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Abstract. We model an electrified droplet spreading on a solid surface. The model aims to seek a
drop shape that minimizes its total energy (capillary, electrostatic, and gravitational). We derive the
equations and the shape gradient; then we detail the shape optimization algorithm and present some
numerical results. Up to a critical applied voltage value, the computed angles fit the predictions of
Lippman’s equation (plane capacitor approximation). Then, when increasing the voltage, we observe
an overestimate of the Lippman prediction. Numerical computations of the curvature show that it
remains constant everywhere except in the vicinity of the contact point, where it increases sharply.
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1. Introduction. Electrowetting can be defined as a tool for spreading liquid
droplets (e.g., water) on hydrophobic solid surfaces (e.g., polymer film). This is quite
a recent technique (see [1]) which holds very attractive properties for manipulation
of tiny liquid volumes, as is done, for example, in biotechnologies. The principle of
electrowetting is to apply an electric field between the conductor liquid droplet and
the solid surface in order to change the droplet spreading on the surface. Given the
liquid volume, the main feature for describing the droplet is the wetting angle.

Several articles discuss the experimental aspects of electrowetting and present
some analytical analysis; see, e.g., [1], [21], [2], and the references therein. One
property of electrowetting still poorly understood by physicists is the contact angle
saturation. Several mechanisms for explaining it were proposed in [21], [22], [17],
[20]. When increasing the applied electric voltage, the liquid droplet spreads onto the
solid and the wetting angle decreases. Nevertheless, this is true only if the value of
the applied voltage is less than a certain critical value. Up to this critical value, the
contact angle can be derived from the Lippman equation using the plane capacitor
approximation. For higher values, one observes a saturation of the wetting angle and
for even higher values, instabilities of the contact line liquid-solid-gas can appear. A
few hypotheses have been made to explain the saturation phenomenon. Let us cite,
for example, the air ionization (see [21]) or electrostatic effects near the wetting line
(see [4]). This limiting phenomenon is still under investigation and the full modeling
of electrowetting remains an open problem. In other respects, the authors of [5] show
that the contact angle does not depend on the potential. It remains equal to the
static Young angle (obtained when the potential is null). Also, they observe that the
curvature near the contact line increases while the potential increases.
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In this study, we present a mathematical approach for modeling and numerically
computing the drop shape, given an applied voltage. The model is based on the
shape optimal design methods; see, e.g., [6], [11]. We seek the drop shape (a free
surface) such that it minimizes its total energy. The total energy is the sum of the
capillary energy, the gravitational energy, and the electrostatic energy. Our numerical
modeling is general in the sense that we do not make any assumption on the drop
shape. The equations are fully solved and the shape is defined in a general family of
surfaces. We assume that the drop shape is steady state and remains two-dimensional
(2D) axisymmetric but the method remains valid for three-dimensional (3D) shapes
as well. Of course, in the 3D case, the implementation is much more complex and
time-consuming than in the present 2D axisymmetric case. This 2D axisymmetric
assumption is valid for applied voltages up to the value leading to the instabilities
mentioned above.

We obtain numerical results which are consistent with the plane capacitor approx-
imation (Lippman’s equation) only for low voltages. For higher voltages, we observe
an overestimate of the Lippman predictions. Nevertheless, with the present model, we
do not retrieve the wetting angle saturation but instead a deviation from Lippman’s
predictions of the shape of the drop. In other respects, we focus on the curvature val-
ues of the droplet interface. The computed curvature is constant everywhere except
in the vicinity of the contact point. If we refine the surface representation near the
contact line, we will observe an increase of the curvature—we noticed this behavior
for all potentials applied.

The paper is organized as follows. In section 2, we present the electrowetting pro-
cess and the plane capacitor approximation. In section 3, we derive our mathematical
model. It is a shape inverse problem—we seek the drop shape such that it minimizes
its total energy. The energy depends on the electric field, which is the solution of the
external partial differential equation. The liquid volume is given and constant; it is
considered an equality constraint. Finally, the problem consists in finding a min-max
solution (saddle point) of an augmented Lagrangian (see [8]). Numerically, the solu-
tion is computed using Uzawa’s algorithm and a quasi Newton optimization algorithm
(BFGS). In section 4, we define the mathematical framework of shape optimization,
and we derive the shape derivative of the augmented Lagrangian (the continuous gra-
dient; see Theorem 4.1). In section 5, we detail the discretization of the equations
and the shape derivative. The partial differential equation is solved using a standard
linear P1-Lagrange finite element method. The shape parameters and the shape de-
formation basis are defined; then the shape gradient and the optimization parameters
are deduced from section 4. The full optimization process is presented in section 6.
It has been implemented in C++. The code uses a public finite element library and
a public mesh generator with automatic mesh refinement. In section 7, we present
the algorithm we use to compute the droplet curvatures. It is based on a local least
square approximation of the control points (second order Bezier approximation). In
section 8, we present the numerical results.

2. Electrowetting process. Let us consider the electrowetting process pre-
sented in Figure 2.1. We denote by σLS , σSG, and σLG the surface tension coefficients
of the liquid-solid interface, solid-gas interface, and liquid-gas interface, respectively.
We denote by θ the wetting angle.

When the applied electrical potential u0 is null, Young’s equation gives

cos(θ0) =
σSG − σLS

σLG
,
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Fig. 2.1. Electrowetting process.

where θ0 is the wetting angle at u0 = 0.
Under the assumption that the system behaves as a plane capacitor with negligible

boundary effects, the drop shape obeys the Young equation with the surface tension
coefficient modified as follows (see [1]):

σLS(u0) = σLS − ε0ε1
2e

u2
0,

where e is the insulator thickness and ε0 and ε1 are the dielectric constants.
Also, we have (see [1])

cos(θ) = cos(θ0) +
ε0ε1

2σLG e
u2

0.

This last equation is also called Lippman’s equation.
Let us note that this law predicts total spreading when the potential increases.

However, if u0 is greater than a critical value ucr, physicists observe a locking phe-
nomenon limiting the spreading of the droplet on the polymer film. Such experiments
are studied in [1], [21], [2].

The aim of the present study is to model and numerically compute the liquid
drop shape for u0 lower than the critical value ucr. These computations include the
wetting angle θ and the curvature κ of the liquid surface.

3. Mathematical modeling. We model the electrowetting process described
in the previous section as a shape inverse problem.

Assumptions.
(i) The applied electrical potential u0 is continuous.
(ii) The liquid drop is a perfect conductor.
(iii) The drop geometry is 2D axisymmetric.
(iv) Electrostatic effects are negligible far away from the drop.
(v) For u0 = 0, the liquid partially wets the polymer (the spreading coefficient is

negative).
Notation (see Figure 3.1). We denote by u(x) the electrical potential at point x,

ω0 the liquid drop, ω1 the polymer domain, ω2 the artificially bounded gas domain,
and γext its external boundary. The external boundary γext is supposed to be located
far enough from the liquid drop.
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Fig. 3.1. 2D axisymmetric droplet (shaded gray). Domains and boundaries notations.

We denote by γLS , γSG, and γLG the liquid-solid interface, solid-gas interface,
and liquid-gas interface, respectively. We set ω = ω1 ∪ ω2 ∪ γSG. We have ∂ω0 =
γLz ∪ γLG ∪ γLS and ∂ω = γ0 ∪ γSz ∪ γLG ∪ γGz ∪ γext, with γz = γGz ∪ γLz ∪ γSz.
We set B = ω0 ∪ ω ∪ γLG ∪ γLS. The liquid domain ω0 will be variable; on the other
hand, the domain B is given and fixed.

The questions we will answer numerically are the following. Given the electrical
potential u0,

• What is the drop shape?
• What is the wetting angle value θ?
• What is the curvature κ value of the drop surface?

The shape inverse formulation. We model this steady-state free surface problem
as a shape inverse problem. We follow the approach presented in [4].

The total energy E is the sum of the gravitational energy, the capillary energy,
and the electrostatic energy. In the 3D case, its expression is the following (see, e.g.,
[2]):

Eω0 = Egrav
ω0

+ Ecap
ω0

+ Eelec
ω0

;

with the gravitational energy:

Egrav = ρ g

∫

ω
zdx;

with the capillary balance energy:

Ecap =
∫

γLS

(σLS − σGS)ds +
∫

γLG

σLGds;

and the electrostatic energy:

Eelec = −1
2

∫

ω
ε|∇u|2dx,

where ρ is the liquid density, g is the gravity constant, ε = εi in ωi, i = 1, 2, and εi is
the relative dielectric permittivity of ωi; i.e., ε0εi, i = 1, 2 is the polymer and the gas
permittivity, respectively.
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The shape inverse formulation is as follows:
{

Find ω#0 such that
Eω!

0
= min

(ω0;
∫

ω0
dx=vol)

Eω0 ,

where vol is the given drop volume.
We set ui = u|ωi , i = 1, 2. Then, the potential ui is the solution of the equation

(3.1) −div(εi∇ui) = 0 in ωi, i = 1, 2,

with the following Dirichlet boundary conditions:

(3.2)






u1 = u0 on γLG,
u2 = u0 on γLS,
u2 = 0 on γ0.

On the solid-gas interface, we have the transmission boundary conditions

(3.3)
{

u1 = u2 on γSG,
ε1∇u1n1 = −ε2∇u2n2 on γSG.

On the artificial boundary γext = γ1ext ∪ γ2ext, we impose

(3.4) εi∇uini = 0 on γi
ext, i = 1, 2.

Therefore, the present mathematical problem is a shape optimal control problem
for a system governed by a linear steady-state partial differential equation.

2D axisymmetric equations. As mentioned previously, we assume that the drop
shape is 2D axisymmetric. We present below the weak formulation of the model. We
set

X0(ω) = {v ∈ H1(ω); v = 0 on γ0 ∪ γLS ∪ γLG},

Xt(ω) = {v ∈ H1(ω); v = 0 on γ0; v = u0 on γLS ∪ γLG}.

The weak formulation of (3.1)–(3.4) in the 2D axisymmetric case is

(3.5)
{

Find uω ∈ Xt(ω) such that
∀v ∈ X0(ω), aω(uω, v) = 0,

where

aω(u, v) =
∫

ω
εr〈∇u,∇v〉dx,

x = (r, z), and 〈., .〉 is the inner product of R2.
It follows from the Lax–Milgram theorem that state equation (3.5) has only one

solution for uω ∈ Xt(ω).
The shape inverse problem. In its dimensionless form, the drop energy is

(3.6) Eω0(uω) = α

∫

ω
zdx +

∫

γLG

rds + µ

∫

γLS

rdr − δ
∫

ω
εr|∇uω |2dx,
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where uω is the unique solution of (3.5), α = ρg(L∗)2

σLG
, µ = −cos(θ0) = σLS−σGS

σLG
,

δ = 1
2σLGL∗ , and L∗ is a characteristic length (typically L∗ ≈ 10−4 − 10−3 m).
We set the cost function by

(3.7) j(ω) = Eω0(u
ω).

We denote by D the admissible domain space. (The definition of D is detailed in the
next section.) The shape optimal inverse problem is

(3.8)

{
Find ω# ∈ D such that
j(ω#) = min

(ω;
∫

ω0
rdx=vol/2π)

j(ω).

Let us point out that the variable is not the whole domain ω, but more precisely, the
liquid-gas interface γLG; see Figure 3.1. We assume that the inverse shape problem
(3.8) admits at least one solution. The existence of an optimal shape is not addressed
in the present paper.

The augmented Lagrangian. Problem (3.8) is an optimization problem under
an equality constraint. Thus, classically, we introduce the augmented Lagrangian
Lτ : D × R −→ R, defined by the following (see, e.g., [8]):

(3.9) Lτ (ω, λ) = j(ω) + λc(ω) + τc(ω)2,

where c(ω) is the volume constraint,

(3.10) c(ω) =
∫

ω0

rdx − vol

2π
=

∫

B
rdx −

∫

ω
rdx − vol

2π
,

λ is the Lagrange multiplier, and τ is a penalty parameter.
Then, the shape optimal inverse problem (3.8) is formulated as the saddle-point

problem:

(3.11)

{
Find (ω#, λ#) ∈ D × R such that
Lτ (ω#, λ#) = min

ω
max
λ

Lτ (ω, λ).

We will solve (3.11) using the classical Uzawa algorithm; see, e.g., [8]. This
algorithm uses a gradient-type algorithm (BFGS), which requires us to compute the
shape derivative of the cost function dj

dω (Ω) and the shape derivative of the constraint
dc
dω (Ω). The expressions of these shape derivatives are presented in the next section.

4. Shape derivatives. As mentioned above, we need to compute the shape
derivative of the cost function dj

dω (Ω) and the shape derivative of the constraint dc
dω (Ω).

This is done using the optimal shape design method (see [15], [6], [11]; definitions of [7],
[12] are used). Three approaches are possible: (i) we differentiate the equations and
then we discretize them, thus obtaining the discretized continuous gradient; (ii) we
discretize the equations and then we differentiate them, thus obtaining the discrete
gradient; (iii) we directly differentiate the direct code (typically, using automatic
differentiation). In the present study, we follow approach (i). This requires some extra
mathematical definitions and tools, but this approach is rigorous; it leads to synthetic
expressions of derivatives and it allows us to prove all the differentiabilities required.
These derivatives are discretized in the next section, leading to shape gradients. The
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family of shapes considered is large enough in the sense that it includes those observed
in the experiments.

This section is organized as follows. We define the admissible domain space D
(Lipschitz domains); then we use the classical definition of shape derivatives based
on domain deformations (a method of transport with C1 transformations). We prove
the differentiability of the cost function j and the constraint function c with respect
to the domain ω. Then, by introducing the adjoint state equation (in our case the
adjoint state vanishes), we obtain the differential of j and c (Theorem 4.1). The shape
derivative of the augmented Lagrangian Lτ follows (Corollary 4.2).

4.1. Mathematical framework: Domain variations and shape deriva-
tives. We consider a family of Lipschitz domains. We define the space of admissible
domains and the derivative with respect to the domain in a classical manner. The
domain space is the set of domains homeomorphic to a reference domain. The trans-
formations are C1 homeomorphisms. This regularity is necessary for all transported
integrals to be well defined. The shape derivative of a real valued function is the
derivative of the transported function with respect to the transformation. We refer
to [15], [6], and we follow the definitions and properties presented in [7], [12].

Admissible domain space. Let Ω̂, a bounded open subset of R2 with a Lipschitz
boundary, be the reference domain Ω̂ = Ω1 ∪ Ω̂2 ∪ Γ̂SG. Ω1 represents the solid part
and Ω̂2 the gas part. We distinguish the variable part of Ω̂ from its fixed part; see
Figure 4.1. We set ∂Ω̂ = Γ̂V ar ∪ ΓFix, where Γ̂V ar = Γ̂LG ∪ Γ̂LS is the variable
boundary and ΓFix is the fixed boundary. We denote by Bint a neighborhood of
Γ̂V ar, Bint large enough; see Figure 4.1.

B
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Fig. 4.1. The reference domain Ω̂.

We set the function space

(4.1) F̂ = {F̂ , F̂ bijection of Ω̂ onto F̂ (Ω̂); F̂ ∈ C1( ¯̂Ω, Rd), F̂−1 ∈ C1( ¯̂F (Ω̂), Rd)}

and its affine subspace F̂0 = {F̂ ∈ F̂ ; F̂ = I in Ω̂\Bint}, where I denotes the identity
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of Rd. Then, we define the admissible domain space D as follows:

(4.2) D = {ω = F̂0(Ω̂); F̂0 ∈ F̂0}.

One knows that if F̂ is close enough to I in F̂0 ((F̂ − I) small enough), then F̂ (Ω̂) is
an open set of R2 with a Lipschitz boundary and F (Γ̂V ar) ⊂ Bint.

Shape derivative of a real valued function. For F̂0 ∈ F̂0, (F̂0−I) small enough, we
define the domain Ω by Ω = F̂0(Ω̂) and ΓV ar = F̂0(Γ̂V ar). We set the homeomorphism
space defined in Ω (see Figure 4.2) as F = {F, F = F̂ ◦ F̂−1

0 , F̂ ∈ F̂}, and its affine
subspace as F0 = {F, F = F̂ ◦ F̂−1

0 , F̂ ∈ F̂0}.
Let F ∈ F0; we define ω = F (Ω) and V ∈ C1(Ω̄, Rd) by V = F − I. We have

V = 0 in Ω̂ \ Bint.

Ω Ω ω

Rω

Ω

vv

0
−1

F

F= I+

F F= I+

F

V

V

Fig. 4.2. Change of variables.

For a given cost function j, j : ω ∈ D -→ j(ω) ∈ R, we define the “transported”
cost function ̄ by ̄ : F0 → R : F -→ ̄(F ) = j(F (Ω)) = j(ω). Then, the derivative
with respect to the domain is defined as follows (see, e.g., [15], [7] for more details):

(4.3)
dj

dω
(Ω) · V =

d̄

dF
(I) · V ∀V ∈ C1(Ω̄, Rd).

4.2. Shape derivatives. We present below the expressions of the exact differ-
entials with respect to the shape ω.

Theorem 4.1. There exists VI , a neighborhood of I in F0, such that
(i) the cost function j : D → R; ω -→ j(ω) = Eω0(uω) belongs to C1 for all

ω = F (Ω), F ∈ VI . Additionally, for all V ∈ C1(Ω̄, R2), we have

(4.4)
dj

dω
(Ω).V =

∂EΩ0

∂ω
(uΩ).V,

with uΩ the solution of the state equation (3.5) posed in Ω and

∂EΩ0

∂ω
(uΩ).V = α

∫

Ω
z ◦ V dx + α

∫

Ω
zdiv(V ) dx

+
∫

ΓLG

r ◦ V ds +
∫

ΓLG

r divΓV ds

+ µ

∫

ΓLS

r ◦ V dr + µ

∫

ΓLS

r divΓV dr

− δ
∫

Ω
ε (r ◦ V ) |∇uΩ|2 dx − δ

∫

Ω
εr|∇uΩ|2 div(V ) dx

+ δ
∫

Ω
εr < ( T DV + DV )∇uΩ,∇uΩ > dx,

with divΓV = (div(V ) − 〈n, T DV n〉), n the external normal, and x = (r, z).
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(ii) The volume constraint c(ω) belongs to C1 for all ω = F (Ω), F ∈ VI and, for
all V ∈ C1(Ω̄, R2),

(4.5)
dc

dω
(Ω).V = −

∫

Ω
r ◦ V dx −

∫

Ω
rdiv(V )dx.

Proof. The proof follows with three steps: 1. transport of equations; 2. differen-
tiability with respect to ω; 3. use of the adjoint technique leading to the expression
of the exact differential.

Step 1. Transport of equations. As noted previously, we need to transport the
cost function j in order to compute its shape derivative. To this end, we need to
transport all the equations on the reference domain Ω = F−1(ω).

For any u, v ∈ X0(ω), we let

ā(F ; ū, v̄) = aF (Ω)(ū ◦ F−1, v̄ ◦ F−1) = aω(u, v)

=
∫

Ω
ε̄r̄ <T (DF−1 ◦ F )∇ū,T (DF−1 ◦ F )∇v̄ > |detDF |dx̄,

with ū = u ◦ F , v̄ = v ◦ F , x̄ = x ◦ F , and ε̄ = ε ◦ F ; see Figure 4.2.
The mapping v ∈ X0(F (Ω)) -→ v ◦ F ∈ X0(Ω) is an isomorphism for F ∈ F0. In

other respects, the Dirichlet data u0 is constant; hence u0 = u0 ◦F . Then, since state
equation (3.5) has a unique solution uω, the transported state equation

Find ūF ∈ Xt(Ω) : ā(F ; ū, v̄) = 0 ∀v̄ ∈ X0(Ω)

has a unique solution ūF = uω ◦ F .
Similarly, for any u ∈ X0(ω), we let Ē(F ; ū) = EF (Ω0)(ū ◦ F−1) = Eω0(u). We

have ̄(F ) = Ē(F ; ūF ),

̄(F ) = α
∫

Ω
z̄ |detDF | dx̄

+
∫

ΓLG

r̄ Jac(F ) ds̄ + µ

∫

ΓLS

r̄ Jac(F ) dr̄(4.6)

− δ
∫

Ω
ε̄ r̄ | T (DF−1 ◦ F )∇ūF |2 |detDF | dx̄,

with Jac(F ) = |detDF | ‖ T DF−1.n‖R2 .
Also, we define

c̄(F ) =
∫

B
rdx −

∫

Ω
r̄ |detDF | dx̄ − vol

2π
.(4.7)

Step 2. Differentiability with respect to ω. The mapping ā(F ; ū, v̄) is C1 with
respect to (F ; ū). It follows from the implicit function theorem that the transported
state equation defines a C1-mapping F -→ ūF : F0 → Xt(Ω) in a neighborhood VI

of I.
Then, since the mapping Ē is of class C1(F × X0(Ω)), the cost function j is con-

tinuously differentiable. Also, the constraint function c is continuously differentiable.
Step 3. Expression of the exact differential. By definition, we have dj

dω (Ω) · V =
d̄
dF (I) · V for all V ∈ C1(Ω̄, R2).
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Then, using the classical adjoint technique, we have

d̄

dF
(I).V =

∂Ē
∂F

(I; uΩ).V − ∂ā
∂F

(I; uΩ, pΩ).V ∀V ∈ C1(Ω̄, R2),

where uΩ is the solution of the state equation posed in Ω and pΩ ∈ X0(Ω) is the
adjoint state, unique solution of the following adjoint equation:

∂ā

∂u
(I; uΩ, pΩ).v =

∂Ē
∂u

(I; uΩ).v ∀v ∈ X0(Ω).

We have

∂ā

∂u
(I; uΩ, pΩ).v = aΩ(pΩ, v) and

∂Ē
∂u

(I; uΩ).v = −2δaΩ(uΩ, v) = 0 ∀v ∈ X0(Ω).

Hence, pΩ ∈ X0(Ω) and aΩ(pΩ, v) = 0 for all v ∈ X0(Ω). Therefore, pΩ = 0.
Hence,

dj

dω
(Ω).V =

∂Ē
∂F

(I; uΩ).V ∀V ∈ C1(Ω̄, R2).

Using (4.7) and the classical expression of the derivatives of |det(DF )|, (DF−1 ◦ F ),
and (‖ T DF−1.n‖R2) (see, e.g., [15, Chap. IV]), we obtain the result (i).

The result (ii) follows from (4.7) and the expression of the derivative of
|det(DF )|.

Then, we have straightforwardly the following result.
Corollary 4.2. At (λ, τ) given in R × R+, the augmented Lagrangian Lτ is

locally and continuously differentiable with respect to ω. And for all V ∈ C1(Ω̄, R2),

(4.8)
∂Lτ

∂ω
(Ω, λ).V =

dj

dω
(Ω).V + λ

dc

dω
(Ω).V + 2τc(Ω)

dc

dω
(Ω).V,

where dj
dω (Ω).V and dc

dω (Ω).V are defined by (4.4) and (4.5), respectively.

5. Discretization. In this section, we discretize the shape derivative of the
augmented Lagrangian Lτ defined by (4.8); then we define the shape parameters and
obtain the shape gradient. Then, we detail the full optimization process. We follow
[7], [12]; see also [13].

Let us recall that the expression ∂Lτ
∂ω (Ω, λ).V depends on u, the unique solution

of (3.5).
Let (Th) be a regular family of triangulation, where ω = ∪T∈ThT . We compute

an approximation of u using the classical piecewise linear conforming finite element
method (P1-Lagrange). This finite element approximation is denoted by uh, where
the parameter h denotes a characteristic mesh size.

Discretization of the boundary and the shape parameters. Let Ω̂ be an open set of
reference; typically Ω̂ is a quarter of a disk; see Figure 4.1. The domain of reference
Ω̂ is defined using a parametric function:

sΩ̂(t) =
N−1∑

i=0

P̂i si(t) , t ∈ [0, 1],

where {si(t)}i=0,...,N−1 are piecewise linear functions, si( j
N−1 ) = δij ; δij denotes the

Kronecker symbol, and P̂i = ((P̂r)i, (P̂z)i)T are the control points. We set (P̂z)1 =
(P̂z)0.



NUMERICAL MODELING OF ELECTROWETTING 1487

We have Ω = F̂0(Ω̂) with F̂0 ∈ F̂0. Similarly, we define the variable boundary
ΓLG (the unknown of the problem) by

sΩ(t) =
N−1∑

i=0

Pi si(t) , t ∈ [0, 1].

Hence, the boundary ΓLG is defined by N control points Pi, i = 0, . . . , N − 1.
Initially, these points define Γ̂LG as follows (see Figure 5.1):

P̂i = (0, R)T ,

P̂i =
(

R cos
(

(N − 1 − i)π
2(N − 1)

)
, R sin

(
(N − 1 − i)π

2(N − 1)

))T

, i = 2, . . . , N − 1,

P̂1 =
(

R cos
(

(N − 2)π
2(N − 1)

)
/2, R

)T

.

P
P
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z

z

0
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1
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1
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Fig. 5.1. Reference domain. Parametrization.

Therefore, during the optimization process, we compute a new domain that re-
quires computing new control points Pi, i = 0, . . . , N − 1.

The shape deformation space. Let us discretize the shape deformation V , V ∈
C1(Ω̄, R2). We have Ω = F̂0(Ω̂) with F̂0 ∈ F̂0. We set V = V̂ ◦ F̂−1

0 . V is defined in
Ω, while V̂ is defined in Ω̂.

We approximate C1( ¯̂Ω, R2) by ŜH , the vectorial space spanned by {V̂i}i=0,...,N−1:

ŜH = Span{V̂i}i=0,...,N−1,

where the set of vectors {V̂i}i=0,...,N−1 is detailed below.
We set H = 1

N−1 . The parameter H denotes a characteristic size of the shape
deformation space.

Then, the deformation field V is approximated by

(5.1) VH =
N−1∑

i=0

ηiVi,

where Vi = V̂i ◦ F̂−1
0 and ηi, i = 0, . . . , N − 1 are real coefficients.
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We have VH = (V̂H ◦ F̂−1
0 ) with

(5.2) V̂H =
N−1∑

i=0

ηiV̂i.

Finally, C1(Ω̄, R2) is approximated by SH = Span{Vi = V̂i ◦ F̂−1
0 }i=0,...,N−1.

The shape deformation basis. We have F̂0 = (I + V̂ ), and V̂ is approximated by
V̂H , which was defined by (5.2).

The basis {V̂i}i=0,...,N−1, is defined in Ω̂ as follows. For i = 0, . . . , N −1, we solve





∆(V̂r)i = 0 in Ω̂ ∩ Bint,
(V̂r)i = 0 in Ω̂/Bint,
(V̂r)i = 0 on ΓGz ∪ ΓSz,

(V̂r)i = (P̂r)i

||P̂i||
si on Γ̂LG,

(5.3)






∆(V̂z)i = 0 in Ω̂ ∩ Bint,
(V̂z)i = 0 in Ω̂/Bint,
(V̂z)i = 0 on Γ0 ∪ Γ̂LS ∪ Γ̂SG,

(V̂z)i = (P̂z)i

||P̂i||
si on Γ̂LG,

(5.4)

where V̂i = ((V̂r)i, (V̂z)i)T , P̂i = ((P̂r)i, (P̂z)i)T , and ‖P̂i‖ = [(P̂r)2i + (P̂z)2i ]
1
2 .

Let us note that we could have extended this vector field over the whole domain
by solving a linear elasticity system.

The shape gradient. We approximate V by VH (see (5.1)), and we have

∂Lτ

∂ω
(Ω, λ).V ≈ ∂Lτ

∂ω
(Ω, λ).VH =

N−1∑

i=0

ηi
∂Lτ

∂ω
(Ω, λ).Vi.

Then, the shape gradient denoted by GH is the vector

GH = (GH
i )i=0,...,N−1 =

([
∂Lτ

∂ω
(Ω, λ).Vi

])

i=0,...,N−1

=
([
∂Lτ

∂ω
(Ω, λ).(V̂i ◦ F̂−1

0 )
])

i=0,...,N−1

,

where Ω = F̂0(Ω̂).
Finally, we have for all i = 0, . . . , N − 1 (see Corollary 4.2),

(5.5) GH
i =

dj

dω
(Ω).(V̂i ◦ F̂−1

0 ) + λ
dc

dω
(Ω).(V̂i ◦ F̂−1

0 ) + 2τc(Ω)
dc

dω
(Ω).(V̂i ◦ F̂−1

0 ).

Variables of optimization. Since Ω = F̂0(Ω̂) = (I + V̂ )(Ω̂) ≈ (I + V̂H)(Ω̂) with V̂H

defined by (5.2), and V̂i defined by (5.3), (5.4), the variables of optimization are the
N coefficients ηi, i = 0, . . . , N − 1.

6. Optimization process. As mentioned previously, we solve (3.11), an op-
timization problem with constraint, using Uzawa’s algorithm; see, e.g., [8]. This
algorithm requires a descent algorithm which is in the present case BFGS (the quasi
Newton method). This gives the following:
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• Initially, we set η0i = 0, i = 0, . . . , N − 1; λ0 = 0.
• We compute the volume constraint c(η0).
• While the volume constraint (|c(ηk+1)| > eps1) is not satisfied,

– set λk+1 = λk + ρ c(ηk),
– compute ηk+1

i i = 0, . . . , N −1 such that Lτ (ηk+1, λk+1) < Lτ (ηk, λk+1)
using the BFGS algorithm, and

– compute the volume constraint c(ηk+1).
Classically, we set ρ = τ ; see [8].
The BFGS algorithm is implemented with bounding constraints. The linear search

is done using a dichotomic process.
We stop the BFGS algorithm either if |j(ηk+2)−j(ηk+1)|

j(ηk+1) < eps2 or if ‖(GH)k+2‖ <
eps3.

As usual, each call of the algorithm BFGS implies a few calls to the simulator.
The simulator does the following:
• It computes the new shape and the new mesh defined by

Ω =

(
I +

N−1∑

i=0

ηiV̂i

)
(Ω̂).

• It solves the state equation (3.5) posed in Ω by a P1-Lagrange finite element
method (with or without automatic mesh refinement).

• It computes the augmented Lagrangian Lτ defined by (3.9), with its gradient
GH defined by (5.5), and the volume constraint c defined by (3.10).

The full optimization process is represented in Figure 6.1.

η

Uzawa’s algorithm

If not convergence If convergence OK

k+1(η     , λ      ) k+1

(η   , λ  ) Grad L

(η   , λ  ) kk
L(η   , λ  ) k k

k k

ω*

State equation

Lagrangian

Gradient of Lagrangian

Computation of λk+1

k+1
λ     = λ  + ρ 

k

BFGS algorithm

Computation of η k+1BFGS iterates

Simulator ηC(        )
k+1

L (η , λ  ) k

Initialization

Min

Fig. 6.1. The optimization process.

7. Curvature computation. In the next section, we consider the evaluation
of the droplet curvature, particularly near the contact line. It was shown in [5] that
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the contact angle approaches Young’s angle, independently of the applied electrical
potential value. Observations show that the curvature is not constant. Then, it
would be interesting to see if the present modeling approach allows us to observe such
changes of curvature values near the triple point.

Accurately computing the droplet curvature is a difficult task since its interface is
a piecewise linear curve, and hence is not C2 differentiable. In addition, points defining
this piecewise linear curve result from the full shape optimal design process and hence
may comprise some nonnegligible numerical errors. Thus, we seek to estimate the
curvature of an underlying smooth surface.

Computing a discrete surface curvature is a classical (and difficult) problem. Usu-
ally in the computer aided geometric design context, surfaces are 3D and triangular-
ized, and the objectives are to smooth the mesh and simplify it, but not to quantify
a local variation of curvature; see, e.g., [10].

We are facing the following dilemma. We seek to get rid of numerical errors on
the points defining the curve while we try to detect as accurately as possible a local
significant variation of curvature.

We do not consider a direct computation by a finite difference method since
it is very sensitive to data error. We do not consider a polynomial reconstruction
of the underlying smooth surface and then evaluate its curvature, since this leads
to inaccurate results and unexpected behavior. Following [9], [14], we consider a
local least square approximation and then we evaluate the curvature. In the present
algorithm, we consider a second order local Bezier approximation; see [14]. As the
numerical tests presented below show, this method filters noise reasonably.

7.1. The algorithm. Given N points Xi = (ri, zi)T , i = 1, . . . , N defining the
liquid-gas interface, the basic idea is to approximate these data using a local least
square approximation by a Bezier curve.

The Bezier curve C(t) is given by

C(t) = (r(t), z(t))T =
M∑

j=1

PjB
M−1
j−1 (t) for t ∈ [0, 1],

where Pj = (αj , βj)T ∈ R2 are the control points and {Bm
j (t)}0≤j≤M−1 is the classical

Bernstein basis, with Bm
j ∈ Pm, Bm

j (t) = Cm
j (1 − t)m−jtj , Cm

j being the binomial
coefficients.

We set M = 3; hence we consider three points of control Pj and second degree
curves.

For an inner point Xi (see Figure 7.1), we compute the least square approximation
of the four points {Xi−2, . . . , Xi+2} by Bezier’s curve as follows. We minimize

J(P1, P2, P3) =
i+2∑

l=i−2

∥∥∥∥∥∥

3∑

j=1

PjB
2
j−1(tl) − Xl

∥∥∥∥∥∥

2

,

where {ti−2 = 0, . . . , ti+2 = 1} is a uniform subdivision of [0, 1]. The unique minimum
is computed by solving the corresponding normal equations.

For the extremal point X1, we consider a Bezier curve approximating the points
Xi for i = 1, . . . , 4. For X2, we consider a Bezier curve approximating the points Xi

for i = 1, . . . , 5.
For the extremal points XN−1 and XN , the principle is similar.
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Fig. 7.1. Inner point Xi. Local least square approximation using Bezier’s curve.

Curvature expression. Once a Bezier curve C(t) = (r(t), z(t))T is computed for
each point Xi, we evaluate the curvature as follows:

κi ≡ κ(ti) =
r′z” − r”z′

(r′2 + z′2) 3
2
(ti),

where (r′, z′) and (r′′, z′′) are computed using de Casteljau’s algorithm, with ti being
the parameter value related to Xi.

Sensitivity to random noise. Since the control points defining the (optimal)
droplet shape result from the full optimization process, they are perturbed by some
nonnegligible numerical errors. Hence, we test the robustness of our algorithm to data
perturbation below.

We set N(r, z) = (r′z” − r”z′) and D(r, z) = (r′2 + z′2) 3
2 ; hence κ(r, z)(t) =

N(r,z)
D(r,z) (t). Let δz be a perturbation on the z-coordinate of data Xi, i = 1, . . . , N ; then
we have

∂κ

∂z
(r, z).δz =

N(r, δz)
D(r, z)

− 3
κ(r, z)

(r′2 + z′2)
z′δz.

This formula expresses the curvature sensitivity to perturbation on z-coordinates.
Noise introduced below is a random perturbation on the z-coordinate of data Xi,
i = 1, . . . , N . It is a normal distribution with mean zero and variance one.

7.2. Numerical tests. The numerical tests presented below are useful for (i) val-
idating the present algorithm on explicit curves knowing their curvature value (the
“exact” curves); and (ii) measuring the computed curvature sensitivity to random
perturbation on data.

To this end, we consider an “oscillating curve” (see Figure 7.2), defined by N
points as follows:

r(s) = (R + εcos(a.s)) cos
(π

2
s
)

, z(s) = (R + εcos(a.s)) sin
(π

2
s
)

,

with s ∈ [0, 1], s discretized by N points similarly to η and ε = R
10 , a = 10, R = 1.

The exact curvature of the “oscillating circle” is straightforwardly obtained. This
curve presents smooth variations of curvature with changes of sign. If we compare
the curvature values computed by the present algorithm and those computed by the
second order finite difference scheme directly applied to the N data Xi = (ri, zi)T ,
i = 1, . . . , N , then without noise both lead to similar accuracy—the two methods give
a very precise approximation.
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However, in the presence of noise, the direct approximation does not give any
good approximation. On the contrary, the present algorithm, based on a local least
square approximation of the surface by Bezier’s curve, leads to a good approximation
of the curvature value of the nonperturbed curve.

We present in Figure 7.2 the curvature values obtained with the present algorithm
when some noise is introduced. As mentioned above, the noise is defined as a pertur-
bation on the z-coordinate of data Xi, i = 1, . . . , N . Its magnitude is about 0.5%.
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Fig. 7.2. Left: Oscillating curve. Right: Computed curvature value when noise is introduced.

8. Numerical results. The full optimization process described in the previous
section was implemented in C++. Our software, ElectroCap (see [13]), is based on the
public C++ finite element library Rheolef [19] and an in-house BFGS algorithm. The
mesh generator used is Bamg. For each simulator call, an automatic mesh refinement
is used. This mesh refinement is based on the classical a posteriori estimates. We
present in Figure 8.2 a typical mesh with the adaptive mesh in the edge.

Numerical data. The numerical data considered are the following:
• the surface tension coefficients (in N/m): σLS = 2.7 10−2, σLG = 5 10−2;
• the wetting angle at u0 = 0 (in radians): θ0 = π

2 (hence µ = 0);
• the insulator thickness (in m): e = 200 10−6;
• the electrical permitivities: ε1 = 2 × 8.85 10−12 and ε2 = 8.85 10−12;
• the drop volume (in L): vol = 40 10−9.

We assume that the Bond number α is small; i.e., we neglect the gravitational term.
Then, the cost function is (see (3.6), (3.7))

(8.1) j(ω) = jcap(ω) − jelec(ω),

with

jcap(ω) =
∫

γLG

rds and jelec(ω) = δ
∫

ω
εr|∇uω|2 dx,

where jcap(ω) and jelec(ω) are positive cost functions. The numerical parameters are
the following:
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• the penalty parameter: τ = ρ = 10−3;
• the convergence parameter of Uzawa’s algorithm: eps1 = 10−3;
• the convergence parameter of the BFGS algorithm: eps2 = eps3 = 10−3;
• the number of control points: NCP = 50.

The NCP is defined as follows. If we consider the polar coordinates in the plane,
for a droplet of radius R, the N points are equidistributed in θ. Their positions are
indicated in Figure 8.4.

Code validation. All components of the code have been validated—the direct
problem, the transport of the mesh, and the shape gradient.

The computed shape gradient has been compared with values obtained by a finite
difference method using the following approach. For each shape parameter, a finite dif-
ference shape derivative is computed using a domain perturbation of magnitude 10−4.
The order of magnitude of the relative error obtained between the two approaches is
between 10−4 and 10−6, depending on the imposed electrical field value u0.

In order to validate the entire code, we simulate the Lippman approximation by
using the code with u0 = 0 V but changing σLS for each value of u0 using the formula
given by the approximation of the plane capacitor:

σLS(u0) = σLS − ε0ε1
2e

u2
0.

Thus, theoretically, the contact angle should also be given by the Lippman equation.
Numerically we observe a good agreement with the theory. Figure 8.1 shows the value
of the contact angle found numerically (the angle of the last mesh triangle) and the
theoretical value given by the Lippman equation.
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Fig. 8.1. Plane capacitor approximation.

Moreover, we compute the curvature for each value of σLS (which corresponds
to a value of u0). Given a value of u0 and thus a value of σLS , we notice that the
numerically computed curvature remains constant for each point of the drop. We
also obtain for this case a very good agreement with the theory, which contributes to
validating the code.
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Now we compute the drop shape with the initial model, i.e., by considering σLS

as a constant and by changing values of u0.
Drop shape and wetting angle. We present in Figure 8.2 the drop shape (with

mesh) obtained for u0 = 400 V (left) and a zoom of the refined mesh near the edge
(right). As a matter of fact, we use an adaptive mesh refinement near the contact
point based on a posteriori estimates. All meshes contain approximately 4000 elements
and 2000 vertices. For each computation, the volume constraint is satisfied at less
than 0.1%.
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Fig. 8.2. Left: Shape and mesh for u0 = 400 V. Right: Zoom near the drop.

We present the cost function, the augmented Lagrangian, and its gradient as a
function of the iteration number for u0 = 400 V in Figure 8.3. The behavior of the
algorithm for other values of u0 is similar.
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Fig. 8.3. u0 = 400 V. Left. Cost function j versus iterations. Middle. Augmented Lagrangian
Lτ . Right. Gradient of Lτ .
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Fig. 8.4. Droplet surfaces for different u0 values. At right: zoom near the triple point.
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Fig. 8.5. Wetting angle. Computed values and Lippman’s equation predictions. Left. With
NCP = 15. Right. With NCP = 50.

We present in Figure 8.4 the drop shapes obtained in the function of u0.
We present in Figure 8.5 (left and right) the wetting angle values in the function

of u0. In both figures (left and right), we plot the computed values (the angle of
the last mesh triangle) and values predicted by the Lippman equation. On the left,
plotted values are obtained using 15 control points (NCP = 15); on the right, plotted
values are obtained using 50 control points (NCP = 50) (both with similar finite
element meshes).

Let us recall that experimental results correspond to the Lippman equation up
to a critical electrical potential ucr (for the present case, the observed critical value
ucr ≈ 700 V). For u0 > ucr, experimental results show a saturation of the wetting
angle (locking phenomenon); see, e.g., [21]. As mentioned previously, the explanation
of this locking phenomenon is still poorly understood by physicists. For u0 ≈ 1050 V,
the Lippman equation predicts a total spreading of the drop on the substrate (the
wetting angle vanishes).

With the present numerical model and with NCP = 15, we obtain a good agree-
ment with the Lippman equation for u0 < 500 V. For higher u0 values, we do not
model the angle saturation, but we observe that the contact angle is higher than the
predicted value for the plane capacitor approximation.
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Fig. 8.6. Computed shape compared to plane capacitor approximation shape for u0 = 800 V.

When increasing the number of control points to NCP = 50, we still obtain a
good agreement with the Lippman equation for u0 < 400 V. As with 15 points, we
notice that the computed values are higher than the predicted values for the plane
capacitor approximation. Moreover, the angle values computed with 50 points are
higher than those obtained for 15 points for u0 > 500 V.

Also, we compare the drop shape obtained to those obtained using the software
but “forcing” the Lippman approximation (i.e., by changing σLS for each u0 value).
In Figure 8.6 the result for a drop at 400 V is presented. We again find that the
wetting angle of the computed shape is higher than the Lippman predicted value.

Let us clarify that we did not manage to increase the NCP because of the well-
known instability of the shape optimal design algorithms. As a matter of fact, shape
optimal design algorithms become unstable when the control point density becomes
similar to the finite element point density.

In summary, with the present model, we do not manage to properly simulate the
locking phenomenon, but we do observe an overestimate of the Lippman predictions;
this overestimate becomes more important when using a higher control point density.

Curvature. We use the algorithm described in the previous section; see also [14].
For all the computations we performed, the droplet shapes obtained had a constant
curvature everywhere but in the vicinity of the triple point. In Figure 8.7, we present
as an example (here u0 = 800 V) the computed curvature at each control point. The
results are presented with 15, 30, and 50 points, respectively.

In Figure 8.8, we present the curvature values for different electrical potential
u0 values with 50 control points (with curvature values corresponding to those in
Figure 8.7, but for different u0 values). In Figure 8.9, we present the gradient of the
solution, i.e., the electric field.

For all computations we performed, the curvatures behave as those shown in
Figure 8.8. Thus, we can make the following three main remarks:

• For the curvature, the results are more accurate with 50 points than with 15
or 30 points. With 15 or 30 points, the behavior of the curvature near the
triple point appears to be less clear than with 50 points. This is due to the
too small number of points near the triple line.
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Fig. 8.7. Curvature values at u0 = 800V for 15, 30, and 50 points, respectively.
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Fig. 8.8. Curvature of the drop for several u0 values with 50 control points.
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• For a given potential u0, the curvature remains constant until we approach
the triple line, where the curvature increases. We can see that the curvature
is higher near the triple point than it is further away from it. (See Figure 8.7
for the case at 800 V. For other voltage the curvature has the same behavior;
see Figure 8.8.)

• If we look at the evolution of the curvature for an increasing potential u0, we
notice the following:

– The value of the curvature far from the triple line is constant and de-
creases when u0 increases.

– The curvature near the triple point increases, when u0 increases. The
fact that, with an increasing u0, the curvature far from the triple point
decreases is in accordance with the fact that, globally, the drop should
be a portion of a sphere with an increasing radius as u0 increases. We
note that the curvature increases near the triple line; this is in accordance
with the fact that the contact angle is higher than the Lippman predicted
value.
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Fig. 8.9. External electric field !E = !∇u at u0 = 400 V (zoom around the droplet).

9. Conclusion. We have detailed and implemented a general approach for mod-
eling the electrowetting process. The drop shape is computed as a minimum of the
total energy. Our model is based on the shape optimal design methods. We test our
model and software by including in the model the plane capacitor approximation (i.e.,
using the software with u0 = 0 V and changing the value of σLS for each value of the
potential). We obtain in this case an excellent agreement with the plane capacitor
approximation, which contributes to validating the approach. Then, we compare nu-
merical results obtained classically, that is to say, by changing the value of u0, with
the theoretical values for the plane capacitor approximation. In this case, the com-
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puted shapes and angles are not in agreement with this theory for a voltage higher
than 300 V.

Although we did not properly obtain the locking phenomenon, the drop shape
obtained deviates from the predicted shape as in [16]. Also, we did not manage
to observe that the contact angle remains constant; instead, the computed contact
angle values are higher than those predicted by Lippman’s equation. Moreover, this
overestimate becomes more important when using a higher control point density.

In other respects, we compute the curvature of the droplets. These values are
globally constant except in the vicinity of the contact point where the computed
curvature increases sharply. These results are in accordance with experimental results
obtained in [3] and [5], which noted this increase of the curvature near the triple line.

Finally, in order to properly obtain the locking phenomenon and Young’s angle
at the triple line as in [5], [16], [3], further investigations based on extra singular basis
functions to the finite element spaces are in progress.
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