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Flow Patterns in the Vicinity of Triple Line
Dynamics Arising from a Local Surface Tension

Model
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ABSTRACT

We model and simulate numerically a droplet impact onto a solid substrate. The triple line
dynamics modeling is implicit (as opposed to classical explicit mobility relations); it is based on
the Shikhmurzaev equations. These equations include generalized Navier slip type boundary
conditions with extra local surface tension gradient terms. Numerical results when spreading
are presented. A particular attention is paid to flow patterns near the contact line.
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1. INTRODUCTION

One of the main difficulties in simulating present
droplet flows is the contact line dynamics model-
ing. This problem has been widely studied and still
remains an open problem. Let us cite macroscopic
models with slip boundary conditions (see, e.g., [1–
3]), mesoscopic models with diffuse interface (see,
e.g., [4,5], and connection with molecular dynamics
(see, e.g., [6]). The most frequent contact line model
is an explicit mobility relation giving the contact line
velocity in function of the wetting angle value at any
time (Tanner type laws). Nevertheless, it has been
showen, [7] that the dynamic wetting angle cannot
be determined inherently by such a mobility rela-
tion.

In the present paper, we consider an “implicit”
model based on the Shikhmurzaev theory [7,8]. This
model led to generalized Navier slip type boundary
conditions with local surface tension gradient terms.
It does not impose the contact line velocity nor the
wetting angle since they are a response of the full
model. In Section 2, we present the equations: 2D
axisymmetric Navier-Stokes equations with an ALE
formulation. In Section 3, we discretize the equa-
tions using a finite element scheme. We introduce
a contact line algorithm that imitates the caterpil-
lar motion observed in experiments. Curvature is
computed using a local Bezier least-squares approx-
imation. In Section 4, first we consider a Tanner-
type law and we test the robustness of our algo-
rithm. Then, we consider both spreading phase and
recoiling phase, using the present ”implicit” model
based on the Shikhmurzaev theory. The extra lo-
cal terms appearing in this model are set by pre-
liminary results presented in [9,10]. We show differ-
ent flow patterns generated by these terms near the
triple point. Finally, we obtain encouraging results
for both phases.

2. MATHEMATICAL MODEL

2.1 The Equations

The droplet dynamics is modeled by the 2D ax-
isymmetric unsteady incompressible Navier-Stokes
equations. We denote by !u = (ur, uz)T the fluid
velocity, p its pressure, Σ the stress tensor, D the
deformation, tensor and Re the Reynolds number.
We denote by (!τ, !n) the unit tangential and exter-

nal normal vectors such that it is direct. We set
!Σn = Σ.!n, !Σn = Σn!n + Στ!τ.

2.1.1 Free Surface Dynamics and ALE Formulation

The free surface Γfr is transported by the veloc-
ity field !u. It is described by an implicit function,
φ(t, x(t), y(t), z(t)) = 0, and we have

dφ

dt
=

∂φ

∂t
+ !u · ∇φ = 0 in (0, T )× Ω (1)

with given initial conditions. We present the ALE
formulation, we use as well as the characteristics
method. We refer to [11,12]. The principle of the
ALE method is to define an equivalent velocity field
!γ (in the sense !γ.!n = !u.!n on ∂Ω) such that it pre-
serves the mesh inside the fluid domain Ω. To this
end, at any time t, we define the deformation field
!γ on the free surface Γfr, then we extend it all over
the domain by solving a linear elasticity system.

Let t #→ C(x, τ; t) be the characteristics lines asso-
ciated to the velocity field !γ, then one can define the
ALE variables: !uτ = !u ◦ C and pτ = p ◦ C. In the
ALE space, fluid particles have a velocity (!u − !γ) at
first order in time (t − τ). And for t = τ, one has
∂!u/∂t = ∂!uτ/∂t− !γτ∇!uτ, with !γτ = !γ ◦ C.

If we denote by t #→ X(x, τ; t) the La-
grangian characteristic lines (i.e., those associ-
ated to the velocity field !u), the ALE method
consists of defining a regular field !γ such that
Γt

fr = C(Γ0
fr, t

0; t) = X(Γ0
fr, t

0; t).

The r-momentum equation with ALE formula-
tion is

Re
(

∂uτ
r

∂t
+ ( !uτ − !γ) · ∇uτ

r

)
= −∂pτ

∂r

+2
(

1
r

∂[r Drr( !uτ)]
∂r

+
∂[Drz( !uτ)]

∂z
− uτ

r

r2

)
(2)

The z-momentum equation is similar. The continu-
ity equation is

1
r

∂(ruτ
r )

∂r
+

∂uτ
z

∂z
= 0

with initial conditions. Boundary conditions on the
free surface (liquid-gas) are

!Σn=
(
−pext+

κτ

Ca

)
!n+h!τ in (0, T )×Γf (3)
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FLOW PATTERNS IN THE VICINITY OF TRIPLE LINE DYNAMICS 3

where Ca is the capillary number, κ is the mean cur-
vature, and pext is the external pressure. The extra
term h is given (see Shikhmurzaev’s theory [8], Sec-
tion 2.2.2). We have classical boundary conditions
on the symmetry axis. We decompose the liquid-
solid interface into two parts, Γad and Γsl. Γsl de-
notes a “small” part of the liquid-solid interface near
the triple point. We consider a generalized Navier
slip-type boundary condition (local slipping),

{
!uτ.!n = 0 in (0, T )× Γsl

Στ = −[β !uτ+!g].!τ in (0, T )× Γsl
(4)

where β is a given sliding coefficient. The extra term
!g is given; it models either a surface tension gradi-
ent in the Shikhmurzaev’s theory or a uncompen-
sated Young stress in the Qian-Wang-Sheng theory
[13], see Section 2.2.4. On Γad, we impose adherence
boundary conditions: !u = 0.

The solution (!uτ, pτ) ◦ C is an approximation of
(!u, p) at first order in time, and curvatures κτ ap-
proximates κ at first order in time, too (see, e.g.,
[12]). In all the sequels we simplify notations by
dropping the arrows! and the superscript τ.

2.2 Contact Line Dynamics Modeling

We consider two different types of model for the
contact line dynamics, an explicit model (Tanner-
type law) and an ”implicit” one deriving from
Shikhmurzaev theory.

2.2.1 Mobility Relation (Tanner-Type Law)

The contact line velocity and the wetting angle are
related by

UCL(t) = k
[θ(t)− θeq]γ

(θeq)γ
for t ∈]0, T [ (5)

where UCL is the contact line velocity, and θeq is the
wetting angle at equilibrium (Young’s law), θ is the
(dynamic) wetting angle. k and γ are parameters
usually determined using experimental results.

2.2.2 Local Flow modeling and Shikhmurzaev’s
Theory

The “implicit” model does not impose the contact
line velocity and the wetting angle but considers
them as a response of the model. This model is

based on Shikhmurzaev’s theory [7,8], which intro-
duces the generalized Navier slip condition (4) and
the condition (3). These conditions are local since
the extra terms !g and h vanish except in the vicin-
ity of the triple point. The basic idea of this theory
is to consider that the rolling motion observed in
experiments [5] implies that particles of the liquid-
gas interface, which become an element of the solid-
liquid, lose their properties in a finite time. Then, the
surface tension value associated to this particle must
change to its new equilibrium value relative to the
solid-liquid interface. This process would give rise
to a surface tension gradient in a small vicinity of the
advancing contact line (hence, a local Marangoni ef-
fect). In other respects, the Young equation would
remain valid at any time. In this theory,

!g = − 1
2Ca

!∇σ and h =
1

Ca
!∇σLG.!τ (6)

where σ and σLG are the liquid-solid and the liquid-
gas surface tension coefficients, respectively. In
[9,10], a mathematical and numerical study presents
some qualitative behaviors of g and h arising from
Shikhmurzaev’s theory see Fig. 1.

2.2.3 The Mesoscopic Local Surface Model (LSM)

Briefly, the so-called mesoscopic LSM, as it is estab-
lished in [8], is as follows. The interfaces are de-
scribed by surface densities ρs (a variable that de-
scribes unambiguously the surface state). These sur-
face densities are solutions of the surface continuity
equations. A linear state equation gives the relation
between ρs and the surface tension coefficients σ.
We denote by ρs

i , i = 1, 2, the surface density on Γfr

(i = 1) and on Γsolid (i = 2), by σ1 = σ and σ2 = σSL.
The surface tension is related to the excess density
through the linear state equation,

σi = γ(ρs
0 − ρs

i ) i = 1, 2 (7)

where γ and ρs
0 are given constants. According to

[14], γ ≈ 2.106 and ρs
0 ≈ 10−7.

We have the surface continuity equation

∂ρs
i

∂t
+div(ρs

i!v
s
i )+

1
τ∗

(ρs
i−ρeq

i )=0 i=1, 2 (8)

where τ∗ is the relaxation time relative to the rolling
motion, τ∗ ≈ 10−3 (see [3]), !vs

i is a mean velocity
inside the layer and ρeq

i is its density at equilibrium
[16]: σi(ρeq

i ) = σeq
i , i = 1, 2.
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Figure 1. Advancing angle and Shikhmurzaev’s model

The velocity !vs
1 (respectively, !vs

2) is related to ρs
1

(respectively ρs
2) and to the fluid velocity !u. We have

the following Darcy laws type [8]:

(1 + 4α1α2)!∇σfr =4α2(!vs
1−!u) and

!vs
2 =α1

!∇σsolid+ 1
2!u (9)

where αi, i = 1, 2, are given constants characteriz-
ing the viscous properties of the interface. Accord-
ing to [14], α1 ≈ h/µ, h being the surface layer thick-
ness, h ≈ 10−10.

At the triple line, the surface flux continuity is im-
posed as

(ρs
1!v

s
1)!ef = (ρs

2!v
s
2)!eg (10)

where !ef and !eg are unit vectors normal to the
contact line and tangential to the gas-liquid and
gas-solid interfaces, respectively. Let us note that
cos(θ) = −!ef .!eg .

Remark. The most important feature of the
Shikhmurzaev model is supposed to be the follow-
ing. It does not impose either the contact line ve-
locity nor the wetting angle since both are a full re-
sponse of the model. Nevertheless, the LSM is con-
stituted by the two surface equations (8) and the
boundary condition (10) at the contact line. Then,
as it is noted in [14], the condition (10) at the contact
line is not enough to close the system. To this end,

the problem misses an extra condition at the contact
line. This can be very easily shown for some lin-
ear second-order differential equations with only a
flux continuity condition at the junction point. The
missing condition cannot be the Young equation be-
causeotherwise it would imply that the wetting an-
gle must be given, and it would not be a response of
the model anymore. The author of [14] proposes an
extra condition of the following type:

(ρs
1!v

s
1)!ef = F (ρs

1, ρ
s
2) (11)

where F (ρs
1, ρ

s
2) is a bilinear given function related

to a chemical potential law.

2.2.4 A Connection with Qian-Wang-Sheng Theory

From molecular dynamics simulations on immisci-
ble fluids, the authors of [6,13] and show that the
relative slipping between the fluid and the solid wall
follows a generalized Navier slip boundary condi-
tion similar to (4). In this theory, the extra term !g in
(4) would model the contribution of the tangential
stress due to nonshear stress that appears because of
the anisotropy of the pressure (thus its nonshear ori-
gin) across the fluid-fluid interface; the normal pres-
sure term is no longer equal to the tangential pres-
sure term across this interface, since this usually oc-
curs in the bulk. Hence this term, which is present as
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FLOW PATTERNS IN THE VICINITY OF TRIPLE LINE DYNAMICS 5

far as the two(fluid)-phase region is involved, is con-
nected to the fluid-fluid interfacial tension. The ex-
tra tangential stress !g, called interfacial uncompen-
sated (or unbalanced) Young stress, is defined as fol-
lows:

∫
Γint

g dy = σ(cos θ− cos θeq), where
∫
Γint

dy
denotes the integral across the interface Γfr.

From a macroscopic point of view, it is obvious
that it arises from the deviation of the fluid-fluid in-
terface from its static configuration and is narrowly
distributed in the fluid-fluid interface region. There-
fore, both theories (Shikhmurzaev’s and the molec-
ular one) lead to such a generalized Navier slip
boundary condition [Eq. (4)]. The derivation and the
interpretation of the extra term !g is different for each
theory, but from a mathematical modeling point of
view, the boundary condition is similar. Moreover,
the authors of [6,13] point out the fact that, inde-
pendently of the nearness to the fluid-fluid interface,
the generalized Navier slip condition is a more gen-
eral and suitable condition than the classical nonslip
condition, provided slip coefficient β and !g are well
adjusted.

3. DISCRETIZATION AND ALGORITHMS

3.1 Finite Element Scheme

We discretize the full model in time using the Eu-
ler implicit scheme and a first-order characteristic
method. Let {t0 = 0, t1, ..., tM = T} be a discretiza-
tion of ]0, T [ with a constant time step ∆t = T

M . The
semidiscrete r-momentum equation is (similar dis-
cretization of z-momentum equation is done)

Re
um+1
r −um

r ◦ χm

∆t
=−∂pm+1

∂r
+2

×
(

1
r

∂[r Drr(!um+1)]
∂r

+
∂[Drz(!um+1)]

∂z
−um+1

r

r2

)
(12)

and

Re
um+1
z − um

z ◦ χm

∆t
= −∂pm+1

∂z

+2
(

1
r

∂[r Dzr(!um+1)]
∂r

+
∂[Dzz(!um+1)]

∂z

)
(13)

where the superscript m represents the evaluation of
the quantity at t = tm and χm denotes the character-
istic associated to the velocity field (!u − !γ), defined
by






dχm

dt
(t) = (!u−!γ)(χm(t), t) t ∈]tm, tm+1[

χm(tm+1) = x
(14)

Then, χm(x) is approximated by χm(x) ≈ x −
∆t(!um − !γm)(x). The semidiscrete z-momentum
equation is similar.

We set

!uax =
(ur

r2
, 0

)T

and we denote ÷rz(·) = 1
r

∂
∂r [r (·)] + ∂

∂z (·). Then, we
can write (12) and (13) as follows:

λ !um+1 − 2÷rz[D(!um+1)] + ∇pm+1

+ 2!um+1
ax = λ (!um ◦ χm) (15)

with λ = Re
dt .

Let us recall that (!u, p) does not denote the Eule-
rian velocity pressure but its ALE counterpart.
Equation (1) is semidiscretized using the Euler
implicit scheme and the first-order characteristic
method. This gives

φm+1 = φm ◦Xm in Ω, m = 1, 2... (16)

where Xm denotes the characteristic associated to
the velocity field u at time tm. It is approximated as
follows: Xm(x) ≈ x−∆t !um(x).

The space discretization is done using the second-
order Taylor-Hood finite element. The scheme is im-
plemented using a public C++ finite element library
Rheolef [15].

3.2 ALE Free Surface Algorithm

The free surface problem is solved using an ALE for-
mulation and a characteristics method. The algo-
rithm (Fig. 2) is the following. At time step n, given
Ωn and (!un, pn) in Ωn.

Step 1. Compute the new free surface position Γn
f

following the Lagrangian characteristic lines (each
point of the boundary is translated by !un∆t). Then,
compute an equivalent deformation field !γn pre-
serving the mesh by solving a linear elasticity sys-
tem.

Step 1a. Compute the new solution (!un+1
τ , pn+1

τ )
of Navier-Stokes in Ωn.

Step 2. Update the domain Ωn+1 = !γn(Ωn) (mesh
transport by !γn).
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=
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Ω
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1. Transport of 

γ

Γ
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by 

Figure 2. Algorithm of resolution

Step 3. Obtain the new solution (!un+1, pn+1)
in Ωn+1 by setting !un+1|Ωn+1 = !un+1

τ |Ωn and
pn+1|Ωn+1 = pn+1

τ |Ωn .

3.3 Spreading and Caterpillar Motion

When spreading, our algorithm imitates the cater-
pillar motion observed in experiments [1]. Figure 3
represents typical successive time steps. If at time
step n thefirst point (or several points) on the free

surface is projected on the solid substrate, all the
points on the solid wall but the last ones become no-
slip points. The last two points remain slip points.

3.4 Recoiling Motion

When dewetting (recoiling), the triple point and the
slip points are allowed to move horizontally; also
vertically if their vertical velocity is positive (see
Fig. 4). If the triple point moves away from the

Solid surface

Solid surface

Solid surface

Time step n

Time step n+1

Time step n+2

Free Point
No slip point
Slip point

Triple Point

Figure 3. Spreading process. Circles represent no-slip nodes, triangles represent slip nodes uz = 0, squares represent
”free” nodes, diamond is the triple point
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Free Point
No slip point

Slip point

Time step n

Solid surface

Time step n+1

Solid surface

Triple Point

Figure 4. Recoiling process. Circles represent no-slip nodes !u = 0, triangles represent slip nodes uz = 0, squares
represent ”free” nodes, diamond is the triple point

solid wall, the first point to the left becomes the
triple point, hence becoming a free point. The sec-
ond point to the left becomes a slip point.

4. CURVATURE COMPUTATION

We seek to compute the curvature of the droplet
surface. Computing accurately the curvature is a
difficult task since its interface is a piecewise lin-
ear curve, hence not C2 differentiable. In addition,
points defining this piecewise linear curve result
from the full free surface algorithm, hence may com-
prise some nonnegligible numerical errors. Then,
we seek to estimate the curvature of an underlying
smooth surface.
Computing a discrete surface curvature is a classi-
cal (and difficult) problem. Usually in the CAGD
context, surfaces are 3D and triangularized, and the
objectives are to smooth the mesh and to simplify
it, but not to quantify a local variation of curvature
(see, e.g., [16]).

The present problem is easier since the curve is
2D only, but we are facing the following dilemma:
we seek to get rid of numerical errors connected to
the points defining the curve while we seek to detect
as accurate as possible local variations of curvature
in order to obtain the resulting surface tension forces
accurately. We do not consider a direct computation
by a finite difference method since it is very sensitive
to data error. We do not consider, neither, a polyno-

mial reconstruction of the underlying smooth sur-
face then evaluate its curvature, since this leads to
inaccurate results and unexpected behavior. Fol-
lowing [17], we consider a local least-squares ap-
proximation, then we evaluate the curvature. In the
present algorithm, we consider a second-order local
Bezier approximation. As the numerical tests show
(see below), this method filters noise quite reason-
ably while it allows us to detect local and rapid vari-
ation of curvature.

4.1 The Algorithm

Given N points Xi = (ri, zi)T , i = 1, ..., N , defining
the liquid-gas interface, the main idea is to approxi-
mate these data using a local least-squares approxi-
mation by a Bezier’s curve. The Bezier’s curve C(t)
is given by

C(t)=[r(t), z(t)]T=
M∑

j=1

PjB
M−1
j−1 (t) for t ∈ [0, 1]

where Pj = (αj , βj)T ∈ R2 are the control points
and {Bm

j (t)}0≤j≤M−1 is the classical Bernstein’s
basis, Bm

j ∈ Pm, Bm
j (t) = Cm

j (1− t)m−jtj , Cm
j being

the binomial coefficients.

We set M = 3, hence we consider three points of
control Pj and second-degree curves. For an inner
point Xi, see Fig. 5, we compute the least-square,

Volume 5, Number 1, 2007

A
 u

  
t 
h
 o

 r
  
P
 r
 o

 o
 f
 O

 n
 l
 y
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z

X
i

X
i−1

X
i−2

X
i+1

X
i+2

P
P

P

1
2

3

Beziers’ curve

r

Figure 5. Inner point Xi. Local least square approximation using Bezier’s curve

approximation of the five points {Xi−2, ..., Xi+2} by
a Bezier’s curve as follows. We minimize

J(P1, ..., PM )=
i+2∑

l=i−2

‖
M∑

j=1

PjB
M−1
j−1 (tl)−Xl‖2

where {ti−2 = 0, ..., ti+2 = 1} is a uniform subdivi-
sion of [0, 1]. The unique minimum is computed by
solving the corresponding normal equations.

For the extremal point X1, we consider a Bezier’s
curve approximating the points Xi for i = 1, ..., 4.
For X2, we consider a Bezier’s curve approximating
the points Xi for i = 1, ..., 5. For the extremal points
XN−1 and XN , the principle is similar.

4.1.1 Curvature Expression

Once a Beziers’s curve C(t) = [r(t), z(t)]T is com-
puted for each point Xi, we evaluate the (plane) cur-
vature as follows:

κi = κ(ti) =
r′z′′ − r′′z′

(r′2 + z′2)3/2
(ti)

where (r′, z′) and (r′′, z′′) are computed using de
Casteljau’s algorithm, ti being the parameter value
corresponding to Xi.

4.1.2 Sensitivity to Random Noise

Since the control points defining the (optimal)
droplet shape are resulting from the full free surface
algorithm, they may be perturbed by some nonneg-
ligible numerical errors. Hence, we test the robust-
ness of our algorithm to data perturbation (see be-
low).

If we denote N(r, z) = (r′z′′− r′′z′) and D(r, z) =
(r′2 + z′2)3/2, then: κ(r, z)(t) = [N(r, z)/D(r, z)](t).
Let δz be a perturbation on the z coordinate of data
Xi, i = 1, ..., N , then we have

∂κ

∂z
(r, z).δz=

N(r, δz)
D(r, z)

−3
κ(r, z)

(r′2 + z′2)
z′δz

This formula expresses the curvature sensitivity to
perturbation on the z coordinate. Noise introduced
in the numerical tests below is a random perturba-
tion (on the z coordinate of data Xi, i = 1, ..., N ). It
is a normal distribution with zero mean value and
unit variance.

4.2 Numerical Tests

We present some numerical tests using the following
two different methods:

Method a. Standard second-order finite difference
scheme directly applied to the N data Xi =
(ri, zi)T , i = 1, ..., N .

Method b. Local approximation by a second-order
Bezier’s curve, then curvature computation.

In order to compare these two methods, we consider
the following three curves (with noise introduced):

Curve 1. A circle, Fig. 6.

Curve 2. An “oscillating-curve,” Fig. 7.

Curve 3. A “double circle,” Fig. 8.

As mentioned above, noise is defined as a per-
turbation on the z coordinate of data Xi, i =
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Figure 6. Curve 1 With noise introduced and computed curvature value
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Figure 7. Curve 2 With noise introduced and computed curvature value
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Figure 8. Curve 3 With noise introduced and computed curvature value

1...N . The circle is defined by N points as fol-
lows: r(i) = R cos(ηi), z(i) = R sin(ηi), with
ηi = [((i− 1)π/2(N − 1))], i = 1, ..., N .

The so-called ”oscillating-curve” is defined by N
points as follows: r(s) = [R + ε cos(a.s)] cos(π/2s),
z(s) = [R + ε cos(a.s)] sin(π/2s) with s ∈ [0, 1], s
discretized by N points similarly to η and ε = R/10,
a = 10. The exact curvature of the ”oscillating-
circle” is straightforwardly obtained. This curve
is interesting since it presents smooth variations of
curvature with change of sign.

The so-called double-circle is defined by N points
as follows: For i = 1, ..., M , r(i) = R cos(ηi), z(i) =
R sin(ηi); for i = M + 1, ..., N , r(i) = a + R

2 cos(ηi),
a = (1 − R) cos(ηM ) and z(i) = b + R

2 sin(ηi),
b = (1−R) sin(ηM ). This curve is interesting since it
presents a sharp variation of curvature (noncontin-
uous, in fact).

We set R = 1, M = 8 and N = 30. Without noise
(i.e., if considering the exact curves), the two meth-
ods allow us to retrieve perfectly the curvature val-
ues of the three curves.

In Figs. 6, 7, and 8, we also compare the two
methods (a and b) by computing the curvature of

curves 1, 2, and 3 when some noise is introduced. In
such a case, all our computational tests performed
showed that method b gives much better results
than method a. In other respects, we compared
methods a and b with to a “global” method; we in-
terpolated the given points using a parametric cubic
spline, then we computed the curvature of the inter-
polating spline. This last method is much less accu-
rate and much more sensitive to noise than methods
a and b.

5. NUMERICAL RESULTS

We consider a water droplet. The reference length
and velocity are Lref = 2.3 mm, Uref = 0.98m/s.
Then, Re = ρUrefLref/µ ≈ 46, Weber number We =
ρU2

refLref/σ ≈ 68, and Ca = σ/µUref ≈ 1.5.

5.1 Spreading Phase Using a Tanner-Type Law

We start by testing the efficiency of the algorithm. To
this end, we consider the Tanner-type law as triple
line dynamic modeling, and we make fit this law
with available experimental data [18], related to a
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FLOW PATTERNS IN THE VICINITY OF TRIPLE LINE DYNAMICS 11

spreading phase. The triple point position is im-
posed at each time. We focus on the volume con-
servation, the height and diameter of the spread-
ing (splat radius), and the deformation of the mesh
(number of remeshings necessary) (see Fig. 9). With
a time step dt = 5 × 10−5s and a coarse mesh (≈
600 elements), the volume lost after 650 iterations
is roughly 3%. The loss occurs mainly at the very
beginning of spreading. Mesh transport is efficient,
hence remeshing occurs only when a projection oc-
curs (see previous section). From a qualitative point
of view, numerical results are similar to experimen-
tal data [18].

5.2 Influence of the Local Parameters (β, g, h)

We present some influence of terms specific to the
Shikmurzaev’s model by considering the following
steady-state Stokes system. Find (!u, p) such that

2
∫

Ω
D(u) :D(v)dx−

∫

Ω
p ÷ (v)dx (17)

+2
∫

Ω
uavdx+β

∫

Γslip

ur vr ds

=
∫

Γfree

κ

Ca
vnds+

∫

Γf

hv τ ds−
∫

Γsl

gr vrds, ∀v

∫

Ω
÷(u) q dx = 0, ∀q (18)

We try to find the main effects of parameters β, !g, h
from numerical simulations. To do so, we fix one

of the three parameters and we simulate the Stokes
system (17) and (18) above with different values for
the remaining ones. The set of absolute values used
for the parameters is {0, 102, 104} with signs taken
as previously discribed. According to Fig. 10, the ef-
fect of high β values is similar to a no-slip boundary
condition on Γsl. For the g term, it is clear that a high
|g| (g < 0) is equivalent to accelerating the spread-
ing; in order to get fewer constraints, the tangential
velocity has to be of the order of −g/β. The h term
creates an upwind force that should be responsible
for recoiling, see Figs. 11 and 12, for β = 0, 104 and
different values of g and h. Also, because of conti-
nuity, Figs. 10 and 13 suggest the presence of a tan-
gential velocity component on the free surface even
if coefficient h = 0, which means that caterpillar-like
motion is driven by solid-liquid surface properties
as well as by those of the liquid-gas interface. In ad-
dition, according to Figs. 12 and 13,−g/β acts differ-
ently on the free interface whether the contact angle
is greater or less than π/2.

5.3 Spreading Phase Using the Shikhmurzaev
Model

We consider the spreading phase using
Shikhmurzaev’s model and the algorithm pre-
sented previously. As mentioned above, g acts
like a control on the position of the triple point. A
decrease for g < 0 translates in a faster spreading.
If g is small, this influence is likely not to be seen

0.2 0.4 0.6 0.8 1 1.2
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0.8

1
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0.1185

0.119

0.1195

0.12

0.1205

0.121

0.1215

0.122

0.1225

0.123

Figure 9. Spreading: droplet profiles and volume in function of time steps
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Figure 10. Case 1: influence of β and g, h = 0. Velocity in the vicinity of the triple point for (β, g) = {(0, 0), (104, 0)}
(up), {(0,−102), (104,−102)} (middle), {(0,−104), (104,−104)} (down). Scale factors are 3, 3, 0.05, 3, 0.0005, 0.05, re-
spectively
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Figure 11. Case 2: influence of β and h, g = 0. Velocity in the vicinity of the triple point for (β, h) = {(0, 0), (104, 0)}
(up), {(0,−102), (104,−102)} (middle), {(0,−104), (104,−104)} (down). Scale factors are 3, 0.1, 0.001, respectively
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Figure 12. Case 3: influence of β, g and h, h = 2g. Velocity in the vicinity of the triple point for (β, g) =
{(0, 0), (104, 0)} (up), {(0,−102), (104,−102)} (middle), {(0,−104), (104,−104)} (down). Scale factors are 3, 0.1, 0.001,
respectively
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Figure 13. Case 3: influence of β, g and h, h = 2g. Velocity in the vicinity of the triple point for:
(β, g) = {(0, 0), (104, 0)} (up), {(0,−102), (104,−102)} (middle), {(0,−104), (104,−104)} (down). Scale factors are
0.05, 0.05, 0.005, 0.1, 5× 10−5, 0.005, respectively, θ > π

2

in the first part of the spreading, when the inertial
forces dominate all other forces in presence. By
increasing |g| over a threshold, which depends on
β, it accelerates the spreading and modifies the
flow nature. For |g| large, large interface distortions
occur and the mesh generator fails to remesh. In
order to observe the influence of the g term, we fix

β = 1000, and we perform 1000 iterations with a
step size of dt = 5.0 × 10−6 for g ∈ {−10,−100},
Fig. 14. One can observe that after the inertial phase,
the triple point position is farther to the right with
an increasing |g| as shown more clearly by Fig. 15.

Figure 16 shows a droplet subjected to large
distortion (similar to breakup) when |g| is getting
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Figure 14. Droplet profiles and triple point position (right) for (β, g) = {(103,−10), (103,−102)}

larger. Simulation can go no further because of the
change of topology it implies is not supported by the
ALE method we are using.

We try now to see the influence of the sign of pa-
rameter g on the droplet behavior. Since we have
seen that parameter g monitors the spreading, it is
also supposed to do so with recoiling. In Fig. 17,
simulation is started with an initially spread droplet.
Also here, the ratio−g/β significantly influences the
behavior of the droplet, while parameter h influ-
ences more particulary the droplet curvature than
the triple point position.
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0
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0.8

1

1.2

1.4

Figure 15. Triple point porition for (β, g) =
{(103,−10), (103,−102)}

6. CONCLUSION

We have discretized and implemented a macro-
scopic part of the Shikhmurzaev model [7,8], using
an ALE formulation and a finite element scheme.
Also, a connection with Qian-Wang-Sheng’s results
[6] has been presented. The present model com-
prises generalized Navier slip boundary conditions
with local surface tension gradient terms in the
vicinity of the contact line. The local term values
have been chosen based on a previous mathemat-
ical and numerical study done in [10]. To test the
efficiency of the present algorithm, we first consid-
ered a classical mobility relation and we obtained
spreading droplet profiles qualitatively comparable
to experimental results. Then, we showed how the
introduction of these new local terms in the vicin-
ity of the contact line allow modeling the spread-
ing phase. Concerning the recoiling phase, further
investigation to implement algorithm our properly
is in progress. Also, a full coupling between the
macroscopic part and the microscopic part of the
Shikhmurzaev model is under progress.
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