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Abstract

In the context of river hydraulics we elaborate the idea of a ‘zoom’ model locally superposed on an open-channel network global
model. The zoom model (2D shallow water equations) describes additional physical phenomena, which are not represented by the global
model (1D shallow water equations with storage areas). Both models are coupled using the optimal control approach when the zoom
model is used to assimilate local observations into the global model (variational data assimilation) by playing the part of a mapping
operator. The global model benefits from using zooms, while no substantial modification to it is required. Numerical results on a toy
test case show the feasibility of the suggested method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Operational hydrological models that describe a
watershed as a network of open channels are presently
based on the 1D St-Venant equations (or shallow water
equations (SWE)) with storage areas. Sometimes, these
models are called 1.5D river models, see e.g. [5]. The main
advantage of these models is the low computational cost
that allows nearly real time analysis of large-scale river net-
work models that is required for decision-making. The
storage areas (static volumes which may store water, such
as flood plains for example) are modeled in the 1D model
by source terms which are evaluated using empirical
expressions [5]. The flow dynamics inside storage areas is
not modeled.
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Since the 2D flow pattern inside a given storage area
may be of interest, we seek to superpose a local 2D SWE
model to the 1.5D open-channel network global model.
This may also improve the accuracy of source terms used
in the 1.5D model formulation. Another reason to super-
pose local 2D zoom models arises in the context of data
assimilation (DA). Calibration of hydraulic river models
can be difficult to achieve in practice. Unknown parameters
can be the inflow discharge, the initial condition or the
Manning coefficient. Variational data assimilation can be
an efficient method of calibrating these models, see e.g.
[16,2,14,9]. In general, the variables of the 1D model are
the wet cross-section area and the corresponding volumet-
ric discharge, while the measured physical quantities are
the local surface elevation and velocities. A correspondence
between the 1D variables and measured local values is
approximate at best. However, these local measured values
could naturally be the variables of a local 2D SWE model.
In the present study we assimilate data measured inside a
2D zoom area (for example, elevation) into the 1D network
model and couple both models within the same optimal
control loop.
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It is possible to introduce local 2D models into a 1.5D
network model using the domain decomposition method
(DDM). This produces a set of 1D channels and 2D
areas, see e.g. [6,17]. The coupling techniques which could
be applied in this case vary from the classical Schwarz
method with overlapping, the wave-form relaxation
method (WFR) [15,8] (which is a subset of the global time
Schwartz method), and methods based on optimal control
[11].

We suggest the use of a coupling principle which may be
called ‘superposition’ rather than decomposition. The key
point is that we keep the existing 1.5D model intact, but
source terms within the area of interest are estimated via
the solution of a superposed 2D local model as ‘defect cor-
rections’ [4]. The 1D model, in turn, provides a basis for
estimation of the boundary conditions (BC) at open
boundaries of each 2D area.

In oceanography, the arrangement of a local (normally
finer mesh) model superposed on a global (coarse mesh)
model, with the two models interacting for mutual bene-
fit, is called two-way nesting, see e.g. [7]. These models,
however, are usually based on the same equations (they
model the same physics). In our case the local model is
a richer model since it includes extra physical phenomena
which do not exist in the global model. We shall call
such a model a zoom model, which stands for ‘a two-
way nested richer local model’. The proposed arrange-
ment is convenient because the 1.5D-network model
remains intact and can communicate to the 2D zooms
via the source term, thus one can use available standard
software (if the adjoint of the 1.5D model has been
generated).

A possible difficulty with the proposed superposition
method is that the models are not consistent. That is:

(a) the 1D model cannot provide the full set of BC for
the 2D ‘zoom’ model;

(b) the 1D model is usually solved on much coarser mesh
with typical ratio of 101–102 for the space mesh size
and 102–103 for the time step between 2D and 1D
models. The problems related to the inconsistency
could be overcome if we couple models using optimal
control.

In the present study, first we build the coupling proce-
dure based on the WFR method for which the 1D and
2D zoom models are solved consecutively in the global time
domain, exchanging information between completed runs.
To provide a sufficient set of BC for the 2D ‘zoom’ model
we must use additional assumptions. Numerical experi-
ments show efficiency of the method for the case when
the 2D flow at the boundaries of the ‘zoom’ model exhibits
essentially 1D behavior.

Then, we turn to the issue of variational data assimila-
tion, assuming data are available within the zoom area.
The key idea is to build a joint assimilation–coupling pro-
cedure (JAC), which solves simultaneously both DA and
coupling problems, rather than the classical DA problem
for the already coupled model (obtained using WFR, for
example). To this end, we specify an extended cost func-
tional such that in addition to the usual DA terms (misfit
between model predictions and measured data), it includes
coupling conditions written in a weak integral form. The
main advantage of this approach is that no additional
assumptions are needed, i.e. one can evade the usual diffi-
culties of coupling inconsistent models. Information
extracted from data measured within the zoom area not
only allows gaps in the coupling conditions to be filled
in, but also propagates into the 1.5D model and so enables
its parameters to be identified, for example BC at the ends
of the 1D section.

The extended cost functional is minimized using the
quasi-Newton L-BFGS algorithm [12], while the gradient
is computed using the adjoint method. Numerical experi-
ments show that the JAC algorithm must be equally or less
expensive compared to the DA procedure for the coupled
model. In the numerical tests conducted, we consider a
toy flooding event that involves overflowing of a main river
channel and a moving front traveling over previously dry
areas.

The paper is organized as follows. In Section 2, we pro-
vide the model statement: both the 2D zoom model formu-
lation (Section 2.1) and the 1D model formulation (Section
2.2). In Section 3, we describe the two-way information
exchange between two models. In Section 4, we describe
the waveform relaxation method and in Section 5 we intro-
duce the joint assimilation–coupling algorithm. The numer-
ical implementation is covered in Section 6: a description of
the finite volume solver and the software DassFlow in Sec-
tion 6.1, a description of the test configuration in Section 6.2
and of the adjoint code and minimization algorithm in Sec-
tion 6.3. The numerical tests are covered in Section 7: the
results of the WRM testing (Section 7.1) and the results of
the JAC algorithm testing (Section 7.2). Then follow the
Conclusion and the Appendix.
2. Problem statement

2.1. Two-dimensional zoom problem statement

For the general problem layout we refer to Fig. 1. The
2D zoom problem is considered in the domain X2 (zoom
area) confined by the boundaries C3,4,5,6 and the main
channel (domain X1) is confined by the boundaries C1,2.
We assume that the domains X1 and X2 are defined and
they do not change in time. The moving wet/dry fronts
are shown in Fig. 1 in dashed lines. The bathymetry is
given by the function Z(x,y).

The equations describing the 2D shallow water flow are
as follows:

UtþAðUÞxþBðUÞy�SðUÞ¼ 0; ðx;yÞ 2X2ðtÞ; t2 ð0;T Þ;
ð1Þ



Fig. 1. General problem layout: the 1D main channel and the 2D zoom
area.
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where

U ¼ ½h; q; p�T;
AðUÞ ¼ ½q; q2=hþ gh2=2; qp=h�T;
BðUÞ ¼ ½p; pq=h; p2=hþ gh2=2�T;
SðUÞ ¼ ½0; ghðZx � fxÞ; ghðZy � fyÞ�T:

Here h = h(x,y, t) is the surface elevation, q = q(x,y, t) and
p = p(x,y, t) are components of discharge, Zx, fx and Zy, fy

are the bed slope and the friction slope associated to the x-
and y-axes respectively, g is the gravity acceleration. The
friction slope is defined by the Manning law via the coeffi-
cient l = l(x,y) as follows:

fx ¼ l2ðq2 þ p2Þ1=2qh�10=3; f y ¼ l2ðq2 þ p2Þ1=2ph�10=3:

The initial condition is

8ðx; yÞ 2 X2ð0Þ : Uðx; y; 0Þ ¼ U 0ðx; yÞ: ð2Þ
Later on we will always assume that the initial condition is
known.

For each boundary Cl, l = 3,4,5,6 we define a rectilinear
co-ordinate system ðx0l; y 0lÞ rotated anti-clockwise by the
angle bl in respect to the original co-ordinate system
(x,y), such that the axis x0l is pointed inward into X2 in
the direction which can be identified as a ‘dominant char-
acteristic direction’ at Cl (see Fig. 13(left) in Appendix
A). Let us note that this direction does not necessarily coin-
cide with the inward normal to Cl. We write the boundary
conditions for the open boundaries of X2 in the character-
istic form as follows:

ðq0l þ ðc� u0lÞhÞjðx0l;y0lÞ2Cl
¼ w1jCl

ðp0l � v0lhÞjðx0l;y0lÞ2Cl
¼ w3jCl

8u0 > 0;
l ¼ 3; 4; 5; 6: ð3Þ

The state vector U 0l ¼ ½h; q0l; p0l�
T in the co-ordinate system

ðx0l; y 0lÞ is related to the state vector U by the rotation
T(bl) as follows:

U 0l ¼ T ðblÞU ;

where

T ð�Þ ¼
1 0 0

0 cosð�Þ sinð�Þ
0 � sinð�Þ cosð�Þ

0B@
1CA: ð4Þ
In Eq. (3) c = (gh)1/2, u0l ¼ q0l=h, v0l ¼ p0l=h are linearized
coefficients and the quantities w1jCl

¼ w1ðx0l; y0l; tÞjðx0l;y0lÞ2Cl
,

and w3jCl
¼ w3ðx0l; y0l; tÞjðx0l;y0lÞ2Cl

are the incoming

characteristic variables of the 2D SWE to be imposed at
the boundaries Cl. For details on the characteristic repre-
sentation we refer to Appendix A. In (3) we assume that
the flow at Cl always remains sub-critical. In the case when
the bed and friction slopes are sufficiently mild Eqs. (1)–(3)
should specify a well-posed 2D SWE problem. For details
on numerical treatment of moving wet/dry fronts inside a
fixed X2 we refer to Section 6.1. From now on we always
consider boundaries C5,6 as the non-reflective open bound-
aries, i.e. we impose the following conditions:

w1jC5;6
¼ 0; w3jC5;6

¼ 0:

In many cases the boundaries of the main channel C1, C2

are naturally well contoured. From a mathematical point
of view, the boundaries C1, C2 should be drawn to guaran-
tee that the St-Venant formulation remains valid (the deriv-
ative of the wet cross-section area to the water elevation
must exist and be continuous) and the effects of secondary
(lateral) flows are not significant. In many practical situa-
tions the positions of C3, C4 along the median of the main
channel can be satisfactorily estimated by considering
topographic data. The boundaries C5 and C6 must be cho-
sen far enough from the main channel. The availability of
measured flow data outside the main channel could be an-
other reason to use the zoom model in a certain area.
2.2. One-dimensional problem statement

The 1.5D model can be derived from the 2D SWE in two
steps. First, the 2D SWE have to be considered in the
curvilinear ‘channel-following coordinates (x 0,y 0)’, when
x 0-axis follows the median curve of the main channel and
y 0 is the orthonormal to x 0. The rotated equations consist
of a principal part in the form (1), where state variables
(h,q,p) are now replaced by (h,q 0,p 0), and additional terms
by order of magnitude y 0oa/ox 0, where a is the angle
between the x-axis and the tangent to the median
curve of the main channel. These terms represent the curva-
ture of the channel (see Appendix B for details). We con-
sider the aggregate of those terms as a source term
Wcurv(x 0,y 0). The second step is to integrate rotated equa-
tions in y 0 from C1 to C2. Assuming that: (a) ou 0/oy 0 = 0;
(b) o2h/ox 0oy 0 = 0, we get the Saint-Venant equations
or, in the case when the main channel has a constant rect-
angular cross-section of width b, the ‘dimensional 1D SWE
as follows:eU t þ eAð eU Þx0 � eSð eU Þ ¼ W; ðx0Þ 2 ð0; L0Þ; t 2 ð0; T ÞeU ¼ ½H ;Q�T; eAð eU Þ ¼ ½Q; ðQÞ2=H þ gðHÞ2=2�T;eSð eU Þ ¼ ½0; ghðZx0 � fx0 Þ�T;

ð5Þ

where H is the wet cross-section area and Q is the total dis-
charge. If H and Q are scaled by b, we get the classical 1D
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SWE variables. The initial condition for the 1D SWE prob-
lem is

8x0 2 ð0; L0Þ: eU ðx0; 0Þ ¼ eU 0ðxÞ: ð6Þ

The characteristic analysis as presented in Appendix A, but
applied to the 1D SWE problem (5) yields boundary condi-
tions as follows:

ðQþ ð~c� ~uÞHÞjx0¼0 ¼ W 1ðx0; tÞjx0¼0;

ðQ� ð~cþ ~uÞHÞjx0¼L0 ¼ W 1ðx0; tÞjx0¼L0 ; ð7Þ

where ~c ¼ ðgH=bÞ1=2
; ~u ¼ ðQ=HÞ are linearized coefficients

and the quantity W1(x 0, t) (incoming characteristic variable
of the 1D SWE) is imposed. It is worth mentioning that the
boundary conditions in the form (7) for the 1.5D model are
not mandatory. For example, one can impose the inflow
discharge, rating curves or elevation values, which are the
classical BC used in river hydraulics.

The source term in Eq. (5) consists of two components

W ¼ Wdiv þ
Z C2

C1

Wcurvdy0;

Wdiv ¼ p0C1
� p0C2

;
q0p0

h0

� �
C1

� q0p0

h0

� �
C2

" #T

: ð8Þ

The lateral boundary flux Wdiv represents the overflow
from the main channel (flow diversion). It models the stor-
age area (static volume which may store water). The
expression for Wdiv is derived by empirical consideration.
Another term Wcurv is the integrated curvature term, which
is usually ignored in the 1.5D models. The formulation (5)
is a standard 1.5D open channel flow model, which can be
used as a single element of the network.

3. Information exchange principles

3.1. 2D! 1D information transfer

To explain the information exchange between the 2D
SWE and 1D SWE we turn directly to the finite-dimen-
sional representation of problems given in (1) and (5).
Let us consider a mesh consisting of finite volumes (cells)
Ki, i = 1, . . . ,N, covering the ‘zoom’ area (X2) in such a
way that cell interfaces continuously reproduce boundaries
of the main channel C1,2 as shown in Fig. 2. In the general
Fig. 2. Finite volume mesh.
case, the mesh need not necessarily be quadrangular.
Assuming explicit time discretization, for the cell Ki the
model equation (1) can be approximated as follows:

Umþ1
i ¼ U m

i � s
1

jKij
X4

n¼1

F nðUiÞ � SðUiÞ
 !

t¼ms

; ð9Þ

where m = 0, . . . ,M is the time index, s = T/(M + 1) is the
time step used for the 2D model integration, Fn(Ui) are to-
tal fluxes of U via nth edge Ei,n of the cell Ki and jKij is the
cell surface. Let us denote dtm 2 (ms, (m + 1)s) the time
interval between two successive time steps. We assume that
any time dependent variable has a constant value for
t 2 dtm, which is equal to its value at t = ms. For the edge
we define a rotation T(h) using (4), where h is the angle be-
tween the normal ~n to the edge Ei,n and the x-axis. Vari-
ables V ¼ ½h; q~n; q~s� are used to define a vector of local
Godunov fluxes as follows:

UðV Þ ¼ ½q~n; q2
~n=hþ gh2=2; q~nq~s=h�T:

Computing of Fn(Ui) consists of three steps, see e.g. [19]:

(a) compute the normal and tangent discharge compo-
nents in the cell Ki and in its nth neighbor Ki,n adja-
cent to the edge Ei,n (we refer to Fig. 2) using the
rotation as follows Vi = T(hi,n)Ui;

(b) compute U(V) as an approximate solution of the local
Riemann problem
oV
ot
þ oUðV Þ

ox~n
¼ 0; V ðx; 0Þ ¼

V i; x~n < 0

V i;n; x~n > 0

� �

(c) compute fluxes of Ui using the inverse rotation

T�1(hi,n), so we can eventually write
F nðU iÞ ¼ T�1ðhi;nÞUðV Þ: ð10Þ
For those cells belonging to X1 the variables in the channel-
following coordinates U 0, as well as fluxes F nðU 0iÞ can be
obtained using another rotation T(a) (refer to Fig. 2 for
the definition of a) as follows:
U 0 ¼ T ðaÞU ; F nðU 0Þ ¼ T ðaÞF nðUÞ:

Let us assume that the domain x 0 2 (0, L 0) is covered by a
set of nodes x0j; j ¼ 1; . . . ; eN . We relate the 1D segment
bounded by two nodes x0j and x0jþ1 and a 2D element of
the main channel X1 bounded by perpendiculars to x 0 con-
structed at these points (as we show in Fig. 2). We denote
this element (cell) eK j, its area jeK jj and the arcs on the
boundaries C1, C2 that belong to eK j as C1,j, C2,j. Assuming
explicit time discretization, Eq. (5) can be approximated in
the finite-dimensional form as follows:

eU ~mþ1
j ¼ eU ~m

j � ~s
1

jeK jj
X2

n¼1

eF nð eU jÞ � eSð eU jÞ �Wj

 !
t¼~m~s

;

ð11Þ
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where ~m ¼ 0; . . . ; eM is the time integration index,
~s ¼ T =ð eM þ 1Þ is the time step used for the 1D model inte-
gration, eF nð eU jÞ are the fluxes of eU via the nth edge of the
cell eK j (it can be defined by steps (a)–(c) as in the 2D case,
when using h1 = 0, h2 = p). Similarly to the 2D, case we de-
note ~dtm 2 ð~m~s; ð~mþ 1Þ~sÞ as the time interval between two
successive time integration steps.

The first approach is to compute the overflow from the
main channel as mass and momentum fluxes via the bound-
aries C1 and C2 using a current approximation of the 2D
flow given by the zoom solution. Thus, we define piece-wise
constant vector-functions G1(U 0), G2(U 0) as follows:

G1ðU 0Þjðx;yÞ2Ei;n;t¼dtm
¼ Gm

i;nðU 0ÞjC1
:¼ F nðU 0iÞjt¼ms

8ði; nÞ : Ei;n 2 C1 \ X2;

G2ðU 0Þjðx;yÞ2Ei;n;t¼dtm
¼ Gm

i;nðU 0ÞjC2
:¼ F nðU 0iÞjt¼ms

8ði; nÞ : Ei;n 2 C2 \ X2:

Since the 1D state consists of the components (H 0,Q 0), we
need to retain only the first two of three components of G.
This can be achieved by multiplying G from the left by a
diagonal matrix I0 = diag[1,1,0]. Thus, the overflowing in
the 1D model can be compensated using the source term
W ¼ fW~m

j g as follows:

W~m
j ¼

1

~sjeK jj

Z
~dtm

Z
C2;j

I0G1 dC�
Z

C1;j

I0G2 dC

 !
dt ð12Þ

A more accurate approach is based on a defect correction
term that originates from the multi-grid method, see e.g.
[4]. If Af and Ac are spatial operators defined on a fine
and a coarse grid respectively, U is a state variable and R

is a fine-to-coarse projection (restriction) operator, then
the defect correction term used in the coarse grid problem
approximation reads as follows:

d ¼ RAfðUÞ � AcðRUÞ:

Let us define a piece-wise constant vector-functions G(U)
and eGð eU Þ such that

GðUÞjðx;yÞ2Ki ;t2dtm
¼ Gm

i ðUÞ :¼ 1

jKij
X4

n¼1

F nðUiÞ � SðUiÞ

8i : Ki 2 X2 \ X1;

eGð eU Þj
x02eK j;t2~dtm

¼ eG ~m
j ð eU Þ :¼ 1

jeK jj
X2

n¼1

eF nð eU jÞ � eSð eU jÞ

8j : eK j 2 X1 \ X2:

Here G(U) is the action of the finite-dimensional 2D SWE
spatial operator on a state vector U as in (9) and eGð eU Þ is
the action of the 1D SWE spatial operator on a state vectoreU as in (11). We also introduce a projection (restriction)
operator R that computes average values over eK i and ~s

R~m
j u ¼ 1

~sjeK jj

Z
~dtm

Z
eK j

udX1 dt:
Eventually, the source term W ¼ fW~m
j g for the 1D model

can be defined as follows:

W~m
j ¼ R~m

j I0GðU 0Þ � eG ~m
j ðR~m

j I0U 0Þ: ð13Þ

Let us note that for matching uniform grids, without cur-
vature and friction, the values W obtained by (12) and
(13) are equivalent. Otherwise, the overflowing fluxes still
remain a major contribution to W, because in integration
over eK j interior fluxes between edges of the 2D cells cancel
out. Obviously, the defect correction term as specified in
(13) is a generalization of the classical multi-grid defect cor-
rection, since it takes into account the dimensional
heterogeneity.

This approach is more accurate when both the spatial
discretization in X1 and time integration step for the 2D
model are finer than those used for the 1D model. This is
the case in practical applications. Otherwise, one must
use the ‘overflow’ formula (12). Let us also note that the
1.5D SWE solver in the existing open-channel network
model can be implemented using any discretization scheme.
The scheme (11) is used to derive (13) only.
3.2. 1D! 2D information transfer

For coupling the 1D and ‘zoom’ models at the bound-
aries C3,4 we use a characteristic approach. We assume that
the dominant incidence direction at C3 coincides with the
tangent to the median curve of the main channel. At C4

the dominant incidence direction is opposite to it. Let us
denote

dW 1ðtÞjCl
:¼
Z

Cl

w1ðx0l; y0l; tÞdC� W 1ðx0; tÞjx02Cl
; l ¼ 3; 4;

ð14Þ

where w1 is defined in (3) and W1 in (7). Actually we de-
mand that the incoming characteristic quantities across
the coupling interfaces are continuous. This condition
can be written as follows:

dW 1ðtÞjCl
¼ 0; l ¼ 3; 4; t 2 ð0; T Þ: ð15Þ

Let us note that Eqs. (14) and (15) do not specify w1jCl
un-

iquely. That is, the distribution of w1jCl
along Cl remains

unknown. The component w3jCl
; l ¼ 3; 4 in (3) simply

has no equivalent quantity in the 1D formulation.
In order to write down condition (15) in the finite-

dimensional form we assume that after discretization w

and W are piece-wise constant functions such that

w1jðx;yÞ2Ki;t2dtm
¼ ðw1Þmi ; i ¼ 1; . . . ;N ; m ¼ 0; . . . ;M ;

W 1j
x02eK j;t2~dtm

¼ ðW 1Þ~mj ; j ¼ 1; . . . ; eN ; ~m ¼ 0; . . . ; eM :

Therefore, the definition for dW 1jCl
becomes as follows:

dW m
1 jCl
¼
Z

Cl

ðw1Þmi j8Ki\Cl 6¼0 dC� Iði;mÞW 1; l ¼ 3; 4;
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where I(i,m) is a prolongation operator which interpolates
the piece-wise constant function W defined on a coarse spa-
tial–temporal mesh to a space-time cell (Ki,dtm) defined by
parameters i and m (I(i,m) is just a formal notation for an
interpolation algorithm). In numerical tests we use local cu-
bic splines to interpolate W in space and linear interpola-
tion in time.
4. Waveform relaxation (global time Schwarz) coupling

method

Let us assume that we know the initial conditions
U(X2,0) and eU ðX1; 0Þ, and the boundary conditions for
the 1D problem W1(0, t), W1(L 0, t). In order to define
boundary conditions at boundaries C3,4 we have to specify
functions w1jC3;4

, w3jC3;4
. However, Eqs. (14) and (15) define

a single integral constraint on w1jC3;4
, which can be satisfied

by an infinite number of functions. One could assume a pri-
ori that w1jC3;4

are distributed uniformly along C3,4, (or are
proportional to h3/2) and w3jC3;4

¼ 0. These are the most
straightforward assumptions, which could be justified only
if the 2D flow at the boundaries C3,4 of the ‘zoom’ area
exhibits essentially 1D behavior. We shall call a model
whose solution fU ; eU g satisfies simultaneously (1)–(3),
(5)–(7), (13) and (15) a ‘coupled model’. We seek an
approximate solution of this model using the WFR by tak-
ing the following steps:

(a) set W~m
j ¼ 0; 8eK j 2 ðX1 \ X2);

(b) given the initial condition (6), boundary conditions
W1(0, t), W1(L 0, t) and the source term W~m

j solve the
1D problem (5) for x 0 2 (0, L 0), t 2 (0, T);

(c) compute boundary conditions for the ‘zoom’ model
w1jC3;4

, to satisfy exactly condition (15) using a certain
distribution rule and a priori specified w3jC3;4

;
(d) given the initial condition (2), boundary conditions

w1jC3;4
and w3jC3;4

¼ 0, solve the ‘zoom’ problem for
(x,y) 2 X2(t), t 2 (0, T);

(e) compute source terms to the 1D model W~m
j ; 8eK j 2

ðX1 \ X2Þ given the current approximation of the
‘zoom’ solution using (12) or (13);

(f) check the stopping criterion
XT=~s
~m¼0

XeN
j¼1

ðWm
j Þ

kþ1 � ðWm
j Þ

k
� �2

> �1;

where �1 is a small positive number, k is the iteration
number.
(g) if satisfied, return to (b), stop iterating otherwise.

The WFR algorithm can be used to superpose a ‘zoom’
model over any chosen part of an open-channel network
model. Even though we consider a simple configuration
here (a single segment of the network) the approach is gen-
eral. For example, one could improve the representation of
a complex junction by superposing a ‘zoom’ model.
5. Joint assimilation–coupling algorithm (JAC)

In Section 4, we have introduced the coupling of the two
models using the WFR method. For this method a priori
assumptions are necessary. That is, we must choose a priori
a particular shape for functions w1jC3;4

(i.e. to distribute the
1D information along the 2D boundary) and specify w3jC3;4

.
Let us also recall that in practice, the global 1.5D model is
solved on a much coarser mesh with typical ratios of 101–
102 for the space mesh size and 102–103 for the time step. In
order to overcome possible difficulties related to the incon-
sistency of models a coupling method based on an optimal
control approach can be used.

To apply this method we consider (15) in a weak form as
follows:

J c ¼ J 1 þ J 2; J 1 ¼
Z T

0

ðdW 1ðtÞjC3
Þ2 dt;

J 2 ¼
Z T

0

ðdW 1ðtÞjC4
Þ2 dt: ð16Þ

Now, instead of solving the strongly coupled model as pre-
viously, we formulate the coupling problem as an optimal
control problem:

find the minimum of the cost functional

Jðw1ðtÞjC3;4
;w3ðtÞjC3;4

Þ ¼ J c þ J a ð17Þ

subjected to constraints (1)–(3), (13), (5)–(7).
We shall call the set of constraints (1)–(3), (13), (5)–(7) a

‘one-way relaxed model’. Indeed, as compared to the ‘cou-
pled model’ this model does not include condition (15),
which demands the characteristic variables at the models’
interfaces to be continuous. This condition is weakly
imposed using optimal control. The term Ja stands for pen-
alty terms, which may include the same a priori assump-
tions used in the WFR algorithm, but written in a weak
integral from.

The drawback of the optimal control based coupling
method could be its computational cost because it needs
the control loop iterations. This might be an obstacle to
the use of this method. However, the situation becomes dif-
ferent if the problem is considered in the context of DA,
which needs the control loop iterations anyway.

Let us denote KiðnÞ; n ¼ 1; . . . ; bN a subset of cells where
the measurements of certain components of the state vector
U are available. Here bN is a number of such cells, i(n) is a
global index of a cell from the full set of cells Ki, n = 1,N.
We denote data measured in Ki(n) as bU iðnÞ. In order to select
certain components from bU iðnÞ we introduce an observation
operator Cn that is simply a vector of weights equal to 0 or
1. A classical DA cost functional is

bJ ¼XbN
n¼1

Z T

0

CnðUiðnÞ � bU iðnÞÞ2 dt; ð18Þ

where bJ depends on the unknown controls.
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Let us assume, for example, that the BC at the ends of
the 1.5D segment W1(0, t), W1(L 0, t) are sought. Then the
optimal control problem which solves the coupling and
DA problems simultaneously is:

find the minimum of the generalized cost functional

JðW 1ð0; tÞ;W 1ðL0; tÞ;w1ðtÞjC3;4
;w3ðtÞjC3;4

Þ ¼ J c þ qbJ ð19Þ

subjected to constraints (1)–(3), (13), (5)–(7).
All functions W1(0, t), W1(L 0, t), w1ðtÞjC3;4

, w3ðtÞjC3;4
are

considered here as unknown controls. One can see that
the generalized cost functional J consists of the term Jc,
which represent the coupling problem, and the term qbJ ,
where q is a weight factor, which represents the DA prob-
lem. Let us note that the term Ja could be also retained, if
necessary, although its presence is no longer mandatory.

A gradient-type optimization algorithm is used to solve
the minimization problem for (19) under constraints (1)–
(3), (13), (5)–(7). The gradient is computed by solving the
adjoint of the one-way relaxed model.
6. Numerical implementation

6.1. Finite volume solver and DassFlow software

All schemes and algorithms presented in the paper are
implemented in the software called DassFlow [9]. The 2D
SWE (1)–(3) are solved numerically using a finite-volume
method. Here, to simplify the implementation, the mesh
is structured rectangular with mesh-sizes (hx,hy). Time dis-
cretization is done using the Euler explicit scheme, hence
the CFL stability condition must be satisfied. Space discret-
ization is based on rotation of the 2D SWE equations for
each edge of the computational cell. Thus we reduce the
2D SWE to a set of the 1D local Riemann problems, see
e.g. [19,9]. Fluxes are computed using the HLLC solver,
see [19]. This first-order scheme handles correctly the tran-
sition between sub-critical and super-critical flows, unlike
most other first-order schemes. This is important for reli-
able front propagation modeling. The bed slope is included
into the source term of the 1D local Riemann problems as
described in [20]. The treatment of the friction term is expli-
cit in time.

The treatment of dry/wet fronts is done as described in
[19, p. 197]. We introduce a threshold h� > 0. If the water
Fig. 3. Simplified problem layout and b
elevation h in a given computational cell is less than h�,
then the cell is considered dry and the velocity components
there are put to zero. A typical value of the threshold cho-
sen in computations is 10�2–10�3 m. We refer to [9] for
more details and benchmark results obtained using the
present solver.

The 1D model is discretized on a uniform spatial mesh
with a mesh-size ~hx and solved similarly: we use the same
1D HLLC Riemann solver. The friction term and the
source term W are discretized explicitly in time.

The implementation of the characteristic BC is done as
follows, see e.g. [10]. We compute the state variables in
‘ghost’ cells Ki,n adjacent and symmetric to the boundary
cells Ki over the edge Ei,n 2 Cl using the inverse rotation

U ¼ T�1ðblÞU 0l;

where U 0l ¼ ½h; q0l; p0l�
T are computed as follows:

h ¼ 1

2

w1jCl

c
�

w2jCl

c

� �
;

q0l ¼
1

2
1þ u0l

c

� �
w1jCl

þ 1� u0l
c

� �
w2jCl

� �
;

p0l ¼ w3jCl
þ v0lh 8u0 > 0:

Above c ¼ ðgh1=2
l Þt�s, u0l ¼ ðq0l=hÞjt�s, v0l ¼ ðp0l=hÞt�s are lin-

earized coefficients, w1(Cl, t) and w3(Cl, t) are incoming
characteristic variables (3) to be imposed, w2 is the outgo-
ing characteristic variable defined as follows:

w2ðCl; tÞ ¼ ðq0l � ðcþ u0lÞhÞjðx;yÞ2Cl
:

This quantity must be extrapolated to the center of the cell
Ki,n from the interior in the direction opposite to the dom-
inant incidence direction defined by the angle bl. For
extrapolation we use a local cubic spline representation
of w2.

6.2. Domain configuration and reference flow

For all numerical tests we use a simplified problem lay-
out as shown in Fig. 3(left). The bathymetry is defined as a
uniform bed with a slope in the x-direction equal to 0.2% as
shown in Fig. 3(right). Thus, the river flows from the left to
the right. The main channel width b = 40 m, the relative
height of the high bank of the main channel measured from
the uniform bed level dZhigh = 6 m and the height of the
athymetry used in numerical tests.
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low bank dZlow = 2 m. The boundary at y = 0 is a no-flow
boundary, i.e. a wall. For simplicity, boundaries of the
zoom area C3, C4 are chosen beyond the area where the
overflowing may happen. Despite the simplifications this
idealized scheme allows the basic ideas of the proposed
approach to be verified. The Manning coefficient is uni-
form and l = 0.04, the threshold h� = 10�2 m.

To enable analysis of results we compute a reference
flow pattern by solving the 2D SWE problem in the entire
spatial domain X0 = X1 [ X2. Beforehand, we solve the 2D
problem for t 2 (0,T*) starting from an arbitrary unphysi-
cal initial condition h(X1,0) < dZlow, h(X0 62 X1,0) = 0,
q(X0,0) = 0, p(X0,0) = 0 applying a constant value of the
upstream boundary control w1(0,y, t) = w* and keeping
the open non-reflective boundary downstream (w1

(L,y, t) = 0). The time interval is chosen to obtain an
almost steady state solution at t = T*, i.e. such that the
state variables do not change on time significantly. Also,
we choose a value w* such that h(X1,T*) is very close, but
smaller than dZlow, i.e. the flow is on the brink of flooding.
This solution can be used as a meaningful initial condition
for further computations. We compute it once (for the cho-
sen set of parameters, bathymetry configuration, etc.) and
keep it in memory. Thus, we start the main computations
for t 2 (0, T) using computed U(X0,T*) as the initial condi-
tion. We add a time-dependent positive component to w*,
which creates a surge wave propagating downstream.
When the wave reaches the low bank it starts overflowing
and produces a wetting front traveling over the previously
1
 1.4 1.6

 1.8 2 2.2
 2.4

0
 0.1

 0.2
 0.3

 0.4

0
 0.5

1
 1.5

2
 2.5

3
 3.5

4
h (m)

t=0 s

x (km)y (km)

h (m)

 0

 1

 2

 3

 1
 1.4

 1.6
 1.8

 2
 2.2

 2.4

 0
 0.1

 0.2
 0.3

 0.4

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

h (m)

t=600 s 

x (km)y (km)

h (m)

Fig. 4. Reference flow (surface el
dry area. This process is illustrated in Fig. 4, where the sur-
face elevation of the flow in X2 for different times is pre-
sented. The boundary condition that generates the
reference solution is as follows:

w1ð0; y; tÞb ¼ w� þ 1:2ð1� cosðpt=480ÞÞ104 m2=s;

w� ¼ 0:5� 104 m2=s:

In all numerical examples we solve the reference problem
and the zoom problem using the same spatial and time dis-
cretization. We refer to a consistent discretization when the
1D model solution is obtained with the same spatial mesh-
size ~hx ¼ hx and time step ~s ¼ s as the 2D problem, and to
an inconsistent discretization otherwise.

6.3. Adjoint code and minimization process

When using the JAC procedure, one must minimize the
cost functional (19). This is done using a descent algorithm,
thus one must compute the gradient of J. We compute it
classically by introducing the adjoint of the one-way
relaxed model. In DassFlow [9], this is done by differentiat-
ing directly the forward code which solves the forward
model equations (1)–(3), (13), (5)–(7) (as enumerated) and
computes (19) afterwards. We use the Automatic Differen-
tiation (AD) engine TAPENADE developed at INRIA,
TROPICS [13]. The adjoint code, produced in this way,
is verified using classical tests. The minimization algorithm
is the L-BFGS algorithm (routine M1QB3, see [12]). We
refer to [9] for more details.
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7. Numerical results

7.1. Waveform relaxation coupling procedure

In this section we suppose that the BC of the 1D model
are given. We couple the two models using the WFR algo-
rithm (described in Section 4). Of course, no data assimila-
tion is planned at this stage.

7.1.1. Coupling with consistent meshes

We compute solutions using a consistent discretization,
such that ~s ¼ s ¼ 0:1 s, ~hx ¼ hx ¼ 20. In Fig. 5(left), the ref-
erence solution in X1 at time t = 600 s is presented by a
faint solid line, while the 1D coupled solutions after k iter-
ations of the WFR algorithm are presented by bold lines.
One can see that without the correction term (k = 0,
W = 0) the 1D coupled solution deviates significantly from
the reference solution in X1, but after just two or three iter-
ations follows it very closely. The convergence rate
expressed in terms of the norm Jc ((16), computed after step
(b) of the WFR algorithm, i.e. before (15) is satisfied
exactly), is about two orders of magnitude per iteration,
until it reaches a consistency threshold. This is usually a
very small value in the case of consistent discretization.
Thus, in practice we approach the optimal convergence
rate of the WFR method, which must converge in two iter-
ations, see [8]. In Fig. 5(right) we show the reference solu-
tion in the whole domain (in faint solid lines) and the zoom
solution in the zoom area X2 (in bold lines). Every line here
corresponds to the flow slice made at y = (j � 1/2)hy,
j = 1, . . . , 12. One can see a nearly perfect agreement
between the reference and zoom solutions. The same pre-
sentation style is used throughout Section 7.

Let us point out that the main channel in the 2D model
discretization can be represented correctly by using only
one cell in width (i.e. b/hy = 1). We performed numerical
tests which showed that if the main channel is discretized
using two (b/hy = 2) and four (b/hy = 4) cells in width this
improves the accuracy. This improvement, however, is not
very significant. Thus, in all numerical examples that fol-
low we use hy = b = 40 m.
Fig. 5. WFR method, consistent discretization. Left: The 1.5D solution in
In Fig. 5(right), we show the reference solution in the
whole domain (in faint solid lines) and the zoom solution
in the zoom area X2 (in bold lines). Every line here corre-
sponds to the flow slice made at y = (j � 1/2)hy, j =
1, . . . , 20. One can see a nearly perfect agreement between
the reference and zoom solutions. The same presentation
style is used throughout Section 7.

Results presented in Fig. 5 could be equally obtained
either by computing the overflow (12) or the defect correc-
tion (13), since for a consistent discretization (and without
curvature and friction) both expressions (12) and (13) pro-
duce nearly the same value of W. However, this is not the
case if we use an inconsistent discretization.

7.1.2. Coupling with inconsistent meshes

In practice, the 1D model is solved on a much coarser
spatial mesh and with a much larger time step than the
2D model. For further modeling we keep the following
ratios: ~s=s ¼ 102, ~hx=hx ¼ 101 and, as before, we use
s = 0.1 s, hx = 20 m, hy = 40 m.

First, we compute the 1D coupled and zoom solutions
using the overflow formula (12). The results at t = 600 s
are presented in Fig. 6, the elevation h to the left and the
velocity u to the right.

In Fig. 6(left/right), we show the reference solution (in
faint solid lines), the zoom solution in X2 (in bold solid
lines) and the 1D coupled solution (solid line with mark-
ers). One can see that both the 1D coupled and zoom solu-
tions differ from the reference value: in particular the 1D
coupled solution deviates from the reference solution in
X1, apparently showing the presence of a cumulative error.
The zoom solution deviates mostly near the boundaries of
the zoom area, since the BC of the zoom model are tied to
the 1D solution at interface.

Next we compute the 1D and zoom solutions using the
defect correction formula (13). The results at time t = 600 s
are presented in Fig. 7. Here we use the same presentation
style as in Fig. 6. One can see that the 1D coupled solution
approximates the reference solution in X1 much more clo-
sely than before. The zoom solution is also better, particu-
larly near the downstream boundary of X2. This last result
the main channel. Right: reference solution and the 2D zoom solution.



Fig. 7. WFR method, inconsistent discretization, using defect correction (13).

Fig. 6. WFR method, inconsistent discretization, using overflowing (12).
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shows that the defect correction term improves the coupled
solution (both in the main channel and in the zoom area)
when the two models are discretized with inconsistent spa-
tial–temporal meshes.

7.2. Joint assimilation–coupling (JAC) procedure

In the JAC procedure, we compute the gradient of (19)
with respect to all controls W1(0, t), W2(L 0, t), w1ðtÞjC3

,
w2ðtÞC4

, w3ðtÞjC3;4
by computing the adjoint as described

previously.
The unknowns of the 2D model are the incoming char-

acteristic variables w1ðtÞjC3;4
(w3ðtÞjC3;4

¼ 0), while for the
1D model we seek to identify the upstream incoming char-
acteristic variable W1(0, t), assuming a non-reflective open
boundary downstream i.e. W1(L 0, t) = 0.

Measurements (water elevation and the components of
discharge) are collected at two points located within the
zoom area as shown in Fig. 3(left), every mobs = 6 s. The
exact location of the sensors is as follows: x1 = 290 m,
y1 = 20 m for sensor A, x1 = 290 m, y2 = 140 m for sensor
B. We conduct identical twin experiments; this means that
given the controls, we generate synthetic data by solving
the 2D reference problem, then we seek to identify those
controls by assimilating the same synthetic data.
In the assimilation examples presented in Figs. 8 and 9,
we use a consistent discretization. In Fig. 8(left) and
Fig. 9(left), we present the reference BC (in faint solid lines)
and its retrieved value after k iterations of the JAC algo-
rithm (in bold solid lines). The final solution (corresponds
to the largest k) is presented by dashed lines. A line that
corresponds to k = 0 is the initial guess. To the right, we
present the convergence history for J and for its compo-
nents bJ , J1, J2. These examples show that the JAC proce-
dure converges: this allows the unknown BC of the 1.5D
model to be identified (by assimilating data collected both
in the main channel and the zoom area) and both models to
be accurately coupled at same time.

When both measurements of discharge q̂; p̂ and eleva-
tion ĥ are assimilated (Fig. 8) we need about 10 iterations
to get a reasonable estimation of the reference value and
about 20 iterations to get very close. Let us point out that
there exists a blind period in the vicinity of t = T, where the
inflow BC cannot be identified.

In Fig. 9, we present the same case, but measurements of
elevation ĥ only are assimilated. In this case, one needs
more iterations to get a good estimation of the inflow
BC, although the convergence rate is nearly the same.
Again, this shows that the JAC procedure allows us to
identify the unknown inflow BC of the 1D model and to



Fig. 8. Assimilation of data ðĥ; q̂; p̂Þ by JAC algorithm: inflow BC W1(t) after k iterations (left); the convergence history in log-scale (right). Consistent
discretization.

Fig. 9. Assimilation of data (ĥ) by the JAC algorithm: inflow BC W1(t) after k iterations (left); the convergence history in log-scale (right). Consistent
discretization.
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couple accurately both models simultaneously by assimilat-
ing elevation data only.

In the next assimilation example, we use an inconsistent
discretization. That is, the 1D model is solved on a much
coarser spatial–temporal mesh than the reference and
zoom models. Ratios between spatial mesh-sizes and time
steps are the following: ~s=s ¼ 102, ~hx=hx ¼ 101. Only mea-
surements of elevation h are used.

In Fig. 10(left), we show the reference BC (in faint solid
line) and its retrieved estimation after k iterations (in bold
solid lines). In Fig. 10(right), we show the convergence his-
tory. One can see that the convergence rate is the same as in
the two previous examples (consistent discretization), but
the estimation finally deviates from the reference value.

There exists an iteration number kopt � 12 (in dashed
line) when we can observe the best match between the esti-
mate and the reference value. If we continue to iterate the
estimates deviate approaching the value shown at k = 20.
This is a standard behavior that the solution of an inverse
problem could exhibit in the presence of errors. In our case
this is a model error. Indeed, the synthetic measurements
are generated by the 2D reference model discretized on a
fine spatial–temporal mesh, while we assimilate data into
the 1D model discretized on a coarse spatial–temporal
mesh (even though this is done via the zoom model). Let
us note that the control problem for the generalized cost
functional (19) is actually solved. The value of J is reduced
by factor 104, the 1D flow within the main channel inside
the zoom area is a nearly perfect (as good as the spatial dis-
cretization allows) match with the reference flow pattern,
as can be seen in Fig. 11. This result, however, is achieved
by a value of control W1(0, t) which does not match the ref-
erence value. This shows that the exact solution of the con-
trol problem for (19) is not necessarily the best estimation
of the sought control function. In fact, this difficulty is
shared by most inverse problems, see e.g. [1]. We refer to
Appendix C for details. One approach to deal with this dif-
ficulty is to stop iterations guided by the generalized resid-
ual rule [18].

In the last numerical test we assimilate data available in
the zoom area outside the main channel, which cannot be
assimilated using the 1.5D model. The data is collected
by sensor B, Fig. 3(left), which is located at a distance
y = 100 m from the overflow boundary C2. We use a



Fig. 10. Assimilation of data (h) by the JAC algorithm: W1(t) after k iterations (left); the convergence history, log-scale (right). Inconsistent discretization.

Fig. 11. Flow example after DA. Corresponds to Fig. 10.
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special form of the reference BC W1(0, t) as shown in
Fig. 12(left) by a faint solid line. Up to t � 300 s the value
W1(0, t) is less than a ‘no-overflow’ level w* = 500 m2 s�1.
This is done to increase the period when this sensor
remains in a dry area. The readings of the sensor B are
shown in Fig. 12(left) by bold solid lines. We note that
up to t � 600 s no flow information is recorded. For this
test case we use a consistent discretization.
Fig. 12. Reference BC and readings by the dry field sensor B (left). Assimil
We start iterating from the initial guess which exceeds
twice the ‘no-overflow’ level, as shown in Fig. 12(right)
by a bold solid line, k = 0. This is done to ensure that
the zoom domain X2 is covered by water, i.e. non-trivial
sensitivity information reaches the sensor at the first itera-
tion. The solution obtained by the JAC algorithm is pre-
sented in Fig. 12(right). Here, by a faint solid line, we
show the reference BC and, by bold solid lines, the
ation of data (h) by the JAC algorithm: W1(t) after k iterations (right).
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retrieved value after k iterations. The final solution for
k = 50 is shown by a dashed line. One can see that the
JAC algorithm allows us to identify satisfactorily the
unknown inflow BC during the period t 2 [300 � 750] s,
i.e. when the inflow BC is large enough to cause a flood
event (thus to be detected by sensor B). One cannot expect
to identify the inflow BC at times preceding to this period,
since the flow is confined by the main channel and no flow
information is available. This example shows that the local
2D zoom model can play the role of an operator that maps
local 2D data into the 1D-net global model; data which
could not be assimilated if the global model alone is consid-
ered. This last feature of zoom models seems interesting for
real applications. Usually, many observations are made
during a flood event, but they cannot be assimilated since
they cannot be represented by the 1.5D model.

8. Conclusion

Global models which consider large scale phenomena in
full complexity everywhere are unlikely to be implemented
because of present computational limitations. However, in
some parts of a model domain the effects which are not rep-
resented by the global model become important and really
should be taken into account. Hence, ‘richer’ local models
may become of interest. Also, in the DA context, richer
local models may allow measured physical quantities to
be assimilated which are not the variables of the global
model. If the extra state variables of a ‘richer’ local model
match with some of the measured quantities, it can be
viewed as a mapping operator.

The application we consider in this paper is river
hydraulics. The global model is an open-channel network
model based on 1.5D flow models, i.e. models that use
the 1D equations (St-Venant of SWE) with source terms.
The expressions for these source terms are derived by
empirical consideration. We seek to use the 2D SWE model
in certain circumstances where and when the use of a 1.5D
model is not sufficient, such as flood event, for example.
For simplicity we assume that our 1.5D model is based
on the 1D SWE.

We suggest the use of a zoom model (the two-way nested
richer local model) superposed on an element of the global
model. The boundary conditions for the zoom model are
provided by the global model, while the zoom model pro-
vides a feedback in the form of defect correction via a
source term. This arrangement is convenient because it
allows modifications in the global model to be avoided.
The zoom and 1.5D models are coupled using the WFR
method. Numerical experiments on a simple hydrodynamic
configuration have shown that 2–3 iterations of this proce-
dure is enough to couple the models. The method is effi-
cient for the case when the 2D flow at the boundaries of
the ‘zoom’ model exhibits essentially 1D behavior.

Without DA, the global model and ‘zooms’ can be cou-
pled using the WFR method. A possible difficulty is that
these models are not consistent, in our case because of dif-
ferent dimensionality. In order to specify the BC of the
zoom model one needs more information than the 1.5D
model can provide. Therefore, additional a priori assump-
tions must be used. However, if measured data are avail-
able, the coupling problem with DA actually becomes
simpler. This is because the information needed for cou-
pling is extracted from measured data. We formulate the
generalized cost functional which includes both the stan-
dard data misfit functional and the coupling conditions in
a weak integral form. This cost functional is minimized
using the LBFGS method, while the gradient is computed
using the adjoint of the one-way relaxed model. Therefore,
we solve simultaneously the data assimilation and coupling
problems as a single minimization problem. We call this
approach a joint assimilation–coupling method (JAC).
Numerical tests to verify the suggested method have been
conducted. These experiments show that the method is
feasible.

The basic ideas presented in this paper have been veri-
fied using a simple ‘toy’ configuration. The next develop-
ments for this method should be:

(a) the use of a the 1.5D open channel flow model based
on the St-Venant equations instead of the SWE;

(b) the use of a non-uniform spatial mesh in the 2D zoom
model, that will allow more realistic configurations to
be modeled, such as curvilinear channels, river con-
fluence points, etc.
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Appendix A. Characteristic boundary conditions

In order to implement the ‘zoom’ model we have to con-
sider the 2D local SWE model with open boundaries C3,
C4, C5 and C6. Therefore, the theory of characteristics
can be used [3] to define the BC. We note that the original
problem (1) can be rewritten in the non-conservative form

Ut þAU x þ BU y � SðUÞ ¼ 0; ðA:1Þ

where

A ¼
0 1 0

c2 � u2 2u 0

�uv v u

0B@
1CA; B ¼

0 0 1

�uv v u

c2 � u2 0 2v

0B@
1CA;
ðA:2Þ
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c = (gh)1/2 is the celerity and u = q/h, v = p/h are the mean
velocities. As long as c, u, v are considered as given coeffi-
cients dependent on (x,y, t) only, the transport part of
Eq. (A.1) becomes linear and it can be reduced to a pseu-
do-canonical form

W t þ KW x þ RBR�1W y � ðRt þ KRxÞR�1W � SðR�1W Þ ¼ 0;

ðA:3Þ
where

W ¼RU ; K¼
uþ c 0 0

0 u� c 0

0 0 u

0B@
1CA; R¼

c�u 1 0

�ðcþuÞ 1 0

�v 0 1

0B@
1CA:
ðA:4Þ

The variables W = [w1,w2,w3]T are conventionally called
‘characteristic’ variables. Dependent on the sign of the cor-
responding eigenvalue in K they can be either incoming or
outgoing variables. A general rule to set up a well-posed
open boundary problem is that one must specify the incom-
ing characteristic variables only.

The representation (A.3) and (A.4) could be used to con-
struct the open boundary BC, if the x-axis is the dominant
incidence direction. At each boundary we choose the local
dominant direction and construct the co-ordinate systems
ðx0l; y 0lÞ rotated in respect to the original co-ordinate system
by the angle bl, l = 3,4,5,6 as shown in Fig. 13(left). For
example, in the fluvial case the dominant characteristic
direction is expected to be close to the tangent to the chan-
nel median curve. If we denote a the angle between x-axis
and this tangent, then b3 ¼ aðx0Þjx02C3

and b4 ¼ 180�þ
aðx0Þjx02C4

. For boundaries C5 and C6 we can chose the dom-
inant direction coincident with the inward normal to the
boundary. Since the 2D SWE remain in the same form in
any rotated co-ordinate system (x 0,y 0) where (q,p) are
replaced by (q 0,p 0), the representation (A.4) also remains
in the same form. That is, in the sub-critical case w1(Cl, t)
is the incoming characteristic variable to be imposed,
w2(Cl, t) is the outgoing characteristic variable to be inter-
polated from the interior. The variable w3(Cl, t) can be
either the incoming or outgoing variable dependent on
the sign of u0l.
Fig. 13. Left: domain X2, its boundaries and orientation of au
Appendix B. Rotated 1D main channel equations

Let us assume that the median curve of the main channel
is specified in parametric form as follows:

xm ¼ /1ðx0Þ; ym ¼ /2ðx0Þ:

We intend to consider the 2D SWE problem in the channel-
following co-ordinates, thus we link the axis x 0 to the med-
ian curve. The axis y 0 is locally orthonormal to x 0 as shown
in Fig. 13(right). The original co-ordinates of the point lo-
cated at (x 0,y 0) in the channel-following co-ordinate system
are

x ¼ /1ðx0Þ � y 0 sinðaðx0ÞÞ; y ¼ /2ðx0Þ þ y0 cosðaðx0ÞÞ:

We differentiate both expressions on x and y as follows:

ox
ox
¼ o/1

ox0
ox0

ox
� y0 cosðaÞ oa

ox0
ox0

ox
� oy 0

ox
sinðaÞ 	 1;

oy
ox
¼ o/2

ox0
ox0

ox
� y 0 sinðaÞ oa

ox0
ox0

ox
þ oy 0

ox
cosðaÞ 	 0;

ðB:1Þ

ox
oy
¼ o/1

ox0
ox0

oy
� y 0 cosðaÞ oa

ox0
ox0

oy
� oy0

oy
sinðaÞ 	 0;

oy
oy
¼ o/2

ox0
ox0

oy
� y 0 sinðaÞ oa

ox0
ox0

oy
þ oy 0

oy
cosðaÞ 	 1:

ðB:2Þ

Taking into account that

o/1

ox0
¼ cosðaÞ; o/2

ox0
¼ sinðaÞ

we multiply Eqs. (B.1) and (B.2) consequently by the rota-
tion matrix (from the left)

cosðaÞ sinðaÞ
� sinðaÞ cosðaÞ

� �
and find the transformation coefficients as follows:

ox0

ox
¼ cosðaÞ

1� y0ax0
;

oy0

ox
¼ � sinðaÞ;

ox0

oy
¼ sinðaÞ

1� y0ax0
;

oy0

oy
¼ cosðaÞ: ðB:3Þ

This co-ordinate transformation is well-posed and its in-
verse exists for any y 0 smaller than the curvature radius.
xiliary co-ordinates; Right: channel-following co-ordinates.
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If y 0ax 0 is reasonably small (that is often justified in fluvial
applications) we can use the Taylor expansion to represent
first and third coefficients in (B.3) as follows:

ox0

ox
¼ cosðaÞð1þOðy0ax0 ÞÞ;

ox0

oy
¼ sinðaÞð1þOðy0ax0 ÞÞ:

The Jacobian of the transformation becomes T(a) + Tcurv(a),
where

T ðaÞ¼
cosðaÞ �sinðaÞ
sinðaÞ cosðaÞ

� �
; T curvðaÞ¼

OðcosðaÞy0ax0 Þ 0

OðsinðaÞy 0ax0 Þ 0

� �
:

Thus, one can write

o�
ox
o�
oy

" #
¼ ðT ðaÞ þ T curvðaÞÞ

o�
ox0

o�
oy0

" #
: ðB:4Þ

The components of discharge in the original and channel-
following co-ordinates are related by the rotation T(a)

q

p

� 	
¼ T ðaÞ

q0

p0

� 	
: ðB:5Þ

We apply (B.4) and (B.5) to (1) and multiply by TT(a) from
the left the momentum equations in (1). Then, it is easy to
ascertain that in the channel-following co-ordinates (x 0,y 0)
the 2D SWE model comprises the principal part in the
form (1), where (h,q,p) are replaced by (h,q 0,p 0), and addi-
tional terms by order of magnitude y 0ax 0 related to the ma-
trix Tcurv(a), both in the continuity and momentum
equations.

Appendix C. Model error and inverse problem accuracy

Let us consider a linear inverse problem in the form

Au ¼ f̂ ;

where u is a control, f̂ are measurements and A is an
operator which maps u to f̂ . In the identical twin experi-
ment we generate the synthetic data using a fine grid solu-
tion, i.e.

f̂ h ¼ Ahuh;

where h is a ‘fine mesh-size’ used in Ah. Naturally, the solu-
tion of the fine grid inverse problem is

uh ¼ A�1
h fh ¼ A�1

h Ahuh ¼ uh;

i.e. it is exact. Now based on f̂ h we want to find the solu-
tion of the inverse problem formulated on coarse grid

AH uH ¼ Ih
H f̂ h;

where H is a ‘coarse mesh-size’, AH is a coarse grid opera-
tor, uH is a coarse grid representation of control uh, Ih

H is a
restriction operator which maps fh into the coarse grid rep-
resentation fH. The solution of the coarse-grid inverse
problem is

uH ¼ A�1
H Ih

H f̂ h:
This solution must be interpolated to the fine grid, so we
get finally

ûh ¼ IH
h uH ;

where IH
h is a prolongation operator. Next we compute the

difference between ûh and uh as follows:

ûh � uh ¼ ðIH
h A�1

H Ih
H Ah � IÞuh;

where I is an identity operator. So, it is clear that the solu-
tion error norm depends on the norm of a ‘grid inconsis-
tency operator’

D ¼ IH
h A�1

H Ih
H Ah � I :

It is clear that

lim
H!h
kDk ¼ 0:

However, as H deviates from h the norm of D grows. This is
a grid inconsistency related ‘model’ error, which appears in
our numerical example. Let us note, that another type of
model error is called the ‘representation’ error. This error
appears because the model does not represent all phenom-
ena existing in nature, which generate actual (not synthetic)
measurements. Some bounds for kDk given the particular
form of the operator A and grid transfer operators IH

h and
Ih

H could be estimated. This is, however, quite a laborious
independent task, which is beyond the scope of this paper.
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