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s u m m a r y

Recent applications of remote sensing techniques produce rich spatially distributed observations for
flood monitoring. In order to improve numerical flood prediction, we have developed a variational data
assimilation method (4D-var) that combines remote sensing data (spatially distributed water levels
extracted from spatial images) and a 2D shallow water model. In the present paper (part I), we demon-
strate the efficiency of the method with a test case. First, we assimilated a single fully observed water
level image to identify time-independent parameters (e.g. Manning coefficients and initial conditions)
and time-dependent parameters (e.g. inflow). Second, we combined incomplete observations (a time ser-
ies of water elevations at certain points and one partial image). This last configuration was very similar to
the real case we analyze in a forthcoming paper (part II). In addition, a temporal strategy with time over-
lapping is suggested to decrease the amount of memory required for long-duration simulation.

! 2009 Elsevier B.V. All rights reserved.

Introduction

Numerical flood models based on two-dimensional shallow
water equations (St-Venant equations) are widely used to analyze
flood events or the effects of flood control projects. Computational
codes that numerically simulate such surface flows are becoming
more and more efficient and accurate. Nevertheless, in order to
run reliable numerical simulations, one must calibrate the model
parameters and know the boundary conditions (e.g. incoming dis-
charge) and initial conditions. In river hydraulics, the parameter
most often calibrated is the Manning roughness coefficient. Typi-
cally, one uses the trial and error method to calibrate this spatially
distributed parameter. Available observations are only used to val-
idate the numerical results a posteriori. Calibration ‘‘by hand” can
be time-consuming and successful simulation depends strongly on
expert experiences in most cases.

The variational data assimilation method (4D-var) based on the
optimal control theory of partial differential equations is a power-
ful tool for optimally fusing measurements and the mathematical
model. On the one hand, this method allows for sensitivity analy-
sis, which can greatly help the expert-user to calibrate ‘‘by hand”

(computation of a gradient). On the other hand, it offers an optimal
way of identifying some input parameter values using an optimiza-
tion procedure. The optimization procedure minimizes the dis-
crepancy between data and the model response. This approach,
based on the derivation of an adjoint model, has proven its effi-
ciency in operational meterology (see, Le Dimet and Talagrand,
1986; Courtier and Talagrand, 1990 for pioneering articles), and
more recently in operational oceanography.

In river hydraulics, variational data assimilation methods have
been used successfully for one-dimensional and two-dimensional
shallow water equations in Atanov et al. (1999), Ding et al.
(2004), Belanger and Vincent (2005), Roux and Dartus (2005), Cas-
taings et al. (2006), Gejadze and Monnier (2007), Honnorat et al.
(2007, 2008, in press).

Also, models have been calibrated using the GLUE method
(Hunter et al., 2005) or, in the case of one-dimensional equations,
Kalman filtering approach (Hartnack et al., 2001; Madsen et al.,
2006).

More and more observation data are now available, especially
with modern remote sensing techniques. The full potential of het-
erogeneous observations has not yet been reached. If good corre-
sponding observation operators are defined, then variational data
assimilation methods can fuse heterogeneous observations and
the mathematical model.
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In this paper, we show the potential utility of the variational
data assimilation method in river hydraulics if spatially distributed
water levels are available. Such observations can be extracted from
satellite images (Hostache et al., 2006; Puech et al., 2007). We
show how the images can help identify some unknown input
parameters and optimally fit the computed flow and observed
water levels. The use of a remote sensing image for a Moselle river
(France) flood event is described in a forthcoming article (part II).

The paper is organized as follows. ‘‘Two-dimensional flood
model” describes the flow model: two-dimensional shallow water
equations. The adjoint model, the full optimal control process and
its implementation are presented in ‘‘Variational data assimilation
method”. ‘‘Test case and cost function” presents a test case and a
definition of the total cost function for assimilation of spatially dis-
tributed water levels. In ‘‘Choice of cost function”, special attention
is given to an extra penalty term in the cost function and the
improvement of the identification process. In ‘‘What can we iden-
tify with a full image”, we describe the identification of initial con-
ditions or inflow discharge from ‘‘full images”, i.e. images that
provide water levels everywhere in the domain at a single instant.
In ‘‘Can we identify the inflow discharge with partial images and/or
in situ measurements?”, we address the problem of the identifica-
tion of inflow discharge when only one partial image is available,
along with pointwise measurements of water level from a gauging
station in the main channel. Finally, because long-term simulations
can be hindered by limited memory, we present in ‘‘Overlapping
strategy and improvement of computational cost” a temporal strat-
egy that includes overlapping to identify time-dependent parame-
ters with a lesser memory requirement.

Two-dimensional flood model

Basic equations

Shallow water equations (2D-SWEs) effectively model the
flooding process in a floodplain or wetland. Their conservative
form is (see e.g. Toro, 2001):

@U
@t

þ @FðUÞ
@x

þ @GðUÞ
@y

¼ BðUÞ ð1Þ

where x and y are the space coordinates, t is time, U is the state of
the flow, F and G are the x- and y-directional flux vectors and B is
the source-term vector. These vectors are defined as follows:

U ¼ ðh; hu;hvÞT ¼ ðh; qx; qyÞ
T ð2Þ

F ¼ hu;hu2 þ 1
2
gh2

;huv
! "T

ð3Þ

G ¼ hv; huv; hv2 þ 1
2
gh2

! "T

ð4Þ

B ¼ ð0; ghðS0x % SfxÞ; ghðS0y % SfyÞÞT ð5Þ

where h is the water depth, u and v are the velocity components,
qx ¼ hu and qy ¼ hv are the unit discharge components, S0x and Sfx
are the bed and friction slopes, respectively, along x, and similarly
S0y and Sfy along y. The friction slopes are evaluated using the Man-
ning formula:

Sfx ¼
n2qx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqxÞ

2 þ ðqyÞ
2

q

h7=3 ; Sfy ¼
n2qy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqxÞ

2 þ ðqyÞ
2

q

h7=3 ð6Þ

where n is the Manning coefficient.
To simulate the flood event with 2D-SWEs, initial conditions

and boundary condition must be defined. Initial conditions are:

U0 ¼ ðhjt¼t0
; qxjt¼t0

; qyjt¼t0
ÞT ð7Þ

The boundary conditions are as follows:

& At upstream boundaries, the normal discharge qnðtÞ and the nor-
mal gradient of elevation @h

@xn
are imposed.

& At open downstream boundaries, elevation hðtÞ is imposed.
& At land (wall or closed) boundaries, the normal discharge and

the normal gradient of elevation are imposed to vanish:

qn ¼ 0 and
@h
@xn

¼ 0 ð8Þ

Numerical method

The 2D-SWEs (1)–(8) are solved using DassFlow software,
(Honnorat et al., 2007). The numerical scheme is a finite volume
scheme, implemented on an unstructured mesh (triangles and/or
quadrilaterals). The solver uses the rotational invariant property
of the equations, then it uses a local 1D HLLC Riemman solver
(Toro, 2001) with a consistent intermediate wave speed (Fernán-
dez-Nieto et al., 2008). It has first-order accuracy in space but a
high resolution for flow discontinuity. Time discretization is done
using the forward Euler scheme so a stability condition must be re-
spected: Dt 6 minðdL;RÞ

maxðjun jþcÞ, where dL;R is the distance between two cell
centerse and un is the normal vector at interface.

The friction source term in momentum equations is semi-
implicit in time (Honnorat et al., 2007).

Wetting and drying process are taken into account as follows,
see e.g. Toro (2001), and Zhao et al. (1994). Within the framework
of unstructured finite volumemethods, one very small water depth
denoted by h! is considered the tolerance for determining the dy-
namic boundary of a cell interface in the flood front, across which
the normal fluxes are calculated using corresponding methods. The
values of water depth hL; hR on both sides of the calculated cell
interface are checked at each time step. There are three
possibilities:

& If both values are zero (in this study, water depths less than
h! ¼ 10%4 m are considered zero), we consider the cell dry and
zero mass and momentum fluxes are simulated.

& If only one of them is zero, the normal fluxes are calculated with
an analytic solution (formula of weir equation, see e.g. Zhao
et al. (1994), p. 876 for more details.)

& If neither of them are zero, the fluxes are calculated using the
normal HLLC scheme.

Variational data assimilation method

The variational data assimilation method (also called the 4D-var
method) is based on the optimal control theory (Lions, 1971). It
provides an optimal way of fitting the model to observations by
calibrating some model parameters, see e.g. Le Dimet and Tala-
grand (1986), and Courtier and Talagrand (1990) for pioneering
articles in which the method is applied to meteorological studies.
We apply the method to 2D-SWEs in order to identify hydraulic
parameters. The method is based on the minimization of a cost
function that measures the discrepancy between the available
observations and the computed flow state.

The original code (the forward code) has been converted
into a more general code which includes the forward model,
the adjoint model and an optimization process. The adjoint
model is backward in time and includes the observations as
source terms.
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Adjoint model and optimality condition

A general cost function J is defined as follows:

JðpÞ ¼
Z T

0

Z

X
/ðUp;Uobs;pÞdXdt ð9Þ

where / is a smooth functional measuring the discrepancy between
the simulated state and the observations and Up is the solution of
2D-SWEs (1)–(8). In the trivial case where observations Uobs are
the state variables observed everywhere and at any time, we set:

/ðUp;Uobs;pÞ ¼ kUobs % Upk2 ð10Þ

Hence J depends on the control variables p via the state vari-
ables Up. It is an optimal control of 2D-SWEs. The control variable
p can be the initial condition, the Manning coefficient, the bed ele-
vation, boundary water levels and/or discharge. In the most gen-
eral case, p ¼ ðU0;n; Zb; qC;hCÞ

T . Of course, in practice one cannot
identify every parameter at the same time and p contains one or
only few of these variables.

In the next section, we detail the cost functions we consider. In
particular we present some extra penalty terms useful in helping
the minimization process converge to better calibrate model.

The cost function is minimized using a local descent algorithm
(first order method). Thus, we need to compute the gradient of J.
We compute it classically by introducing the adjoint state U' (solu-
tion of the adjoint state model) (Lions, 1971):

@U'

@t
þ @F
@U

T @U'

@x
þ @G
@U

T @U'

@y
¼ %@B

@U

T

U' þ @/
@U

ð11Þ

where U' ¼ ðh'
; q'

x; q
'
yÞ

T is the adjoint state,
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u2þv2

0 %gSfx v
u2þv2 %gSfy u2þ2v2
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0
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These equations are closed with the final time condition:

U'jt¼T ¼ ð0; 0;0ÞT ð12Þ

and the following boundary conditions:

& at inflow discharge boundaries and land boundaries,

q'
n ¼ 0 and

@h'

@xn
¼ 0 ð13Þ

& and at water level boundaries,

ðh' þ 2unq'
nÞ ¼ 0 and q'

s ¼ 0 ð14Þ

where s is the tangential unit vector.

Using the adjoint state, we obtain an expression of the gradient
of J independently of dU, the derivative of the state with respect
to p. The components of the gradient are the following:

& derivative with respect to the initial condition U0

5U0 J ¼
@/

@U0 % U'jt¼0 ð15Þ

& derivative with respect to the Manning coefficient n

5nJ ¼
@/
@n

%
Z T

0

@B
@n

T

U'dt ð16Þ

where

@B
@n

T

¼ 0;%2
n
ghSfx;%

2
n
ghSfy

! "

& derivative with respect to the bed elevation Zb

5Zb J ¼
@/
@Zb

%
Z T

0
gh

@q'
x

@x
þ
@q'

y

@y

! "
ð17Þ

& and derivative with respect to the boundary conditions
(1) discharge qC

5qC J ¼
@/
@qC

þ h' ð18Þ

(2) water depth hC

5hC J ¼
@/
@hC

þ gh% u2
n

$ %
q'
n ð19Þ

Generalized model
Finally, we obtain a ‘‘generalized model” containing the 2D-

SWEs (1) (the forward model), its adjoint model (11) and the nec-
essary optimality condition dJ ¼ 0, see e.g. Le Dimet and Talagrand
(1986). This generalized model contains the observations since
they are integrated into the source term / of the adjoint model.
The solution of this generalized model provide an optimal fit of
the simulated state and the observations; this leads to the cali-
brated model we seek.

Full optimization process and DassFlow software

The generalized model described previously is implemented
into the software DassFlow (Honnorat et al., 2007). DassFlow is a
software dedicated to variational data assimilation and coupling
as applied to river hydraulics. For simultaneous coupling 1D–2D
flows models and data assimilation we refer to Marin and Monnier
(in press).

The L-BFGS algorithm (Gilbert and Lemaréchal, 1989) is used for
minimization. The adjoint solver is not obtained by discretizing the
Eq. (11), using a finite volume scheme, for example, but by directly
differentiating the source code, which solves the forward model
2D-SWEs (1). The code differentiation is done using the automatic
differentiation tool Tapenade (Hascoet and Pascual, 2004).

The global optimization process can be summarized as follows:
given an initial guess of the control variable p0,

(1) the forward model 2D-SWEs (1) (finite volume scheme) are
solved, and the cost function J is computed – this is the for-
ward code;

(2) the adjoint code (obtained by automatic differentiation) is
run – this gives the adjoint state and the gradients of J;

(3) a new control variable value pk is computed using the itera-
tive minimization algorithm (L-BFGS algorithm, M1QN3
subroutine (Gilbert and Lemaréchal, 1989));

(4) and it is verified that the solution has converged. If the solu-
tion has not converged, it is necessary to return to step 1
with the new control variable value pk.
The stop criteria is:

k 5 Jkk
k 5 J0k

6 ! ð20Þ

where k 5 Jkk and k 5 J0k are the gradient norm at the initial
and current iteration step k, respectively, and ! is a small va-
lue (typically 10%4).
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Test case and cost function

The efficiency of the proposed method was evaluated through a
test case. This test case (described below) contains all the main
features of a real case we consider in a forthcoming paper (Moselle
River, Part II, see Hostache et al. (in press)). There are twomain rea-
sons to elaborate on our method for a test case:

1. We consider twin experiments. Giving the ‘‘unknown” set of
parameters, we create the observations numerically. Then, the
generated accurate observations are assimilated into model to
retrieve this ‘‘unknown” set of parameters. Therefore, through
twin experiments, it can be easily verified the accuracy of the
method.Let us add that observations are perfect since they arise
from the model. In real cases, models are not perfect and fitting
their response with (real) observations generates extra
difficulties.

2. A set of observations helps us understand what we can and can-
not expect in terms of parameter identification/calibration. Typ-
ically, we cannot expect to identify all parameters, boundary
conditions and Manning coefficients through the same process.
Also, the test case flood duration is much shorter than the real
one. Hence, time computations are also much shorter.

The test case

The simulated river is small and consists of a flat main channel
(with a bed elevation %2.5m, width 10 m) and a flood plain with
complex topography, see Fig. 1a. The computational domain is
illustrated in Fig. 1b and discretized with hybrid quadrilateral
and triangular grid cells. The mesh consists of 787 cells and 809
nodes.

As mentioned previously, the numerical experiments used syn-
thetic data (twin experiments).

Initial conditions were defined as being the steady flow driven
by a constant inflow discharge Qin ¼ 6:0 m3=s. This inflow does
not lead to flood inundation (the river flows within the main chan-
nel). We generate the reference flow by imposing the following in-
flow discharge (see the reference solution in Fig. 2):

QinðtÞ ¼ 6þ 4:5t expð%t=60Þ ð21Þ

The cost function

We assume that observations are elevation values only. These
observations come either from gauging stations or satellite images,
see e.g. Hostache et al. (2006), and Puech et al. (2007). Those from

gauging stations are limited to certain points (two or three differ-
ent locations at best) but densely distributed over time. On the
other hand, if they are extracted from a satellite image they repre-
sent only one instant value in time (one image, typically) but are
densely distributed over space. We denote the elevation values ob-
served with hobs and we present below the different terms used to
define the cost function we minimize.

Basic cost function
Let us assume we have N satellite images with perfect informa-

tion i.e. observed elevation is available everywhere in the compu-
tational domain. The basic cost function is:

JobsðpÞ ¼
1
2

XN

k¼1

h% hobs
k

& 'T
W%1 h% hobs

k

& '
ð22Þ

where k is the index number of the image andW is a matrix of error
covariances which represents the confidence of the quality of
observations.

Extra net mass flux term
Only the magnitude of the water level is taken into account in

the definition of Jobs. However, spatially distributed observations
are spread out across space. They can therefore provide informa-
tion related to the water slope, which is a driving force behind
flood flow. Thus, we extend the cost function with an extra penalty

X

200

250

300

350

400

Y

250

300

350

400

Z
B

-2

0

2

4

X Y

Z

X (m)

Y
(m

)

200 250 300 350 400

260

280

300

320

340

360

380

400

420

440

460

Upstream

Downstream

@

Mesh

@ Gauge

Image
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term, Jflux, which measures the discrepancy of net mass flux (where
image is available):

JfluxðpÞ ¼
1
2

XN

k¼1

ðq% ~qobs
k ÞTW%1ðq% ~qobs

k Þ ð23Þ

where q is the computed discharge (net mass flux) and ~qobs is ‘‘mix”
net mass flux. As a matter of fact, ~qobs is computed using the ob-
served elevation, hobs, and the computed velocity ðu;vÞT ; ~qobs ¼
hobsðu;vÞT .

In the next section, we show that this extra term improves the
minimization process since it quantifies a discrepancy related to
the second component of the state solution U.

Regularization term and total cost function
Inverse problems for strongly non-linear systems such as the

present one are generally ill-posed, and especially if very few
observations are available. In order to regularize the present iden-
tification problem (the cost function is a priori non-convex), we
introduce the following extra regularization term (Tikhonov regu-
larization (Tikhonov and Arsenin, 1977)):

JregðpÞ ¼
1
2

@U
@t

((((

((((
2

ð24Þ

Finally, we minimize the total cost function. J is a weighted sum
of (22)–(24):

J ¼ Jobs þ aJflux þ bJreg ð25Þ

where a and b are weight coefficients.

Scaling
A good Hessian matrix condition number is very helpful in fur-

ther improving the efficiency of the minimization algorithm, par-
ticularly if the control variables have different order of
magnitude, see e.g. Thacker (1989). Here, we use a basic variable
transformation method.

We define the scaled control variable as p0 ¼ L%1p, then we ob-
tain the gradient g and the Hessian matrix H as follows: g0 ¼ LTg
and H0 ¼ LTHL. Using this transformation, the new components of
the control variable p0 are scaled to unity and the condition number
of the new Hessian matrix is improved.

In real problems, difficulties may be encountered in setting up
the transformation matrix L. For greater simplicity, we choose a
diagonal matrix L and set its coefficients such that the different
components of the control variable have the same order of
magnitude.

Choice of cost function

In ‘‘The cost function”, a cost function, with three terms, to
assimilate the spatially distributed water levels image into the
flood model is presented. The first term Jobs is a square norm which
directly measures the discrepancy between the observed and cal-
culated variables. The third regularization term Jreg improves the
ill-posedness of inverse problems, especially the assimilation prob-
lem of the spatially distributed water level images which are usu-
ally observed at long time intervals. This penalty term is
introduced to constrain solutions slowly evolving in time and to
obtain the smoothing and physically reasonable solution. Readers
may refer to related references for detailed descriptions of the per-
formance of this term, see e.g. Tikhonov and Arsenin (1977).

The second term of Jflux is specially proposed to improve the
assimilation of the observed image according to the characteristics
of the image observations. To examine the performance of this
penalty term, the experiment of Qin identification was conducted
by test case. In this experiment, Qin was considered only control

variable and identified with a single full image. The cost function
J (Eq. (25)) without a regularization term, i.e. b ¼ 0, is used to
understand the special function of Jflux in image assimilation. The
first guess was that Qin is constant, i.e. Qin ¼ 6:0 m3=s. Other
parameters, such as initial conditions and manning coefficients,
were given. The stop criterion ! of the convergence of minimiza-
tion was set at 10%4. The maximum number of iteration steps
was limited to 50 for contrasting.

Based on this configuration, Qin was identified with the single
observed images taken at different given flooding times:
Timag ¼ 80 s; Timag ¼ 100 s; Timag ¼ 120 s and Timag ¼ 200 s, respec-
tively. In all four experiments, Jflux greatly improved the minimiza-
tion process, and hence the quality of parameter identification. As
an illustration, the identification results with Timag ¼ 120 s are
plotted in Figs. 2 and 3. Oscillations in Fig. 2 are due to the lack
of regularization (introduced in the term Jreg). This is a classical
behavior of 4D-var algorithms if not using a regularization term.
Nevertheless, its lack allows to distinguish the influence of the
new term Jflux. And it is clearly shown in Fig. 3 that the final value
of the observation term Jobs in J is lower than in the one without
Jflux. In conclusion, with Jflux, one can identify reasonably well Qin,
but without Jflux the convergence of the optimization process is
much more difficult and worth. In other words, more information
from images is assimilated into the flood model by virtue of Jflux.

What can we identify with a full image?

In order to understand the assimilation of spatially distributed
water levels, and specifically, to learn, which parameters we can
identify from full images (here, a ‘‘full image” means that water
levels are available in each cell of the computational domain; here-
after, an image is referred as to spatially distributed water level
observations), three groups of assimilation experiments were
conducted.

Identification of initial conditions

Wewanted to identify U0 (initial conditions) only using one sin-
gle image. Other parameters (inflow discharge, Manning coeffi-
cients, etc.) were given. The first guess of U0 is still water with
water levels interpolated between the upstream and downstream
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figure legend, the reader is referred to the web version of this article.)
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values. Inflow discharge was given by (21) (see the reference solu-
tion in Fig. 2).

We considered four cases depending on what time the image
was taken: we assimilate one full image at Timag ¼ 20 s; Timag ¼
40 s; Timag ¼ 60 s (near flood peak time) and Timag ¼ 80 s,
respectively.

The decrease of the cost function vs. iterations is plotted in
Fig. 4. It is shown that the convergent processes becomes stiff
when the observed time of the image is far from the starting time.
The assimilation experiments failed due to the numerical instabil-
ity caused by the over-correction of initial conditions for the image
at Timag ¼ 100 s (the time at the period of flood recession) or for the
subsequent ones.

We computed the root-mean square (RMS) error of the water
level z and the norm velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. At a given time t and for

a quantity / its expression is:

k/kRMSðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ð/idðtÞ % /ref ðtÞÞ2

n

s

ð26Þ

where, /id and /ref are, respectively, the identified and reference
values and n is the number of cells. The RMS errors for water level
and velocity norm are plotted in Fig. 5.

Let us recall that we identify the initial conditions. Fig. 5a shows
that, after calibration, the lowest error at initial time is for
Timag ¼ 20 s and the highest one is for Timag ¼ 80 s. At final time,
the lowest error is, inversely, for Timag ¼ 80 s and the highest for

Timag ¼ 20 s. All of this remains true for the velocity norm,
Fig. 5b, except for initial time, where the best RMS error is not ob-
tained for Timag ¼ 20 s.

As an additional experiment, the 15 images of time interval
t = 20 s during the flood period were assimilated into the model
to identify the initial conditions. The corresponding results are also
plotted in Figs. 4 and 5. The best estimation of the flow state
throughout the whole flood period is obtained when these obser-
vations are assimilated.

The earlier image includes more information from initial condi-
tions than the subsequent one. As flood routing, the initial informa-
tion may be advected outside of the computational field by the
flood wave. The influences of initial conditions on flow states be-
comes weaker and weaker with the routing of the flood in this lim-
ited area. As a matter of fact, one may conclude that the controlled
parameters cannot be identified unless the assimilated observa-
tions include the enough information induced by these parameters.
This remark can also be explained by the following experiments.

Identification of inflow discharge

The experiment described in ‘‘Choice of cost function” was ex-
panded by adding the regularization term Jreg , see Eq. (25). From
this experiment, we wanted to learn whether one can identify an
inflow hydrograph with water levels information alone. The con-
figurations of all experiments were the same as those described
in ‘‘Choice of cost function”. The results of identified Qin with single
image at Timag ¼ 80 s; Timag ¼ 100 s; Timag ¼ 120 s and Timag ¼ 200 s,
respectively, are presented in Fig. 6. Using the proposed cost func-
tion, a smoothing Qin hydrograph was successfully identified.

For the time of images Timag ¼ 80 s and Timag ¼ 100 s, Fig. 6a and
b, respectively, the two cost functions lead to quite similar results.
Both allow to identify well the flood peak. However, the extended
cost function including the term Jflux gives slightly better results.
The cost function without the extra term Jflux fails to identify the
flood peak by assimilating images at Timag ¼ 120 s and
Timag ¼ 200 s, Fig. 6c and d, respectively, while the cost function
including all terms gives a good identification of Qin.

From Fig. 2, one may note an interesting but reasonable phe-
nomenon that the inflow discharge has no correction at the time
after the observed time. This is because that there are no driven
sources (originating from the cost function) for the backward inte-
gration of adjoint model when the regularization term in time Jreg
is deactivated. Even if the regularization term is active, the hydro-
graph is smoothed out in time, a significant difference from real
conditions.
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Physically, the images are observations of the flow state at the
observed instant Timag which is driven by Qin before it. Therefore,
there are no observations of Qin after Timag to be used to identify
the hydrograph.

Thus, one segment of the inflow hydrograph (from 0 to Timag)
can be successfully identified when assimilating spatially distrib-
uted water levels if the proper cost function is adopted.

Identification of initial conditions and inflow discharge

Finally, we conducted numerical experiments to identify both
the inflow discharge and initial conditions. If we observe only a
single image as we did previously, the optimization process fails
to converge. Observations are not enough to identify both input
parameters. If we observe a few full images, we can successfully

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300

di
sc

ha
rg

e 
(m

3 /s
)

time (s)

Timag = 080 s

Ref.
Jobs

Jobs+Jflux

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  50  100  150  200  250  300

di
sc

ha
rg

e 
(m

3 /s
)

time (s)

Timag = 100 s

Ref.
Jobs

Jobs+Jflux

-150

-100

-50

 0

 50

 100

 150

 0  50  100  150  200  250  300

di
sc

ha
rg

e 
(m

3 /s
)

time (s)

Timag = 120 s

Ref.
Jobs

Jobs+Jflux

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300

di
sc

ha
rg

e 
(m

3 /s
)

time (s)

Timag = 200 s

Ref.
Jobs

Jobs+Jflux

Fig. 6. Identification of Qin with one single full image at Timag ¼ 80 s (a) or Timag ¼ 100 s (b) or Timag ¼ 120 s (c) or Timag ¼ 200 s (d). Comparison of the identified discharge by
minimizing Jobs (solid line) or Jobs þ Jflux (long dashed line).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  50  100  150  200  250  300

di
sc

ha
rg

e 
(m

3 /s
)

time (s)

Ref.
Reg.

10-5

10-4

10-3

10-2

10-1

100

 10  20  30  40  50  60  70  80  90  100

C
os

t f
un

ct
io

n

Iterations

J 
dJ 

Fig. 7. Identification of initial conditions and inflow discharge by assimilating 15 full images: comparison of identified discharge with (solid line) and without (long dashed
line) regularization (a) and convergence process with regularization (b).

X. Lai, J. Monnier / Journal of Hydrology 377 (2009) 1–11 7



Author's personal copy

identify successfully inflow discharge and initial conditions. We
present numerical results obtained from observing 15 full images
with time intervals of 20 s, from t ¼ 20 s to t ¼ 300 s. The identi-
fied inflow discharge is shown in Fig. 7a and the corresponding cost
function and norm gradient which decrease with each iteration
step are plotted in Fig. 7b. The differences between the identified
and the reference initial conditions in water level and norm veloc-
ity, are shown in Fig. 8.

Can we identify the inflow discharge with partial images and/or
in situ measurements?

In real cases, it is not realistic to expect a full dense image like
the one considered in the previous section. It is more reasonable to
assume that we have at best a single ‘‘partial image” and some
water level measurements inside the main channel. In this section,
we consider numerical experiments utilizing a partial image and
partial in situ measurements with exactly the same configurations
as those studied in part II of this paper (see Hostache et al., in
press). We assume that we have the water level hydrograph at a
middle gauge station (Fig. 1) but only at the beginning and ending
of the flood period (t 2 ½0;30)s and t 2 ½200—300)s), see Fig. 9, and
potentially one ‘‘partial image”. By partial image, we mean water
levels at the three floodplain blocks, as plotted in Fig. 1b.

In the legends of subsequent figures, we use ‘‘TS” (for ‘‘Time
Series”) to denote results from only the water level hydrograph
at the middle gauge station only, and ‘‘IMAG” to denote results that
take the partial image into account as well.

We conducted three different experiments. In all of them, we
observed at least the water level hydrograph at the middle gauge
station ‘‘TS”, and tried only to identify the inflow discharge. Other
parameters (initial conditions, Manning coefficients, etc.) were gi-
ven. The first guess was constant: Qin ¼ 6:0 m3=s.

Let us notice that we treat in detail the identification problem of
Manning coefficients in part II (Hostache et al., in press).

Experiment 1
We tried to understand the contribution of one partial image to

the identification process. To do so, we did not consider the regu-
larization term Jreg in Eq. (25) (i.e. b ¼ 0). We performed two iden-
tification processes, one with Timag ¼ 100 s and Timag ¼ 120 s,
respectively. The corresponding inflow hydrograph is plotted in
Fig. 10.

First, we note that very large oscillations exist. This is classical
and due to the lack of regularization.

The interesting result is that the different images give the same
identifiable time interval (see 42 s in our experiments, Fig. 10). Let
us recall that the the forward model can be viewed as a constraint
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on the minimization problem. If we have added the regularization
term, one would not be able to distinguish precisely the time inter-
val affected by the image. These numerical results illustrate the
partial image can constraint the inflow hydrograph successfully
during one finite time interval. Also, in the sequel, Experiment 1
is useful to define a good image frequency (see Experiment 3).

Experiment 2
We introduced again the regularization term Jreg , from Eq. (25),

and tried to identify the inflow hydrograph by assimilating the
images at Timag ¼ 100 s and Timag ¼ 120 s, respectively. The corre-
sponding results are plotted in Fig. 11.

This experiments also demonstrates that the extra term Jflux
from (25) (whether a vanishes or not), is helpful to identify the in-
flow discharge.

In summary, these numerical experiments show that if the time
series (‘‘TS”) and partial images are available within the right time
interval, it is possible to correctly identify the hydrograph of Qin.
Without the extra information provided by the partial images (ie.
with TS only), it is impossible to identify Qin.

Experiment 3
Since we noticed in Experiment 1 the need to respect a maxi-

mum time interval to correctly identify the flood hydrograph, we
used three partial images at Timag ¼ 60 s; Timag ¼ 100 s and
Timag ¼ 140 s, in this last experiment. The time series was the same
as previous experiment. By assimilating these three partial images,
it is possible to obtain a perfect identification of Qin. Results, ob-

tained using the complete form of cost function J are plotted in
Fig. 12.

Overlapping strategy and improvement of computational cost

The adjoint method makes it possible to efficiently compute the
gradients of J with respect to control variables. However, the com-
putational cost, including the CPU time and memory requirement,
is much higher than that of the classical forward model. The mem-
ory requirement, in particular, is enormous. Basically, one needs to
store all the state variables U from the initial time to the final time
at each control volume, in order to solve the adjoint model back-
ward in time. Nevertheless, this is not completely true since auto-
matic differentiation tools like Tapenade try now include a strategy
for balancing storage and re-computation, see Hascoet and Pascual
(2004); but the storage approach still remains the basis for adjoint
model computation. Thus, the typical amount of memory is insuf-
ficient for some practical long-duration flood modeling.

Luong et al. (1998) propose a temporal strategy that consists of
splitting the whole assimilation period into several sub-intervals,
then carrying out the assimilation process sequentially over each
sub-interval. The final state of the previous sub-interval serve as
the first guess of the subsequent sub-interval. Luong et al. (1998)
focuses on the accuracy of the final time solution for a quasi-geo-
strophic oceanographic model (the control variable is the initial
condition). Then, they defined a ‘‘progressive” temporal strategy
that better identified for the initial control state.

In the present study, we adapt the sequential temporal strategy
of Luong et al. (1998) to the specific components of our river
hydraulics problem: the identification of inflow hydrograph
(time-dependent parameter), Manning coefficients and/or initial
conditions (time-independent parameters).

In the following descriptions of the assimilation experiments,
we refer the previous sequential strategy as the ‘‘temporal strategy
without overlapping” and the new strategy defined below as the
‘‘temporal strategy with overlapping”.

All the assimilation experiments took the following (dense)
observations into account: a water level hydrograph almost con-
tinuous over time (elevation values at the gauge station, every
2 s) and five partial images at Timag ¼ 40; 60; 80; 120 and 160 s.

Temporal strategy without overlapping

The temporal strategy without overlapping efficiently identifies
time-independent parameters: from the observations listed above,
we identified the Manning roughness coefficients in three different
land-use areas (the main channel, left floodplain and right flood-
plain). We conducted three assimilation experiments: (1) the origi-
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nal experiment which did not include any temporal strategy; (2)
the two-sequences experiment which split the assimilation period
½0;300) in two sub-intervals ð½0;60) [½ 60;300)Þ; (3) the four-se-
quences experiment which split the assimilation period into four
sub-intervals ð½0;40) [½ 40;80) [ ½80;120) [ ½120;300)Þ. The first
guess of one sub-interval was the converged value of the previous
sub-interval.

The resulting values are presented in Table 1. The mean values
of the resulting Manning coefficients are close to the true values.
The temporal strategy without overlapping works well for the
identification of Manning coefficients which are time-independent
parameters.

Since there is no overlapping in time and since the speed of
convergence of the minimization algorithm is not affected by the
time-splitting, the time-computation of the identification process
is similar to that of the process without the temporal strategy.
But, the required memory is roughly divided by the number of
sub-intervals, much less than that of the original process.

Temporal strategy with overlapping

Principles of the algorithm
We adapted the sequential temporal strategy of Luong et al.

(1998) (i.e. the temporal strategy without overlapping) to the spe-
cific river hydraulics problems. As a matter of fact, the strategy
must be adapted to time-dependent parameters like inflow dis-
charge, since information takes time to propagate to the location
of observations. Hence, if observations are not dense enough there
is a blind period during which the time-dependent parameter is not
identifiable. This phenomenon is apparent at the end of the period
of assimilation in all of the previously presented figures: the inflow
is not well simulated, but rather extended because of the regular-
ization term. In fact, during this period of time, inflow values have
no effect on the observations. The blind period represents the time
of response of the control variables to the observations. Therefore,
we cannot apply the temporal strategy without overlapping to
simulate inflow. We propose a new temporal strategy with over-
lapping. Its fundamental principle is described in Fig. 13b.

The assimilation period is divided into several sub-intervals as
it was in previous experiments, but with overlapping. We denote
the length of this overlapped period with Tretro (retrogressive time).

The initial conditions for the new sub-sequence are defined by the
computed flow state of the previous sub-interval. The first guess of
control variables in the new sub-sequence is defined as the value
identified during the previous sub-interval.

Identification of inflow discharge
We present some assimilation experiments based on the tem-

poral strategy with overlapping below. Like the previous experi-
ments, these considered the following observations: a water level
hydrograph almost continuous over time (elevation values at the
gauge station every 2 s) at the gauge station, and five partial
images at Timag ¼ 40; 60; 80; 120 and 160 s, see Fig. 1b.

We tried only to identify the inflow discharge QinðtÞ. The initial
guess was the constant value Qin ¼ 6 m3=s. Other parameters were
given. We considered four sub-sequences and compared the re-
sults obtained using the original method (no temporal strategy)
with those obtained using temporal strategy without overlapping
and the temporal strategy with overlapping. In the case of no over-
lapping, the assimilation period was split as follows:
½0;40) [½ 40;80) [ ½80;120) [ ½120;300). In the case of overlapping,
it was split as follows: ½0;60) [½ 40;100) [½ 80;140) [½ 120;300)
(i.e. Tretro ¼ 20 s). The resulting inflow discharge is plotted in
Fig. 14.

The original method and that based on the temporal strategy
with overlapping give excellent results: we retrieved the reference
solution. The temporal strategy without overlapping, on the other
hand, does not provide a very good solution. Because it enables us

Table 1
Temporal strategy: comparison of identified and true values of n.

Experiment Sequence Main channel Left floodplain Right floodplain

True value 0.0180 0.030 0.040
First guess 0.0100 0.0100 0.0100

Original 0–300 s 0.0181 0.0313 0.0404

Two seq. 1 0–60 s 0.0200 0.0316 0.0402
2 60–300 s 0.0178 0.0314 0.0411
Mean value 0.0187 0.0315 0.0407

Four seq. 1 0–40 s 0.0195 0.0318 0.0399
240–80 s 0.0191 0.0304 0.0404
380–120 s 0.0189 0.0299 0.0402
4120–300 s 0.0174 0.0329 0.0370
Mean value 0.0187 0.0313 0.0394

Fig. 13. Temporal strategy: (a) without overlapping; (b) with overlapping (with retrogressive time Tretro).
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Table 2
Temporal strategy experiments: computational costs.

Experiment Number of sequences CPU time (s)

Original 1 84.990
Tretro ¼ 0 s 4 67.030
Tretro ¼ 20 s 4 85.071
Tretro ¼ 25 s 4 86.074
Tretro ¼ 30 s 4 110.598
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to identify QinðtÞ while shortening the assimilation periods, hence
saving memory. The temporal strategy with overlapping, is per-
haps the most preferable method.

Since overlapping time periods are introduced in the new strat-
egy, its computational time is slightly longer than that of the origi-
nal one. Nevertheless, these experiments show that the extra
computational time is negligible. We present computational times
of the present experiments in Table 2. The total time remains al-
most the same with or without the temporal strategy since the
convergence of the minimization process is slighltly improved
when using the temporal strategy with overlapping.

Conclusions

Using a variational data assimilation approach (4D-var), we
have investigated potential contributions of spatially distributed
water level data to the identification of both time-independent
parameters (initial condition, Manning coefficients) and time-
dependent parameters (inflow discharge) in a shallow-water flood
model. In real-world flooding situation such as the one addressed
in part II (Hostache et al., in press), spatially distributed water level
data are extracted from a satellite image. Such images offer spa-
tially distributed information of the flood stage in the floodplain
at one time instant, while more classical measurements, such as
water level values at a gauge station offer data points distributed
across time.

Numerical experiments conducted in this study indicate that
data distributed densely over space is of great benefit to the iden-
tification of unknowns parameters (initial conditions and/or in-
flow). However, accurate identification of time-dependent
parameters (e.g. inflow) depends greatly on the time of the avail-
able image. They have been successfully identified when both a
partial image and partial in situ measurements (water levels) are
available. As an example, we have demonstrated the simulation
of inflow and reconstruction the flood flow state. This shows that
water level observation images may compensate for unavailable
in situ measurements during a flood event.

We have contributed to the evolving methodology by introduc-
ing an extra term into the cost function that greatly improves the
identification process. This term provides some information re-
lated to the velocity components of the model, despite the fact that
only observations of water level are assimilated. We have also
introduced a new temporal strategy with overlapping that can
remedy the memory requirement difficulties of long-term simula-
tions. This temporal strategy achieves a prediction of the same
quality as the original data assimilation process but with much less
memory and with similar CPU time.

This study contributes to the basic understanding of the assim-
ilation of spatially distributed water levels into shallow-water
flood models. It demonstrates that the use of a satellite image im-
proves parameter identification processes, and, thus, flood predic-
tion. However, a more challenging task is the assimilation of actual
remote sensing data with many unknown (and uncontrolled) er-
rors. The real application of the proposed method is demonstrated
in a forthcoming paper (part II).
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