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Abstract

The following is a study of an optimal design problem for a coupled system,
consisting of a steady-state potential flow equation and a thermal equation
taking into account radiative phenomena with multiple reflections. The state
equation is a non-linear integro-differential system. We seek to minimize a
cost function which depends on the temperature, with respect to the domain
of the equations. First, we consider an optimal design problem in an abstract
framework and, with the help of the classical adjoint state method, we give
an expression of the cost function differential. Then, we apply this result in
two spatial dimensions to the non-linear integro-differential system considered.
We prove the differentiability of the cost function, we introduce the adjoint
state equation, and we give an expression of its exact differential. Then, we
discretize the equations by a finite element method and we use a gradient
type algorithm to decrease the cost function. We present numerical results as
applied to automotive industry.

Keywords: Shape sensitivity, optimal design, radiative heat transfer, elliptic par-
tial differential equations, finite element method.
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1 Introduction

This paper deals with an optimal design problem in fluid mechanics and heat trans-
fer which arises from a cooling problem in automobiles. The goal is to model a
stationary air flow and heat exchanges under a car hood and then to optimize a
hose shape in order to minimize a differentiable cost function which depends on
the temperature. From the modeling standpoint, we choose in a first approach
the simplest fluid model i.e. an incompressible potential flow, and we model heat
transfer by convection, diffusion and radiation with multiple reflections. Hence, this
problem is an optimal control problem governed by a non-linear integro-differential
system in which the control variable is the domain of the equations (i.e. an optimal
design problem). Numerically, we minimize the cost function with the help of an
algorithm of descent.
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We choose a continuous approach which means that, first we give an expression
of the exact differential of the cost function, and then we discretize it using a finite
element method.

This paper is organized as follows. In Section 2.1, we recall some results in op-
timal control of systems governed by a partial differential equation (linear or not)
in Banach spaces. We recall under which conditions, the state is differentiable with
respect to the control variable, we introduce a classical adjoint state and we give
an expression of the cost function differential (see Theorem 2.1). In Section 2.2,
we consider an optimal design problem in an abstract framework. We recall the
classical approach in which the space of admissible domains is a set of domains
homeomorphic to a reference domain denoted by Q. We consider Q as an open
subset of IR” with a lipschitz boundary and bilipschitz homeomorphisms. Tt follows
that the domain space is an open set. (This would not be true with W' homeo-
morphisms, Remark 2.1). Then, we define in a classical manner the derivative of a
function with respect to the domain, using the method of transport. We show how
a such optimal control problem fits into the framework of Section 2.1, and thanks
to Theorem 2.1, we give an expression of the exact differential of the cost function
(Corollary 2.1). Finally, we present derivatives of the integrals which appear later
on in the cooling problem.

In Section 3, we present and study the direct problem. It is to model a station-

ary incompressible potential flow with heat transfer by conduction, convection and
radiation. The model of radiation takes into account the emission, the reflection
and the absorption of the radiant energy. The emitted and reflected radiation are
diffusely distributed. The surfaces are assumed to be opaque and to behave like
grey bodies i.e. the radiative exchanges do not depend on the wave length. In
others respects, we assume that the surfaces are separated by a non participating
media hence, the radiative transfer is apparent in the boundary conditions.
The full thermal model is an integro-differential system. The boundary condition
of the partial differential equation is non linear, non local and non monotone. Its
mathematical analysis has been written in [1]. Nevertheless, the coupling between
the fluid model and the thermal model requires some regularity on the velocity field,
hence we discuss the regularity of the solutions. In the twodimensional case (and
under some assumptions), we obtain the existence and uniqueness of the solution to
the coupled problem (Theorem 3.2). Moreover, we show that if the domain is three
dimensional and if it has a re-entrant corner of (2w — ¢) radians, for ¢ > 0 given
arbitrarily small, then the coupled system (potential flow - heat equation with a
convective term) is not defined (in the classical weak sense).

In Section 4, we study the optimal design problem as applied to the automotive
industry. The equations modeling the heat transfer under a car hood have been
studied in Section 3 and the mathematical technic we use to treat the problem of
optimal design have been presented in Section 2. Hence, in this section, we apply the
analysis and technic of Section 2 to the direct problem of Section 3. We prove that
if the thermal conductivity of the fluid is large enough (compared to the radiative
terms) then the state of the system is differentiable with respect to the domain. Tt
follows that the cost function is also differentiable. Then, we write the adjoint state
equation and we give an expression for the exact differential (Proposition 4.1). The
adjoint state equation is an integro-differential system like the state equation, but
by construction it is linear. The equations of this system are solved in the reverse
way compared to the state equation and each of them is the adjoint equation of the
corresponding equation to the direct problem.



In Section 5, we discretize the state and the adjoint state equations using a finite

element method. The numerical analysis of the thermal model has been written in
[1]. We present some results of existence, uniqueness and convergence of the dis-
crete solution of the coupled system (fluid model-thermal model) in theorems 5.1
and 5.2. Then, we discretize the expression of the exact differential of the cost
function obtained in the previous section and we obtain the shape gradient.
We detail the implementation of the optimal design problem. By this end, we
present the algorithms we use to solve the state equation, we detail how we dis-
cretize the control variable (i.e. the design variables) and we present a technic to
compute the vector field of the perturbations of domain. Finally, we summarize the
optimization process in Figure 6.

In Section 6, we present twodimensional numerical results of the air flow under
a car hood. We obtain the same “optimal “ shape from two different initial shapes.
The goal of these numerical results is to prove that we can solve the initial cooling
problem using the analysis and technic presented above. It is feasibility study. The
software we wrote have to be more developed in order to obtain interesting results
in an industrial and engineering point of view.

2 Recalls and basic concepts in optimal design

The goal of this section is to recall basic concepts in shape optimum design. First,
we recall some results in optimal control of systems governed by an elliptic partial
differential equation (linear or not) in Banach spaces. We seek to minimize the cost
function using an algorithm of descent. By this end, we give an expression of the
exact differential of the cost function (Theorem 2.1).

Then, we recall in Section 2.2 the framework of shape optimization using trans-
formations of a reference domain and we explain how a problem of shape optimal
design fits into the framework of Section 2.1.

2.1 Optimal control of systems governed by a partial differ-
ential equation in Banach spaces

We consider the following optimal control problem. Let A be a Banach space, we
denote by X the set of admissible controls, it is an open subset of A. Let V' be
a reflexive Banach space, ¢ : ¥ x V xV = R : (0,y,2) — a(o;y,z) a functional
which is linear, continuous with respect to z and [ : X x V = IR : (0,2) — l(0;2)
a functional which is linear continuous with respect to z. Let us notice that the
functional a is not necessarily linear with respect to y. Let J : ¥ xV — R :
(0,2) = J(0;2) be a functional of class C' (X x V). We consider the following state
equation:

Find y° € V such that: 1
VzeV, a(o;y7,z) =1(0;2) (1)

Problem (1) is supposed to be well posed (i.e. for all o € T fixed, the state equation
(1) has a unique solution y” € V which depends continuously on the data). We
define the cost function by j : ¥ = R : 0 — j(o) = J(o;y”), where y” € V is the
solution of (1). The control problem we consider is:

Find o* € ¥ such that :

T s
i(0™) = min j(o)




We seek to solve this problem with the help of a gradient type algorithm. To this
end, we give an expression of the exact differential of the cost function. In order to
prove the differentiability of this cost function, we first prove the differentiability of
the state y” with respect to the control o then, we introduce in a classical manner
an adjoint state which allows us to avoid computing the expression of the differential
of y? with respect to o. Let us recall that we do not consider in this paper the
problem of existence of a minimum ¢*. The main result of this section is Theorem
2.1.

Let us introduce the operators A: X x V — V' and L : ¥ — V' such that

Vz eV, <A(0;y),z >vixv=a(o;y,z) and < L(0),z >yixy={(0;z). Then, the
state equation (1) is equivalent to:

Alosy’) = L(o) in V' (2)

For each o, the operator A(c;.) is a homeomorphism from V into V/. We assume
that A € C1(Z x V; V') and L € C'(Z;V’). We define the linearized problem as

follows:

Find w? € V such that:

%(U;ya).wo = L(o) in V' (3)
7

It follows from the implicit function theorem applied to (2) that if the linearized
problem (3) is well posed, then the state y° is well defined and it is locally C! with
respect to the control variable o, i.e. there exists V(¢), a neighborhood of ¢, such
that Equation (2) defines a mapping o+ y° : V(¢) C ¥ — V which is C1.

Theorem 2.1 Assume that A€ C'(X x V; V'), L € C'(Z; V'), that the linearized
problem (3) is well posed and that the observation function J € C'(Z x V; R).
Then, there exists a neighborhood of o denoted by V(o), V(o) C ¥ C A, such that
the cost function T+ j(7) : V(o) — IR is of class C' and:

= g—i(a;y") Lo — %(a;y”,po) Jo + g—i(a;pa) “do

where y* € V is the solution of the state equation (1), p® € V s the unique solution
of the following adjoint state equation:

Véo € A, 5%(0’) o

8(1 o .o _ 8_‘] e
Yoy eV, %(U,y ,p7).6y = ay(ff,y )0y (4)

Proof. We deduce from the implicit function theorem that there exists V(o) such
that the state y° is C! in V(o) and we assumed that J is C1(X x V). Therefore the
cost function j is C! from V(o) into IR and we have: %(0).(50’ = %(a; y) - do +
%(U; y7) - (%.(50’). We write it as follows:

dj eI, oJ 5. 4y’
%(J).éo' =< 8—0(0',y ), 00 >0 + < 8—y(0',y ),(E.da) >Sviy (5)

Differentiating with respect to ¢ the equation A(o;y”) = L(0), we obtain
%(0’; y7).do + %(0" y”).(%.&r) = %(0).50, which can be written:

0A o 0A o 4y’
Yo E:Z/l,; < a_(r(o-;y ).00,v >y oy + < a_y(o-;y )-(E.(SO'),U >vixv (6)
- < E(O’).(SO’,T) >V’XV: 0



In addition, V is a reflexive Banach space and the linearized problem is well posed

i.e. %(0;1‘7) is an isomorphism from V into VI, therefore 1ts adjoint operator

(%(a; y7))* is also an isomorphism from V into V', [2]. Subtracting (6) to (5), we
obtain:

j—fr(a).da = <g—i((r;y"),50’ >AT%A
+ < a—J(U'za)—(a—A(a'ya))*v (di do) >0 (7
ay s ) ay ’ ) 7 do : ) VixVv
0A o L
- < a—o_(o;y ).00 — E(U).Ja,v Svigy

Now, consider the solution p? € V of the following equation called the adjoint state
equation:

0A aJ
VeV, < (a—y(g; y""))*.pa, z2 >y =< 6—y((r; y")J Z>yigy
(Let us notice that since the adjoint operator (%(a; y?))* is an isomorphism from

V into V', the adjoint state p” € V exists and is unique). Choosing v = p” in (7),
we obtain:

dj oJ . 0A . dL v
%(0).50 =< 8—0_(0;31 ), 80 >4 — < a—o(a;y ).00 — %(0').50',]) Syiv
Finally, we obtain:

dj g, oa, . o,
E((r)ﬁa_a—a(a,y)ﬁa—a—a((r,y,p)-éa—i—a—a((r,p)-&r

2.2 Optimal design

In this section, we recall the framework of shape optimization using transformations
of a reference domain. The problem is the following. Let D be a set of admissible
domains and j be a cost function j : D — R : w > j(w). We seek w* € D such that
J(w*) = mingep) j(w). We want to solve this problem with the help of a gradient
type algorithm.

The mathematical difficulty of this problem, which is classical, is the following. On
one hand, the set of domains D is not a vectorial space and on the other hand, we
want to give an expression of the differential of the cost function j(w) in order to use
a gradient type algorithm. To avoid this difficulty and following [3], we recall the
definition of admissible domains and we define in a classical manner the derivative
of a real valued function with respect to the domain. Then, we are able to give an
expression of the differential of the cost function with intent to call a gradient type
algorithm.

In Section 2.2.3, we consider an optimal design problem and using the previous
definitions, we explain how such a problem fits into the framework of Section 2.1.
The main result of this section is Corollary 2.1 and most of the following results
derive from [3] and [4]. The reader may also consult [5]-[12].

2.2.1 Definition of the space of admissible domains

We define in a classical manner the space of admissible domains as a set of domains
which are homeomorphic to a reference domain denoted by Q. In an optimal design
problem, the regularity of these homeomorphisms depends on the order of the partial
differential equation of which the state is the solution.



Framework for first and second order problems Let Q be an open subset
of IR™ with a lipschitz boundary (see e.g [14]), we consider:

Lip(Q, R") = {T : Q — R"; 3k such that V(i §) € QxQ, |T(&)—T(5)|| < k||z—3||}

T(&)=T (g
N le-gll -
Then we consider the set 7' of bilipischtzian homeomorphisms defined from € into

R":

equipped with the norm ||T||Lip = SUpPscq |T(&)]| + SUP (3 9)exQ

T' = {T bijection of Q onto T(Q), Te Lip(Q, R"), T-'e Lip(T(Q), R"™)}
Lemma 2.1 7! is an open set for the topology of Lip(Q,B”),

Proof. Let T eT' we denote by B(0, 1) the unit ball of Lip(Q,AR”). For all
U e B(0,1),foralle > 0, (T+¢eU) € Lip(Q, R™). Moreover, as T € 7', there exist
ki > 0 and ks > 0 such that:

VeeQ VieQ, killa— gl <|IT(z) - T(@)] < kall& — 3|
and

IT(&) = T(@)]| = ellU (&) - U@
(k1 —e)ll2 — gl = k|2 — gl

(T +eU)(@) = (T +0) (@) 2
>

So, for ¢ < kyq, (T +¢U)~" exists and is lipschitz continuous. This completes the
proof. ]

Definition 2.1 Let Q be a bounded open subset of R™ with a lipschitz boundary,
we define the admissible domains space D as follows:

D={w=T(Q); TeT"} (8)

Remark 2.1 In this paper, we consider lipschitz homeomorphisms from Q into
IR™ and not homeomorphisms of class W1, This slightly differs from the usual
definition of D, see [3]. As a matter of fact, the image of a regular bounded open
subset of R™ by a W™ homeomorphism is not necessarily an open subset of IR"
with a lipschitz boundary.

Let us give an erample (see Figure 1). Let Q be the open set of IR? defined by:
Q= 91UQQU93UQ4 with Ql = {(.Bl,xg) / —2< 2 <0, —2<23< 1},
QQ = {(Il,.’ﬁz) /0 <z <1, —2< Ty < —1}, Qg— {(Il,.’ﬁz) / <z <2, =2<
9 < 1}, and Q4 = {(Tl,Tz) / <z <1, 0<za< 1} . Q is an open s‘Pt with a
lipschitz boundary.

We define T from Q into R? by:

XZ Xz

\ 7
5 o ] / 7 - 3 A 7 2 Xy
/47 ?(/ﬁ)/ o /

Figure 1: Example of a non Bi-lipschitz homeomorphism



T(i‘ .'i‘)— (i‘l,i‘g) inQ1UQ2UQ3
DT (281 — 1,&9)  in

Then, T is a homeomorphism of class W' from Q onto its image, and its inverse
T=' is W"*. On the other hand, T(Q) 15 not an open set with a lipschitz boundary
and T~ is not a lipschitz mapping from T(Q) into .

Indeed, let us recall that if Q is an open set with a lipschitz boundary then T belongs
to Wl’OO(Q, IR™) if and only if T' belongs to Lip(Q,B”). On the other hand, if Q is
less regular, then a mapping belonging to Wl"’o(Q, IR™) is not necessarily lipschitz.
Finally, the image of an open set with a lipschitz boundary by a Bi-lipschitz homeo-
morphism is not necessarily lipschitz. Nevertheless, if the mapping is close enough
to the identity I, it is still an open set with a lipschitz boundary [M. Zerner, private

communication].

2.2.2 Derivative of a real valued function with respect to the domain

Let © C IR™ be a bounded lipschitz open set. For TO c 7'1, we let Q = TO (Q) (see
Figure 2) and we define 7" the space of Bi-lipschitz homeomorphisms defined on Q
by:

T o (T=Toir! Tei!
Let 7' € T, we define V € Lip(Q,R") by V = T — I (I denotes the identity of
IR™). For a given cost function j, we define j by:

TP = R : T j(T) = j(T(Q)) (9)

Q — Q
\ J/T:HV
T
w

Figure 2: Change of variables

Definition 2.2 The mapping j is said to be differentiable from D into IR at the
point Q € D if and only if the mapping j: T* — IR is Fréchet-differentiable at any
point Ty such that TO(Q) = Q. Moreover, if j is differentiable, we define and we
define:
dj
dw

Q) V= 5;@0) (VoTh), YV € Lip(Q, R")

This definition is legitimate because the differential does not depend on the
choice of Tg such that Tp(2) = Q, [11].

Let us also recall that if  i1s a connected open set, the derivative of the cost
function in the direction V' only depends on the value of V' on the boundary (see
[3], Theorem 3.1). In addition, if Q is a bounded open set of class C!, the derivative
of the cost function in the direction V' depends only on the normal component of

V on 9Q (see [3], Theorem 3.1).



Now, we give a “local expression” of the derivative in which everything is ex-
pressed on Q instead of Q. We will see later that it is very useful. By this end, let
us define 7: 7' - R : T — 3(T) = j(T o Tg) (= j(w)). Tt is easy to prove the
following result (see [11]):

Proposition 2.1 The mapping j is differentiable at the point T' = I in the direction
V' if and only if the mapping j is differentiable at the point T'= Ty in the direction
(VoTly), and:
dj dj
oyv=2
dT dT

(Ty) - (Vo Ty), VYV € Lip(Q, R")
|

Remark 2.2 Q is a fired reference domain. Let w = T(Q), we have j(w) = j(T)
The dervative of j with respect to w 1s by definition, the derivative of j with respect
to T. Hence, minimizing j in D is equivalent to minimize j in T :

min j(w) <= min j(T)

weD Teft
In an optimization algorithm which builds a sequence (Qu)penn and thanks to
Proposition 2.1, at each step n it is legitimate to consider Q, as the reference
domain, by differentiating with respect to T, at T = 1.

2.2.3 The optimal design problem

In this section like in Section 2.1, we consider an optimal control problem governed
by an elliptic partial differential equation but now the control variable is the shape
of the domain of the equation. Let us recall that a set of domains is not a vectorial
space and we avoid this classical difficulty by using the technic presented in sections
2.2.1 and 2.2.2.

We consider the space of admissible domains D defined by (8). For all w € D,
we consider a Hilbert space V(w), a functional a,, : V(w) x V(w) = R : (y,2) —
au(y, z) linear and continuous with respect to z, a functional I, : V(w) = R : z —
l,(z) linear and continuous, an observation function J, : V(w) = R : z — J,(2)
of class C'! and a cost function j : D — IR; w + j(w) = Ju(y*), where y* is the
unique solution of the following state equation:

YW EV(w) @ VzeV(w), aw(y”,2) =1l.(2) (10)
which is supposed to be well posed. We seek to solve the following problem:

Find w* € D such that :
§@*) = minj()

Transport of equations In order to compute the differential of the cost function
J, we have to differentiate the state equation (10) (see Theorem 2.1); however this
is not straightforward. According to Section 2.2.2, we transport the equations to
Q = T~ 1(w) which is considered as the reference domain (see Remark 2.2). We
assume:

Assumption 2.1 The mapping z € V(T(Q)) — zoT € V(Q) is an isomorphism.
For any y,z € V(w), we let:

a(T;y,z) = aT(Q)(goT_l,EoT_l_) = ay,(y,2)



withw =T(Q), y=goT ' and z =207, Vy,z € V(w) (see Fig. 2.2.3). Also,
we let:

l_(T; zZ) = lT(Q)(EoT_l) = l,(z)
JTiy) = Jr@)(@eT™) = Ju(y).
With Assumption 2.1, the state equation (10) is equivalent to
gheV(Q) : VZeV(Q), a(Tyy", z) = [(T;7) (11)

where §7 = y* o T. We write (11) as follows:
g evQ); AT:y") = L(T) in (V(Q) (12)

where the operators A and L are defined by < A(T;97), 2 >w)yxve)y=a(T; gl z)
and < L(T'),Z >vixv=I{(T;Z) for all Zin V(Q).

T=1+V

Q —/—— w
11
R

Figure 3: Change of variables

We write 3(T) = J(T;4") = j(w). The minimization problem we solve is now:

Find T € 7" such that :

i) = min j(T)

This problem fits in the general setting of Section 2.1 and we apply the same tech-
nique. Let us introduce the following linearized problem:

Find w* € V(w) such that:

VzeV(w), %L;( “oz)aw® =1, (2) (13)
If this problem (13) is well posed, then thanks to Assumption 2.1, then the cor-
responding transported equation is well posed as well. It follows from the im-
plicit function theorem applied to (12) that if A € CH(T! x V(Q); (V(Q))') and
L € CYTY(V(Q))) then the state g7 is locally C'! with respect to the control
variable 7' (namely, there exists V(T'), a neighborhood of 7', such that 7'~ ¥ is a
C'!' mapping from V(T) C 71 into V(Q)).

Let us notice that if 7' = I then w = Q, y = y and z = z, and we can derive directly
from Theorem 2.1 the following result (see [11] for the proof).

Corollary 2.1 Assume that the operator A belongs to C*(T* x V(Q); (V(Q))') and
L belongs to CY(T;(V(RQ))), the linearized problem (13) is well posed and the
observation function J belongs to C*(T' x V(Q); R). Then there exists V(T), a
neighborhood of T', such that the cost function w — j(w) = J,(y*) : D — R belongs

to C' for allw =T(Q), Te€V(T) CT"'. And for dll V € Lip(Q, R"),
dj aoJ oa
oDV =57 oT

where Yy € V() is the solution of the state equation:

V2 € V(Q), an(y™, 2) = la(z), (15)

i
(I; %, p%) -V+8—(I;pﬂ)-V (14)

°ﬂ. —_
(Ly") -V 57



and p* € V(Q) is the unique solution of the adjoint state equation:

Oa aJ,
Yoy € V(Q), = (y?,p%)  dy = 8—;

9y (y?) - by. (16)

Remark 2.3 Let us recall that in the adjoint state method, the expression of the
differential of the cost function contains only partial derivatives with respect to T.
When y and z € V(Q) are fized, the "partial derivatives” with respect to the domain
at Q in the direction V of the mappings J,(y), a,(y,z) and l,(z) are defined in a
classical manner as follows (see e.g. [6], [5], [8], [9], [10], [11]):

0V =B VS0 0) V= )V §56) V= B0

Then, we have the “classical” formula of the gradient: for all 'V € Lip(Q, R

dw(Q) V=) V=g p) Vit 5=(07) -V

where yt € V(Q) and p? € V(Q) are respectively the solutions of the state equation
(15) and of the adjoint state equation (16).

Some examples of derivatives We considered above the weak formulation of
the state equation. Hence, in order to compute the differential of the cost function,
we need to differentiate integrals formulas (or volume or surface) with respect to
their domain of integration. In the proposition below, we give the derivatives of the
integral formulas that we need in the sequel in order to solve the optimal design
problem for the fluid-heat coupled system .

Let us notice that a bounded open set € with a lipschitz boundary has an external
normal vector almost everywhere on its boundary, and we can define a surface
integral on its boundary. In addition, if 7" belongs to Lip(Q2, R") then T|sg belongs
to W1 (9Q, IR™). Let us notice too, that the spaces H' (w) and I (w), 1 < p < oo,
satisfy Assumption 2.1.

Proposition 2. 2 We denote by Q an element of D.
i) Consider Ju(y) = [ |ylf dz, 1 < p < oo where y € LP(w). Then for all
V € Lip(Q, R”)

%(y) -V o= /ﬂ|y|p divV dx

i1) Consider ay(u,z) = [ < u,Vz > dv where u € (L*(w))", z € H*(w) and
< .,.> denotes the inner product in IR™. For all V € Lip(Q, R"),

8ag

—(u,2) -V = / <u,Vz> divV dzx — /<DV.u,Vz> dz
Ow Q Q

iti) Consider a,(y,z) = fw < Vy,Vz > dz where y,z € H'(w). For all V €
Lip(Q2, R™),

aaa_ﬂ(yJ 2) -V = / < Vy,Vz> divV dx — / < (DV + 'DV).Vy,Vz> dz
w Q Q
w) Consider J,(y) = [, |yl" ds(z) where y € LP(dw). For all V € Lip(Q, R"),

aJ, .
8—5@) -V = /mlyl" divrV ds(z),

where divrV is the tangential divergence (divrV = divV— < DVn,n >=< 7, DV.Tr >),
n is the unit external normal vector to the boundary, T is the unit tangent vector

10



such that (7, n) is direct.
v) Consider J,(¢) = faw faw ¢(z,y) ds(z) ds(y) where ¢ € L'(0w x dw). For all
V € Lip(Q, R™),

%(qﬁ) Vo= /8 N mqs(x,y) [divr(V)(x) + divr (V) (y)] ds(z) ds(y)

Proof. The computation method has been described in the previous sections: we
transport the mappings to the reference domain €2; then, by definition, the partial
derivative with respect to the domain is the partial derivative of the transported
mappings with respect to 7' (see remark 2.3). We refer to [11] for the detailed
computations. ]

3 The direct problem

In the previous section, we presented mathematical technic of optimal design in an
abstract framework. In Section 4, we apply these technic to the cooling problem
under a car hood. In the present section, we present the heat transfer model we
consider and we write its analysis (Theorem 3.2). Let us recall that we call “direct
problem” the equations which model the heat transfer with the domain w given.
We consider an air flow under a car hood. Parts under the hood are schematized as
indicated in Figure 4. We assume that the fluid flow is a stationary incompressible
potential flow and we model heat transfer by convection, diffusion and radiation.
The fluid velocity # derives from a potential 1, so we have @ = 61& Then, the con-
tinuity equation gives Ay = 0 in w. The fluid boundary conditions are as follows.
The potential is known on the exit side (see Figure 4), the normal velocity of the
flow is known on the air entrance and is zero everywhere else on the boundary. We
denote by 7;/) the boundary part where the potential is known (Dirichlet’s condi-
tion) and by 7% the boundary part where Vi/.n is known (Neumann’s condition).
We have 'yg’ Uq¥Y = 0w and mes(vf) > 0.

We denote by # the fluid temperature. The conservation of energy equation gives:

—AAG +pCp @V = 0 inw

where A, p and (), are respectively the thermal conductivity, the density and the
specific heat (at constant pressure) of the fluid.

We choose a model of radiation which takes into account the emission, the reflection
and the absorption of the radiant energy. The emitted and reflected radiation are
diffusely distributed. The surfaces are assumed to be opaque and to behave like
grey bodies i.e. the radiative exchanges do not depend on the wave length. In
addition, we assume that the surfaces are separated by a non participating media,
hence the radiative heat transfer is apparent in the boundary conditions and is
described by the radiosity (see e.g. [13]). The radiosity is the radiant energy which
flows away from a surface, it is denoted by w and it is solution of the following
Fredholm integral equation of the second kind (called the radiosity equation, see

e.g. [13]):
w(z) = (1-¢(2)) ) o(z,y) w(y) ds(y) +5($)094(a:) on Ow (17)

o is the Stephan-Boltzmann constant. The function ¢ is the surface emittance and
satisfies: 0 < g9 < e(z) <e1 < 1on dw. The kernel ¢ € L'(Jw x dw) is the angle
factor, it is positive, symmetric and satisfies:

é(z,y) ds(z) = 1
dw

11



We refer for instance to [13] for the expression of the angle factor ¢(z, y).

Finally, the boundary conditions of the thermal partial differential equation are as
follows. Temperatures are imposed on the air entrance, on the engine block and on
the exhaust pipe. We consider on the external surface, on the hose, on the screen
and on the battery, heat transfer by radiation and convection as follows. We denote
by 'y? this boundary part where the heat transfer is radiative and convective. The
surface emittance ¢ is assumed to be strictly lower than 1 on 4%. If we denote by h
the thermal transfer coefficient and by 8 the outside temperature, it follows from
Fourier’s law that:

—AV0.7i = h (0 —0o) + é(o'ez} —w) on 'Yff (18)

where w is solution of (17) and n is the external normal to dw. For a sake of
simplicity, we assume that the thermal transfer coefficient A does not depend on
the fluid velocity 4, it is a constant. Concerning the air exit, we assume that the
thermal flows Vf.n equals 0. In a radiative point of view, we model the air exit as
a black body at a temperature 6., given (i.e. we assume that the exit absorbs all
the radiant energy and emits at the temperature 6.;;).
We denote by 4% the boundary part where the temperature is known (Dirichlet’s
condition) and by 42 the boundary part where the heat exchange is zero (Neumann’s

condition). We have v4 U~% U ’y; = 0w and meas(y9) > 0.

Air exit Air exit

] |
| 7R

z
8

ST
Exhaust pipe

Screen
Battery

~ ergnetion
A

Air entrance

Figure 4: Air flow under a car hood

We denote by Pe the Peclet number, Pe = W, where U* is a charac-

teristic velocity of the flow and L* is a characteristic length. We denote the Biot
* . . . * *\3
number Bi, Bi = % (Bt is constant), and the dimensionless reals d1 = uo)\e_L

* * . . . . . .
and 9 = L)\T“i, where 6* is a characteristic temperature and w* is a characteristic

radiative energy. The dimensionless model is:

Find ¢ which satisfies:

Ay = 0 inw
(P¥) P = g on 7;/)
o0 Yn on 7y
on

12



Let 4 = 61/), find (#, w) which satisfies:

— L A0+ TV = 0 in w
899 = Oa on 7§
(#) o ° "
, o

g
~on (1—¢)
w(z) = (1-e@) [ b)) ds(y

w

a3
+ e(x) g—; 0 () on Jw

= Bi (6 — 60) + ((51 64 - (52 w) on ’y‘?

The functions 14 and 1, are respectively given in H%('yf) and H%('y;f) The

temperatures ; and fy are given positive functions respectively in HZ (%) and

HE(v§) N L2 (%§).

w0

We make below an assumption on the domain w in order to prove later some
extra regularity on the solutions. As a matter of fact, if the fluid velocity 4 is
regular enough, we can well define the coupling between the fluid model and the
thermal model in standard functional spaces (see Theorem 3.1). In addition, this
extra regularity on the fluid velocity and on the temperature is useful in order to
establish in the numerical analysis the rate of convergence of the finite element
schemes (see Section 5).

Assumption 3.1 Let w be the domain of the equations. Then, it is a polygon of
IR?, it has re-entrant corners of mazimal value (2m—¢) radians, for a given positive ¢
(w has no crack). Moreover, if there exists angles such that the boundary conditions
are not of the same type at each side of the vertex (e.g. Dirichlet-Neumann), then
such angles are lower than .

Now, we make an assumption on the compatibility between the boundary condi-
tions of the fluid model and the boundary conditions of the thermal model in order
to have the coupled problem well posed.

Assumption 3.2 We assume that the boundary conditions are such that 4.7 ts
given and s positive on 'yz U 'y?.

This assumption 3.2 expresses that where the temperature is not imposed, the fluid
is outgoing. Let us notice that this assumptions 3.1 and 3.2 are satisfied in our case

(Fig. 4). We define:

Oiny = Min(inf 84, inffy) and 054, = Max(sup g, sup o)
4 G o v

and
Amin = 4 (CE+1) ¢y 063

wup (07) L7 (19)
where Cq 1s the Poincaré constant.
The thermal model (P?) with @ given, has been studied in details in [1]; and we

recall below a result of existence and uniqueness of its solution.

Theorem 3.1 (Monnier and Vila, [1]). Under Assumption 3.2, if the fluid is in-
compressible (div(d) = 0 in w), if there exists a real p > n such that 4 € (LP (w))",
n being the dimensional space, and if the thermal conductivity X is strictly greater
than Ap;n then there exists a unique solution (6, w) € H! (Q) x L (09) to Problem
(P?) which satisfies

Hmf < 6 < qup m w (20)
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Using Theorem 3.1 and by proving some extra regularity on the solutions, we
obtain the main result of this section:

Theorem 3.2 Under the assumptions 3.1 and 3.2 and if the thermal conductivity
X is strictly greater than A, then the coupled problem (P¥) — (P?) has a unique
weak solution (¢, 0,w) € H'(w) x H'(w) x L (0w) which satisfies (20).
Furthermore, 4 = 61/) belongs to H*(w) with a = %—6 for any e > 0, and 6 belongs
to H'1P(w) with B = ——Efor any € > 0.

Proof. Tt follows from the Lax-Milgram theorem that there exists a unique ¢ €
H'(w) solution of (P¥). Hence, there exists a unique velocity o in (L%(w))?. We
prove the existence and uniqueness of the solution of Problem (P?) using Theorem
3.1. By this end, we need to prove that @ € (LF(w))? with p > 2, which we do now.
It follows from Assumption 3.1 and Grisvard s results, [14], that the unique solution
Y of (PY¥) belongs to H!'1%(w) with a = 2 —¢, for all e > 0. Thus, @ € (H*(w))?

and H*(w) C LP(w) for all p < 4 — ¢’ where ¢’ vanishes with €. Therefore, the
regularity required on the fluid velocity is obtained and we can apply Theorem 3.1
if A > Amin then Problem (Pe) has a unique weak solution (6, w) € Hl(w) x L (0w)
which satisfies (20).

It remains us to prove some extra regularity on the temperature #. We do it using
a bootstrap method applied to a new formulation of Problem (P?). It is proved in
[15][11] that there exists a kernel K (z,y) of L'(dw x dw) which satisfies

/(%)Ix(r y) e(y) ds(y) = 1—¢(x) (21)

and such that (P?) is equivalent to the following problem:

Let 4 = 61@ find @ satisfying:
—%AH—}- u-Vo = 0 inw
0 = f; on~yl
(P9) 06 ;
. = 0 on#w,
%5
~ o = Q9 on 7?
with
Q) (z) = Bi(0—00)(x) + [e(x)d0%(x)
é(z)

2 [ K ) 60 ds(w) ) e on o

Let us notice that this problem (P%) has # as only unknown. We refer to [15] (see
also [11]) for the expression of the kernel K (z,y).

We use a bootstrap method on the problem (P%) in order to prove some extra
regularity on #. By this end, we consider the non principal part of the operator of

(P?9) and boundary terms as data of the problem. We define the boundary term g
by g=0on+% g=—-Q() on 7?. It follows from (20) and (21) that

|Q(9)| S Bz (gsup —_ Hznf) + (51 (6193up —_ 60624”“);) a.e. on 8w

hence g € L (vf U 'y?). We define the right-hand side f by f = —Pe uVl. We
have § ¢ H! (w)and u € ( %_g(w))z In other reqpe(“rq one has H* ( ) C Li(w) for
s>0and ¢ >?2 fl %—% Letq’bequch‘rha‘ré%— 1 =1, then L4 ( ) C H*(w)

S
if1—L>1-5i

5ie if s> qz—, — 1. Then, it follows that f € L9 (w) for all ¢’ < %
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hence f € H_%_a(w_) for all € > 0.
Finally, the solution of (P?) satisfies:

-A0 = f inw
0 = 40 g .
gy = ot )

0 (|0
an g onvy, U7
We deduce from Assumption 3.1 and results of regularity stated in [14] that the
solution @ belongs to H*#(w) with g = % — ¢ for all ¢ > 0. This completes the
proof. [ ]

Remark 3.1 In the bidimensional case and under Assumption 3.1, it follows from
[14] that u € (LP(w))? with p > 2. On the other hand, in the three dimensional
case and if we suppose the same regularity as above, u does not belong to (LF (w))?
with p > 3 and the regularity required in order to obtain existence of a solution to
Problem (P?) is not satisfied. Thus, the coupled system (potential flow - thermal
with convective term) (P¥) — (P?) is not defined in three dimensions of space when
the domain has a re-entrant corner of (2w — ¢) radians. But, if ¥ € H?(w) then
u € (H'(w))? and u € (LP(w))® with p > 3 and the regularity required is obtained.
Nevertheless, in order to model an air flow under a car hood, the “right” fluid model
are the steady incompressible Navier-Stokes equations. And, the velocity u is more
reqular than in the present model and the required reqularity conditions are obtained.

4 Analysis of the optimal design problem

In this section, we write the continuous equations which permit to treat the shape
optimal design problem as applied to the cooling problem under a car hood. In
others words, we apply the technic of Section 2.2.3 (more specifically Corollary 2.1
and Proposition 2.2) when the state equation (10) is the weak formulation of the
problem (P¥) — (P?) studied in Section 3. Let us notice that in the present section,
we do not precise in concrete terms what are the design variables, yet. We do it
later in Section 5.3. The main goal of the present section is the following: i) to
make fit the model (P¥) — (P?) into the framework of Corollary 2.1; ii) to prove
that the assumptions of this corollary are satisfied (especially that the solution is
differentiable with respect to the domain); iii) then, to give an exact expression of
the adjoint state equation and an exact expression of the differential of the cost
function. These results are presented in Proposition 4.1.

4.1 Position of the problem

Let Q be a lipschitz bounded open set in IR?, and let Th e T! (see section 2.2).
We denote @ = T(Q2) and we consider an open set w = T(Q) where T'€ T' (or
equivalently w € D) such that Assumption 3.1 remains true.

The state equation We define the following vectorial spaces and affine sub-
spaces:

Vi) = (¥ € H' (@) ¥lyy =0} 5 VP (w) = (¥ € H'(w): ¢lyy = Ya)
Ve (w) = {0 € H'(w); flyg = 0} 5 Vi (w) = {0 € H' (w); Ble = a)

Vilw) = V¥ () x V(w) x I(0w) 5 Volw) = V' (@) x Vq (@) x 1*(9w)

15



The state equation is:

{ Find y* = (¢, 0%, w¥) € Vi(w) such that :

Vz=(p,t,v) € Vi(w), Fu(y¥,2) = 0 (23)

where FE,(y,z) is the sum of the variational formulations of the fluid partial dif-
ferential equation, the thermal equation and the integral equation. Its expression
is:

Fuws) = [ <veVes dr = [ vaids
w Yn

+ /<V€,Vt> dm+Pe/<u,V€>tdw—|— / Bi (0 —0g) t ds

w

+/ C(810° — Syw) t ds
.

+
E"g\
S
<
ISH
)
|
g;\
—_
—
|
™
—_
8
=
=z
Q
€
-
—
\.5%
<
=
S
—~
<
=
IS W
)
—
<
=
<
—
8
=
IS W
o
—_
8
=

52 dw

This state equation is equivalent to a system of two partial differential equations
and an integral equation as follows:

Find ¢~ € V¥ (w) such that:
Vgoevow(w), /<V1/)‘”,Vgo> de = /wl/)ngods
w o

Let u¥ = V¢, find (6*, w*) € Vf(w) x L?(0w) such that:
Vi € Vi (w), /<vew,w> dr + Pe / <u? V6 > tde
+ / B (6‘” — 90) tds + / L ((51(6w)4 — ngw) tds = 0
v v (1—¢)
1 1 /
Yo € L? (0w), / w’ vds — / (1 —6(.1'))[/ é(z,y) w*(y) ds(y)] v(z) ds(x)
dw dw dw
)
= = e (6“)* vds
52 dw

Under the assumptions of Theorem 3.2, there exists a unique solution y* € V;(w)
to the state equation (23) which satisfies the weak maximum principle (20).

The control problem We seek to optimize the hose shape (see Figure 4) in order
to minimize the temperature on its boundary. More precisely, we seek to minimize
the L?-norm of the temperature on the hose boundary. We denote by Yhose the
hose boundary, (Yhose is a part of 7?), and we consider the following observation
function:

1
Jo Vi w) 5 R 60— = 67 ds
2 Yhose

Then, we define the cost function as follows:
J Do R; w jw) = Ju(y”) (24)

where y* is the solution of the state equation (23). (The cost function depends on
w through the boundary 440se and through the temperature §“). The minimization
problem is:

Find w* € D such that :

(W) = minj(w)

We will detail in Section 5.3 what are numerically, the design variables.
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4.2 Differential of the cost function

In this section, we apply Corollary 2.1 to the optimal design problem presented
above. Following Section 2.2, we transport the state equation (23) to the reference
domain Q. It gives:

{ Find y7 = (@T,é_’T,ﬁ}T)_E Vi () such that : (25)
T 4" :

VZ=(g,t,0) €Vo(Q), E(T;y ,2) = 0

We recall that for 7' € T!, the mapping z € Vo(T(Q)) = z0T € Vo(Q) is an
isomorphism so that §7 =y o T' € V;(Q) exists and is unique.
We write:

a1 . . )
HT) = j(w) = J(T: ) = 5/ ()2 |det DT| || * DT~ || ms ds
r

hose

It is clear that the functional J : 7' x Vo(Q) — R : (T, y) — J(T,¥) is continuously
differentiable with respect to (7).

Proposition 4.1 If the thermal conductivity X is strictly greater than Ap;, (see
(19)) then there exists V(T), a neighborhood of T, such that the cost function j :
w €D s j(w) € R is continuously differentiable for allw = T(Q), T € V(T) C T*.
Also, for all V € Lip(Q, R?), we have

QQV_&]Q 0Fq

L@V = =)V - = RN IDRY (26)

where Y is the solution of the state equation (23) posed in Q and p is the unique
solution of the adjoint state equation:

{ Find pt = (P, 79, ¢%) € Vo(Q) such that :
Vz=(p,t Vo(Q), — Z = = .
z (‘)Da ,U)E 0( ); ay (y ap)z ay (y)Z
Moreover (26) can be expressed by:
dJa , q 1 Q)2
.= VvV = = 6 D d:
" (y*).v 5 hose( )? <7, DVr> ds
where T is the unit tangent vector to Q and < ., . > denotes the inner product
in IR?.
6EQ Q  Q _ aEg Q Q 8ES€] Q Q 6E5 Q  Q
C oy W)V = )V )V ()Y
with
o
—L 2y Y = /<w”,vpﬂ> divV dx
Ow Q

/ < (DV + TDV) vy, VP? > de
Q

- Yp PY <7, DVr > ds

ry
(with u* = V<),
0BG o q Q Q .
8—w(y )V = Q<V6 VT > divV de
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+ Pe / <uf, Vot > T divV dx
Q

/ < (DV + TDV)Ve?, vT¢ > dx
Q

— Pe / < DVu, VIt > T dx
Q

+ / [Bi (6% — 6) + a c 5 (31(01)* — 69w T < 7, DV T > ds
¢ -
1
oEY J
Tﬁ(yﬂ,pﬂ).v = /69(1110 — € é (60)4) ' <1, DVT> ds

- [ =@l s ) <7DV )
+ < 7,DV7 > (2))ds(y)] ¢ (=) ds(x)

Proof. We write the state equation (25) as follows:
-T ey =T _ . !
yoewi(Q) : &(Tsy) = 0 in V5 (Q)

where the operator £ is defined by < &(T;y7), z > vl v, = E(T;yT,z) for all z €

Vo(Q). Tt is easy to prove that the mapping E(T};#,.) is continuously differentiable
with respect to (T, 7) from 7' x V5 () onto £(V5(Q); IR) which means that £ belongs
to CH{T" x Vo(S2); (Vo ().
In order to apply Corollary 2.1, we still have to prove that the linearized problem is
well posed. Using the Lax-Milgram theorem, it is proved in ([1], Proposition 4) that
if the thermal conductivity A is greater than A, the linearized thermal model is
well posed. Hence, under this condition, the linearized problem is well posed and
the result follows from Corollary 2.1 and Proposition 2.2. ]
The adjoint state equation (27) is equivalent to a system of two linear partial
differential equations and an integral equation. These equations are solved in the
reverse way compared to the state equation and each of them is the adjoint equation
of the corresponding equation to the direct problem. They are:

Find (T, ¢%) € V¥ (Q) x L%(09) such that:
Vv € L?(09), tods — (1— E(w))[/ é(z,y) v(y) ds(y)] qn(a:) ds(x)
80 a0 80
€
=4 Ly ds
’ re (1—¢)
VtEV(f(Q),/ < VTVt > dr
Q
+ Pe/ <u?,Vt> T du + / [ Bi + 48— (6931 7% ds
Q re (1—¢)
42 / e (093 ¢% tds + / 0% t ds
52 F?e Fhose
Let 7%, find P ¢ Vow(Q) such that:
Vo e V¥ (Q), / <VP® Ve> dz = — Pe /T“ < VO Ve > da
Q Q
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5 Numerical analysis

First, we discretize the state and adjoint state equations using a finite element
method. We present some results of existence, uniqueness of the discrete solutions
and convergence towards the exact solutions (theorems 5.1 and 5.2). Then, we
discretize the expression (26) of the differential of the cost function in order to
obtain the shape gradient (see the expression (33)). Finally, we detail in Section 5.3
the implementation of the problem. By this end, we describe the algorithms we use
in order to solve the state equation. Then, we detail how we define numerically the
hose shape, in others words what are the design variables. We present a technic to
compute the vector field V of the perturbation of domain and finally we summarize
the optimization process in Figure 6.

5.1 The discrete state equations and adjoint state equations

We discretize the state and adjoint state equations using a finite element method.
We denote by (75) a regular and quasi-uniform family of triangulation, Q = UrerinT.
We associate this family of triangulation to a C° Lagrange reference finite element.
Let k be an integer greater or equal to 1. We denote by Py the set of polynomials
of degree lower or equal to k. We define the following discrete spaces:

Xn(Q) = {zs € C°(Q); YT € Th, 2alr € Py}
Vin(9) = {en € Xn(Q); gnlpy = 0}
V()gh(Q) = {th S Xh(Q), thll_‘z = 0}

We assume that ¢4 and 64 belong to X, () and we denote respectively by th(Q)

and V;% (Q) the affine sub-spaces of VOI/,)I(Q) and V§, (Q); namely they are such that
©nlpy = Ya and th|r3 = f4, respectively. We define
d

Wi (9Q) — {v:0Q — IR, v piecewise constant} ifk=1
(09 =\ 1y cC(0Q); vlor € Py VOT € 0Th) ifk > 2

where 07, = {0T NIQ : dT NIQ £ B, T € Tn}. All these spaces and affine
sub-spaces are respectively subsets of H'(Q) and L?(99).

The state equation The discrete formulation of the state equation is:

Find o5 € thﬁ(Q) such that :
Y
(Fi) Y ven e V() / < VYR, Vn > dr = /wwn n ds
Q ry

Let u§t = Veit, find (65}, wil) € Vi (Q) x W,(8Q) such that:

Vin € Vi (Q), / < VO, Vi, > de + Pe / <uSt, VOS> ty, dx
Q

(Pi) + [ [Bi (69 —6y) + ﬁ(dl (0 — Gyud)] th ds = 0
T L —
)
Yo, € Wh(09Q), / (I —A) wi vy ds = 5—1 e (O vp ds
a0 2 Jaa

where A is the operator defined from L%(9RQ) into L2(0Q) by:

Aw(z) = (1 —¢(z)) mé(z‘;y) w(y) ds(y)

We present below the results of existence and uniqueness of the discrete solutions
and their convergence towards the exact solutions.
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Theorem 5.1 There exists a unique solution 5} € th (Q) to (P;f) Furthermore,
[[u® — uj!{lo.o = O(h%) (28)

where a is a strictly positive number such that ¥, the unique solution of (PY¥),

belongs to H'T*(Q), and O(h®) is a function such that OE:,I:) ts bounded when the
mesh size h tends to 0.

Proof. The existence and uniqueness follows from the Lax-Milgram theorem, the
regularity of ¢ was discussed in Theorem 3.2 and the convergence result follows
from approximation properties in fractional Sobolev spaces (see [1], [11] for a com-
plete proof). [ |

The numerical analysis of a thermal model slightly different from (P,f) is written
in details in [1]. Let us recall the result established in [1]. We consider ¢(t) an
operator of truncation of class C? defined as follows:

Oing if t < Oing — ¢
Pinf(t) if Oimp—€ < t < Oing
go(t) = t if Gmf <t <L Hsup (29)

Psup(t) Zf esup S t S esup+£
Osup  1f Osup +& < t(x)

where £ is a small real such that 6;,; > & > 0 and the polynomial Pinfgt) and
Pgup(t) are such that ¢(t) is C?. We define the truncated model denoted (P,f):

Let uft = Vyil, find (65}, wi}) € V5(Q) x Wi (09Q) such that:
Vin € VL (Q), / < VO, Vi, > dx + Pe / <uSl, VOt > t), du
Q

_ Q
(P}) + /G[Bi (P0F) = 00) + (oo 01 9(0R)" — Gruf) 1y ds = 0
: -
ki
)
Yo, € Wh(09), / (I —A) wi vy ds = =L / e p(0)* vy ds
oy 62 aQ

We assume that:

inffy <inffy and supfy < supfy

re re ré ré
We assume that the emittance ¢(2) is regular enough (for example a lipschitz func-
tion) and we denote by v the greatest real (strictly positive) such that the radiosity

w, solution of (P?), belongs to HY(Q). The result proved in [1], Theorem 2, is
the following;:

Theorem 5.2 (Monnier-Vila, [1]) Under the assumptions 3.1 and 3.2, if the ther-
mal conductivity X is large enough and if the mesh size h s small enough, then there
exists a unique solution (65}, wil) in V5 (Q) x Wh(0Q) to (P ). Furthermore, there
exists a constant C' independent of h such that for all £ > 0,

16% = 620 + [[w® —wfllbon < C A (30)

with a. = Min(a — ¢, — ¢,7), where Y € HT*(Q), (6%, w') is the unique
solution of (P?), 6 € H'*P(Q) and w® € H"(0%Q).

Let us notice that this numerical analysis has been written for the centered
scheme i.e. without any stabilization procedure.
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The adjoint state equation The discrete formulation of the adjoint state equa-
tion is the following:

Let u$ and 65, find (735}, ¢3) € Vi, () x Wh(09) such that:

Yo € Wh(69Q), /ém gy vnds — /m(l — E(x))[éﬂqﬁ(w, y) vn(y) ds(y)] gi (v)ds()
9
= (52 F; (1—6) T,? Vp dS

Vin € VL (Q), / < VT3 Vity > de + Pe / <uf, Vitp > T dx
Q Q

)
+/ [Bi+451L(egl)3] TR thds = 4= [ 2(6%)3 g5 ds-|-/ OS5kt ds
F?, (1 - 5) . 52 Fi . 1—‘hosc

Let Ti! and 6§}, find Pt € VO%(Q) such that:
Yon € V4 (Q), / < VP Veon > de = — Pe / T < VO, Ve, > de
Q Q

5.2 Discretization of the cost gradient. Principle of the method
Let us recall that for a given Q, and a given vector field V € Lip(Q; IR?), we have:

di . . .
—dj Q) -V =/ F(y®,ph).V dz + F?,p%).V ds (31)
w Q a0

where ¥ and p® are the solutions of the direct and adjoint state equations. Their
expression is given in Proposition 4.1. We need to discretize this expression at two
different levels:

. V belongs to an infinite dimensional vector space which has to be approxi-
mated by a finite dimensional one,

. ¥ and p% are solutions of partial differential equations, they have to be
approximated.

5.2.1 Approximation of y* and p“

Obviously, ¥ and p® will be approximated using the finite elements described in
Section 5.1. We get yf_? and p?, where h is the mesh size, using the algorithms
briefly detailed in Section 5.3. The discrete solutions y? and p? replace y* and p®
in formula (31).

5.2.2 Approximation of V

One must be careful because V' is defined on ©Q which is moving in the algorithm.
Let us recall the definitions and properties which have been given in Section 2
(Definition 2.2 and Proposition 2.1):

. is a reference open set
0 =Ty() (Tp is a bilipschitzian homeomorphism)

V=Voly! (V is defined on Q, V is defined on Q) .
dj dj . - . (32)
d—(Q)V = — (Tp) -V (Definition 2.2)
w

= % (1) -V (Proposition 2.1)

This means that we have to choose a reference set Q and a finite dimensional space
Lipy approximating Lip(Q; IR?). A vector Vg approximating V is chosen in Lipy.
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Notice that the mesh size H is a priori different from the finite element mesh size
h. In general, it would be prudent to choose h smaller than H. As a matter of fact,
H gives the size of eventual oscillations of the boundary Q. On the one hand, if one
wants to be sure that the finite elements be accurate enough, it would be better
to choose h small enough compared to H. On the other hand, such a choice is costly.

Such an approximation is done in a space which does not move during the
optimization algorithm. Now, let Q = T;(2) be a set which has been generated
by the algorithm. If Lipy is spanned by vectors {Vi, ¢ = 1,..N}, the vectors
{Vi, i = 1,..N} which have to be taken are:

Vi=Violyt i=1.N
N

Thus, if V = mefl is a given element in L;'pH, using (32), we get:

i=1

dj dj N
Q)Y = -2 (Ty) - Vi
2@V = 45 () ()
N
dj . .
= i —= (T i
;ndT( 0)
N
dj
:Zm—w(Q)Vz
=1

so that the discretized gradient is the vector:

di

(Gi()imin = ([ Q) Vilh)izi (33)
The computation of [%(Q)V;]h is done using the formulas given in Proposition 2.1,
and approximating of y® and p® by yi! and p} are described in Section 5.3.1.

5.3 Implementation
5.3.1 Computation of y! and pf!

The finite element formulations we use are described in Section 5.1. Piecewise
linear approximation are used for the partial differential equations, and a piecewise
constant one is used to solve the two integral equations. We get yi} = (¢5t, 65, wi})
and p§! = (P, T3, q31).

Let us describe briefly which algorithms we use in order to get the couple (6?, w?).

The integral equation We use a piecewise constant approximation to solve the
integral equation. We denote by {X;}i<i<, characteristic functions of surfaces

(09)". {Xiti<i<r is a base of W, (09). We seek wy, in the space W;,(09Q) defined
as follows: wy(z) = Z wi Xi(z). We write:

=1
Sy o= S Fy = / | / 8z, y) ds(y) ds(z).
(082)* J(882)7

where S; is the surface of (9Q)° and F = (Fj;), 1 < 4,j < r is the angle
factor matrix (see e.g. [13]). The computation of this matrix is done using a
Monte-Carlo method and shadow effects are taken into account. More details
concerning its computation can be found in [16].
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; d
. e, = 5—1 / e 0} ds (the emittance ¢ is assumed to be constant by sur-
2 Joa):

faces).

. D. =diag(e;), 1<i<r
. and M = diag(S;) — [ — D;] S. We have:

S if 1=y

S(l—e) Sy i it (34

Mij: ‘

The matrix S is symmetric and the matrix M is positive defined. The linear system
we solve is :

{ Given Ep, find W}, € IR" such that: (35)

MW, = E,

The partial differential equation We use a piecewise linear approximation
for the partial differential equation and we use a Newton-Raphson’s algorithm to
linearize the boundary condition. We denote by (V#, (Q))’ the dual space of V%, ()
and we define the operator A}’ as follows:

AR VH(Q) = (Via(Q) + 0n = A} (08)

where

< AY(O), 1 > = /vehwh dr + Pe /uh Vo, ty, de
0 0

+ | [Bi(0h—00) +

=9 (01 62 — 0y wy)] ty ds
T8 -
i

=0
Here, <, > is the scalar product in the duality (V) (Q))’,V{, (). Tt is obvious that

the operator AY is differentiable from V% (Q) into (V) (Q))’. At iterate n, we solve
the following linear system:

Given up, wy and 67, find HZ‘H €V (Q) such that: Vt, € V{, (Q), (36)
<(AR)(OR) Ot th > = < (AR)(03)0h th > — < AF(0R), th > '
We denote by (¢;)i=1,m a base of Vogh () and we seck QZ‘H in the form:
HZ+1(:1:) = Z(ﬁ:"’l)i t;(x) (m is the number of nodes). We denote:
i=1
Oy = ((67)")i=1,m
Aij = /Vtinj dxr + Pe /Uh Vi; 'tj dx
Q Q
+ / [ Bi + 4———4; (07)% | ; t; ds
e (1-¢) '
n . 6 7
B]( h;Wh) = / [BZ 90 + —(3 (51 (9/1)4 + (52 wh)]tj dS
re (1—¢)
The linear problem (36) becomes:
Given W and 07, find @}t € R™ such that: (37)
A-optt = B(O7, W)
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The matrix A is sparse, non-symmetric and positive defined.

In order to avoid numerical instabilities, we introduce artificial diffusion into the
numerical scheme in a classical manner. We use a streamline diffusion method and
the expression of A;; is modified as follows:

Aij = /([+Th)Vtth dx + Pe / up Vi; t; dz
Q Q
+ / [Bi + 4—=—8, (07)3]1; t; ds
re (1—¢) '

where 75, is the matrix of artificial diffusion. It 1s positive defined and its terms
vanish with h. Tts expression is: 7, = % (Pe)? up Tup,.

Algorithm of resolution TIn order to solve Problem (Pf), we use the following
algorithm of relaxation:

a. Initialization: ©F given.

b. Let ©} known on 9Q, compute W} solution of (35).

c. Let WP and ©7, compute O} 1" solution of (37).

n+l @n
d. Test: if w
ICH|

We do not study the convergence of this algorithm. Nevertheless, we never had

< ¢ then stop. If not, re-iterate.

any problem in practice concerning its convergence.

5.3.2 Gradient computation

In our problem, the shape of € is governed by the shape of T'j,s.. We have modeled
it in a classical manner. We consider coordinates (£, n) in R? (see Fig. 5).

n
1 i
a 1 n=s(8)
Eirl
Ei
Ei-¢-1
b

Figure 5: Discretization of the hose

Shape of These and control parameters. For a sake of simplicity, the hose is
supposed to have a constant thickness e along the 5 axis. One side is the graph of a
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C? function n — n(€) : [a,b] — IR. The other one is its translated. We approximate
the function using cubic splines. We consider a discretization a < & < €3... < én <
b of [a,b] and {s;(&), i = 1..N} the corresponding basis of the finite dimensional
vector space of one dimensional cubic splines defined by:

si(§)=4d; i=1.N,j=1.N

(here for the sake of simplicity we have chosen h = H).
The shape of a hose is given by a function:

N
m(€) = Z 1isi ()

and we have 0, (&) = n;. (We could as well have chosen the basis made of B-splines.
The unknown coefficients would not correspond directly to the position of nodes).

As the shape Q is completely determined by the shape of T'p,se, the control param-
eters are the N values {n;, i = 1..N}.

Construction of V; and V;. We consider a reference shape. For instance, we take
a straight hose so that:

IA‘hOSS = {(5;77); E S [a;b]a n= O}U {(5;77); E S [a;b]a n= 6}.
For each ¢ € {1, .., N} we choose Vi € Lip(Q; IR?) solution of:

4\72(1') = 0 in(?
V(@) = O8() onDue
Vi(z) =0 on O\ hose

(in this manner, the nodes which are on the hose can move in the horizontal direction
only, the end points of the hose do not move). The space LAz'pH is spanned by these
vectors {V;, i = 1..N}.
Now, if the optimization algorithm has brought us to a shape €2,, = A(’f (Q), according
to (32) we consider:
VP =Vio(Tg")" i=1.N
These are easy to compute. The vector fields just follow the movement of € from
Qo to Q, in the algorithm. V;” and V; have the same value at the corresponding
points.
Then, 1t is straightforward to compute:
dj n ,
Gi(Q2) = @(Q)Vz In i=1.N

given by (33).

Optimization algorithm. We describe how the algorithm builds Q, 41 from Q,.
Q, is characterized by the coefficients {n?, i = 1..N} which give the position of
I'},... Previously, we have seen how to compute the approximation [j(2,)]s of
Jj(£2,) and how to compute the gradient G;(Q,) = [%(Qn).‘/i”]h, i1 = 1..N.
Then we use a descent method. Namely, we have tested the method with a BFGS
algorithm for the choice of the descent direction, and a Wolfe’s law for the line
search. Notice that if we would have used the gradient method, we would have

chosen:
it =0 = p,Gi(Q,)  i=1.N

where p, has to be adjusted.
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Remark 5.1 The functional j(Q) depends on Q through (m,..,nn) only.

denote:
T(m,.,nn) = j()

so that the minimization algorithm can be written:

(P, ., nR), J("), G(,) are given,
Compute 7"t such that:
,,7n+1 — nn _ pn dn

where d"* s the direction of descent and p" > 0 is the step of descent.

The optimization procedure can be schematized on Figure 6.

If we

Figure 6: Optimization process

SIMULATOR |
DIRECT PB  (NON LINEAR) @
FLUID PDE
THERMAL PDE
INTEGRAL EQN IT\
y=(V @ w) OPTIMIZER
COST FUNCTION ALGORITHM  OF
I(Q) =.. <= | DESCENT: BFGS
o LINE SEARCH: .
ADJOINT PB  (LINEAR) ~&P | n"=n"- 0" d
ADJOINT INTEGRAL EQN
ADJOINT THERMAL PDE
ADIJOINT FLUID PDE
=(P, T.q)
b G(Q)
GRADIENT
Q, 1@,

The software we have used has been written in three steps. A. Habbal, working
for the companies SIMULOG S.A. and RENAULT S.A. has written the optimization
process without radiation. The MODULEF and MODULOPT libraries have been
used. The angle factors ¢(z,y) are computed by a software using a Monte-Carlo’s
method and shadow effects are taken into account. This last software has been
written by A. Mezrhab in his thesis [16]. Finally, J. Monnier has completed these
softwares in order to incorporate the radiation effects into the optimization process.

6 Numerical results

Let us recall that we consider an air flow under a car hood and parts under the hood
are schematized as indicated on Figure 4. We refer to Section 3 for a description of

the physical model.
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Let us recall that the goal of the following numerical results is to prove that we are
able to solve the initial industrial problem using the analysis and technic developed
in the present paper. It is a feasibility study. The software we developed (which is
already rather big), must be much more developed in order to obtain some inter-
esting results in an industrial and engineering point of view.

Physical data of the model correspond to a car moving at 80 kilometers per hour.
We have p = 1 kg/m3, C, = 1010 J/(kg.K), A = 3 1072 W/(m.K) and the
Peclet number Pe equals 10°. Let us notice that the thermal conductivity A of the
air 1s small and the assumption on A in Proposition 4.1 certainly does not hold in
our case. So, is the temperature differentiable with respect to the domain? Hence,
is the cost function differentiable with respect to the domain in our case? The only
thing we can affirm is that in practice we did not meet any special difficulties.

Physical data on the boundary are the following. The normal velocity of the
flow at the air entrance (i.e. on the radiator exit) equals 5 m/s. The fluid potential
is known at the exit. The condition u.n equals 0 is imposed everywhere else on the
boundary. Temperatures are imposed on the air entrance (280 °K), on the engine
block (420 °K) and on the exhaust pipe (520 °K). We consider on the hose, on the
screen, on the battery and on the external surface, heat transfer by radiation and
convection described by (18) with the following data:

. on the hose, f; = 300K, h = 10W/(m?K) (h being the thermal transfer
coefficient) and ¢ = 0.5.

. on the screen, fy = 330K, h = 10W/(m?K) and ¢ = 0.5.
. on the battery, fp = 330K, h = 10W/(m?K) and ¢ = 0.5.
. on the external surfaces, 6y = 290K, h = 20W/(m?K) and ¢ = 0.5.

Concerning the air exit, we assume that the thermal flows Vf.n equals 0 and in a
radiative point of view, we model it as a black body at the temperature f¢;;; = 320K.
Finally, the emittance value of the radiator (i.e. the air entrance) and of the exhaust
pipe is € = 0.5 and the emittance value of the engine block is ¢ = 0.8.

In order to validate the simulator of the software (i.e. the state equation and the
adjoint state equation), we used exact solutions, we plotted the error graphs as a
function of the mesh size and we obtained lines with the expected slopes. Then, in
order to validate the gradient values, we compared values of the discretized continu-
ous gradient computed by this software with values obtained using a finite difference
method. The results are comparable and can be found in [11].

We consider the following two initial shapes: shape a (Fig. 7) and shape b
(Fig. 10). We seek an optimal shape from these two different initial shapes and we
obtained the same “optimal” shape (Figs. 13).

For the two different initial shapes, we present the velocity field and the isotherms
(Figs 8, 9, 11, 12) and for the optimal shape, we present the velocity field and the
isotherms (Figs 13, 14).

Let us notice that the cost function depends on the hose temperature and on its
length as well. In others respects, the fluid velocity printed on the figures is not
exactly the finite element solution (i.e. V). Indeed, the field is obtained by a
linear interpolation of the potential 1)y,.

Let us precise that we performed others computations than those presented be-

low (see [11]) and for every computation we obtained the same “optimal” shape
from few different initial shapes and with different numbers of points of splines.
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(We tested with different numbers of points of splines between 4 and 8). So, is this
“optimal” shape a local minimum or a global minimum? We don’t know it. But,
the fact that we obtained each time the same “optimal” shape independently of the
initial shape and independently of the number of points of splines, in addition with
a substantial cost benefit, is already an interesting result.

We present in tables 1 and 2, the cost function values and the gradient val-
ues, Initial and optimal, computed from the two different shapes a and b. The
normalized gradient which is present is the norm la of the gradient divided by a
characteristic value of the cost function.

Starting from shape a, the algorithm stopped because it was unable to find a
better shape. Starting from shape b, the algorithm stopped because the cost benefit
between two iterates was very small. In both cases, the algorithm had converged.
Let us point out that if the initial shape is very different than the “optimal” one
(like shape b), we necessarily need to re-mesh the geometry, in others words to
restart a process of optimization. With our software, this re-meshing procedure is
done automatically. And, in order to obtain the “optimal” shape from shape b, it
has been necessary to re-mesh twice.

Initial shapes
Shape | Normalized gradient | Cost | Temp. max. hose

a 1.45 62534 121 °C
b 4.2 72827 139 “C

Table 1: Initial shapes

Optimal shapes
Shape | Normalized gradient | Cost | Gain | Temp. max. hose
a 0.54 62380 | 0.3 % 120 9C
b 0.58 60539 | 17 % 120 9C

Table 2: Optimal shapes
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