Existence and uniqueness of solution to an
adaptive elasticity model
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Abstract. In this work we study the existence and unicity of solutions to an
Adaptive Elasticity Model applied to bone remodeling. Specifically, we consider the
model derived by Cowin and Hegedus, directly from continuum mechanics theory.
We use a fixed point argument in order to prove the existence of solutions and a
straightforward adaptation of the Cowin and Nachlinger analysis in order to prove
uniqueness.
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1 Introduction

As mentionned in the first paragraph of the introduction of the work by Cowin
and Hegedus, [1], living bone is continuously adapting itself to external stimuli.
This process termed collectively “remodeling” is responsible for the continuous
adaptation of the bone structure. Since this remodeling process takes place
either when living bone is subjected to prolonged straining (which tends to
make bone stiffer and more dense), or when the bone is not subjected to its
usual strain level (which has the effect of making it weaker and, consequently,
less stiff and more porous), and since this has an enormous effect in the overall
behavior and health of the entire body, to be able to predict bone remodeling
is of great importance.

Several remodeling theories have been proposed. Some are more of an em-
pirical nature, others of a theoretical kind but all of them try to fit some experi-
mental data. However, in spite of the great progress in experiments done in the
last decades it is always extremely difficult to get reliable data for the human
case. This is one of the reasons why a good theoretical model which can be eas-
ily discretized leading to robust numerical algorithms is extremely important.
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Among all the proposed models the one studied by Cowin and Hegedus, [1], [4],
possesses several advantages, namely:

i) it is derived from Continuum Mechanics in the standard way,

ii) in all its generality it includes most of the models usually used and can
be adapted in order to include some of the most important experimental data
available.

ii1) it is a nonlinear model generalizing nonlinear elasticity theory,
iv) its linearization leads to a generalization of classical elasticity.

On the other hand, and since it constitutes a generalization of classical elas-
ticity theory it can be used in order to study the functional adaptation of the
bone structure in the framework of optimization theory of structural mechanics
leading to new insights in the understanding of Wolff’s law, for example.

In order to possess reliable remodeling theories that lead to robust algorithms
and optimization techniques, one needs to have a sound mathematical study of
these different models. This is one of the motivations of the present work. We
take the model proposed by Cowin and Hegedus and not only do we point out
the major mathematical difficulties that arise in its study but also give an insight
on what are the possible modifications that one may have to perform in order
to address the issues of existence and uniqueness for more complex models. We
use a fixed point argument in order to prove the existence of solutions and a
straightfortward adaptation of the Cowin and Nachlinger analysis, [2], in order
to prove uniqueness.

We shall now briefly outline the contents of the paper. In the next section
we describe the bone remodeling model under study in a rather mathematical
framework. We clearly outline the hypothesis on the data and the regularity
on the material coefficients. We point out two major difficulties on the analysis
which are related to the imposition of the condition that the volume fraction
belongs to the interval [0, 1]. We indicate how to overcome this difficulty by using
a truncation and a mollification, interpreting the results physically afterwards.

In section three we study the so called remodeling equation for the variable
e, which stands for a measure of the change in volume fraction from a reference
configuration. We prove some estimates both for e and é.

In the fourth section we study the quasi-static elasticity equations associated
with this model. With the help of the previous estimates we are able to prove
some estimates for the three-dimensional displacement field u. Finally, in section
five we use a fixed point argument in order to prove existence of solution to the
model and a modification of an argument of Cowin and Nachlinger in order to
obtain uniqueness. As a byproduct, and due to the formulation used, we also
deduce a regularity result from [5].



2 The physical model

Notations Let  be a bounded open set of R” (n = 2 or 3) of class C? and
independent of time ¢. Let 7' > 0 be a real parameter and denote: @ =]0, T[x 2,
Q =1[0,T] x Q and © =]0, T[xIQ. Let R be the set of infinitesimal rigid dis-
placements, R = {v/v = a4+ bAx; a,b € R?}. Let ¢ be a real number,
1 € ¢ < oo, and m be a positive integer, and define the following spaces:
Vi = (WT(Q)/R)", VT = (HT(Q)/R), £1 = (LYQ)), W =
(Wma(Q)) <, H™ = (H™(Q))"*", ™ = (C™(Q))™*" where W™4(Q) and
H™(Q) are the classical Sobolev spaces and C™(Q) is the space of functions
m continuously differentiable in Q. We denote by C™([0,77];V) the space of
functions g such that g(t) € V for all [0,7] and the function ¢t € [0,7] —
g(t) € V is m times continuously differentiable with respect to ¢. If V is
a Banach space then C™([0,7]; V) equipped with its usual norm defined by

m k .
||g||cm(y) = Zk:o(max(te[O,T]) ||%ﬁ)||v) is also a Banach space.

We denote the displacements vector field by v = (w;), 1 < ¢ < n, the
Cauchy stress tensor by o = (0y;), 1 <4,j < n, the linearized strain tensor by
¢ = (eij), 1 <14,j < n and the measure of the change in volume fraction from a
reference configuration by e. They are all functions of time ¢ and of the space
variable z.

Data of the problem We suppose given:

.the open set @ of R x R",

.the density v of the full elastic material which is supposed to be constant.
.the reference volume fraction &. Tt belongs to C(Q) and there exist constants
Emin and €27 such that: 0 < 1" < &o(x) < €% < 1in Q.

.the coefficients of elasticity denoted by a;jjrm(e), 1 < i,j,k,m < n. They
are continuously differentiable with respect to e, they satisfy the conditions of
symmetry : Ve, aijrm(€) = @jikm(€) = apmij(e), 1 <14,j,k,m < n, and they
also satisfy the following ellipticity condition:

(6o +€) aijim(€)gijenm > Neijeyj Vei; € R with ey =¢ji (1)

where N is a strictly positive constant (independent of e, ¢ and ). Let us notice
that this inequality (1) implies the assumption: (&o(z)+e(t,z)) > 0 V(¢ z) €
Q.

.the body load f; € C'([0,T]), 1 <i < n. f; is independent of z and depends
on t.

.the normal traction on the boundary 9Q, F; € C'([0, T7; Wl_%’p(aQ)), 1<i<
n with p > n.

.the constitutive function a(e) and the remodeling rate coefficients Agp, (e),
1 < k,m < n, which are continuously differentiable with respect to e. B
.the initial value of the change in volume fraction eq(z), which belongs to C(Q).



We shall employ the usual summation and differentiation conventions. More-
over, given a function g(¢, ) we denote by g its partial derivative with respect
to t and by 0;g its partial derivative with respect to z;.

The model of Cowin and Hegedus The model derived from the continuum
mechanic laws in [1] and [4] is the following:

Find (u, e) which satisfies:

—8j0'ij =7 +e)fi in @
oij = (§o + 6)1az'jkm(6) Ekm (1)

I eij(u) = 3(uij + ;)
(P ) gijn; = Fi on Et
U= Ug on Y4
€ = ale) + Arm(€) €xm(u) in Q
e(x,0) = eo(x) in Q

where n; are the components of the outward unit normal n to 0, ¥; =
10, T[xTy, mes(Ty) > 0, &, =]0, T[x(02\I'y) and the displacement uy on T'y
is given.

Remark 1 The functions aijrm(e), a(e) and Aij(e) characterize the material
properties and there is very few experimental data on these functions. We can
make a polynomial approximation of these functions as in [{] and as a first
approzimation, we could write:

1

aijrm(€) = m(ﬁo a’?jkm +e agjkm) (2)
ale) =ag+ar e+ as e? (3)
Ajj(e) = A?j +e A}j (4)

?j and A}j are constants representing the mate-

rial properties. Let us notice that polynomial approrimations of these functions
satisfy the regularity assumptions made previously.

0 1
where ajspm; @jjgm, do, a1, az, A

Cowin and Nachlinger proved in [2] that if the solution (u,e) of (PT) exists
and is regular enough, then it is unique.

In this work we mainly address the question of existence. As a by-product
we also obtain regularity and from a straightforward adaptation of the method
of Cowin and Nachlinger [2] uniqueness follows.

Let us try to establish a way of proving existence and see what are the prob-
lems involved. We try to write the model of Cowin and Hegedus (P!) as a fixed
point problem. If we seek the displacement u in the space C°([0, T]; V™P) with
m > 1 and p such that n < p < oo, then ¢(u) belongs to C°([0,7]; W™m—1F).



First, let us consider the case m = 1 i.e. e(u) € C°([0,7];L£P). Then, the
solution e of (11)(12) does not necessarily belong to C°([0,77; L'(Q2)). To il-
lustrate this, let us consider the following ordinary differential equation: ¢ =
g(x)e; e(0,z) = 1 with g(z) = 2% . The function g belongs to LP(]0, 1)
and the solution of this equation, e(t,z) = exp(g(x)t), does not belong to
C°([0,7); L(]0,1])). This counter-example, due to L. Sanchez, shows that the
regularity LP of a parameter in an ordinary differential equation is “not pre-
served”, as 1t is with the spaces C?.

Let us now consider the case m > 2. It follows from the Sobolev imbedding
theorem that the strain tensor e(u) belongs to C°([0,7];C™~?%), then under
sufficient assumptions of regularity on the elastic coefficients a;;x.m(e) and on
&o, we have (&g + €)aijpm(e) in C°([0,T];C™~%(Q)). Finally, we deduce from
regularity results in elastostatic (see [5], Theorem 7.6 p 83) that u belongs to
C°([0,T); V™=12) and not to C°([0,7];V™F). From this analysis it is clear
that if one wants to prove existence of solutions with the help of a classical
fixed point method, one needs some additional regularity. This can be achieved
through truncation and mollification.

Truncation and mollification Let n > 0, n a small parameter, and denote
by P, (e) a truncation operator of class C, such that:

G +] T o) < —&td
Pyle)(z) = e(x) if p—§ < e(z) <T-&—n ()
1 —¢&o(x) if e(x) > 1—¢&o

Consequently, if e(z) € C'(Q) then (& + Pyle))(z) € C'(Q) and
0< < E+Py(e)@) <1 Vrel

Let the function:

U)(Jf) — B(lzlé_l) if |17| <1
0 if 2] > 1

and let p > 0 be a positive real number. We classicaly define the mollifier
wy(z) = (:p%u;(%) with ¢ = ([ w)~1. It satisfies w, € CZ°(RR"), w, > 0, Supp
w, C B(0,p) and [w, =1. B

Let a function g € C°([0, T]; C°(Q)), denote by g(t) an extension of g(t) to R"
such that g(t) € C°(JR™) and define the operator M, from C°(Q) into C*°(IR™)

such that:
M,(g(t)) = w, x g(t)

where w, * g(t) = an wy(r —y) g(t,y) dy.



We define the coefficients of elasticity c;jrm(e), 1 < k,m < n, of non local
type as follows:

cijim(€) = (§o + My 0 Py(e)) aijim(Mp o Py(e)) (6)

It follows from the properties of symmetry and ellipticity of the coefficients
aijkm and the properties of P, (e) that these coefficients ¢;;5n, satisfy:

Cijkm(e)Eij5km > NEUEU Vc‘i]' € R"*"™ with €ij = Ejs

The model of non local type The problem for which we prove, in the
sequel, the existence (regularity) and uniqueness of the solution is the following;:
find (u,e) which satisfy (in the sense of distributions)

—0j0ij = (€ +Pyle))fi inQ

Tij = Cijkm(€)ekm (1)

7)
8)

o~ —~

1
i) = 3 (e + ) ’

)

Tijn; = Fz on X (10)

é =a(e) + Apm(e) €xm(u) in C_) (11)
e(x,0) =ep(x) inQ (12)

where n; are the components of the unit outward normal n to 9Q. We assume
that the resultant of external forces is null:

Yw € R, / Y(&o + Pn(e)) fi(t)w; da:—{—/ Fi(t)w; ds = 0 in [0,7] (13)
Q a0
Let us notice that for all ¢ € [0, 7] such that f(¢) =0, (13) becomes:
Yw € R, Fi(t)w; ds = 0 (14)
80
and for all ¢ € [0,7] such that f(¢) # 0 (f(¢) is assumed to be constant on z),
(13) becomes:

_ F.(H\w; ds
Ywe R — {0}, fi(t) = fn 7(204_ ;)Ej()e);wi dz (15)

The relation (14) does not depend on e while (15) depends on it.

Comments and remarks
1. Truncation is a way of imposing the physical condition that the volume frac-
tion belongs to the interval ]0,1]. This can also be done using other methods



but one needs some regularity in order to study the coupling between equations
(7) and (11) and this is the reason for the C truncation.

2. The mollification can be regarded as a nonlocal constitutive law. This has
also a physical meaning since it asserts that the state of stress at a point depends
on the stress levels in a neighborhood of that point. In this case its necessity
arises from the fact that one needs some regularity estimates in the displacement
field u in order to once again be able to study the coupling between equations
(7) and (11).

3. The fact that we have a pure Neumann problem is required in order to have
some regularity results for the displacement field u in the framework of elasticity
theory. This is a realistic situation for it corresponds to the case in which a bone
is subjected to external and to body forces only (no imposed displacements on
the boundary).

4. The given forces f and F have to satisfy the relation (13). As already men-
tionned and due to the fact that f(¢) is constant on z, this relation becomes
(14) if f(t) = 0 and (15) if f(¢) # 0. Moreover, relation (14) does not depend
on e.

In the sequel we prove the existence of solutions to (7)-(12) with the help of the
Schauder fixed point theorem. The proof can be done if the application e +— f
where f satisfies (15), is continuous from C([0,7]; C°(Q)) into (C*([0,T])",
which, under the previous assumptions, follows from (15).

Now, let us assume, for a moment, that f depended on ¢ and z. In that case
and in order to prove the existence, we should have to study the correspondence
e — (f, F), where (f, F) satisfies (15), but which is not an application. This is
the reason why we consider only body forces constant on z. Physically, it is not
a very restrictive assumption because not only are gravity forces constant on z,
but also the most important deformations and remodelling phenomena are due
to the forces applied on the surface of the bone.

3 The Differential equation of remodeling
We have the following result

Proposition 1 Assume that ¢(u) is given in C°([0,T);C°). Then, there exists
a unique e in C1([0,77; C°(Q)) solution to (11)(12). Furthermore, there exists
a positive constant ¢ such that:

lelloreoy < He + clle(u)lleoen)} x { lealleoqa
+ T [la(eo)lleo@ + IIA(eo)llco@lle(u)llco(coy ]
x exp[T (k1 + kofle(u)lleoen) ]} (16)



Proof. The result of existence and uniqueness of e follows from the Cauchy-
Lipschitz-Picard theorem. We define: f(e,v) = a(e) + Agm(€)erm (v). Then, for
all t € [0,7],

T T
||5(t)—@0||00(ﬁ)§/0 IIf(e,'v)—f(Eo,v)IIcom)dt+/0 1/ (€0, v)llco(eydt

Using the mean value theorem, we can write:
T
left) = collesy < [ (k1 + Falls(wlcogey) lle = collesay

T
+ T la(eo)lleo) + ||A(60)||Cﬂ(ﬁ)/0 lle(u)llcoaydt

where ki and ks depend on the first derivative of a(e) and Agm(e). Then, we
have:

lle() —colleo@y < T lllaleo)lleom) + [1A(co)llcoqy lle(u)lleoen)]
T
[+ Rallellon) lle - collosaydt
We deduce from Gronwall’s lemma that for all ¢ € [0, 77,

lle@®llcoy < lleolleo@y + T [llaleo)lleo@y + [[A(eo)llcoqaylle(@)lleoesy ]
X exp[T (kl =+ kQHE(U)”Cn(Cn))] (17)
In addition, we deduce from (11) that

l[ellcoqeny < ellelleoeny I+ lle(u)lleoien)] (18)

where ¢ depends on the constants of continuity of functions a(e) and A, (e).
By combining (17) and (18), we obtain (16). [ |

4 The quasi-static elasticity system

First, let us recall the following result which can be seen in Valent[5]:

Let the time ¢ be fixed in [0, T, let ¢;jxm(e), 1 < 4,7, k, m < n, be given in C1(Q)
and let (13) be satisfied. Then, the mapping u — (—div(0), o|sn.n) is a (linear)
homeomorphism from V*? onto (LF(Q))" x (Wl_%’p(aQ))”, n < p<oo.

The existence and uniqueness of u in V! follows from the Korn inequality, see
e.g. [3]. The idea to prove the above regularity result is to reduce the elasto-
static system to the Laplace operator and use a method of continuity, (see [5],
Theorem 7.6 p 83). Let us notice that the displacement u is unique in V27 i.e.

unique up to the addition of a rigid displacement.

We have the following lemma which will be important in the sequel:



Lemma 1 Let e € C'([0,7];C%Q)), then cijrm(e) € C'([0,T];CY(R™)), 1 <
i,j,k,m<mn, and

lleijrm(e(®)llcr@y < e in [0,T] (19)
where ¢ is a positive constant, which depends notably on ||w,||w1.1(mr), ||£0||Cl(ﬁ),
||aijkm(f)||C1([_§6naa:71_§6nln] but is independent of e.

Proof. First, let us notice that by construction, if e(t) € C°(Q2) then (M, o
Pyle(t))) € C=(R") and

e < My o, (e(t) < 1- €7 i Q (20)
In addition, W = 6;;" * Pp(e(t)) hence
— gmz/ 8& dr < a(MP OPU(E(t))) < (1 _ ngn)/ 8“)9 dz in Q
B, 0% Oz "JBo,p O
(21)

One knows that ¢;jxm(e(t)) belongs to C'(IR™) and if e(.) is C" with respect to
t then ¢;ipm(e(.)) is also C' with respect to t.
Let us prove (19). By definition:

deijam(e(t))
lleijem(e(®)llcr@y = r;leagICijkm(E(t))l-l-fgleagle

It follows from (20) that: |c;jem(e(2))] < 2 €527 MaX(ge[_gmas |_gmin)) |2 5km(g)]
and,

Ociiemle(t 0 (M, oP,(e(t
| %l S | [% + ( P 6;;7( ()))] aijkm(MpOPn(e(t))) |
03 km (M, oP t
1o+ My o Py(e(t))] 257 (a1, o p, (e (1) LM Pale)
Hence from (20) and (21):
C%Z--km(e(t_))
| =5 IS Cllwpllwnn on Mool oy lassim @l _gmae o eminy)
From which the result follows. [ |

Proposition 2 Let e(t,z) be given in C([0,T];C%(Q)). Then, there erists a
unique solution u € C*([0,T];V?P) to (7)-(10). Furthermore, there exists a
posttive constant ¢ independent of e such that:

lullerowar) < e Glifllerwn + 1l gy o) (22



Proof. Let e(t,z) € C'([0,7];C%R)) be given. Thanks to the results of exis-
tence, uniqueness and regularity for the solution of the static elasticity prob-
lem, recalled above, and thanks to Lemma 1, there exists a unique solution
u(t) € V2P, for all t € [0, 7] fixed, to (7)-(10). Furthermore:
[u®llw=r@) < ¢ (2lé0 +Pyle®llL=@llf O)llr@) + 1FOI -1 50)
(23)
where the constant ¢ depends notably on ||Cijkm(6(t))||cl(ﬁ), N, 09, n and p.
It follows from Lemma 1 and the definition of P, that there exists a positive
constant ¢, independent of e, such that:

lu@llw=r@)y < ¢ GOz + [IF@I (24)

W“%’P(an))
Let us prove that u is continuous with respect to t. We denote h;(e) =
(& + Py(e))fi. The right hand side hj(e) of (7) is C! with respect to t.

Let u(t) and u(t 4+ 7) be the two solutions to (7)-(10) at times ¢ and (¢t + 7),
(t,(t+ 7)) €[0,77%. We have:

=0l ij(t+ 1) = 0i5(t) ] = [hie(t + 7)) — hi(e(t))] in Q@ (25)

[O'Z'j(t—i-T)—O'ij(t) ] nJ:F,(t—i-T)—Fz(t) on X (26)

Let us write:

oij(t+7) —0ij(t) = [cijpm(e(t + 7)) — cijem(e(t))] erm(u(t))

+ cijim(e(t +7)) exm(u(t +7) —u(t))  (27)

We pass to the limit when 7 tends to 0 into (25) (26) and, thanks to (27), we
obtain that lim,_0)(u(t +7) —u(t)) exists and equals 0 for all £ € [0, T]. There-
fore, u € C°([0,T]; V?P). In order to prove that u is continuously differentiable
with respect to time, we differenciate equations (7)-(12) as follows:

—0i[ cijkm(e) exm () ] = hi(e) é + Ojlcijpm(e) € exm(u)] nQ  (28)
The right hand side of (28) is continuous with respect to ¢t. Define now g;(e, é,u) =
hi(e) €+ 9jlcijxm(€) € exm(u)], we then have:

—0jl(cijrem(e(t + 7)) — cijim(e(t))) exm(u(t))]

—0jcijkm(e(t + 7))ewm (a(t + 7) — u(t))] = gi(e, €, u)(t + 7) — gi(e, €, u) (£)(30)
Passing to the limit when 7 tends to 0 into (30) we obtain that lim¢, _o)(u(t +
7) — 1u(t)) exists and equals 0 for all ¢+ € [0,7], and so u € C'([0,T7]; V*P).
Finally, we deduce (22) from (24). ]

Let us notice that in our model, the body load f is constant in z, hence

IF @Iz 0y = |F(E)[Pmes().
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5 Existence, uniqueness and regularity of the
solution

Theorem 1 Under conditions of Section 2, there exists a unique solution (u,¢€)

in C1([0,T]; V2P) x CY([0,T];C°(Q)), which satisfies (7)-(12).
Proof. It is done in three steps.

First step: Emistence of solutions. We prove the existence of a solution (u, ¢)
in CO([0, 7]; (CHQ)/R)™) x CL([0,T]; C°(Q)) to (7)-(12). In order to do so we

use Schauder’s fixed point theorem. We consider the operator
0 : C°([0,7);€% — C*([0,T); C%(Q)); e(v) — e
where e is the unique solution to (11)(12), together with the operator
E:CH[0,T];C%(Q)) = CY([0,T; VY); e u

where u is the unique solution to (7)-(10). We now define the operator T' as
follows:

v e CY0,T7; (CHQ)/R)™) — u € C°[0,17; (CHQ)/R)™)
Je : strain tensor 14 : injection
e(v) € C°([0, T; %) u € CH[0,T];V2P), p>n
40 : O.D.E. TR : Regularity

E:Elasticity
—

e € C'([0,T];C%Q)) ue C1([0,T]; V1)

We have 7' = i0 Ro E o O oe. Let us point out that u does not refer to
the solution of (7)-(12) with the given strengths f and F' which satisfy (13).
Indeed, for all ¢ € [0, 7] such that f(t) # 0, the relation of compatibility (13)
depends on e which depends on u -see (14) and (15)-. Hence, in order to write
correctly (7)-(12) as a fixed point problem, it remains to specify that we consider
a strenght f which satisfies (15) then, f depends continuously on e. Indeed, we
have -see (15)-:

v _ f w; ds .
Yw e R—{0}, f'(t) = fmﬁomern( )J) I VYt € [0, T] such that f;(t) # 0

where e’ = (O o g)(v). It follows that the operator e — f is continuous from
C'([0,77; C°(2)) into (C*([0,T])™.

Let us study the operator T. The operator O is continuous from C°([0,77;C°)
into C'([0,7;C%(R)) (Proposition 1) and the operator F is continuous from

Cl( 0,77; COQ Q)) into C*([0,77; V1), hence the operator T' is continuous in
(1o, T] (c 1(@)/ )™). Since the injection ¢ from Cl([O T1;V2P), p > n, into
Co([0,7); (CHQ)/R)™) is compact, we conclude that 7' is compact.

11



From (22) one deduces that u = (Ro F o O o¢)(v) belongs to a closed ball of
C*([0,77]; V*P), which we denote by B. (Let us point out that the ball B is
independent of e, hence independent of v, thanks to Lemma 1).

Finally, the range of the space C°([0,77]; (C*(Q)/R)") by T is the ball i(B) C
Co([0,7T7; (CHQ)/R)™). In vertu of the Schauder fixed point theorem, T has a
fixed point in i(B) denoted u. And the strenght considered fV equals f when v =
u, then the problem (7)-(12) has a solution (u,e) in C°([0,T]; (C1(Q)/R)") x
¢ (10,73 C°(@))

Second step: Uniqueness of the solution. Tt is easy to verify that the proof
of uniqueness of [2] is available with the non local model (7)-(12). This proof
requires regularity of the data which is satisfied and a regularity of the so-
lution which is also satisfied when (u,e) belongs to C°([0,77; (C1(Q)/R)") x
C'([0,77;C°(Q)). Hence the problem (7)-(12) has a unique solution in

CO([0, T3 (CH(Q)/R)™) x CH([0, TT; C(9)).

Third step: Regularity of the solution. Thanks to the uniqueness of the so-
lution, we can consider u as the (unique) solution of (7)-(10) with e as a data
given in C1([0,7]; C°(Q)). Then, we apply Proposition 2 and we obtain that u
belongs to C1([0,77; V?P). [ |
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