
Adjoint-Based Inverse Problems for Power-Law
Geophysical Free-Surface Flows

Nathan Martin, Jérôme Monnier
IMT Toulouse – INSA, 135, avenue de Rangueil, 31400 Toulouse, France

Context

I More and more data available : radar, satellite,
field measurements, . . .
⇒ mostly Surface Velocities and Topography

I Control of Non-newtonian flow : rheology,
modeling of the bottom : hard to estimate directly

I Natural Hazards : flood, eruption, sea-level rise,
. . .⇒ improve predictability and risk assessment

The Power-Law Stokes Model

I State Equations discretized with Order 2 FEM :
-div (2η(u)D) +∇p = ρg in Ωt

div (u) = 0 in Ωt

η(u) = η0‖D‖
1−n

n
F

I ALE formulation for the time-moving domain Ωt

The Adjoint Method

I Velocity observations uobs and input parameters k
I Cost function : j(k ) =

∫
‖Cuobs − u(k )‖2

2 dx
+ regularization terms

Measures misfit of computed state and
observations

I Adjoint model of Power-Law Stokes problem
. obtained using Algorithmic Differentiation
. provides gradients ∂j/∂k for all directions δk

It contains all the physics of the direct model +
Misfit with the observations

Variational Tools

The adjoint model provides two main features :

I Sensitivity Analysis

. Quantify the propagation of perturbations of k
through the model

. Local around a given point k0

. Better understanding of the physics of the model

I Data Assimilation

Optimal control problem generally ill-posed
⇒ Regularization based on a priori physical knowledge

Reliability of Velocity Surface Observations (geophysical context)

I Typical remote-sensed data in geophysic
I Power-Law description⇒ Infinite viscosity at free surface

Are such observations reliable to infer rheological parameters and/or friction at bottom using a power-law
description ?

I Sensitivity to a locally defined power-law index n on a uniform stationnary flow :

(a) Computed Viscosity field with n = 3 (b) Log-Scale Sensitivity ∂j
∂n(n0)

FIGURE: Resulting viscosity field subject to a power-law description and related sensitivity to the power-law exponent in the case of a uniform stationnary flow. The
viscosity field shows an infinite viscosity at surface upper-bounded by the mesh cell size. The sensitivity has been computed around a state n0 = 2 using
observations uobs computed with n = 3. It is plotted using a log-scale and it decreases from bottom to surface . We observe a boundary layer of zero gradient at
surface corresponding to the boundary layer of infinite viscosity. The gradient ∂j/∂η0 computed in the same situation shows identical results

Uniform flow and simple shear-rate distribution⇒ Gradient ∂j
∂n vanishing at free surface

I High correlation between viscosity and sensitivity to the rheological exponent n
⇒ the rheology at high shear-rate is dominant

I Surface velocities insensitive to an eventual regularization of the viscosity at surface
(e.g. cut-off on the shear rate or yield stress)

Confirm that surface velocities are relevant observations to characterize the flow in term of rheology
N.B. The context of a quasi-uniform stationnary flow is typical in laboratory experiment. It shows a simple sensitivity

field and has a reproductible behaviour.

Sensitivity to the friction coefficient β and free-slip area (glaciological context)

I Unmeasurable quantity representing a major uncertainty in glaciological modeling
I Represents many physical processes (roughness of the bedrock, pressure of subglacial lake, etc.)

Sensitivity analysis provides a better understanding of the underlying physics of the friction modeling

(a) At bottom : constant intermediate friction everywhere (b) At bottom : free-slip area between x = 25km and x = 27km and constant intermediate friction
elsewhere

FIGURE: Sensitivity ∂j/∂β and surface velocity observations. Left : both surface velocity (with and without the local free-slip) are plotted to point out the minor difference
between them. Right : In the presence of a local free-slip zone, a higher sensitivity area appears. The gradient has been computed at point β0 = 10β in both plots.

I Sensitivity follows the variations of surface velocity (natural since high velocity→ high misfit→ high gradient)
⇒ Surface velocities well-suited as observations to infer the friction coefficient

I Free-slip zone almost invisible in term of velocity surface (since local) but clearly highlighted in term of sensitivity

The gradients of the fluid model help to see beyond the filtering and the non-local behaviour of the
transmission of the basal movement to the surface

The regularization term : a crucial component of the cost function

The definition of the regularization term maybe a great
difficulty in data assimilation

I Cost function : j(η0) =
∫

Γs
‖uobs

s − us(η0)‖2
2 dx

+γ1
∫

Γs
‖∂xη0‖2

2 ds + γ2
∫

Γs
‖∂zη0‖2

2 ds

The choice of γ1 and γ2 is crucial since Ill-posed
problem⇔ equifinality on the system

⇓
The trust region on the identified parameter is strongly

defined by the regularization term

Every user should lean on the sensitivity analysis to
understand and improve the contents of the cost function to

infer the expected “true state”.

(a) Target consistency field and Identification Results for different values of γ1 = γ2 = γ (b) Target consistency and Identification Results with γ1 6= γ2

FIGURE: The left plot demonstrates the impossibility to identify the target consistency when chosing an isotropic regularization. The target has been computed from a
thermal law using a stationnary linear temperature profile leading to a layered consistency η0 decreasing from bottom to surface. This target does not behave
isotropically in term of spatial gradient. Yet, the cost has reach a close-to-zero value. The equifinality of the system does not lead to the expected solution. As we can
see on the right, a regularization that consider independently the horizontal and the vertical gradient leads to a solution more consistent with the expected one.
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