nondegenerate: one only allows the leaf vertices to
all be equal to the identity.

The bar construction Bar(1,P,P) carries a natural right P-action. This induces a right P-
module structure on Ksd(P). In terms of levelled trees, this action simply precomposes the leaf
vertices labelled by P with operations from P.

On the other hand, Ksd(P) is a left comodule over Barsd(P). Indeed, for every partition y of
the form r ∼= r1 ⊔ · · · ⊔ rb, there is a comultiplication map

∆y : Ksd(P)(r) Barsd(P)(b)⊗Ksd(P)(r1)⊗ · · · ⊗Ksd(P)(rb)

defined in exactly the same way as in Construction 5.39: a levelled tree with vertices marked by
P is sent to its ungrafting along y if this is possible, and to zero otherwise. Furthermore, the
subsets S0 ⊆ · · · ⊆ Sd give rise to subsets of levels for each of the branches and the trunk of the
resulting ungrafted tree. Note that the left comodule structure and right P-module structure
commute.

More generally, if P is an sc-operad, we define Ksd(P) by the diagonal

Ksd(P)nd = Ksd(Pn
d )d.

This carries a commuting left comodule structure of Barsd(P) and a right P-module structure.

Proof of Theorem 5.43. Consider the natural map of right P-modules π : Ksd(P) −→ 1 sending

all summands indexed by (σ, S) with σ = [0̂ = x−1 ≤ x0 < · · · < xt = 1̂] to zero, except the

summand in arity 1 and simplicial-cosimplicial degree zero corresponding to 0̂ = x−1 ≤ x0 = 1̂;
this summand is given by P(1) ∼= R · 1. We claim this π is a weak equivalence and that the map

(21) Ksd(P) ◦hP 1 Barsd(P) ◦Ksd(P) ◦hP 1 Barsd(P) ◦ 1 = Barsd(P)

is a weak equivalence as well. By Proposition 3.34, this implies that Barsd(P) is a model for the
∞-categorical bar construction of P. If P is projectively cofibrant as an sc-symmetric sequence,
then Barsd(P) is easily seen to be tamely cofibrant as an sc-symmetric sequence. It then follows
from Lemma 5.13 that the R-linear dual D∆(P) is a model for the Koszul dual derived PD

∞-operad KDpd(P).
It remains to verify the claim, for which it suffices to treat the case where P is a projectively

cofibrant cosimplicial operad; the case of a general sc-operad follows by taking geometric realisa-
tions (Remark 5.8). For a reduced cosimplicial operad P, let RModP(sSeq

sc
R ) be the category of

right P-modules in sc-symmetric sequences. Because P is cofibrant as a symmetric sequence, this
carries a simplicial model structure whose fibrations and weak equivalences are fibrations and
weak equivalences on the underlying symmetric sequences, as in Definition 5.11. Now note that
the map π factors into natural maps of sc-symmetric sequences (equipped with a right P-action)

π : Ksd(P) Bar(1,P,P) 1.

The map Bar(1,P,P) −→ 1 is the usual augmentation of the bar construction, which gives a
cofibrant replacement in the simplicial model category RModP(sSeq

sc
R ); in particular, it is a

weak equivalence.
The first map is the canonical augmentation of the linearised barycentric subdivision (Notation

5.37). Recall that this map is adjoint to a natural transformation θ : id −→ Ex of functors
RModP(sSeq

sc
R ) −→ RModP(sSeq

sc
R ). The map θ is a natural transformation between right

Quillen functors which is an weak equivalence on fibrant objects, since it is at the level of
the underlying symmetric sequences (Remark 5.38). This implies that sd −→ id is a natural
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transformation of left Quillen functors RModP(sSeq
sc
R ) −→ RModP(sSeq

sc
R ), which is a weak

equivalence on cofibrant objects. In particular, the map Ksd(P) −→ Bar(1,P,P) is a weak
equivalence between cofibrant left P-modules.

This shows that Ksd(P) −→ 1 is a cofibrant resolution of 1 as a right P-module. The map
(21) can then be identified with the map

Ksd(P) ◦P 1 Barsd(P) ◦Ksd(P) ◦P 1 Barsd(P) ◦ 1 = Barsd(P).∆

Since Ksd(P) ◦P 1 ∼= Barsd(P), this map is readily verified to be an isomorphism. □
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Appendix A. The PD surjections operad

The commutative operadComR admits various well-known explicit resolutions by Σ-cofibrant
dg-operads, like the Barratt–Eccles operad and the surjections operad [MS03, BF04]. In contrast,
the dual problem of finding an explicit (combinatorial) Σ-cofibrant resolution of the nonunital
cocommutative dg-cooperad coComnu

R has not yet been addressed in the literature.
The significance of such a Σ-cofibrant resolution comes from the Koszul dual problem of

trying to find a cofibrant chain model for the Lie operad (this problem seems to be folklore, and is
raised for instance in [DV15]). Indeed, a Σ-cofibrant model for the (non-counital) cocommutative
cooperad gives rise to a cofibrant model for the Lie operad by the cobar construction. A partial
result in this direction appears in [Deh17, Proposition 2.3], where the author constructs a certain
Σ-cofibrant cooperad Lie⋄3 and a map Lie⋄,s3 → coComnu

R from its operadic suspension which is
a resolution in low degrees.

The goal of this section is to present a solution to this problem by giving a construction of
SurR, the surjection dg-cooperad over a ring R, inspired by the surjections cooperad of McClure–
Smith.

Theorem A.1. Let R be a commutative ring. There exists an explicit Σ-cofibrant dg-cooperad
SurR in non-negative degrees, together with a quasi-isomorphism of dg-cooperads SurR →
coComnu

R to the cooperad of nonunital cocommutative coalgebras over R. We will refer to SurR
as the surjections cooperad.

The rest of this section will be devoted to proving Theorem A.1. We will first describe the
underlying symmetric sequence of SurR (from which Σ-cofibrancy will be evident), then define
a comultiplication on it, and finally prove that the structure described indeed forms a cooperad.
The existence of the quasi-isomorphism SurR → coComnu

R is then evident.

The underlying complex. The symmetric sequence underlying SurR agrees with the sym-
metric sequence underlying the (nonunital) surjections operad of McClure–Smith [MS03]. We
briefly recall its definition following the notation and conventions from Berger–Fresse [BF04]
(who denote it by X ).

Definition A.2. Let r be a set with r elements and let
〈
r + d

〉
be a linear order with r + d

elements; up to unique isomorphism, we identify
〈
r + d

〉
with {1, . . . , r + d}. A map (of sets)

u :
〈
r + d

〉
−→ r can be identified with an (ordered) sequence of elements in r

u =
(
u1, . . . , ur+d

)
.

Such a sequence is said to be degenerate if u :
〈
r + d

〉
−→ r is not surjective or if it sends two

consecutive elements in
〈
r + d

〉
to the same element in r.

Let SurR(r)d be the quotient of the free R-module on such sequences u, by the submodule
generated by the degenerate sequences. In other words, SurR(r) is freely generated by non-
degenerate sequences. The symmetric group Aut(r) acts in an obvious way on SurR(r)d.

Remark A.3. Non-degenerate sequences are often called non-degenerate surjections in [BF04];
we use the term sequences to highlight the ordering, which becomes important later.

Definition A.4 (Caesuras). Following [BF04], we call an element uα in a sequence u =(
u1, . . . , ur+d

)
in r a caesura if it is not the last of occurrence of that element in the sequence.

There are exactly d such caesuras in the sequence. We write u|| for the set of caesuras in u, with
its natural linear order.

Sign Rule A.5. Let u = (u1, . . . , ur+d) be a nondegenerate sequence in r. We associate a sign
±(u,α) to each uα in this sequence as follows. First consider all α for which the uα are caesuras;
these are given alternating signs ±, starting with +. Next consider all α for which uα occurs for
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the last time in the sequence; these uα are given the sign opposite to the sign associated to the
previous copy of the element uα ∈ r in the sequence (if there is no previous copy, we associate 0
to it, although this will not play a role). For example, we have the following element in SurR(4)4:(+

1
−
3
+
2
0
4
−
1
−
2
+
3
+
1
)
.

Note that the sign associated to uα only depends on (a) whether uα is a caesura or not and (b)
the subsequence

(
u1, . . . , uα

)
of elements preceding it.

The differential ∂ : SurR(r)d −→ SurR(r)d−1 is then given by removing elements from such
a sequence, together with the sign from Sign Rule A.5

∂
(
u1, u2, . . . , ur+d

)
=

r+d∑
α=1

±(u,α)

(
u1, . . . , ûα, . . . , ur+d

)
.

Note that if the element uα appears only once in the sequence, then removing it gives zero (since
the resulting sequence no longer describes a nondegenerate sequence).

Proposition A.6 ([MS03, Theorem 2.15c]). For every r ≥ 1, there is an Aut(r)-equivariant
quasi-isomorphism to the trivial representation

SurR(r) −→ R.

Proof. In degree 0, the map is theR-linear extension of the map sending every sequence (u1, . . . , ur)
to the unit 1. To see that this is a quasi-isomorphism, one can realise each SurR(r − {1}) as
a deformation retract of SurR(r), from which the result follows by induction. Indeed, define
i : SurR(r − {1}) → SurR(r) by i(u) = (1, u1, . . . , ur+d) and r : SurR(r) → SurR(r − {1})
by r(u) = (u2, . . . , ur+d) if u1 = 1 is the only occurrence of 1, and r(u) = 0 otherwise. It is
clear that ri = id; the homotopy h : SurR(r)d → SurR(r)d+1 between id and ir is given by
h(u) = (1, u1, . . . , ur+d). □

The cooperad structure. We will describe the cooperad structure on the symmetric sequence
SurR in terms of partial cocomposition maps. To this end, let r and s be two nonempty finite
sets and let v ∈ r. We denote by r⊔v s = r\{v}⊔s the set obtained by removing v and adding s.
The cocomposition of an (r + s− 1)-ary operation along v into an r-ary and an s-ary operation
is then a map of the form

∆v : SurR
(
r ⊔v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)
.

This map acts by replacing the first elements of s appearing in a sequence u by the element v
and removing the remaining ones.

More precisely, given a sequence u =
(
u1, . . . , up

)
in SurR

(
r ⊔v s

)
(which is of degree

p− r − s+ 1), its image under ∆v is as follows. Let
(
uα(1), . . . , uα(k)

)
be the subsequence con-

sisting of all elements in s (in particular, k ≥ s). Then we define ∆v

(
u1, . . . , up

)
to be

(22)

k∑
i=1

±||

(
u1, . . . ,

v
���uα(1) , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), . . . , uα(k)

)
.

This gives a sequence of elements in r, which may be degenerate in case the original sequence has
consecutive elements in s. Furthermore, one takes the sequence uα(i), . . . , uα(k) of elements in s;
this may either be degenerate or may not exhaust all of s. When degenerate or non-exhaustive
sequences appear, the corresponding term is zero. This typically means that many terms in
the above sum are zero: if uα(1), . . . , uα(i−1) are not all caesuras, then the second factor is not
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exhaustive and the term vanishes. Finally, the sign ±|| is dictated by the following Koszul sign
rule for caesuras:

Sign Rule A.7 (Koszul sign rule for caesuras). We will write ±|| for the sign obtained by the
following rule: whenever in a formula a caesura passes along another one, one multiplies by −1.
Explicitly, consider a term in the cocomposition (22) of the form v ⊗w for certain sequences v
and w. Then there is a bijection u|| ∼= v|| ⋆w|| between the linear orders of caesuras in u and
those in v and w (where ⋆ denotes the addition of ordinals) and the sign ±|| is the sign of this
bijection.

Note that the sign rule for caesuras refines the usual Koszul sign rule, in the sense that
under the symmetry isomorphism SurR(r) ⊗ SurR(s) ∼= SurR(s) ⊗ SurR(s),

(
u1, . . . , ur+d

)
⊗(

v1, . . . , vs+e

)
and

(
v1, . . . , vs+e

)
⊗

(
u1, . . . , ur+d

)
agree up to the sign ±|| given by the number

of times two caesuras are interchanged.

Example A.8. Consider the sequence (1,2,3, 1, 2, 3) ∈ SurR(3)3 (numbers in bold are the
caesuras) and write 3 = {1, v} ◦v {2, 3}. The partial cocomposition ∆v(1, 2, 3, 1, 2, 3) along v is
then given by

(1, v, 1)⊗ (2, 3, 2, 3) + (1, v, v, 1)⊗ (3, 2, 3) + (1, v, v, 1, v)⊗ (2, 3) + (1, v, v, 1, v, v)⊗ (3)

= (1, v, 1)⊗ (2, 3, 2, 3) + 0⊗ (3, 2, 3) + 0⊗ (2, 3) + 0⊗ 0

= (1, v, 1)⊗ (2, 3, 2, 3).

There are no caesuras going over other caesuras and therefore all signs are +.
If we consider instead the sequence (1,2,1,3, 1, 2, 3) ∈ SurR(3)4 and we decompose along the

same element v, we get

∆v(1, 2, 1, 3, 1, 2, 3) = −(1, v, 1, 1)⊗ (2, 3, 2, 3) + (1, v, 1, v, 1)⊗ (3, 2, 3) + (1, v, 1, v, 1, v)⊗ (2, 3) + 0

= −0 + (1, v, 1, v, 1)⊗ (3, 2, 3) + (1, v, 1, v, 1, v)⊗ (2, 3) + 0.

The first sign arises since the first 2, which is a caesura, went over the second 1 which is also a
caesura.

Remark A.9. Any caesura uβ in
(
u1, . . . , up

)
will appear as a caesura in exactly one of the two

factors in the expression for ∆v(u): if uβ ̸∈ s, it will appear as a caesura in the first factor and
if it is one of the uα(i), . . . , uα(k), it will appear as a caesura in the second factor. Finally, all
uα(1), . . . , uα(i−1) will appear as caesuras in the first factor (namely as all but the last copy of
v).

Observe that the maps ∆v are well-defined: such maps send a degenerate sequence to a sum of
terms, each of which containing a degenerate sequence and likewise for non-surjective sequences.

Proposition A.10. For r, s ≥ 1, the formulas ∆v : SurR
(
r ⊔v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)

defined above endow {SurR(r)} with the structure of a dg-cooperad.

The proof of this proposition is a lengthy verification of all the axioms. Postponing this for
the moment, we record some simple consequences.

Corollary A.11. The maps from Proposition A.6 induce a quasi-isomorphism of dg-cooperads
SurR −→ coComnu

R = π0(SurR).

Proof. All we need to check is that the map is compatible with the partial cocompositions in
degree 0. One readily checks that any partial composition of a permutation in SurR(r)0 is a
tensor product of two permutations with a + sign (there are no caesuras). □

Notice that while the degree 0 part of the surjections cooperad is a Σ-free dg-cooperad with un-
derlying symmetric sequence SurR(r)0 = k[Σr], this cooperad is not the nonunital coassociative
cooperad; this should not be expected, since there is no map coAssnuR → coComnu

R .
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Remark A.12 (Surjections cooperad in degree 0). One can show that degree 0 piece of the
surjection cooperad (SurR)0 is isomorphic to the linear dual of the operad Zinb governing
Zinbiel algebras. Recall that such Zinbiel algebras are chain complexes equipped with a binary
operation ≺ satisfying (x ≺ y) ≺ z = x ≺ (y ≺ z + (−1)|y||z|z ≺ y) [LV12, Section 13.5].

Indeed, we can define a map (SurR)0 → CofreeCoop(Rµ ⊕ Rµ(12)) into the cofree cooperad
cogenerated by an arity 2 element µ with free Σ2 action, using that SurR(2)0 ∼= R[Σ2]. This
map restricts to a map (SurR)0 → Zinb∨ ⊆ CofreeCoop(Rµ⊕ Rµ(12)). This map is necessarily
injective, since it is injective on cogenerators. Since dim((SurR)0(n)) = dim(Zinb(n)) = n!, it
is an isomorphism.

Proof of Proposition A.10. We start by observing that for nonempty finite sets r and s and
v ∈ r, the map ∆v : SurR

(
r ⊔v s

)
−→ SurR

(
r
)
⊗ SurR

(
s
)
is equivariant with respect to the

group Aut(r \ v)×Aut(s) ⊆ Aut(r ⊔v s) of permutations of r fixing v and of permutations of s.
To show that the dg-cooperad axioms are satisfied we need to check counitality, coassociativity
(both parallel and sequential), and compatibility with the differential.

Counitality. Note that SurR(1) ∼= R is spanned by the trivial one term sequence (1); this gives
the counit. For v ∈ r and a sequence u in SurR(r ⊔v 1), the formula for the cocomposition has
only one term in which the second factor is nonzero, for i = k, giving

∆v

(
u1, . . . , up

)
=

(
u1, . . . ,

v

�1, . . . ,
v

�1, . . . , up
)
⊗ (1).

In other words, one just replaces all copies of the element 1 ∈ 1 by v. This shows that the
cocomposition is right counital; the verification of left counitality is similar.

Parallel coassociativity. Let v1, v2 ∈ r be two distinct elements, and s1 and s2 two sets. We
consider the set r ⊔(v1,v2) (s1, s2) obtained by replacing vi ∈ r by si. Notice that

r ⊔(v1,v2) (s1, s2) = (r ⊔v1 s1) ⊔v2 s2 = (r ⊔v2 s2) ⊔v1 s1.

Consider a sequence u =
(
u1, . . . , up

)
∈ SurR(r ⊔(v1,v2) (s1, s2))d. We have to verify that

∆v2 ◦∆v1(u) ∈ SurR(r)⊗ SurR(s2)⊗ SurR(s1)

agrees with ∆v1 ◦∆v2(u) upon permuting the SurR(s1) and SurR(s2) pieces. We start by doing
this verification up to the Koszul sign induced by the caesuras.

Let uα(1), . . . , uα(k) be the subsequence of elements in s1 and uβ(1), . . . , uβ(l) for the subse-
quence of elements in s2. Then ∆v2

◦∆v1(u1, . . . , up) is given by

l∑
j=1

k∑
i=1

±||

(
u1, . . . ,

v1
���uα(1) ,

v2
���uβ(1) . . . ,

v1
���uα(i) ,

v2
���uβ(j) , . . . , ûα(i+1), ûβ(j+1), . . . , ûα(k), ûβ(l), . . . , up

)
⊗
(
uβ(j), uβ(j+1), . . . , uβ(l)

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)
.

In words, one just replaces all uα(1), . . . , uα(i) by v1 and removes the uα(i+1), . . . , uα(k), and
similarly one replaces uβ(1), . . . , uβ(j) by v2 and removes the uβ(j+1), . . . , uβ(l). In the first factor,
the various uα and uβ need not appear in the order they are depicted: for instance, uβ(1) may
precede uα(1). This is clearly symmetric upon exchanging v1 ↔ v2 and s1 ↔ s2. Using Sign
Rule A.7 it is immediate that the signs ±|| produced in the computation of ∆v2 ◦∆v1 are also
produced in ∆v1

◦∆v2 .
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Sequential coassociativity. We now consider sets r, s and t and let v ∈ r, w ∈ s. We will address
coassociativity on the total set (r ⊔v s) ⊔w t = r ⊔v

(
s ⊔w t

)
. Concretely, let u be a sequence of

SurR(r ⊔v s ⊔w t)d and we will show that

∆v ◦∆w(u) = ∆w ◦∆v(u) ∈ SurR(r)⊗ SurR(s)⊗ SurR(t).

Let
(
uα(1), . . . , uα(k)

)
be the subsequence of elements in s⊔w t and let

(
uα(i1), . . . , uα(iω)

)
be the

(sub)subsequence of elements in t. Then ∆w ◦∆v(u) is given by

k∑
i=1

∑
λ : iλ≥i

±||

(
u1, . . . ,

v
���uα(1) , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), uα(i+1), . . . ,

w
���uα(i1) , . . . ,

w
���uα(iλ) , . . . , ̂uα(iλ+1), . . . , ûα(iω), . . . , uα(k)

)
⊗
(
uα(iλ), uα(iλ+1), . . . , uα(iω)

)
.

In words, from
(
u1, . . . , up

)
one first removes the part of the subsequence

(
uα(1), . . . , uα(k)

)
after

step i and replaces the part of the subsequence before step i by copies of v. Next, from the
sequence

(
uα(i), uα(i+1), . . . , uik

)
one removes the part of the subsubsequence

(
uα(i1), . . . , uα(iω)

)
after the step λ and replaces the part of the subsubsequence before step λ by copies of w.

Going ‘right-to-left’ instead, we see that every summand above is obtained by first picking out
a subsequence

(
uα(iλ), uα(iλ+1), . . . , u(iaω

)
)
of

(
u1, . . . , up

)
of arbitrary length, then extending it

to a larger subsequence (determined by α(i) and α(k)) while picking a number i1 ≤ iλ.
Note that these are precisely the terms obtained when computing ∆v ◦∆w

(
u1, . . . , up

)
, except

that the latter may also produce terms in which i1 > iλ. Those additional terms are all zero, since
the middle sequence in SurR(s) is no longer exhaustive (it does not contain any w). Because in
both computations, the signs arise from the same permutations of caesuras, they agree and we
conclude that ∆v ◦∆w

(
u1, . . . , up

)
= ∆w ◦∆v

(
u1, . . . , up

)
.

Compatibility with the differential. It remains to check that the cocomposition is compatible
with the differential ∂. Let u ∈ SurR(r ⊔v s)d and let

(
uα(1), . . . , uα(k)

)
be the subsequence of

elements in s. Up to signs, ∂ ◦∆v(u) is given by

∂

k∑
i=1

(
u1, . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)
=

∑
uβ ̸∈s

k∑
i=1

(
u1, . . . , ûβ , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), uα(i+1), . . . , uα(k)

)

+

k∑
i=1

∑
j≤i

(
u1, . . . ,

v̂
���uα(j) , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), uα(i+1), . . . , uα(k)

)

+

k∑
i=1

∑
j≥i

(
u1, . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(j), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), . . . , ûα(j), . . . , uα(k)

)
Here we have split the result into the three types of summands above corresponding to the three
kinds of elements which can be removed by the differential: (1) an element uβ ∈ r \ {v}, (2) a
copy of v put in the place of uα(j) ∈ s, or (3) an element uα(j) ∈ s.
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On the other hand, we have that ∆v ◦ ∂(u) is given up to signs by

∑
uβ ̸∈s

∆v

(
u1, . . . , ûβ , . . . , up

)
+

k∑
j=1

∆v

(
u1, . . . , ûα(j), . . . , up

)
=

k∑
i=1

∑
uβ ̸∈s

(
u1, . . . , ûβ , . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗

(
uα(i), uα(i+1), . . . , uα(k)

)

+

k∑
j=1

∑
i>j

(
u1, . . . , ûα(j), . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), uα(i+1), . . . , uα(k)

)

+

k∑
j=1

∑
i<j

(
u1, . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(j), . . . , ûα(k), up

)
⊗

(
uα(i), . . . , ûα(j), . . . , uα(k)

)
The first type of summand corresponds to the case where the differential removes an element
not in s whereas the second and third line describe the cocomposition after one has removed the
element uα(j) from the sequence.

We first check that up to signs the two computations agree and we will do a careful sign
verification afterwards. It is clear that the first type of summands agrees in both formulas. The
other summands are almost the same, except that ∂ ◦ ∆v

(
u1, . . . , up

)
also includes the cases

where i = j (twice). One easily sees that such terms pairwise cancel each other out. To be
precise, the difference ∂ ◦∆v

(
u1, . . . , up

)
−∆v ◦ ∂

(
u1, . . . , up

)
is (as usual up to sign) given by

k∑
i=1

(
u1, . . . ,

v
����uα(i−1) , . . . ,

v̂
���uα(i) , . . . , ûα(i+1), . . . , ûα(k), . . . , up

)
⊗
(
uα(i), uα(i+1), . . . , uα(k)

)(23)

+

k∑
i=1

(
u1, . . . ,

v
���uα(i) , . . . , ûα(i+1), . . . , ûα(j), . . . , ûα(k), . . . , up

)
⊗

(
ûα(i), uα(i+1), . . . , uα(k)

)
.

In the first line, the term corresponding to i = 1 is zero (the first factor does not contain any v)
and in the second line, the term corresponding to i = k is zero. For i > 1, the i-th term in the
first line is precisely cancelled by the (i − 1)-st term in the second line; we will verify that the
signs match in Case (vi) below.

The signs of ∂ ◦∆v and ∆v ◦ ∂. Recall that the differential ∂ acts by removing from a sequence
u the element uβ for all j, with sign ±u,β (Sign Rule A.5) determined by (a) whether or not uβ
is a caesura and (b) the caesuras appearing in u1, . . . , uγ , where uγ denotes the largest caesura
with γ ≤ β and uβ = uγ .

On the other hand, Sign Rule A.7 dictates that ∆v produces a sign which is equal to the sign
of an unshuffle of caesuras: cutting

(
u1, . . . , up

)
along v in SurR(r⊔v s) carries the sign ±|| given

by the exchange of caesuras in
(
uα(i), uα(i+1), . . . , uα(k)

)
∈ SurR(s) and the caesuras among the

elements uα(i)+1, . . . , up ∈ SurR(r).
In order to check the difference in signs between ∆v ◦ ∂ and ∂ ◦∆v we will go through various

cases, denoting by uβ the element removed by the differential and by uα(i) the element at which
one cuts:

(i) If β < α(i). Removing uβ does not change the caesuras after uα(i) and cutting at uα(i)
does not change the amount of caesuras before uβ , nor whether uβ is a caesura. The signs
therefore agree.
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(ii) If α(i) < β and uβ is a caesura which is not in s. In this case, cutting at uα(i) removes
the caesuras uα(c) ∈ s before uβ which satisfy α(i) ≤ α(c) < β (all other caesuras remain
the same or are changed into caesuras labelled by v); the sign therefore changes by the
number of such uα(c).

On the other hand, after removing uβ , the sign from ∆v changes by this same number:
indeed, the caesuras uα(c) ∈ s with α(i) ≤ α(c) < β need to be moved passed one less
caesura. We conclude that in this case the signs agree.

(iii) If α(i) < β and uβ is a non-caesura which is not in s. Let γ < β be the largest number
such that uγ = uβ . Since ±u,β = −(±u,γ) (Sign Rule A.5), the previous argument
shows that after cutting, the sign of the differential is changed by the number of caesuras
uα(c) ∈ s such that α(i) ≤ α(c) < γ. Similarly, after removing uβ the element uγ is no
longer a caesura, so that the sign from ∆v changes by the number of caesuras uα(c) ∈ s
with α(i) ≤ α(c) < γ as well. In total the signs coincide.

(iv) If α(i) < β and uβ is a caesura belonging s. Since uβ ∈ s, β = α(b) for some b. Upon
cutting at α(i), there are more caesuras before uα(b): indeed, the caesuras uγ ∈ r \ v with
γ > α(b) now precede uα(b) and the sign of the differential changes by their number.

On the other hand, when cutting at α(i) after having removed uα(b), one no longer has
to move uα(b) past the caesuras uγ ∈ r \ v with γ > α(b). Thus, in this case, the signs
also agree.

(v) If α(i) < β and uβ ∈ s is not a caesura. We again write β = α(b) and suppose that uα(c)
is the preceding copy of that same element in s (i.e. c < b is the biggest number such
that uα(c) = uα(b)). There are two subcases:

• α(i) < α(c): Since the sign of the differential at uα(b) is minus the sign of uα(c), Case
(iv) shows that after cutting at uα(i), the sign of the differential changes by the number
of caesuras uγ ∈ r \ v with γ > α(c).
On the other hand, after removing uα(b) the element uα(c) is no longer a caesura,
therefore moving it past all caesuras in r \ v after it, no longer contributes to the sign
of ∆v. In total the sign therefore remains the same.

• α(c) < α(i). Since the sign of the differential at uα(b) is minus the sign of uα(c), Case
(i) shows that the sign of the differential is left unchanged. Similarly, removing uα(b)
does not change the caesuras appearing after uα(i), so the signs for ∆v do not change
either.

(vi) With all cases considered, it remains to identify the sign of the i-th term in the first row
of (23) with minus the sign of the (i−1)-st term in the second row. Note that both terms
are zero if uα(i−1) is not a caesura.

Now the sign of the i-th term in the first row is given by (a) the number of caesuras
uγ with γ ≤ α(i − 1) (coming from the differential) and (b) the sign of the unshuffle of
the caesuras in s and r \ v appearing in places ≥ α(i) (coming from ∆v).

On the other hand, the sign of the (i−1)-st term in the second row is given by (a1) the
number of caesuras uγ ∈ r \ v, (a2) the number of caesuras uα(b) ∈ s with α(b) < α(i− 1)
(together these give the sign of the differential) and (b) the sign of the unshuffle of the
caesuras in s and r \ v appearing in places ≥ α(i− 1) (coming from ∆v).

The difference between the two different signs (a) coming from the differential is given
by minus the parity of the number of caesuras uγ ∈ r \ v with γ > α(i − 1). The
difference between the signs (b) coming from ∆v is the parity of the number of times
uα(i−1) is moved past a caesura in r \ v after it. The signs differ therefore by −1 and the
two terms indeed cancel.

This concludes the proof of Proposition A.10 and therefore also Theorem A.1. □
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The PD surjections operad. For most of our purposes we are more interested in the linear
dual of the cooperad SurR, we conclude by giving an explicit description of the operad Sur∨R,
which we dub the PD surjections operad.

Definition A.13 (PD surjections operad). The PD surjections operad Sur∨R is the R-linear
dg-operad defined as follows:

• For each nonempty finite set r = {1, . . . , r}, let Sur∨R(r) be the free graded R-module spanned
in each degree −d ≤ 0 by by (ordered) sequences u = (u1, . . . , ur+d) that are non-degenerate
in the sense that each 1, . . . , r appears in the sequence and uα ̸= uα+1 for α = 1, . . . , r+d−1.
The symmetric group Σr acts on such nondegenerate sequences by permuting each individual
uα.

• Each Sur∨R(r) comes equipped with a differential sending a nondegenerate sequence u to the
(signed) sum of all nondegenerate sequences u+ obtained by adding an element to u. More
precisely,

∂
(
u1, u2, . . . , ur+d

)
=

r+d+1∑
α=1

∑
uα−1 ̸=v ̸=uα

±u+,α

(
u1, . . . , uα−1, v, uα . . . , ur+d

)
.

Here the sign ±u+,α is the sign associated to the element v in u+ = (u1, . . . , v, . . . , ur+d), as
in Sign Rule A.5.

• The operad structure is determined by partial composition maps

◦k : Sur∨R(r)⊗ Sur∨R(s)→ Sur∨R
(
(r − {k}) ⊔ s

)
along k ∈ r, defined as follows. For any two sequences u = (u1, . . . ur+d) in r and v =
(v1, . . . , vs+e) in s, let (uα(1), . . . , uα(i)) denote the subsequence of u with values k. We then
define

u◦kv =
∑
±||

(
u1, . . . ,

s1
���uα(1) , . . . ,

si−1

����uα(i−1) , . . . ,
v1

���uα(i) , uα(i)+1, . . . , v2, . . . , uβ , . . . , vs+e, . . . , ur+d

)
.

More precisely, we take the sum of all sequences w in (r − {k}) ⊔ s obtained from u by the
following procedure:

– replace the last occurence of k in the sequence u by v1.

– replace the occurences of k that are caesuras by any choice of elements s1, . . . , si−1 ∈ s.
– shuffle the elements uα(i)+1, uα(i)+2, . . . , ur+d appearing after the last occurence of k and

the elements v2, . . . , vs+e.

The sign ±|| is determined by how many caesuras went past each other to reach the final
sequence w, as in Sign Rule A.7. Explicitly, for any sequence w as above, there is a (non-
ordered) bijection w|| ∼= u|| ⋆v|| between the linearly ordered sets of caesuras (Definition A.4)
of w and the concatenation of the linear orders of caesuras in u and v. Then ±|| is the sign
of this bijection.

We conclude with the following result about the Koszul dual of the PD surjections operad:

Theorem A.14. The cobar construction of the surjections cooperad gives a cofibrant replacement
Ω(SurR)

∼−→ LiesR of the R-linear shifted Lie operad. Equivalently, there is an equivalence of

dg-operads KD(Sur∨R)
∼−→ LiesR.

Proof. The first assertion follows from the fact that SurR is a Σ-cofibrant resolution of coComnu
R

and the fact Ω(coComnu
R ) ≃ LiesR [Fre04, Theorem 6.8]. Since SurR(r) is a finite rank free R-

module in each degree, there is an isomorphism KD(Sur∨R)
∼= Ω(SurR). □
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Appendix B. Free algebras in monoidal ∞-categories

The purpose of this section is to record an existence result for free associative algebras in
monoidal ∞-categories where the tensor product preserves colimits in the first variable, but not
in the second (such as symmetric sequences with the composition product). This is due to Kelly
[Kel80] in the case of ordinary categories and, as we will show, the argument from loc. cit. carries
over to ∞-categories.

Construction B.1. Let C be a monoidal ∞-category with coproducts and sequential colimits,
which are preserved by −⊗X for each X ∈ C. For each X ∈ C, we inductively define a sequence
of objects in C by

T (0)(X) = 1 T (n)(X) = 1⨿
(
X ⊗ T (n−1)(X)

)
.

We define maps in : T
(n−1)(X) −→ T (n)(X) by setting i1 : 1 −→ 1⨿X to be the obvious inclusion

and

in : 1⨿
(
X ⊗ T (n−2)(X)

)
1⨿

(
X ⊗ T (n−1)(X)

)
.

id⨿(X⊗in−1)

Theorem B.2. Let C be a monoidal ∞-category with coproducts and sequential colimits, such
that each (−)⊗X preserves finite coproducts and sequential colimits, while each X⊗(−) preserves
sequential colimits. For every object X ∈ C, there then exists a T (X) ∈ Alg(C) together with
a map X −→ T (X) in C which exhibits T (X) as the free associative algebra on X. In other
words, the forgetful functor

forget : Alg(C) C

admits a left adjoint T . Furthermore, there is a natural equivalence of objects in C

T (X) ≃ colimn T
(n)(X).

The remainder of this section is devoted to a proof of Theorem B.2; throughout we assume
that C is a monoidal∞-category with the properties appearing in the theorem. The main idea of
the proof will be to deduce Theorem B.2 from a statement about left modules. More precisely,
recall that C is the free right C-module∞-category on a single object (the unit 1), so that there is
an equivalence of monoidal∞-categories from C to the∞-category of right C-linear endofunctors
of C [HA, §4.7.1]

C EndC(C); X X ⊗ (−).∼

For an object X ∈ C, write FX : C −→ C for the right C-linear functor X ⊗ (−). We will then
denote by LActFX

(C) the lax equaliser of FX and the identity, i.e. the pullback

LActFX
(C) Fun(∆[1],C)

C Fun
(
{0},C

)
× Fun

(
{1},C

)
.

Forget

(FX ,id)

This is a pullback diagram of right C-module ∞-categories. One can identify LActFX
(C) with

the ∞-category of objects M ∈ C equipped with an action map X ⊗M −→M (without further
structure); the left vertical functor takes the underlying object in C.

Proposition B.3. The forgetful functor LActFX
(C) −→ C admits a right C-linear left adjoint

Free, with the following properties:

(1) There is a natural equivalence of right C-linear endofunctors of C

Forget ◦ Free(Y ) ≃ colimn

(
T (n)(X)⊗ Y

)
.

(2) The free-forgetful adjunction is a monadic adjunction.
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Proof. Write D = Fun(N,C) for the category of sequences Y0 −→ Y1 −→ . . . in C and let
LActFX

(D) be the lax equaliser of the functors Y• 7→ X ⊗ Y• and Y• 7→ Y•+1. In other words,
LActFX

(D) is the∞-category of sequences M• equipped with a natural map X⊗M• −→M•+1.
The forgetful functor LActFX

(C) −→ C then factors as the composite of right C-linear functors

LActFX
(C) LActFX

(D) C.cst ev0

The first functor, taking constant sequences, admits a left adjoint sending M• to colimnMn,
since X ⊗ (−) preserves sequential colimits. We claim that the second functor admits a left
adjoint sending Y to the sequence T (•)(X)⊗ Y .

To see this, note that T (•)(X) ⊗ Y admits a natural left X-module structure, given by the
obvious inclusion

λ : X ⊗
(
T (n) ⊗ Y

)
⊆

(
1⨿

(
X ⊗ T (n)(X)

))
⊗ Y = T (n+1)(X)⊗ Y.

Note that T (•)(X)⊗Y is naturally equivalent to Y in degree 0. We therefore need to prove that
evaluation at 0 induces a natural equivalence

(24) MapLActFX
(D)

(
T (•)(X)⊗ Y,M•

)
MapC(Y,M0).

∼

To see this, note that the X-linear mapping space from T (•)(X) ⊗ Y to M• can be described
inductively: a map T (•)(X)⊗Y −→M• is given by a sequence of maps fn : T

(n)(X)⊗Y −→Mn

together with commuting cubes

X ⊗ T (n−1)(X)⊗ Y T (n)(X)⊗ Y

X ⊗ T (n)(X)⊗ Y T (n+1)(X)⊗ Y

X ⊗Mn−1 Mn

X ⊗Mn Mn+1.

λ

in

fn

in
λ

X⊗fn

fn+1

Unraveling the definitions and using that (−) ⊗ Y preserves coproducts, one sees that the top
square is coCartesian. Consequently, given f0, . . . , fn, there is a contractible space of maps fn+1

making the above cube commute. Proceeding inductive, one then finds that the map (24) is an
equivalence.

The description of the left adjoint as colimn T
(n)(X)⊗Y gives property (1) and shows that it

is right C-linear (since the tensor product commutes with sequential colimits in the first variable).
For (2), note that the free-forgetful adjunction satisfies the conditions of the Barr–Beck–Lurie
theorem [HA, Theorem 4.7.3.5]. Indeed, the forgetful functor clearly detects equivaleces. and if
M• is a simplicial diagram of X-modules which is split in C, then it is also split in LActFX

(C):
this follows immediately from the fact that X ⊗

(
colimM•

)
≃ colim(X ⊗ M•) for any split

simplicial diagram M• in C. □

Proof (of Theorem B.2). Fix an object X ∈ C and let FX : C −→ C be its image under the
monoidal equivalence C ≃ EndC(C). We will write TX ∈ Alg(EndC(C)) for the right C-linear
monad associated to the free-forgetful adjunction LActX(C) ⇆ C from Proposition B.3. Note
that there is a natural map η : FX −→ TX in EndC(C), corresponding to the obvious map

X −→ T (1)(X) = 1⨿X −→ colimn T
(n)(X) = T (X)
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under the monoidal equivalence C ≃ EndC(C). It therefore suffices to show that η exhibits TX
as the free algebra on FX in EndC(C).

To see this, let T ∈ Alg(EndC(C)) be any right C-linear monad and denote byGT : AlgT (C) −→
C the right C-linear forgetful functor from the ∞-category of T -algebras. Recall that there is
a left action of EndC(C) on the ∞-category FunC(AlgT (C),C) of right C-linear functors, given
by postcomposition. By the right C-linear version of [HA, Lemma 4.7.3.1], the monad T then
arises as the endomorphism algebra of GT ∈ FunC(LModT (C),C). We therefore have to show
that restriction along η defines an equivalence

η∗ : MapAlg(EndC(C))

(
TX ,End(GT )

)
MapEndC(C)

(
FX ,End(GT )

)
.∼

Using the universal property of the endomorphism algebra End(GT ), the domain can be identified
with the space of TX -module structures TX ◦ GT −→ GT . Such a TX -module structure on GT

simply endows each T -algebra with a natural TX -algebra structure; in other words, the space of
such TX -module structures on GT is equivalent to the space of right C-linear factorisations of
GT as

AlgT (C) AlgTX
(C)

C.
GT GTX

Likewise, MapEndC(C)

(
FX ,End(GT )

)
can be identified with the space of natural maps FX ◦

GT −→ GT , i.e. with factorisations of GT over LActFX
(C). The assertion then follows from the

fact that restriction along η determines an equivalence AlgTX
(C)

∼−→ LActFX
(C), by Proposition

B.3. □

Remark B.4. The proof of Theorem B.2 provides an additional property of the free algebra
T (X): there is an equivalence between left T (X)-modules in C and X-modules, i.e. objects
equipped with a map X ⊗M −→M .
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