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Obstructions
In many different situations, the answers to 
the above question turn out to exhibit the 
same general pattern: one can write down 
a sequence of vector spaces , , ,H H H0 1 2 f 
that controls the infinitesimal deforma-
tions of X0 in the following way:

1. There is a bijection between first or-
der deformations of X0 and the vector 
space H1.

2. There is a bijection between first order 
automorphisms of X0 and H0.

3. Suppose that Xn is an n-th order defor-
mation of X0. Then one can construct a 
canonical element

( )ob X Hn
2!

called its obstruction class, with the fol-
lowing property: Xn can be extended to 
a deformation of order n 1+  if and only if 

( ) .ob X 0n =

In this case, there is a bijection between 
the set of possible ( )n 1+ -st order ex-
tensions and the cohomology group H1.

In fact, these vector spaces arise most 
naturally from a cochain complex of vector 
spaces

(where d d 0=% ) by taking cohomology 
groups
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For example, Kodaira and Spencer [3] have 
shown that the infinitesimal deformations 
of a complex manifold are controlled by 
the Dolbeault complex

of order n 1' + . More precisely, any formal 
deformation arises as the limit

{ }lim X
n

0n 1

"3
' ' =+

of a compatible sequence of n-th order in-
finitesimal deformations, i.e. deformations 
modulo n 1' + . To produce formal deforma-
tions, one is therefore lead to the following 
question:

Question. Suppose we have found an infin-
itesimal deformation { }X 0n 1' ' =+  of order 
n, can we extend it to a deformation of 
order n 1+ ? If yes, how many possible ex-
tensions are there?

When deforming an associative product 

0n , this comes down to inductively find-
ing the terms nn  for which the resulting 
operation n' is associative up to terms of 
order n 1' + . The infinitesimal deformations 
of a variety are best described using the 
language of schemes: one deforms X0 into 
a scheme over ( [ ]/( ))Spec C n 1' ' + .

In geometric situations like the last one, 
infinitesimal deformations have an addi-
tional local-to-global property: we can first 
deform X0 locally (deform various small 
open subsets of X0) and then try to glue 
all these local deformations together. We 
will come back to such ‘local’ deformation 
problems at the end of the text, where we 
discuss how they can be studied in terms 
of Lie algebroids.

Deformations and perturbations are stud-
ied in many different branches of mathe-
matics.

 – In dynamical systems, one may be in-
terested in the various ways to perturb 
an orbit and how this affects its period-
icity. On the other hand, one can also 
perturb the dynamical system itself, e.g. 
by adding higher order corrections to its 
Hamiltonian.

 – In geometry, one can consider families 
of complex or algebraic varieties de-
forming a fixed variety X0.

 – In a more algebraic setting, one can 
try to deform an associative product
: A A A0 $#n  on a vector space into 

another associative product of the form

( , ) ( , ) ( , )

( , ) .

a b a b a b
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In all these different situations, one poses 
a similar kind of question: given a certain 
mathematical object X0, how many fami-
lies { }X'  of ‘nearby objects’ around X0 are 
there? In particular, can X0 be deformed 
into something else or is it rigid, i.e. un-
changed under any deformation?

To address such questions, a first step 
is to study the formal deformations of X0. 
Concretely, this means that we allow for-
mal power series in ', for example in the 
formula for the deformed product n'.

One can study such formal deforma-
tions inductively, by working up to terms 
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of these works is the following geometric 
idea: let us think about the object X0 that 
we want to deform as a single point inside 
some space M. From this perspective, a 
deformation of X0 is simply a path inside 
the space M.

Likewise, a first order deformation of X0 
should be an infinitesimal path in M, i.e. 
a tangent vector. This gives a geometric 
interpretation of the vector space ( )H g1 , 
as the tangent space

( ) .H T Mg X
1

0
=

This line of thought suggests a possible 
solution to the above problem: we may 
try to reconstruct the dg-Lie algebra con-
trolling deformations of X0 from the in-
finitesimal geometry of a putative moduli 
space M.

Most algebro-geometric objects can in-
deed be organized into such moduli spac-
es. Probably the most classical example of 
a moduli space is projective space ( )P Cn , 
whose points are lines in Cn 1+ . Likewise, 
an orbit of a dynamical system can it-
self be considered as a point in the orbit 
space, and an associative algebra can be 
thought of as a point in the ‘moduli space 
of associative algebras’.

We will be rather open-minded about 
the precise meaning of ‘moduli space’ 
(technically, it is best described as a func-
tor of points). Instead of providing more 
details, let us just informally describe two 
ways to get examples:

a. As solution sets of (polynomial) equa-
tions.

b. As quotients where we (smoothly) glue 
together points.

For example, there is a moduli space of 
associative algebra structures on a vector 
space V, constructed as follows. We start 
with the vector space of all bilinear maps

:V V V"7n

and consider the (quadratic) function 
( )As7n n  sending each such n to the tri-

linear map

( ( , ), ) ( , ( , )) .a b c a b cn n n n-

The solution set { : ( ) }As 0n n =  is precise-
ly the subspace of associative multiplica-
tions. This is not quite the correct moduli 
space yet: in addition, we should identify 
two associative multiplications if they are 
related by a change of coordinates, i.e. by 
conjugating with some ( )GLT V! .

The additional structure of the Lie bracket 
on g can be used to explicitly compute the 
obstruction classes mentioned above. For 
example, the map ob2 is simply given by

( ) [ , ] .ob x x x2
1

2 =

There are more complicated formulas for 
the n-th order obstructions, in terms of op-
erations resembling the Massey products 
from algebraic topology (and division by 
!n ). This natural appearance of Lie brack-

ets in deformation theory has lead to the 
following:

Principle (Deligne). Every deformation 
problem over a field of characteristic zero 
is controlled by a differential graded Lie 
algebra.

In fact, there is a very explicit mecha-
nism by which a dg-Lie algebra g controls 
deformations. Indeed, infinitesimal defor-
mations of X0 correspond bijectively to in-
finitesimal deformations of the element 0 
in the space of elements x g1!  that satisfy 
the Maurer–Cartan equation

( ) [ , ] .d x x x2
1 0+ =

(One furthermore has to take the quotient 
by a certain equivalence relation; see [2] 
for more details.)

In this way, dg-Lie algebras provide an 
efficient tool to study deformation prob-
lems, sometimes with striking results. 
A famous example is Kontsevich’ construc-
tion of a deformed (noncommutative) 
star-product on the algebra of functions 
on a Poisson manifold: this relies on the 
(difficult) algebraic fact that its Hochschild 
complex is formal [4].

On the other hand, the above heuristic 
by no means gives a concrete recipe to 
find the relevant dg-Lie algebra. Instead, 
one typically needs some creativity and 
skill to come up with the dg-Lie algebra 
controlling the deformation problem at 
hand. Deligne’s principle therefore con-
fronts us with the following challenge:

Problem. Given a deformation problem, 
construct in a natural way the dg-Lie alge-
bra that controls it.

Geometric perspective
There has been a lot of work on giving a 
systematic solution to the above problem, 
in terms of geometry. The starting point 

The zeroth cohomology group of this com-
plex consists of holomorphic vector fields: 
these are precisely the infinitesimal auto-
morphisms of X0.

Similarly, the deformations of an asso-
ciative algebra A are controlled by its Hoch-
schild complex [1]: this cochain complex is 
given in degree i by the vector space of 
multilinear maps 

.A Ai 1$7 -

The differentials are built by compos-
ing with the multiplication 0n  on A (us-
ing the Gerstenhaber bracket discussed 
below). The first Hochschild cohomology 
group consists of bilinear maps 1n  such 
that ( , ) ( , )a b a b0 1$'n n+  is an associative 
product up to 2' . 

Lie algebras
The various complexes g that thus appear 
in deformation theory tend to carry some 
additional algebraic structure. For instance, 
the obstruction to extending a first order 
deformation to a second order one gives 
rise to an additional operation

: ( ) ( ) .ob H Hg g2
1 2"

In practice, it turns out that the extra alge-
braic structure appearing naturally on g is 
a binary operation

[ , ] : g g gi j i j"7- - +

that makes it a differential graded Lie al-
gebra.

For example, the Dolbeault complex 
( , )X T, *

X
0

0 0
X  carries a Lie bracket coming 
from the commutator bracket of vector 
fields. The Hochschild complex carries the 
so-called Gerstenhaber bracket, a version 
of the commutator where we sum over all 
ways of inserting one map into the other:

Ω0,0 (X0, TX0
) Ω0,1 (X0, TX0

)

Ω0,2 (X0, TX0
) . . .

∂
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In fact, Pridham and Lurie prove some-
thing much more precise: they establish 
an equivalence of homotopy catego-
ries between dg-Lie algebras and formal 
neighbourhoods of moduli spaces around 
points. The latter notion can be made pre-
cise in terms of functors of points, much in 
the spirit of the work of Schlessinger [10].

In particular, this theorem explains the 
main principle of deformation theory: the 
dg-Lie algebra controlling deformations of 
X0 arises precisely as the tangent complex 
to the moduli space inside of which we are 
trying to deform X0. Furthermore, all dg-Lie 
algebras arise in this way.

Varying the basepoint
The above theorem is not just useful for 
deformation theory, but also for derived al-
gebraic geometry itself. Indeed, it gives us 
an algebraic tool to study the geometry of 
a given (derived) moduli space M around 
a point. For example, it can be used to give 
a Lie algebraic description of functions, 
vector fields and differential forms on M 
at a point x M! .

In many situations, notably related to 
enumerative geometry, one is not just in-
terested in the infinitesimal geometry of 
M, but also in its global structure. For in-
stance, derived algebraic geometry allows 
one to globally construct symplectic and 
Poisson structures on moduli spaces with 
singularities, such as the moduli space of 
flat vector bundles on a Riemann surface.

To study such structures globally on M, 
it becomes important to understand how 
the Lie algebras associated to different 
points in M are exactly related. One way 
to do so is the following. Instead of look-
ing at a single point in M, let us consider 
a family of points 

Z M"
parametrized by some variety Z. Let us 
pose the question: how can we deform 
Z within M? Phrased more geometrically: 
what does a formal neighbourhood of M 
around Z look like? 

Note that this is exactly the type of ‘lo-
cal’ deformation problem we saw in the 
first section: we can study deformations 
(or formal neighbourhoods) of small open 
subsets of Z and then glue these together. 

When Z is a regular subvariety of M, 
we can again try to use a linear approxi-
mation: we can approximate M by the nor-
mal bundle of Z inside M. In the singular 
setting, the theory of derived algebraic 

We will not provide further details on 
derived algebraic geometry (see, e.g., [11] 
for an overview). However, we should men-
tion that the development of derived ge-
ometry has been strongly motivated and 
inspired by its relevance to deformation 
theory, building on ideas of Drinfel’d (and 
expanded by many others). In particular, 
derived algebraic geometry associates to 
each point x M!  a tangent complex

The zeroth cohomology group of this com-
plex reproduces the usual tangent space. Ex-
plicitly, T Mx  takes the following form when 
M is built using constructions (a) and (b):

 – Every variable xi in (a) determines a ba-
sis vector for ( ) .T Mx

0

 – Every equation ( )f x yj i j=  in (a) deter-
mines a basis vector in ( ) .T Mx

1

 – For every path ( )tkc  consisting of points 
that we glue together in (b), there is a 
basis vector in ( )T Mx

1- .

The differential T TM Mx x
0 1"  is then giv-

en by the Jacobi matrix

x
f

i

j

2

2d n

and :d T TM Mx x
1 0"-  is the matrix 

whose columns are the derivatives

.t
k
2
2c

The composite of these two maps is zero 
because the paths kc  are contained in 
the space of solutions {( ): ( ) }x f x yi j i j= . 
In addition, there can be higher terms in 
the tangent complex, which account for 
equations between equations and rela-
tions between symmetries. 

At the regular points x M! , the tan-
gent complex agrees (up to chain homoto-
py) with the usual tangent space. However, 
it is usually much more descriptive at the 
singular points. For example, its Euler char-
acteristic reproduces the expected dimen-
sion of M at x. Most importantly, we can 
use the tangent complex to describe the 
formal neighbourhood of x in M:

Theorem (Pridham [9], Lurie [6] ). The shift-
ed tangent complex T Mx

1)-  has the ca-
nonical structure of a dg-Lie algebra. This 
dg-Lie algebra completely determines the 
formal neighbourhood Mx

/.

Tangent complex
In these more geometric terms, formal de-
formation theory then concerns the follow-
ing kind of question about the structure of 
moduli spaces:

Question. Given a moduli space M and a 
point x M! , what does the formal neigh-
bourhood Mx

/ of x inside M look like?

One method to address such a question 
is by a linear approximation, in terms of 
the tangent space T Mx . This works partic-
ularly well when M is smooth at the point 
x: in this case we can identify TM Mx x,/ .

However, moduli spaces typically have 
many singular points at which the tangent 
space is ill-behaved. For example, some 
tangent vectors to M may not actually 
extend to small paths within M, or the 
dimension of the tangent space might be 
larger than expected.

These problems can be conveniently 
dealt with using the language of derived 
algebraic geometry. Informally, this theory 
keeps track of possible degeneracies ap-
pearing in the procedures (a) and (b). At 
a technical level, this is implemented by 
systematically replacing equalities by sim-
plicial homotopies.

For example, in (b) we can glue togeth-
er points for different reasons. This hap-
pens for instance when we can take the 
quotient by a group action which is not 
free. Similarly, the equations we impose 
in (a) need not all be independent and 
may themselves satisfy some further con-
straints. One sees this in the moduli space 
of associative algebra structures on V: the 
associative rule gives rise to various routes 
by which one can reorder the parentheses 
in a fourfold product

The fact that any two ways of going around 
the pentagon must be ‘the same’ leads to 
a constraint on the associativity equation 
itself. Algebraically, this constraint can be 
written using the Gerstenhaber bracket as 
[ , ( )]As 0n n = .

. . . (TxM)−1 (TxM) 0

(TxM) 1 . . .

d d

d

d

a · (b · (c · d))

a · ((b · c) · d)

(a · (b · c)) · d ((a · b) · c) · d

(a · b)⊗ (c · d)
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Example (Moduli of 2-dimensional algebras)
Let A be a 2-dimensional real unital algebra and pick a basis ,x1 . The multiplication on 
A is uniquely determined by the element x a b x12 $ $= + . In fact, every pair of ,a b R!  
defines a unital associative product on A in this way. 

We can also describe this same multiplication in a different basis , 'x1 . For example,

( )' ' 'x x b x a2 1 12A$ $= - =

(where /'a a b 42= + ). Similarly,

( ) ( ) ." ' " 'x x x a 12 2A$ $m m= =

Since all bases (fixing 1) are related by these two transformations, the moduli space 
of 2-dimensional unital algebras is the quotient

/ { }/( ) .' ' 'a a aR R RM 2! + m= =#

This has three points , ,'a 0 1 1= - . These correspond to the real algebras [ ]/X XR 2, 
[ ]/( )X X 1R 2 -  and C. 
The tangent complex at such a’ is

where the differential is the derivative of 'a2 $m  at 1m = . All Lie brackets are zero, 
except T T T1 0 0"#-  which simply multiplies two real numbers. We invite the reader 
to compare this to the Hochschild complex mentioned before: the tangent complex is 
much smaller, but has the same cohomology.

When 'a 0! , the tangent complex has zero cohomology. This expresses that the 
algebras [ ]/( )X X 1R 2 -  and C are rigid: any formal deformation is isomorphic to the 
original algebra.

When 'a 0= , the zeroth cohomology group is 1-dimensional. Indeed, the 1-parame-
ter family of algebras [ ]/( )X XR 2 '-  gives a nontrivial deformation of [ ]/X XR 2.

Further reading
The relation between deformation theory 
and dg-Lie algebras has a long history, of 
which we have omitted many chapters. The 
lecture notes of Manetti [7] provide an ac-
cessible account, discussing the work of 
Kodaira–Spencer in great detail. For treat-
ments in terms of derived algebraic geom-
etry, we recommend the talks of Lurie [5] 
and Toën [12]. s

the map Z M" . In particular, we can take 
/ZM +=  to be a (smooth) quotient of Z, 

as in (b). In this case, the dg-Lie algebroid 
g provided by the theorem can be used 
to study the global geometry of M, work-
ing over the (less singular) space Z. This 
is particularly useful in a differential-geo-
metric setting, where the global geometry 
of M is related to the Lie algebroid g by 
means of various integrability statements.

geometry provides a certain cochain com-
plex of sheaves on Z that refines the nor-
mal bundle. 

Very informally, the derived normal bun-
dle comes with a ‘Lie algebra structure de-
pending smoothly on the basepoint z Z! ’. 
More precisely, one can prove that it natural-
ly carries the structure of a dg-Lie algebroid: 
its local sections come equipped with a Lie 
bracket that satisfies the Leibniz rule

[ , ( ) ] ( ) [ , ] ( )( )v f z w f z v w f z wLv$ $ $= +

for any function f on Z. One can think of 
Lie algebroids as generalizations of the 
tangent bundle, which allow for the usu-
al calculus of vector fields. As such, they 
appear in many parts of geometry, e.g. in 
Poisson geometry and the study of folia-
tions and Lie group actions.

Theorem (Nuiten [8]). The formal neigh-
bourhood MZ

/ is completely determined 
by the derived normal bundle, together 
with its dg-Lie algebroid structure.

For each point x Z! , the dg-Lie algebra 
T Mx  can then be recovered from the fiber 
of the normal bundle at x. Consequently, 
the above theorem describes how these 
various Lie algebras are glued together.

On the other hand, the (derived) global 
sections of the dg-Lie algebroid also form 
a dg-Lie algebra: this is precisely the dg-
Lie algebra controlling the deformations 
of Z within M. We can therefore use Lie 
algebroids to simultaneously study defor-
mations by algebraic and local-to-global 
methods.

As a final remark, let us point out one 
of the nice features of derived algebraic 
geometry: the construction of the derived 
normal bundle requires no assumptions on 
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