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We study the superposition of 1D and 2D shallow-water equations with non-flat topographies, in the
context of river-flood modeling. Since we superpose both models in the bi-dimensional areas, we focus
on the definition of the coupling term required in the 1D equations. Using explicit finite volume schemes,
we propose a definition of the discrete coupling term leading to schemes globally well-balanced (the glo-
bal scheme preserves water at rest whatever if overflowing or not). For both equations (1D and 2D), we
can consider independent finite volume schemes based on well-balanced Roe, HLL, Rusanov or other
scheme, then the resulting global scheme remains well-balanced. We perform a few numerical tests
showing on the one hand the well-balanced property of the resulting global numerical model, on the
other hand the accuracy and robustness of our superposition approach. Therefore, the definition of the
coupling term we present allows to superpose a local 2D model over a 1D main channel model, with
non-flat topographies and mix incoming-outgoing lateral fluxes, using independent grids and finite vol-
ume solvers.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In river hydraulics, operational models are generally based on
the St-Venant equations (1D shallow-water). If overflowing, flood
plain are represented in the 1D model by storage areas, that are de-
fined by using empirical laws and/or terms to be calibrated, see [6]
or e.g. [14]. Obviously, flow dynamic inside the storage areas is not
computed; also the empirical laws can be difficult to calibrate. If
for any reason, the end-user has to model the flow in the flood
plain, a 2D model must be used, see e.g. Fig. A.1. Then, the classical
approach is to decompose the domain, re-define the mesh, then
couple the 1D model (in the non-flooded areas) with 2D models
(in flooded areas) at interfaces, see e.g. [15,13]. Coupling conditions
have to be imposed at interfaces only. An efficient coupling proce-
dure may be a Schwarz-like algorithm. Nevertheless, this approach
presents some drawbacks. It requires to re-define the 1D hydraulic
model (mesh, boundaries, etc.) and very probably the related
topography data. The 1D model (which is potentially a complex
network) must be segmented (decomposed) in order to combine
it with the 2D models. It can be a heavy task.

A superposition approach is proposed in [8,12]. In such an ap-
proach, instead of decomposing the original 1D (network) model,
ll rights reserved.

(J. Monnier).
one superposes the 2D model (so-called ‘‘local zoom model”).
The superposition approach presents some advantages. The origi-
nal 1D model remains intact and the 2D local models can be per-
formed with their own dynamics (typically, time steps and mesh
grids are much smaller for 2D solvers than for 1D solvers). Never-
theless, an accurate definition of the coupling terms between both
models is required. At interfaces, incoming characteristics are still
good conditions, but along the 1D main channel one must intro-
duce a coupling term in the 1D equations (modelling the loss or
gain of mass and momentum). This coupling term has to take into
account the outgoing and incoming fluxes if overflowing. From a
continuous point of view, the coupling source term can be derived
formally from the 3D Navier–Stokes equations, see [12].

Then, next step is to define a stable and well-balanced global
scheme. An important difficulty is to discriminate between the
1D-topography graph Zbð~xÞ and the 2D-topography graph zbðx; yÞ,
since Zb depends on the curvilinear coordinate ~x while zb depends
on the cartesian coordinates ðx; yÞ. In addition for real cases, data
are sparse, uncertain, and the 1D-topography and the 2D-topogra-
phy do not have to respect the same hydrological constraints. If in
addition, one wants to consider different meshes and schemes for
the 1D model and the 2D model, the discretization of the coupling
source term must be such that it leads to a consistent, stable and
well-balanced scheme. This is the problem we address in the pres-
ent study, while focusing on explicit finite volume schemes.

http://dx.doi.org/10.1016/j.compfluid.2010.01.016
mailto:Jerome.Monnier@insa-toulouse.fr
http://www.sciencedirect.com/science/journal/00457930
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Fig. A.1. Modeling outline: a global 1D model with superposed local 2D models.
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Let us point out that we present the 1D–2D coupling in the con-
text of river hydraulics, but this could also be apply to any other
flows involving 1D and 2D shallow-water equations with non-flat
topographies.

We consider the possibility of using different finite volume
schemes for the 1D model and the 2D model. In the numerical
analysis presented in next sections, they can be based on different
time-space grids but they must be explicit in time. More precisely,
we consider finite volume methods in conservative form with
source terms (the topography terms and the coupling term). Then,
for both models, we can consider any solver belonging to a whole
family of approximate Riemann solvers. We prove that the result-
ing global scheme is well-balanced in the sense that it preserves
water at rest, with and without overflowing.

We present some numerical results for an academic test case
with a non-constant topography in which there are outgoing and
incoming lateral fluxes. In order to couple the models, we use a
Schwarz coupling algorithm (global in time). This could be done
also by using an optimal control approach as in [8,12]. The numer-
ical results show that after convergence, the coupling source term
W defined in the present study leads to a global solution as accu-
rate as a full 2D solution in case of matching grids, and leads to a
robust and accurate solution if grids are mismatching.
Fig. A.2. Up: definition of the 1D channel in the 2D domain. Down: 1D cross-section
with overflowing.
The paper is organized as follows. In Section 2, we present the
two mathematical models. Their discretization using well-bal-
anced finite volume scheme is presented in Section 3. The discret-
ization of the coupling source term in 1D equations is described in
Section 4. We begin with the simplest case (matching grids and 1D
linear axis). Then, we consider the case of 1D curvilinear geometry
with matching grids. Finally, the most general case (curvilinear and
mismatching grids) is considered. We prove in Theorem 1 that the
here introduced discrete source term leads to a global well-bal-
anced scheme, whatever the choice of the well-balanced finite vol-
ume method used for the 1D and 2D models. In Section 5 we
present some numerical experiments to validate the definition of
the discrete source term, and to show the efficiency of the present
superposition approach. We recall briefly in Appendix A the deriva-
tion of the coupling source term in the 1D equations from the 3D
Navier–Stokes equations (we refer to [12] for more details).
2. Mathematical models

2.1. The 1D model with source term

The 1D model is based on St-Venant equations (1D shallow-
water equations). Nevertheless, since our goal is to couple this
1D model to a 2D shallow-water model, we must take into account
transfers through the two lateral boundaries of the main channel. If
we integrate the 3D Navier–Stokes equations over the vertical wet-
ted area, in the presence of lateral transfer terms, we obtain some
source terms in the 1D equations. The derivation of these source
terms is presented in Appendix A. The result is the following. Let
us denote the channel-following coordinates by: ~x. We denote
the unidimensional variables (i.e. depending on ð~x; tÞ only) as fol-
lows: S the wet cross-section, Q the discharge, H the water depth.
And Zb denotes the unidimensional topography (depending on ~x
only). We assume that: the channel width variations are small, u is
nearly constant over the cross-section, and (u;v) does not depend
on z on boundaries b1 and b2. Furthermore, for the sake of simplicity,
we consider rectangular cross-sections only. Hence S ¼ b � H, where
b is the channel width, see Fig. A.3.

The derivation of the 1D shallow-water equations with source
term is presented in Appendix A (replace x by ~x). Under the
assumptions above, the equations are the following:

@S
@t þ

@Q
@~x ¼ �ðqg1

þ qg2
Þ

@Q
@t þ @

@~x
Q2

S þ P
� �

� g @b
@~x

H2

2 þ gS @Zb
@~x ¼ �ðqg1

ut1 þ qg2
ut2 Þ

8<: ð1Þ

where P ¼ gS H
2 is a pressure term. In the right hand side, qgi

repre-
sents the discharge normal to the lateral boundary i of the main
channel, i ¼ 1;2; uti

represents the tangential velocity at lateral
(a) (b)
Fig. A.3. 1D model. (a) Wet cross-section; (b) top view of one 1D cell in the main
channel.



Fig. A.4. 2D cell with definition of qgi
and uti

.

Fig. A.5. Notation, finite control volumes.
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boundary i, see Fig. A.4. (It is the projection of the horizontal veloc-
ity vector ðu;vÞ on the lateral boundary direction.)

System (1) is closed with appropriate boundary conditions and
initial conditions.

If we set w ¼ ½S;Q �T the unknown vector, then the 1D model
writes as an hyperbolic system with source term:

@twþ @~xf1ðbð~xÞ;wÞ ¼ g1ð~x;wÞ@~xZb þ g2ð~x;wÞ@~xbþW ð2Þ

where

f1ðbð~xÞ;wÞ ¼
Q

Q2

S þ g S2

2b

 !
; g1ð~x;wÞ ¼

0
�gS

� �
; g2ð~x;wÞ ¼

0
g S2

2 b2

 !

and

W ¼
�ðqg1

þ qg2
Þ

�ðqg1
ut1 þ qg2

ut2 Þ

 !
ð3Þ

is the coupling term in the 1D model i.e. normal discharges and tan-
gential velocities normal to the (two) lateral boundaries of the main
channel are provided by the 2D model.

2.2. The 2D model

The 2D hydraulics model is based on the bi-dimensional shal-
low-water equations in their conservative formulation. The un-
knowns are the water depth h and the local discharge q ¼ hu,
where u ¼ ðu;vÞT is the depth-averaged velocity vector. In a bi-
dimensional domain X and for a computational time interval
½0; T�, equations are:

@t hþdivðqÞ ¼ 0 in X��0;T�
@t qþdiv 1

h q�q
� �

þ 1
2 grh2þ ghrzbþ g n2kqk2

h7=3 q¼ 0 in X��0;T�

(
ð4Þ

where g is the magnitude of the gravity, zb the (bi-dimensional)
topography and n the Manning roughness coefficient. Initial condi-
tions hð0Þ ¼ h0;qð0Þ ¼ q0, and boundary conditions are given.

In all the sequel, c ¼
ffiffiffiffiffiffi
gh

p
, denotes the local wave celerity.

Remark 2.1.

(a) Let us point out that we have to discriminate between the
1D-topography graph Zbð~xÞ and the 2D-topography graph
zbðx; yÞ. As a matter of fact, Zb depend on the curvilinear
coordinate while zb depends on the cartesian coordinates.
Furthermore, for actual data, the 1D-topography and the
2D-topography do not have to respect the same hydraulic
constraints.

(b) If the 2D equations are locally coupled to 1D equations (the
2D model is playing the role of a zoom) then appropriate
conditions at interfaces 1D–2D can be incoming characteris-
tics, see e.g. [8,12].
If we define the unknown vector W ¼Wðt;~xÞ with~x ¼ ðx; yÞ by
W ¼ ðh; qx; qyÞ

T
;q ¼ ðqx; qyÞ, then the system can be written as a 2D

hyperbolic system with source terms. By simplicity we will not
consider the friction term g n2kqk2

h7=3 q in this study so that (4) can
be rewritten as follows:

@tW þ @xF1ðWÞ þ @yF2ðWÞ ¼ j1ð~x;WÞ@xzb þ j2ð~x;WÞ@yzb ð5Þ

where

F1ðWÞ ¼
qx

q2
x

h þ 1
2 gh2

qxqy

h

0B@
1CA; F2ðWÞ ¼

qy
qxqy

h

q2
y

h þ 1
2 gh2

0BB@
1CCA

and

j1ðWÞ ¼
0
�gh

0

0B@
1CA; j2ðWÞ ¼

0
0
�gh

0B@
1CA
3. Well-balanced finite volume methods

We present the finite volume schemes considered to discretize
the 1D and 2D models. First the numerical schemes for the 2D case
are presented, in terms of some 1D numerical flux functions. Then,
we present the numerical schemes for the one dimensional system.
All the schemes considered here are based on well-balanced finite
volume methods.

3.1. Finite volume methods for the 2D system

For the two-dimensional system, we consider a partition of the
2D domain X in control volumes denoted by Ki. By Eij we denote
the common edges between the control volumes Ki and its neigh-
bour number j; gij is the unit normal vector to Eij outward to the
control volume Ki, see Fig. A.5. We also denote by jKij the area of
Ki; jEijj the length of Eij and and Fig. A.7

Wn
i �

1
jKij

Z
Ki

Wðtn; x; yÞdxdy;

with tn ¼ tn�1 þ Dt, being Dt the time step considered for the 2D fi-
nite volume method.

The structure of 2D finite volume schemes is as follows:

Wnþ1
i ¼Wn

i �
Dt
jKij

X
j2Ki

jEijjU2DðWn
i ;W

n
j ;gijÞ þ DtGn

i ð6Þ

where

Gi �
1
jKij

Z
Ki

ðj1@xzb þ j2@yzbÞdxdy:

and U2D
ij ¼ U2DðWn

i ;W
n
j ;gijÞ is an approximation of the normal flux

related to the edge Eij.



j2

Real domain

Analytical 1D channel

Ki

K j1

K

Fig. A.7. General domain with matching grids.

x
Ki

Kj1

i j1

i j1

Kj2

i j2

i j2

Fig. A.6. Simplest case and matching grids.
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The basic principle of 2D finite volume methods is to neglect
tangential variations and to consider a projected 1D Riemann prob-
lem. Concretely, one starts from the 2D equations in the form (5).

If we denote: F ¼ ðF1; F2Þ;j ¼ ðj1;j2Þ, if g ¼ ðg1;g2Þ is an unit
vector, and g? ¼ ð�g2;g1Þ, then we can rewrite the previous sys-
tem as follows:

@tW þ @gðF � gÞ þ @g? ðF � g?Þ ¼ ðj � gÞ@gzb þ ðj � g?Þ@g?zb:

Moreover, we can use the invariance rotation property of shallow-
water equations (see [16]):

ðF � gÞðWÞ ¼ T�1
g F1ðTgWÞ

where Tg is the rotation matrix:

Tg ¼
1 0 0
0 g1 g2

0 �g2 g1

0B@
1CA:

Using this invariance rotation property and multiplying the previ-
ous system by Tg we obtain:

@tðTgWÞþ@gF1ðTgWÞþTg@g? ðF �g?Þ¼Tgðj �gÞ@gzbþTgðj �g?Þ@g?zb

ð7Þ

The simplification of 2D finite volume method consists in neglecting
the tangential variations. With this simplification, and by noticing
that:

Tgðj � gÞ ¼ j1;

we obtain the 1D shallow-water equations plus a passive linear
transport equation over the direction g:

@tðTgWÞ þ @gF1ðTgWÞ ¼ j1ðTgWÞ@gzb; ð8Þ

where TgW ¼ ðh; qg; qg? Þ
T . The third equation of this system writes

as follows:
@tqg? þ @g
qgqg?

h

� �
¼ 0: ð9Þ

Then, in order to approximate the normal flux of the 2D shallow-
water equations, ðF � gÞ, we consider numerical fluxes of the form:

U2DðWi;Wj;gijÞ ¼ T�1
gij

UðTgij
Wi; Tgij

WjÞ: ð10Þ

where UðVi;VjÞ is a numerical flux associated to the following 1D
Riemann problem:

@tV þ @nF1ðVÞ ¼ j1ðVÞ@nzb

Vðn;0Þ ¼
V1 if n < 0
V2 if n > 0

	8><>: ð11Þ

Let us point out that the 1D numerical flux U depends on the source
term j1ðWÞ@nzb (i.e. U is not a numerical flux function correspond-
ing to the homogeneous problem).

In the numerical schemes considered here the expression of Gi

is the following:

Gi ¼
1
jKij

X
j2Ki

jEijj
2

T�1
gij

j1;ijð�zb;j � zb;iÞ;

where j1;ij ¼ j1
ViþVj

2

� �
. The definition of zb;j takes into account if

flood is produced or not, since its definition includes a treatment
of wet/dry fronts. Following [3], we propose to define it as follows:

zb;j ¼
zb;j if hj–0
zb;i þ hi if hj ¼ 0

	
ð12Þ
3.1.1. Different approximate Riemann solvers
We denote by U the numerical flux function, corresponding to

the 1D system (11).
We consider the following family of numerical solvers (see e.g.

[5]):

Uij ¼ UðVi;VjÞ

¼ F1ðVjÞ þ F1ðViÞ
2

� 1
2

PijfAi;j ðVj � ViÞ � j1;ijð�zb;j � zb;iÞg ð13Þ

By Ai;j we denote the Roe matrix associated to F1, such that:

F1ðVjÞ � F1ðViÞ ¼AijðVj � ViÞ:

We suppose that matrix Aij can be diagonalized, that is
Aij ¼ XijKijX

�1
ij , where Xij is a matrix whose columns are a basis of

eigenvectors and Kij is the diagonal matrix defined by the eigen-
values. We denote the eigenvalues of Ai;j by: k1;ij < k2;ij < k3;ij.

Depending on the definition of Pi;j, we obtain different methods:

� Roe method corresponds to Pij ¼ XijsgnðKijÞX�1
ij where

sgnðKijÞ ¼ diagðsgnðk1;ijÞ; sgnðk2;ijÞ; sgnðk3;ijÞÞ: ð14Þ

� HLL method corresponds to Pij ¼ S1I þ S2A
�1
ij , where

S1 ¼
Sr þ Sl

Sr � Sl
; S2 ¼

�2SrSl

Sr � Sl
; Sl ¼minfk1;ij;0g; Sr ¼maxfk3;ij;0g:

ð15Þ

� Rusanov method corresponds to: Pij ¼maxðl¼1;2;3Þfjkl;ijjgA�1
ij .

� HLLC scheme. System (11) has a linearly degenerated field asso-
ciated to the third equation (see (8), (9)), which corresponds to a
passive linear transport. To reduce the numerical diffusion on
the approximation of the contact discontinuities, related to the
linearly degenerated field, we can consider the HLLC scheme,
see [16]. It is based on the definition of the physical flux function
that verifies:

½F1�3 ¼ ½F1�1 qg?=h
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Then, the third component of the numerical flux function is not de-
fined by (13), but as a function of the first component of U and an
upwind approximation of the passive scalar u	. We denote the
resulting numerical flux by Uc . We consider the following extension
of the HLLC method:

Uc
ij ¼

½Uij�1
½Uij�2
ð½Uij�1Þu	ij

0B@
1CA ð16Þ

where

u	ij ¼
qg? i=hi if S	 < 0
qg? j=hj if S	 > 0

(

and ½Uij�1 and ½Uij�2 are the two first components of the 1D flux de-
fined by (13).Although in HLLC method these two first components
are given by the HLL method, any other solver defined by (13), as
Roe or Rusanov, can be also used.A consistent definition of the inter-
mediate wave speed S	 for not flat topography has been introduced
in [7].
� Some other choices are possible; for example, flux limiter func-

tions or Lax–Wendroff scheme (see [5]).
3.2. Finite volume methods for the 1D system

We describe the finite volume method considered to discretize
the 1D hyperbolic system with source terms (2).

Let us denote by f~xiþ1=2gM
i¼0 a set of points of the domain ½0; L�

and ~xi ¼ ð~xi�1=2 þ ~xiþ1=2Þ=2. The partition of the domain is defined
by the set of control volumes Ii ¼ ð~xi�1=2; ~xiþ1=2Þ. We also denote
jIij ¼ ð~xiþ1=2 � ~xi�1=2Þ;aiþ1=2 ¼ ð~xiþ1 � ~xiÞ, and

wn
i �

1
jIij

Z
Ii

wðtn; ~xÞd~x;

with tn ¼ tn�1 þ dt (dt is the time step).
We consider finite volume methods in conservative form (see

[2]) defined by:

wnþ1
i ¼ wn

i �
dt
jIij
ðð/iþ1=2Þ

n � ð/i�1=2Þ
nÞ þ dt ðg1 i þ g2 i þWiÞ: ð17Þ

where g1 i; g2 i and Wi are second order approximations of
g1ðwÞ@~xZb; g2ðwÞ@~xb and W respectively:

g1 i �
1
jIij

Z
Ii

g1ðwÞ@~xZbd~x; g2 i �
1
jIij

Z
Ii

g2ðwÞ@~xbd~x;

Wi �
1
jIij

Z
Ii

Wd~x:

We recall that W represents the coupling term. In the numerical
schemes considered here the expression of gl i; l ¼ 1;2, is the
following:
Fig. A.8. Information transfer.1D main channel X1, 2
gl i ¼
glðwi�1=2Þ þ glðwiþ1=2Þ

2
; l ¼ 1;2:

For the considered 1D system, the flux function f1 does not depend
only on the vector of unknowns, but also on bð~xÞ. Therefore, the def-
inition of the numerical flux function must take into account the
derivative of the flux with respect to b, in order to obtain a well-bal-
anced numerical scheme. Following [2], we consider the numerical
scheme defined by:

/iþ1=2 ¼
f1ðbi;wiÞ þ f1ðbiþ1;wiþ1Þ

2
� 1

2
Piþ1=2fAiþ1=2ðwiþ1 �wiÞ

� g1ðwiþ1=2ÞðZb;iþ1 �Zb;iÞ � ðg2 � @bf1Þðwiþ1=2Þðbiþ1 � biÞg:
ð18Þ

And where Aiþ1=2 is the Roe matrix, verifying:

f1ðbiþ1=2;wiþ1Þ � f1ðbiþ1=2;wiÞ ¼Aiþ1=2ðwiþ1 �wiÞ:

Matrix Piþ1=2 is defined in terms of Aiþ1=2. The definition of matrix
Piþ1=2 is similar to the definition of matrix Pij, see Eqs. (14)–(16).
We have for example Roe, HLL and Rusanov methods.

4. Coupling conditions and globally well-balanced schemes

4.1. Continuous coupling conditions

The interactions between the 1D model and the 2D model are
bilateral. The information exchange from the 1D model to the 2D
one is done through boundary conditions at interfaces, see
Fig. A.8. In case of river-local flood modelling for example, it is
an open boundary condition problem. Since the 2D model is based
on hyperbolic equations, it is natural to consider at interfaces the
continuity of incoming characteristics, see e.g. [1]. In short, we im-
pose that incoming characteristics in the 2D model are the same
that those computed by the 1D model. If we denote by WCk

i the
ith 1D incoming characteristic at boundary Ck (see Fig. A.8), and
wi the ith 2D one, we impose:Z

Ck

wids ¼WCk
i ; k 2 f3;4g; i 2 f1;2g ð19Þ

We refer to [12] for detailed expressions of the characteristics
variables.

The information exchange from the 2D model to the 1D model
is done via the source term W defined by (3).

4.2. Discrete source term and globally well-balanced schemes

We present the definition of the discrete coupling source term
W. For a sake of clarity, we distinguish three cases.

First, we consider the simplest case: a linear 1D channel over
the x axis where the 1D channel width is exactly defined by the
D flood plain X2, overflowing boundaries C1;C2.
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boundaries of the 2D mesh; in addition 1D mesh and 2D mesh are
matching grids.

Second, we consider a more general case: the 1D channel is cur-
vilinear, and takes into account the difference between the 1D
mean (or analytical) channel and the real channel. Furthermore,
we consider that the 1D mesh and 2D mesh are matching grids,
see Fig. A.7. We present Theorem 4.1 stating that the resulting glo-
bal scheme (1D–2D) is well-balanced, in the sense that it exactly
preserves water at rest.

Third, we extend the definition to the most general case where
meshes are not related each other, and different times steps can be
used for the 1D and the 2D solvers. In the latter case, extension of
Theorem 4.1 is straightforward to prove; proof is sketched.

4.2.1. Meshes properties
First, let us precise what we call a ‘‘general domain”. The width

of the 1D channel is defined as a mean value of the real channel,
see Fig. A.7. This defines the so-called analytical channel. Its
boundaries are symmetrical with respect to its middle curve. The
latter is defined by:

cðexÞ ¼ ðxðexÞ; yðexÞÞ; ex 2 ½ex0; exf �;

Let bðexÞ be the width function. Hence, the analytical 1D domain im-
mersed in the 2D domain is defined by:

c1ðexÞ ¼ cðexÞ � bðexÞ
2
ð�y0ðexÞ; x0ðexÞÞ; and

c2ðexÞ ¼ cðexÞ þ bðexÞ
2
ð�y0ðexÞ; x0ðexÞÞ:

The mesh points matching with the 2D mesh are fcðexiþ1=2ÞgN
i¼1. The

center of the volume Ki can be approximated by cðexiÞ withexi ¼ ðexi�1=2 þ exiþ1=2Þ=2.
In each case (the so-called simplest case, matching case, and mis-

matching case), the 2D mesh T always contain a submesh, say s,
composed by quadrangular cells that constitutes an approximation
of the 1D channel. The boundary of every cell K 2 s is supposed to
intersect the axis of the channel in two points belonging to two
opposite edges, the two remaining edges being an approximations
of the boundaries of the 1D channel. Moreover, if the point of the
channel of coordinate ~x belongs to K 2 s then bð~xÞ is equal to the
width of K following the normal direction to the axis in
cð~xÞ ¼ ðxð~xÞ; yð~xÞÞ.

� In the simplest case, the axis of the 1D channel is supposed to be
the x-axis (hence ~x ¼ x) and, given a cell of the 1D mesh
½xi�1=2; xiþ1=2� there exists a cell K 2 s whose intersection with
the axis is equal to ½xi�1=2; xiþ1=2�, see Fig. A.6.

� In the general domain case with matching grids (so-called
matching case), we consider the following geometrical layout.
Given a cell of the 1D mesh ½~xi�1=2; ~xiþ1=2� there exists a cell
K 2 s that contains the arc of the axis linking cð~xi�1=2Þ; cð~xiþ1=2Þ.
Moreover, cð~xi�1=2Þ and cð~xiþ1=2Þ belongs to the boundary of K,
see Fig. A.7.

� In the mismatching case, given a cell of the 1D mesh ½~xi�1=2; ~xiþ1=2�
there exists an ordered family of neighbor cells of s;Ki1 ,. . ., Kim

whose union contains the arc of the axis linking cð~xi�1=2Þ;
cð~xiþ1=2Þ. Moreover, in the subgrid case, cð~xi�1=2Þ and cð~xiþ1=2Þ
belongs respectively to the intersection of Ki1 and Kim with the
axis.
4.2.2. The simplest case with matching grids
We assume that time grids for 1D and 2D models are the same:

dt ¼ Dt and t ~m ¼ tm. As precise above, we assume that the 1D main
channel is rectilinear and parallel to the x-axis, see Fig. A.6. More-
over, the 1D channel is defined between: y ¼ �bðxÞ=2 and
y ¼ bðxÞ=2; which corresponds exactly to the 2D mesh.
The discrete source term Wi must be an approximation of the
continuous source term W:

Wi � W ¼
�ðqg1

þ qg2
Þ

�ðqg1
ut1 þ qg2

ut2 Þ

 !

Moreover, we can approximate ut1 by ug?1
and ut2 by ð�ug?2

Þ. And,

½F1ðTgWÞ�1 ¼ qg; ½F1ðTgWÞ�3 ¼ qgug? :

where ug? ¼ qg?=h. Then, we can defined Wi as an approximation of

�½F1ðTg1
WÞ�1 � ½F1ðTg2

WÞ�1
�½F1ðTg1

WÞ�3 þ ½F1ðTg2
WÞ�3

� �
As ½F1ðTgWÞ�1 ¼ �½F1ðTð�gÞWÞ�1 and ½F1ðTgWÞ�3 ¼ ½F1ðT ð�gÞWÞ�3, we
can rewrite previous expression as

�
�½F1ðTð�g1ÞW�Þ�1
½F1ðTð�g1ÞWÞ�3

� �
þ
�½F1ðTg2

WÞ�1
½F1ðTg2

WÞ�3

� �
Let us use the following notation: Uðgi jÞ ¼ UðTgij

Wi; Tgij
WjÞ. For a

fixed volume Ki of the submesh of the 1D channel, indices j1 and
j2 correspond to the volumes Kj1 and Kj2 . The intersection between
Kj1 and Kj2 with Ki are contained in the opposite edges of the 1D
channels (see Fig. A.6). Then, by taking into account that U is an
approximation of the flux function F1 at the corresponding bound-
ary, we can set the following definition.

Wi ¼ �Wð�gij1
Þ þWðgi j2

Þ ¼
X2

k¼1

si jk Wðsi jkgi jk
Þ;

where

Wðgi jÞ ¼
�½UðgijÞ�1
½UðgijÞ�3

 !
ð20Þ

and

sijk ¼ �sgnðg?i jk
� ð1; 0ÞÞ; k ¼ 1;2:

Observe that ð1;0Þ is the direction of the axis of the 1D channel, for
this simple case.

Now, we rewrite this expression of WðgijÞ. This new form to re-
write the coupling term help us to define Wi for more complex
cases.

First, observe that:

½UðgijÞ�l ¼ ½Tgi j
T�1

gij
Uðgı;jÞ �

1
2

T�1
gi|

j1;ijðzb;j � zb;iÞ
� �

�l; l ¼ 1;3;

where j1;ij ¼ j1ððWi þWjÞ=2Þ. Secondly,

½Tg?r�1 ¼ ½Tgr�1 and ½Tg?r�2 ¼ �½Tgr�3; 8r 2 R3:

Then, using also that U2D is defined in terms of U (see Eq. (10)), we
obtain,

½WðgijÞ�l ¼� Tg?
i;j

U2DðWi;Wj;gijÞ�
1
2

T�1
gij

j1;ijðzb;j� zb;iÞ
� �
 �

l
l¼ 1;2:

ð21Þ

Finally, we define:

½Wðb;gijÞ�l¼� Tb U2DðWi;Wj;gijÞ�
1
2

T�1
gij

j1;ijðzb;j�zb;iÞ
� �
 �

l
l¼1;2:

ð22Þ

It verifies:

Wðb; ð�gÞÞ ¼ �Wðb;gÞ

Then, we can rewrite the definition of the coupling term Wi as
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Wi ¼ Wð�g?ij1 ;gij1
Þ þWðg?ij2 ;gij2

Þ ¼
X2

k¼1

Wðsi jkg
?
ijk
;gijk
Þ: ð23Þ
Remark 4.1.
(1) For U2D
ij ¼ T�1

gij
Uc

ij with Uc defined by (16), we have

½WðgijÞ�2 ¼ ½UðgijÞ�1 u	ij

where Uij ¼ UðTgij
Wi; Tgij

WjÞ and

u	i;j ¼
ð�q1 ig2 þ q2 ig1Þ=hi if S	 < 0
ð�q1 jg2 þ q2 jg1Þ=hj if S	 > 0

(
Then, we observe that the tangential velocity ut in the contin-
uous coupling term W is approximated by ð
u	ijÞ. And u	i;j is
an approximation of ðqi=hiÞ � g?ij or ðqj=hjÞ � g?ij , depending on
the sign of S	. So, ut is approximated in terms of the sign of
S	. S	 gives an approximation of the normal velocity to the
edge. In other words, the present definition of the discrete
coupling term includes an upwind approximation of the tan-
gential velocity depending on the sign of the normal velocity
at lateral boundary. Classically, in 1D St-Venant models with
source term (modelling overflowing), tangential velocities ut

at lateral boundaries are approximated by the 1D channel
velocity. Therefore, in case of incoming normal velocity into
the 1D channel (lateral filling), such an approximation would
give an inconsistent or unstable scheme. At the contrary, the
present 1D–2D coupling and the resulting coupling source
term handle correctly with the filling case (in addition of
the emptying-overflowing case). This feature can be crucial
when modelling complex flows involving a 1D channel com-
bined with flooded (or filled) 2D areas.

(2) By using in the definition of ½WðgijÞ�2 some other numerical
scheme defined by U2D

ij ¼ T�1
gij

Uij, we obtain different upwind
approximations of qgij

ug?
ij

, depending on the definition of Pij.
(3) We can prove that the resulting global scheme (1D–2D) is

well-balanced. Since it is a particular case of the forthcoming
general case, we refer to next subsection for the proof (see
Theorem 4.1 below).
4.2.3. General domain with matching grids
In the definition of Wðb;gÞ, see (22), g is associated to the com-

putation of qg and vector b to ub. This allows us to study more gen-
eral cases. In the present case, we consider the geometrical layout
presented in Section 4.2.1. Since the analytical 1D channel does not
coincide with the boundaries of the real channel meshed in the 2D
geometry, we need to correct the previous formula of Wi. Thus, we
present below the formula of Wi which takes into account the dif-
ference between the analytical 1D channel and the real channel
boundaries which are meshed. To this end, in the definition of
Wðb;gÞwe introduce b in order to adjust ub to the tangent direction
of the analytical 1D channel. In general cases, we have: b–
 g?.

As we pointed out in Remark 4.1, classically in the 1D St-Venant
model, tangential velocities ut at lateral boundaries are approxi-
mated by the 1D channel velocity. Here since we compute the
2D velocity too, ut at lateral boundaries are defined as an upwind
approximation of the projection of the 2D velocity onto the 1D
channel boundaries.

For a given control volume Ki we set:

bi j1
¼ c01ðexiÞ
jc01ðexiÞj

; bij2
¼ c02ðexiÞ
jc02ðexiÞj

;

the unitary tangent vectors to the boundaries defined by c1 and c2,
respectively.
On the other hand, we remember that the definition of the cou-
pling term is an approximation of:

�½F1ðTgWÞ�1
½F1ðTgWÞ�3

� �
¼
�½Tg?T�1

g F1ðTgWÞ�1
�½Tg?T�1

g F1ðTgWÞ�2

 !
:

The idea is to change g? by another vector b. We have:

½�TbT�1
g F1ðTgWÞ�1 ¼ �qg and ½�TbT�1

g F1ðTgWÞ�2

¼ � qgub þ
g
2

h2b � g
� �

:

The vector b is introduced in order to approximate ut by ub. If
b ¼ 
g? then ½�TbT�1

g F1ðTgWÞ�3 ¼ qgub; otherwise, it remains the
term ðg2 h2b � gÞ.

Hence, a correction must be introduced into the definition of Wi

in order to rid of the term ðg2 h2b � gÞ.
We have:

g
2

h2b � g ¼ � h
2
½TbT�1

g j1ðWÞ�2 and ½TbT�1
g j1ðWÞ�1 ¼ 0:

So, we propose the following definition of the coupling term:

Wi ¼ bWðbi j1
;gij1
Þ þ bWðbi j2

;gij2
Þ;

with

½ bWðb;gijÞ�l ¼� Tb U2DðWi;Wj;gijÞ�
1
2

T�1
gij

j1;ijðzb;j� zb;iÞþ
hi

2
T�1

g j1;i

� �
 �
l

;

ð24Þ

for l ¼ 1;2 and j1;i ¼ j1ðWiÞ. Of course, if b ¼ 
g? then bW equals to
W.

Remark 4.2. Let us recall that 1D numerical flux is denoted by /,
2D numerical flux by U2D, and U2D ¼ T�1

g U or U2D ¼ T�1
g Uc . U and

Uc are 1D numerical fluxes defined by (13) and (16) respectively.
We point out that definition (24) of the discrete coupling term does
not imply any particular relationship between the 1D and 2D
solvers involved. Therefore, it is possible to use for example low
computational cost scheme for 2D model (e.g. Rusanov method)
with a more accurate scheme for 1D model (e.g. Roe solver).

Let us state the well-balanced properties of the resulting global
scheme with the proposed discrete coupling term (24). We have

Theorem 4.1. The scheme defined by (17)and (18) and the coupling
term (24) exactly preserves water at rest with or without overflowing.
This is true for any choice of the upwinding matrix Piþ1=2 for the 1D
solver (see (18)) and for any choice of the 2D numerical solver.

Proof. As the 1D method is well-balanced (see [2]), it is enough to
prove that in case of water at rest the coupling term vanish, inde-
pendently if overflowing or not. Let us define:

C ¼ F1ðWjÞ � F1ðWiÞ
2

� 1
2
j1;ijðzbj � zbiÞ ð25Þ

For water at rest, we have: C ¼ 0. The second term in the expression
of C writes:

g
2

hj þ hi

2
hj þ zbj � hi � zi
� �

:

If hj ¼ 0, in vertu of the definition of zbj to treat dry/wet areas, see
(12), we have: zbj ¼ zi þ hi. Hence this term equals to zero. Other-
wise, the stationary solution of water at rest verifies: hþ zb ¼
constant. Hence, again, this equals to zero. Using the property of
Roe matrix, the term that multiplies Pij in the definition of Uij, is
A�1

i j C. Hence, it is equal to zero. So,

Uiþ1=2 ¼
F1ðWiÞ þ F1ðWjÞ

2
:
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and

½ bWðb;gijÞ�l ¼�½TbT�1
gij

F1ðWiÞ þ F1ðWjÞ
2

�1
2
j1;ijðzbj � zbiÞþ

hi

2
j1;i

� �
�l;

for l ¼ 1;2.
Finally, the term that multiplies TbT�1

gij
in the previous expres-

sion, coincides with C (defined by (25)); therefore it is equal to
zero. Then, bWðb;gijÞ ¼ 0 and Wi ¼ 0. h
o Averaged 2D 

0 > T

0 > T

1D Model

1D source term 

Convergence test
Remark 4.3. The present 2D finite volume methods do not pre-
serve all stationary solutions of the system. As a matter of fact,
the 2D finite volume methods neglect the tangential variations of
the unknown at interfaces. Nevertheless, for the family of methods
presented in Section 3, it is possible to prove that they preserve all
regular 1D stationary solutions, up to second order in Dx (see [4]),
if the finite volume mesh is defined by rectangles oriented in the
same sense than the solution variations. Furthermore, we can
prove the same property for the present coupled system. It consists
to prove that Wi ¼ OðDx2Þ for any stationary solution.
2D charac interpolated
from 1D charac

IF >
Schwarz

charac. 
1D charac. at interface

Discrepancy between: 

(not converged)

Fig. A.9. Coupling algorithm based on a Schwarz method.
4.2.4. Subgrid and mismatching grids cases
In this section we consider the case of subgrid meshes or mis-

matching 1D–2D grids, in the sense described in Section 4.2.1. In
both cases, the generalization of the source term W is straightfor-
ward. Let us define the projection operator R that computes aver-
age values over eK i and dt:

Riðtm;vÞ ¼
1

dtkeK ik

Z tmþdt

tm

Z
eK i

v dX dt;

where eK i is a 2D volume defined as a subset matching with the 1D
mesh. Remember that dt is the time step corresponding to the dis-
cretization of the 1D model.

We consider a piecewise constant function, FWi
ðx; tÞ defined by

the value fWijgj at the volumes Kj. Thus, we define:

Wn
i ¼ Riðtn; FWi

Þ:

The main difference between the subgrid case and mismatching
one, is the computation of the previous integral. For the subgrid
case, eK i is the union of several volumes of the 2D mesh, then the
integral is easily computed. In the mismatching case, eK i is not ex-
actly defined by the union of several volumes Kj, then it is necessary
to estimate the corresponding intersection areas.

The integration in time in the definition Riðtm;vÞ is due to the
fact that the time steps may be different for the 1D and the 2D
solvers.

The resulting scheme verifies the same well-balanced proper-
ties than for the previous cases. The proof is straightforward since
each integrand vanishes for water at rest (with or without over-
flowing), as it has been seen in proof of Theorem 4.1. Then
Wn

i ¼ 0, and the well-balanced property is obtained.

5. Numerical results

We perform two types of numerical tests. Test 1 is a numerical
verification of the well-balanced property when water is at rest.
Test 2 concerns a steady-state flow (in a non-constant topography)
involving incoming and outgoing lateral fluxes. The 1D solver is the
HLL scheme, see (15), while the 2D solver is the corresponding
HLLC scheme, see (16). These solvers are implemented into our
software DassFlow [11,10]. The coupling algorithm used is a global
in time Schwarz-like algorithm, see Fig. A.9. Inputs of the coupling
algorithm are: initial conditions for both 1D and 2D models,
boundary conditions of the 1D model and a first guess of boundary
conditions for the 2D model.
5.1. Test 1. Water at rest

The first test case considered corresponds to a water at rest
solution with and without overflowing. All tests done are success-
ful since water stays at rest (norm of velocities are about 10�8). The
used mesh is presented in Fig. A.10 (2274 cells).

5.2. Test 2. Steady state solution with incoming-outgoing flow

5.2.1. Validation procedure
The definition of a non trivial steady-state analytical solution

for the coupled model is a difficult task. We decided to use the fol-
lowing approach to validate our coupling process:

� First, we compute a ‘‘reference” steady flow using the validated
2D HLLC solver for the entire computational domain on a fine
grid.

� Then, we use our coupling algorithm and compare the solution
with the previous generated ‘‘reference” solution. For the 1D
model, we use either the same fine grid (matching grids case)
or a coarse grid (subgrids case).

5.2.2. Test case description
This test is presented in Fig. A.10. The channel length is 200 m,

the main channel is 2 m wide and the circle diameter 100 m. The
2D mesh is made of triangular cells, except in the main channel
where cells are rectangular. The bathymetry is the following:

zbðx; yÞ ¼
0:5 if 80 6 x 6 120
0 otherwise

	
Boundary conditions are the following:

� Inflow (West): discharge imposed qin ¼ 2 m3=s,
� Outflow (East): @h

@n ¼
@q
@n ¼ 0,



Fig. A.10. Test case: (a) bathymetry and mesh of 2274 cells, (b) ‘‘reference” steady-state solution (velocity field).
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� Walls boundary conditions are imposed on the other bound-
aries.

This test case includes a non-constant bathymetry, incoming
lateral fluxes and outgoing ones. Thus, it is suitable to show the
robustness of our definition of the coupling term W.

Using a time step Dt ¼ 0:1 (CFL number is about 0:1), we obtain
the steady-state presented in Fig. A.10b. For the coupling test, the
simulation time is T ¼ 50 s

5.2.3. Matching grids case
The 2D ‘‘reference mesh” (see Fig. A.10) is made of 2274 cells.

Both 1D and ‘‘2D zoom” meshes are restriction of the ‘‘reference
mesh” on the corresponding area.

5.2.3.1. Validation of the source term. We validate the expression of
the coupling source term (in the 1D equations) and its implemen-
tation as follows.

� Initial conditions for both the 1D and 2D models are extracted
from the 2D ‘‘reference” solution.

� Boundary conditions of the 2D model are extracted from the 2D
reference solution.

Therefore, the 2D zoom model must reproduce exactly the solu-
tion of the 2D reference model (in one iteration of Schwarz algo-
rithm). Furthermore if W, the coupling source term in 1D
equations, is accurate, then the 1D model solution should fit per-
fectly with the reference solution. The numerical results show that
both the 1D solution and the 2D zoom solution match perfectly
with the reference solution (differences in percent are about
10�6). Thus, this test case shows the accuracy of the coupling
source term W and validates its implementation.

5.2.3.2. Coupling with Schwarz algorithm. Now, we consider the cou-
pling algorithm of Schwarz described in Fig. A.9. The convergence
threshold used is �Schwarz ¼ 10�11.

We have a-priori no guarantee that the coupling algorithm will
converge to the 2D reference solution. It depends partially on the
first guess for the 2D incoming characteristics (thus on the initial
condition). Also, in the present test case, the flow computed is stea-
dy-state and the iterates are unsteady. In our numerical tests,
starting from a ‘‘reasonable initial condition”, the algorithm con-
verged with four iterates at maximum.

We present in Fig. A.11 the three solutions: the reference one,
the 1D solution and the 2D local zoom solution. The latter match
perfectly with the ‘‘reference” solution.
These last two numerical tests show that in case of matching
grids, a convergent coupling procedure based on the coupling
source term W leads to a global solution as accurate as a full 2D
solution.

Concerning the CPU times, let us remark that in the present
simple configuration the faster approach is obviously to compute
a full 2D solution (since the 1D part is negligible) and not the pres-
ent superposition strategy. Roughly, the coupling algorithm which
can require up to p ¼ 4 iterates (depending on the first guess) is
more expansive (about p times) than a full 2D simulation. In an
operational context, difficulties and time costs are different. As
mentioned in the introduction, the 1D model can be a complex net-
work (with empirical laws calibrated by hand, etc.), its decomposi-
tion can be complex (1D data are not the same than 2D ones), the
human time to decompose the 1D model can be important, etc.
Thus, in some operational contexts, the present superposition
strategy has few advantages, including in a CPU time point of
view.
5.2.4. Subgrids case
Now, the reference mesh is much finer, it has 10 298 cells. The

2D zoom mesh is a restriction of this reference mesh. For the 1D
model, we consider two coarser meshes: submesh either of a ratio
Rspac ¼ Dx1D

Dx2D
¼ 2 or of a ratio Rspac ¼ 10. Concerning time discretiza-

tion, we keep the same time step for both models: Rtemp ¼ Dt1D
Dt2D
¼ 1.
5.2.4.1. Error due to the mismatching grids. As previously, as a first
step, we proceed as follows:

� Initial conditions for both 1D and 2D models are extracted from
the 2D ‘‘reference” solution,

� The boundary conditions of the 2D model is extracted from the
2D ‘‘reference” solution.

Therefore, we perform one iteration only of the Schwarz algo-
rithm, the 2D zoom model reproduces the reference solution while
the coupling source term in 1D equations include errors (with re-
spect to the reference solution) due to the mismatching grids. In
other words, errors are due to the integration of the source term
over the 1D cells. Results obtained are presented in Fig. A.12.
5.2.4.2. Coupling with Schwarz algorithm. Starting from a ‘‘reason-
able” initial condition, we deduce a first guess for the 2D incoming
characteristics and we iterate the algorithm of Schwarz described
in Fig. A.9. After convergence, the errors obtained are very similar
than the latter, they are errors due to the grid mismatch.
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Fig. A.11. Matching grids case: comparison of velocity values (u) in the 1D main channel (common area) and after Schwarz algorithm convergence. (a) 2D reference solution
and values computed by the 1D model and by the local 2D zoom model; (b) Differences in percent.
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Fig. A.12. Subgrids case: comparison of velocity values (u) in the 1D main channel (common area) and after Schwarz algorithm convergence. (a) Rspac ¼ 2. 2D reference
solution and values computed by the 1D model and by the local 2D zoom model. (b) Differences in percent. (c) Rspac ¼ 10. 2D reference solution and values computed by the
1D model and by the local 2D zoom model. (d) Differences in percent.

E.D. Fernández-Nieto et al. / Computers & Fluids 39 (2010) 1070–1082 1079
5.2.4.3. Summary of the numerical results (Test 2). These numerical
results show that after convergence, the coupling source term W
defined in the present article leads to a global solution as accurate
as a full 2D solution in case of matching grids, and leads to an accu-
rate solution if grids are mismatching (for a sake of simplicity, only
the subgrid has been implemented). This feature remains true with
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a more complex topography (see the toy test case presented in
[12]).

5.3. A practical point of view: superposition of a 2D local zoom model
vs full 2D

In river hydraulics, the 1D areas (main channels of the river
branches considered) can be complex networks. Furthermore,
elaborating an operational 1D numerical model is a long and heavy
task since data are not dense and precise (topography for example).
Thus, in case of flooding, the present principle consisting to super-
pose locally a 2D model seems to be a good alternative to a re-def-
inition of the whole ‘‘model” (that means to define a new full 2D
model). In a discrete point of view, this principle of superposition
becomes possible only if coupling term leading to an accurate
and well-balanced global scheme can be defined.

In this last section, we illustrate both approaches: superposition
of a 2D local zoom model vs full 2D with the following constraint:
the 1D main channel (mesh and topography) is given and cannot be
changed. Then, we compare the following two computations:

� ‘‘Full 2D”: we keep intact the 1D main channel (mesh and topog-
raphy), and we extend the mesh inside the flood plain, see
Fig. A.13a. The 2D solver is applied all over the domain.

� ‘‘Superposition”: Over the 1D model (mesh, topography, solver),
we superpose the 2D model, using a finer mesh (those with
(a)
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Fig. A.13. Superposition vs full 2D. (a) The full 2D mesh is defined from the 1D mesh in
legend ‘‘2D coarse-fine”) and the 2D coupled solution with Rspac ¼ 10 (legend ‘‘reference
Rspac ¼ 10) but with the constraint of meshing the lateral bound-
aries of the channel.

The results obtained with the full 2D solver are presented in
Fig. A.13b and c (legend ‘‘2D coarse-fine”). A comparison with
Fig. A.12 shows that, as expected, we obtain a more precise solu-
tion using the principle of superposition. This result is obvious
since in the superposition procedure, we have defined a 2D mesh
which is finer next to the main channel (Rspac ¼ 10) and similar
next to the circle boundary. Nevertheless, this test case illustrates
the following practical approach. If for any reason we must keep
intact the 1D mesh, the present computations show that the super-
position strategy leads to a more accurate solution compared to the
full 2D solution based on the ‘‘existing” 1D mesh.

6. Conclusion

In this paper, we address the difficulty to couple and superpose
numerically 1D and 2D shallow-water equations with non-flat
topographies. We focus on the discrete definition of the coupling
source term in the 1D equation, in order to obtain a well-balanced
and consistent approximation. To do so, we begin by writing a gen-
eral form of the discrete the 1D and 2D problems by using a family
of well-balanced finite volume solvers. We propose a discretization
of the coupling source term that allows to use different finite vol-
ume schemes (explicit in time) for the 1D and the 2D problems.
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the channel (R ¼ 1). (b) Velocity u in the main channel: ‘‘full 2D” solution (R ¼ 1,

”). (c) Differences in percent.
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This allows, for example, to use a more accurate solver for 2D equa-
tions, and a less CPU time-consuming solver for the 1D equations,
or the contrary. We prove that the proposed discretization is well-
balanced independently of the choice of each solver. We present
the problem for curvilinear 1D channel and mismatching grids.
Our discretization technique introduces naturally an upwind defi-
nition of the tangential velocity at boundaries of the 1D channel.
Thus, the global scheme remain stable whatever if lateral fluxes
are locally incoming or outgoing. Numerical test cases show the
efficiency and robustness of the discretization done, and show that
the superposing approach is relevant.
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Appendix A. Derivation of the 2D source term in 1D equations

We recall the derivation of the coupling source term in the 1D
equations from the 3D Navier–Stokes equations. We refer to [12]
for more details. We consider the incompressible Navier–Stokes
equations with no slip boundary conditions at the bottom, and
the kinematic equation at the free-surface. We consider a 1D sym-
metric channel, centered in x-axis. By bðxÞ we denote the channel
width, x 2 ½0; L�. Lateral boundaries of the channel in the ðx; yÞ-plan
are defined by: y ¼ �bðxÞ=2 and y ¼ bðxÞ=2 (see Fig. A.2). We define
the 1D wet cross-section S as follows: S ¼

R b2
b1

R zbþh
zb

dzdy. For the
sake of simplicity, we denote: b1ðxÞ ¼ �bðxÞ=2 and b2ðxÞ ¼ bðxÞ=2.

A.1. Mass conservation

Using standard notations, the mass conservation equation
writes: @u

@x þ @v
@y þ @w

@z ¼ 0. By integration over S we get:Z b2

b1

Z zbþh

zb

@u
@x

dzdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

þ
Z b2

b1

Z zbþh

zb

@v
@y

dzdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

þ
Z b2

b1

Z zbþh

zb

@w
@z

dzdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

¼ 0

ðA:1Þ

We apply the Leibnitz’s integral rule and we use the no slip condi-
tion at bottom; this gives:

A ¼
Z b2

b1

@

@x

Z zbþh

zb

udz � uS
@ðzb þ hÞ

@x

 !
dy

¼ @

@x

Z b2

b1

Z zbþh

zb

udzdy�
Z zbþh

zb

udz

" #
y¼b2

@b2

@x
þ

Z zbþh

zb

udz

" #
y¼b1

� @b1

@x
�
Z b2

b1

uS
@ðzb þ hÞ

@x
dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CL1

B ¼
Z b2

b1

@

@y

Z zbþh

zb

v dz� vS
@ðzb þ hÞ

@y

 !
dy

¼
Z zbþh

zb

v dz

" #
y¼b2

�
Z zbþh

zb

v dz

" #
y¼b1

�
Z b2

b1

vS
@ðzb þ hÞ

@y
dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CL2Z b
C ¼
2

b1

wS dy|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
CL3
where ðuS;vS;wSÞT denotes the surface velocity. We set:
Q ¼

R b2
b1

R zbþh
zb

udzdy. Since the free surface boundary condition
gives: CL1þ CL2þ CL3 ¼

R b2
b1

@ðzbþhÞ
@t dy ¼ @tS, we obtain:

ðA:1Þ () @S
@t
þ @Q
@x
¼ K1

with:

K1 ¼ �
Z zbþh

zb

v dz

" #
b2

�
Z zbþh

zb

udz

" #
b2

@b2

@x
�

Z zbþh

zb

v dz

" #
b1

0@
þ
Z zbþh

zb

udz

" #
b1

@b1

@x

1A
Without overflowing, these two terms vanish since h ¼ 0 at lateral
boundaries (standard 1D shallow-water equations).

If 2D flow information is available at boundaries, ½
R zbþh

zb
udz�bk

and ½
R zbþh

zb
v dz�bk

; k ¼ 1;2, represent lineic discharges at boundaries
in x-direction and y-direction respectively.

We denote by g1 and g2 the unit external normal vectors to the
boundaries y ¼ b1ðxÞ ¼ �bðxÞ=2 and y ¼ b2ðxÞ ¼ bðxÞ=2 respectively
(see Fig. A.2), that is:

g1 ¼
1
db
ð@xb1;�1ÞT and g2 ¼

1
db
ð�@xb2;1ÞT ; with db

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @xb

2

� �2
s

:

If the channel width variation is small then: db � 1. We set: db ¼ 1.
We set:

qgi
¼

Z zbþh

zb

udz

" #
bi

ðgiÞ1 þ
Z zbþh

zb

v dz

" #
bi

ðgiÞ2; i ¼ 1;2: ðA:2Þ

Then we obtain:

K1 ¼ �ðqg1
þ qg2

Þ

and the mass conservation equation is:

@S
@t
þ @Q
@x
¼ �ðqg1

þ qg2
Þ ðA:3Þ

The values qgi
; i ¼ 1;2; must be provided by a 2D model.

A.1.1. Momentum conservation
As previously, we integrate the 3D momentum equations over

the 1D wet cross-section S and we use Leibniz integration rule.
We consider the following hydrostatic pressure: p ¼ �qgðz� ðHþ
ZbÞÞ where ðH þZbÞ is the mean transverse water elevation (Zb

is the mean transverse topography i.e. it is the so-called unidimen-
sional topography). Then, we obtain:

@Q
@t
þ @

@x
b

Q 2

S

 !
þ g S

@ðH þZbÞ
@x

¼ K2 ðA:4Þ

where b is a so-called Boussinesq coefficient, b ¼ S
Q2

R
S u2dS, and:

K2 ¼ �
Z zbþh

zb

uv dz

" #b2

b1

�
Z zbþh

zb

u2 dz

" #
b1

@b1

@x
þ

Z zbþh

zb

u2 dz

" #
b2

@b2

@x

Again, without overflowing (standard 1D St-Venant equations), this
term vanishes since h ¼ 0 at lateral boundaries.

Let us notice that we neglected the friction term derived from
the viscous term in the 3D Navier–Stokes equations.

If (u;v) do not depend on z on boundaries b1 and b2, then the
source term K2 writes:
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K2 ¼ �ðujb1
qg1
þ ujb2

qg2
Þ

If u is constant over the cross-section then b ¼ 1. We assume that
b ¼ 1.

Finally, we obtain the following shallow momentum equation
with source term:

@Q
@t
þ @

@x
Q 2

S

 !
þ g S

@ðH þZbÞ
@x

¼ � ujb1
qg1
þ ujb2

qg2

� �
ðA:5Þ
A.2. Rectangular cross-section case

For the sake of simplicity, we consider rectangular cross-sec-
tions in the main channel, then: S ¼ bH, where b is the channel
width. If we define the pressure term, see e.g. [9]:

P ¼ gS
H
2
¼ g

S2

2b

then we have: @P
@x ¼ g @b

@x
H2

2 þ S @H
@x

� �
.

Finally the Eqs. (A.3) and (A.5) can be written as an hyperbolic
system with source terms as follows:

@S
@t þ

@Q
@x ¼ �ðqg1

þ qg2
Þ

@Q
@t þ @

@x
Q2

S þ P
� �

� g @b
@x

H2

2 þ gS @Zb
@x ¼ � ujb1

qg1
þ ujb2

qg2

� �8<: ðA:6Þ
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