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Chapter 1

Analysis of Elliptic Problems: Variational
Forms, Weak Solutions

This chapter follows in great part the presentation done in the excellent book of G. Allaire entitled “ Numerical analysis
and optimization”, Oxford scientific publications, 2007 [?].

Prerequisites for this chapter are :

• Basic knowledge on the classical linear PDEs: elliptic (Laplace-Poisson’s equation), parabolic (heat equation),
hyperbolic (advection equation and wave equation),

• Basics concepts of weak derivatives, the Sobolev space H1(Ω).

In this chapter you will learn how to:

• write the weak formulation of a Boundary Value Problem (BVP) (PDE-based model),

• write the energy expression in the symmetric case,

• impose various boundary conditions including the transmission b.c.,

• prove the well-posedness of a linear elliptic problem (Lax-Milgram’s theory),

• identify the potential origin of a local singularity.

To the INSA students 4th year, Applied Math. department.
The sections 1.1, 1.2 and 1.3 and 1.4.1 have already been studied in great part during the INSA PDE course, 4th year,

1st semester.

The section indicated “To go further” may be skipped as a first reading. These additional information are dedicated
to students particularly interested in mathematical analysis.

In Appendix 1.4, basic properties of the Laplace operator are presented. The reader is invited to consult this section
by its own before studying the present analysis chapter.

1.1 Introduction
The typical elliptic boundary value problem we will consider is the Laplace-Poisson equation accompanied with mixed
boundary conditions: 

−∆u(x) = f(x) in Ω

u(x) = 0 on Γd

−∂nu(x) = ϕ(x) on Γn

(1.1.1)

7
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Figure 1.1.1: Solution de l’équation biharmonique: déplacement d’une plaque compressée sur deux de ses bords (u est
imposé sur ces bords-ci) et libre sur les deux autres bords.

with ∂Ω = Γn ∪ Γd.
It is the typical 2nd order linear elliptic equation modeling diffusive phenomena in a wide range of applications.

An other typical problem is the biharmonic problem:{
−∆2u(x) = f(x) in Ω

u(x) = 0 on ∂Ω

with:∆2u(x) =
∑n
i=1

∂4u
∂x4
i
(x) + 2

∑n
i,j=1;i<j

∂4u
∂x2
i∂x

2
j
(x).

The latter is a 4th order linear elliptic equation modeling for example a flexion plate (linear elasticity): u represents
the plate displacement, cf Fig.

We will recall the adequate mathematical framework to obtain these elliptic boundary value problems well-
posed: the variational (or weak) formulation.

Recall that a problem is well-posed if it has a unique solution and it depends continuously on the data
(e.g. the R.H.S. also source term f( x ) ).

The variational formulation has a natural physical interpretation of the mathematical system, and it is the
key step to derive a finite element scheme.

1.2 From classical formulation to weak formulation
Let us consider the Boundary Value Problem (BVP) (1.1.1). Given “regular” data, in the sense f ∈ C(Ω̄) and ϕ ∈ C1(Γn),
we can expect that the solution u is in C2(Ω)∩C0(Ω̄). However, in this case the solution may not exist (at least without
additional regularity on the source term f for example).

This classical formulation of the problem, see (1.1.1), also called “strong” formulation, leads to the classical (or “strong”)
solution.

In a great majority of real-world modeling problems, data are not regular. Mind for example to a simple discontinuity
of the source term f .

Then the right framework to analyse this Boundary Value Problem (BVP) is the variational approach, leading to the
so-called variational or weak formulation and the corresponding weak solution.

The principle of the variational approach is to multiply the equation by an arbitrary function, called a test function,
next to integrate it using Green’s formula.

In the physical / mechanical communities the weak formulation is called the principle of virtual work.

1.2.1 Domain regularity and basic recalls
Let Ω be a regular open set of Rn. Let n be the unit the outward normal vector at the boundary ∂Ω.
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Figure 1.2.1: Regular domain (with a partition of its boundary)

Figure 1.2.2: Non-regular domains: local singularities...

What is a “regular” domain ?
The domains plotted below are regular: corners are not locally C1, however they are Lipschitz and that regularity is

enough to apply all the properties presented in this course (in particular the Sobolev spaces properties).
What is a non-regular domain ?
The typical example is an internal crack which generates a local singularity of the solution at the crack front... e.g. an

infinite electrical field at your umbrella top during a storm... (the model of the electrical potential is the simple Laplace
equation).

In all the sequel we assume that the domain Ω is a regular bounded open-set of Rd.

Green’s formula. Let w be a regular function, w ∈ C1(Ω̄), then∫
Ω

∂iw(x) dx =

∫
∂Ω

w(x) · ni(x) ds, i = 1, .., d (1.2.1)

Integration by parts. Let u and v be regular functions, i.e. in C1(Ω̄), then:∫
Ω

u(x)∂iv(x) dx = −
∫

Ω

v(x)∂iu(x) dx+

∫
∂Ω

u(x)v(x)ni(x) ds, i = 1, .., d (1.2.2)

And for u in C2(Ω̄), ∫
Ω

∆u(x)v(x) dx = −
∫

Ω

∇u(x)∇v(x) dx+

∫
∂Ω

∂nu(x)v(x) ds (1.2.3)

where ∂nu denotes ∇u · n.

It will be recalled in next section that these Green’s formula and integration by parts remain valid for u and v in
Sobolev spaces.

In the sequel, we need the following result. We denote by C∞c (Ω) the space of functions C∞ with compact support in
Ω. (This space is often denoted D(Ω) too).
Lemma 1. Let g ∈ C0(Ω) (resp. L2(Ω)). If∫

Ω

g(x)ϕ(x)dx = 0 ∀ϕ ∈ C0
c (Ω)

then g = 0 in Ω (resp. almost everywhere in Ω).
Sketch of the proof.

In the continuous case, this can be easily proved by contradiction (assume that g strictly positive at one point x0 and
consider ϕ > 0... See details in [?] p72.
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Next the result in L2 follows by density of C0
c (Ω) in L2(Ω), see details in [?] p80.

1.2.2 Weak formulation in the classical spaces Ck(Ω̄)

Recall that Ω denotes a regular bounded open-set of Rd.

1.2.2.1 Weak formulation

Let us assume that all the data of the BVP are regular enough; typically in the Laplace problem (1.1.1), it means that f
is C0(Ω) and ϕ ∈ C0(Γn).

Then we have

Proposition 2. Let X be the space defined by X = {v ∈ C1(Ω̄), v = 0 on Γd}.
Then u is solution of the BVP (1.1.1) in C2(Ω̄) if and only if u ∈ X and u satisfies:∫

Ω

∇u(x)∇v(x) dx =

∫
Ω

f(x)v(x) dx−
∫

Γn

ϕ(x)v(x) ds ∀v ∈ X (1.2.4)

Proof. We multiply the equation (1.1.1) by v ∈ X. An integration by part gives:∫
Ω

∇u(x)·∇v(x)dx−
∫

Γn

∇u · nv(x) ds =

∫
Ω

f(x)v(x)dx

since v = 0 on Γd. Hence the weak formulation (1.2.4).

Conversely, let u ∈ X be solution of the weak formulation.
By making the “reverse” integration by part on Eqn (1.2.4), it follows:∫

Ω

−∆u(x)v(x) dx+

∫
Γn

∇u · n v(x) ds =

∫
Ω

f(x)v(x) dx−
∫

Γn

ϕ(x)v(x) ds ∀v ∈ X

Hence for v = 0 on ∂Ω (v still belongs to X):∫
Ω

(∆u(x) + f(x)) v(x) dx = 0

This equation holds for any v in C0(Ω).
Moreover (∆u+ f) is a continuous function; therefore:

−∆u(x) = f(x) ∀x ∈ Ω

The Dirichlet b.c. on Γd is a direct consequence of u ∈ X.
Next for all v ∈ X,

∫
Γn
∇u · n v(x) ds = −

∫
Γn
ϕ(x)v(x) ds . Therefore:

−∇u · n = ϕ(x) on Γn

Therefore u is solution of the classical formulation (1.1.1).

Equation (1.2.4) is the variational formulation (or weak form) of the BVP (1.1.1).
The function v is called the test function.
On the opposite, (1.1.1) is called the classical form (or strong form) of the model.

Remarks

• The weak form requires u ∈ C1(Ω̄) “only” while the classical form requires u ∈ C2(Ω̄). As a consequence the weak
form is more general since considering a greater set of potential solutions.

• In the mechanical community, the variational formulation is called the principle of virtual work.
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1.2.2.2 Why a variational (weak) formulation ? Why the Sobolev spaces ?

The variational (weak) formulation is the right framework to consider the BVP for few reasons.
It requires a less regular solution than in the classical form hence less regular data too. In real-world modeling problems,

data are not necessarily regular...
It is the right formulation to mathematically analyse the problem, in particular to establish the existence and uniqueness

of the solution, see the Lax-Milgram theory in next section.
However this theory works only if the space in which we look at the solution is a Hilbert space. This is not the case of

X defined as above since X is a Banach space with its norm not defined from a scalar product. (If so, it would not be
complete for its induced norm, see e.g. [?] for more details).

Then for linear elliptic equations, the natural spaces are the Sobolev spaces Hm(Ω), m ≥ 1 (see their definitions in
next paragraph).

The variational (weak) formulation of (1.1.1) reads as follows.
Find u ∈ X such that:

a(u, v) = b(v) ∀v ∈ X (1.2.5)
With:

a(u, v) =

∫
Ω

∇u(x)∇v(x) dx and b(v) =

∫
Ω

f(x)v(x) dx−
∫

Γn

ϕ(x)v(x) ds

It can noticed that the applications v 7→ a(·, v) and v 7→ l(v) are linear by construction.

Furthermore the application u 7→ a(u, ·) is linear since the original PDE is linear; therefore a(u, v) is a bilinear form
on X ×X.

1.2.3 Recalls of functional analysis
Recall that Ω denotes a regular bounded open set of Rd.

Weak derivatives Let us recall the definition of the weak derivative for functions in L2(Ω), the space of measurable
functions which are square integrable in Ω.

(Recall that measurable functions are defined almost everywhere: if we change the value of a measurable function on
a subset of measure zero, the measurable function is not changed).

Weak derivatives is a generalization of the classical derivation. (Note that it is a particular case of the derivation in
the sense of distributions).
Definition 3. Let v ∈ L2(Ω). v is differentiable in the weak sense in L2(Ω) if it exists wi ∈ L2(Ω), i = 1, .., d, such
that: ∫

Ω

v(x)∂iϕ(x)dx = −
∫

Ω

wi(x)ϕ(x)dx ∀ϕ ∈ C∞c (Ω)

Then wi ≡ ∂iv is the ith partial derivative of v.

Definition 4. Of course, if v is differentiable in the classical sense (and its partial derivatives belong to L2(Ω)) then the
classical and the weak derivatives of v are the same.

A practical criteria to determine if a function is differentiable in the weak sense is as follows.

Lemma 5. Let v ∈ L2(Ω). If it exists C > 0 such that for i = 1, .., d,∫
Ω

v∂iϕ(x) dx ≤ C‖ϕ‖L2 ∀ϕ ∈ L2(Ω) with ∂iϕ ∈ L2(Ω)

then v is differentiable in the weak sense.

Note that the definition the standard differential operators like div,∇,∆,∆2, curl etc can be naturally extended to
the weak sense.
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The Sobolev spaces H1(Ω), H1
0 (Ω), Hm(Ω) Let us recall the Sobolev spaces which are the natural spaces to solve the

variational formulations of elliptic PDEs and particularly the linear ones (see next paragraph).
The Sobolev space H1(Ω) is defined by:

H1(Ω) = {v ∈ L2(Ω) s.t. ∂iv ∈ L2(Ω), ∀i = 1, .., d}
where ∂iv denotes the weak partial derivative of v.
This space is equipped with the scalar product (u, v)H1 =

∫
Ω

(u(x)v(x) +∇u(x)∇v(x)] dx and with the corresponding
norm ‖ · ‖H1 = (·, ·)1/2

H1 . Then it is a Hilbert space.

The space H1
0 (Ω) is the subspace of H1(Ω) such that: v = 0 on ∂Ω. Equipped with the scalar product of H1(Ω), the

Sobolev space H1
0 (Ω) is a Hilbert space too.

Remarks

• The functions of H1(Ω) are a-priori neither continuous nor bounded (excepted in dimension d = 1; which is an
exception).

• Regular functions in the sense Ck(Ω̄), k ≥ 1, are dense in H1(Ω). This feature is crucial to establish many properties
first for regular functions next to functions in H1 by the “density argument”.
This means that for all f ∈ H1(Ω) , it exists a sequence f ∈ C∞c (Ω̄) such that limn ‖f − fn‖H1 = 0.

Let us denote α = (α1, ..., αd) , |α| =
∑
i αi, and: ∂

αv(x) = ∂|α|v
∂x
α1
1 ...∂x

αd
d

(x). At higher orders, the Sobolev space Hm(Ω),
m ≥ 1, is naturally defined as follows:

Hm(Ω) = {v ∈ L2(Ω) s.t. ∀α with |α| ≤ m, ∂αv ∈ L2(Ω)}
Obviously the more m is large, the more the functions of Hm(Ω) are regular, that is differentiable in the classical sense.

More precisely, we have:

Lemma 6. Let Ω be a bounded open set of Rd. If m > d
2 then Hm(Ω) ⊂ C0(Ω̄).

More generally, for k integer, k ≥ 0 such that m−d
2 > k, then:

Hm(Ω) ⊂ Ck(Ω̄) (1.2.6)

In particular, we have:
• In 1d geometry (unusual case), H1(Ω) ⊂ C0(Ω̄), H2(Ω) ⊂ C1(Ω̄) etc

• In 2d and 3d geometries, H1(Ω) functions are not continuous on Ω !...
However, H2(Ω) functions are: H2(Ω) ⊂ C0(Ω̄), H3(Ω) ⊂ C1(Ω̄) etc

Lemma 7. Poincaré inequality
Let us consider v ∈ H1(Ω) , with v = 0 on ∂Ω. It exists a constant C > 0 such that:∫

Ω

v2dx ≤ C
∫

Ω

|∇v|2dx

The Poincaré inequality (4.9) is not true for functions ofH1(Ω) but remains true if v = 0 on a part of the boundary only.

Values at boundary: trace concept To go further...
For d ≥ 2, the functions v of H1(Ω), which are measurable functions ”only”, are a-priori not continuous. Then it is not

clear whether the boundary value of v has any sense (recall that ∂Ω is a set of measure zero...). However, it is possible to
define the boundary value of v from the so-called trace as follows.

Theorem 8. (Trace theorem)
The trace mapping γ : v→v|∂Ω defined from H1(Ω)

⋂
C(Ω) into L2(∂Ω)

⋂
C(∂Ω) can be extended by continuity to a

continuous linear mapping of H1(Ω) into L2(∂Ω), again called γ.
As a result, it exists a constant C > 0 such that:

‖v‖L2(∂Ω)≤C‖v‖H1(Ω) (1.2.7)
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Green formula in Sobolev spaces It can be proved that the Green formula (1.2.1) and the integration by parts
(1.2.2)(1.2.3) remain valid for functions in H1(Ω) and H2(Ω) respectively:

∀(u, v) ∈
(
H1(Ω)

)2
,

∫
Ω

u(x)∂iv(x) dx = −
∫

Ω

v(x)∂iu(x) dx+

∫
∂Ω

u(x)v(x)ni(x) ds, i = 1, .., d (1.2.8)

The proof is based on a density argument and the trace theorem, see e.g. [?] for more details.

A nonlinear problem ? Spaces Wm,p(Ω) To go further....
As already mentioned, the Sobolev spaces Hm(Ω) are the natural spaces to solve the variational formulations of linear

elliptic BVP; it is the minimal functional space to get a finite energy too.
However for nonlinear problems these spaces are not the adequate ones: one generally needs to consider the spaces

Wm,p(Ω) with p real, 1 ≤ p ≤ +∞ and m integer, m ≥ 1.
These Sobolev spaces Wm,p(Ω) are constructed on the Banach space Lp(Ω) as follows:

Wm,p(Ω) = {v ∈ Lp(Ω) s.t. ∀α with |α| ≤ m, ∂αv ∈ Lp(Ω)}

where the partial derivatives ∂αv are taken in the weak sense.

Equipped with the norm ‖u‖m,p =
(∑

|α|<m ‖∂αu‖p
)1/p

, these spaces are Banach spaces but not Hilbert spaces
anymore ... (excepted if p = 2 of course).

On the distributions To go further....
The concept of weak solutions and weak derivatives above are naturally derived if using the distributions theory.

Distributions are object that generalize the notion of functions. The basic idea is to re-interpret the functions as linear
functionals acting on the test functions space. This theory gives in particular a meaningful sense to the Dirac “function”
δ.

Historically, the distributions theory derived by L. Schwarz (1915-2002) has been established after the Sobolev spaces
(S. Sobolev, 1908-1989) and the variational approach for solving PDE.

The theory of distributions is the complete framework to write such analyses. However, the distribution theory is out
of the scope of the present course; we refer to the present reference book [?] and references therein for more details.

1.2.4 Weak formulation in the Sobolev spaces and Lax-Milgram’s theory
As already mentioned, the weak form of a BVP is more general since considering a greater set of potential solutions, and
the natural spaces for analysing the linear elliptuc BVP are the Sobolev spaces Hm(Ω), m ≥ 1. Indeed we prove by using
the Lax-Milgram theory that the linear BVP problems are well-posed (that is they have a unique solution and it depends
continuously on the data). To do so we follow the variational approach presented previously but in the Sobolev spaces.

1.2.4.1 The existence - uniqueness theorem

Let us denote by V a (real) Hilbert space with scalar product < ·, · > and norm ‖ · ‖.
In the present context V will be a Sobolev space Hm(Ω).
Then we consider the following weak formulation:

Find u ∈ V such that: a(u, v) = b(v) ∀v ∈ V (1.2.9)
with a(·, ·) a bilinear form on V and b(·) a linear on V (i.e. a linear application defined from V into R ).

Recall that (1.2.4) is the weak formulation version in the regular / classical space X.

Recalls: continuity and ellipticity of the forms

• The linear form b(·) is continuous from V into R if it exists C > 0 such that:

|L(v)| ≤ C‖v‖ ∀v ∈ V
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Figure 1.2.3: To go further: results related to the Sobolev space H1(Ω). Extracted from [?].
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• The bilinear form a(·, ·) is continuous from V × V into R if it exists c > 0 such that:

|a(u, v)| ≤ c ‖u‖‖v‖ ∀u, v ∈ V (1.2.10)

• The form a(·, ·) is elliptic on V if it exists α > 0 such that:

a(u, u) ≥ α‖u‖2 ∀u ∈ V (1.2.11)

The continuity properties are usually satisfied and easy to verify.
On the contrary the ellipticity is the crucial point and the key property of the existence and uniqueness result stated

below.
Theorem 9. (Lax–Milgram) Let V be real Hilbert space.
If a(·, ·) is continuous coercive (elliptic) bilinear on V , if b(·) is continuous linear on V , then the variational formulation

a(u, v) = b(v) ∀v ∈ V (1.2.12)

has a unique solution u in V .
Furthermore this solution depends continuously on the right hand side data (the source terms in b).

The proof can be found in [?].
P. Lax (1926 -), &A. N. Milgram (1912 - 1961).

This theorem (extended as the Lions-Lax-Milgram’s theorem) is the basis to write the analysis of linear coercitive
BVP.

However let us point out that generally the non linear BVP cannot be studied in the Sobolev spaces Hm (which are
Hilbert spaces) but in the spaces Wm,p for example (which are Banach spaces “only”), then the basis analysis theorems
are not the present Lax-Milgram one.

In the case of non homogeneous Dirichlet boundary conditions, an extended version will have to be considered, see
next section.

1.2.4.2 Energy expression, minimum of energy in the symmetric case

If we set v = u in the weak form (1.2.9) of the BVP, we obtain the energy expression of the system.
The Left Hand Side (LHS) a(u, u) is the stored energy in Ω while the RHS b(u) represents the external force / source

energy.
In the previous example, this would give:

a(u, u) = ‖∇u‖2L2 and b(u) =

∫
Ω

fu dx−
∫

Γn

ϕu ds (1.2.13)

Moreover if the bilinear form a(·, ·) is symmetric, that is a(u, v) = a(v, u) ∀(u, v), the (unique) solution of (1.2.12)
minimizes the energy of the energy modeled by ((1.2.12).

Indeed, let us define the functional J : V → R by:

J(v) =
1

2
a(v, v)− b(v) (1.2.14)

Then u is solution of (1.2.12) if and only if u satisfies: J ′(u) · v = 0 ∀v ∈ V .
Indeed this equality is the Euler equation of the following minimization problem:

min
v∈V

J(v) (1.2.15)

Moreover, it is easy to verify that a(·, ·) coercive in V implies that J(.) is strictly convex.
Therefore this optimization problem (1.2.15) admits an unique solution u, which is the unique solution of (1.2.9).

In others words, at equilibrium the functional J(.) is minimal: J(.) defined by (1.2.13) is the energy functional.

It can be noticed that the Sobolev spaces Hm(Ω) are the minimal space to get a finite energy: it is the natural spaces
to define and analyse these linear models.
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1.3 The Laplace-Poisson equation: mathematical analysis
In this section, fundamental ingredients to analysis the Laplace-Poisson equation (that is the typical linear scalar elliptic
model) are introduced.

1.3.1 The Dirichlet boundary conditions case
1.3.1.1 The model

Let us consider the following linear second order elliptic with variable coefficients:{
−div(λ(x)∇u(x)) = f(x) in Ω

u(x) = 0 on ∂Ω
(1.3.1)

with f ∈ L2(Ω) and λ(x) given.
If λ(.) is differentiable, we have: div(λ∇u) = λ∆u+∇λ · ∇u.
Obviously if λ(x) ≡ 1, the Laplace operator is recovered.
A great interest of the variational approach is to consider non regular data (in the sense Ck) therefore “non regular”

solutions.
In the present model, λ is often not differentiable and can even be not continuous e.g. the diffusion coefficients for two

different materials, see the transmission problem in next section.
Therefore it is important to consider the model operator in the “div form”, next in the weak form, since it contains

more information than in the developed form.

Below the Lax-Milgram theorem enables to show the well-posedness of the BVP (1.3.1). To do so, the minimal required
regularity of λ is the following.

Assumption. The conductivity / diffusivity coefficient λ(x) is a measurable function satisfying:

0 < λ−≤λ(x)≤λ+ a.e. in Ω (1.3.2)

1.3.1.2 From the classical to the variational form

Let us assume the existence and regularity of the solution u so that all the calculations below are valid (it is somehow
formal calculations).

As already done in the classical space context X, we multiply the equation (1.3.1) by a test function v, then an
integration by part gives: ∫

Ω

λ(x) ∇u(x)·∇v(x)dx−
∫
∂Ω

λ(x) ∇u · nv(x) ds =

∫
Ω

f(x)v(x)dx

Since we have the homogeneous Dirichlet condition u = 0 on ∂Ω, we choose V such that: v = 0 on ∂Ω ∀v ∈ V .
Hence the equation: ∫

Ω

λ(x)∇u(x)·∇v(x)dx =

∫
Ω

f(x)v(x)dx

Next it becomes clear that the minimal regularity of the terms are the following : (∇u,∇v, v) belong to L2(Ω) with
the data λ ∈ L∞(Ω), f ∈ L2(Ω).

Consequently, a good choice of functional space is the following Hilbert space:

V = {v, v ∈ H1(Ω), v = 0 on ∂Ω} (1.3.3)

Therefore the proposed variational formulation of the BVP (1.3.1):

Find u ∈ V such that:
∫

Ω

λ(x)∇u(x)·∇v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ V (1.3.4)

with λ ∈ L∞(Ω), f ∈ L2(Ω) given.
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1.3.1.3 Well-posedness of the model

Definition 10. The model is well-posed in the sense of J. Hadamard (1923) if:

1. it has a unique solution;

2. the solution depends continuously on data.

The term “data” denotes here the source terms either in the volume or at the boundary i.e. f and ϕ.

A few remarks on this definition.
Mathematically, the existence of a solution can be enforced by enlarging the solution space.
If a problem has more than one solution, either it is physical or some information is missing in the model. In this case,

additional properties (e.g. a sign condition) may be imposed in the model.
The second condition above is a stability condition. Indeed, data of a problem are always perturbed by “noise”, un-

certainties, and if the solution is not continuous with respect to the data then it may be “unstable” (therefore generally
unphysical).

In the present example, the existence - uniqueness of the solution derives directly from the Lax-Milgram theorem.
Let us define: a(u, v) =

∫
Ω
λ(x)∇u(x)·∇v(x)dx and l(v) =

∫
Ω
f(x)v(x)dx.

Let us consider V defined by (1.3.3).
Then it is easy to verify that a(u, v) is bilinear continuous from V × V into R, and l(v) is linear continuous from V

into R.
Moreover, from the Poincaré inequality it follows that a(v, v) is coercive (elliptic) in V :

a(u, u) ≥ λ−‖∇v‖2L2 ≥ α‖v‖2 ∀v ∈ V

with α > 0.
Then in vertu of Lax-Milgram theorem, it exists a unique solution u ∈ V of the variational formulation (1.3.4).

1.3.1.4 Equivalence between the variational (weak) form and the classical one

Finally let us demonstrate that if u is the (unique) solution of the weak formulation (1.3.4) then it is solution of the BVP
(1.3.1) but in a weak sense.

If assuming that u ∈ V ∩ H2(Ω) (and not only in V ) then the proof is the same as in the previous regular context
(with (u, v) in X ×X).

To go further. If we do not assume this extra regularity on the solution u, then the proof becomes harder since we
can no longer apply the Green’s formula −

∫
Ω

div(λ∇u) v dx =etc. Indeed this Green’s formula requires u in H2(Ω) .
However, if we denote σ = λ∇u, σ is a function in (L2(Ω))d , and:

|
∫

Ω

σ · ∇v dx| = |
∫

Ω

fvdx| ≤ c‖v‖L2 ∀v ∈ V ; V ⊃ C∞c (Ω)

This estimation proves that σ has a divergence in the weak sense, see [?] p83 and p112 for more details.
This weak divergence satisfies: ∫

Ω

σ · ∇v dx = −
∫

Ω

divσv dx ∀v ∈ C∞c (Ω)

Then from the weak formulation it follows:

−
∫

Ω

divσ v dx =

∫
Ω

fv dx ∀v ∈ V ; V ⊃ C∞c (Ω)

Hence: (divσ + f) = 0 almost everywhere in Ω, and divσ = −f in L2(Ω).
Therefore the equation in Ω of the BVP (1.3.1) is recovered in the weak sense.
Next, the boundary conditions are recovered like in the regular case.

Finally we have proved
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Theorem 11. Let λ ∈ L∞(Ω), f ∈ L2(Ω) be given and let V be defined by (1.3.3).
It exists a unique solution u ∈ V of the variational formulation (1.3.4).
Furthermore this solution satisfies the BVP (1.3.1) almost everywhere:

−div(λ(x)∇u(x)) = f(x) a.e. Ω and u(x) = 0 a.e. ∂Ω.

Remark 12. It is will pointed out later in next section (“regularity result” discussion) that the weak solution can be a
strong/classical solution if the BVP data f, λ,Ω are regular enough.

In such a case, the solution of the variational form satisfies the BVP in a classical sense, that is for all x in Ω and ∂Ω.

On the continuity of the “model operator” M

A straighforward consequence of the Lax–Milgram theorem is the continuity of the (unique) solution u with respect to f .
Indeed let us define the “model operator” M as follows:

M : f ∈ L2(Ω) 7→ u ∈ V (1.3.5)

with u the unique solution of (1.3.4).
Then we have

Proposition 13. The mappingM is linear and continuous from L2(Ω) into H1(Ω). In particular, we have:

‖u‖H1 ≤ C‖f‖L2 (1.3.6)

with the constant C > 0.

Proof. The mapping M is clearly linear. Let us state the continuity inequality by setting v = u in the variational
formulation: ∫

Ω

λ(x)|∇u(x)|2 dx =

∫
Ω

f(x)u(x)dx

Next, using the coercivity inequality and Cauchy-Schwartz inequality we obtain:

α‖u‖2H1 ≤ ‖f‖L2‖u‖L2 ≤ ‖f‖L2‖u‖H1

Hence the result.

The inequality (1.3.6) is an energy estimation since it shows that the energy of the solution is “controlled” by the source
term norm (the data/source term energy).

This estimation is an a-priori estimation on the solution. It can be interpreted as a stability inequality ; this point is
more detailed in the Neumann boundary condition case.

This equality can be called an “energy inequality” too since established in the energy norm ‖ · ‖V
This estimation ends to demonstrate that the variational formulation / BVP / model is well-posed in the sense of

Hadamard.

Exercises.

Do the exercises proposed in the separated documents.

1.3.1.5 Symmetric case: equivalence with the minimun of energy

As already mentioned one has the
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Proposition 14. Let the bilinear form be symmetric that is: a(u, v) = a(v, u) ∀u, v.
Then the (unique) solution of the variational formulation is the (unique) minimum of the energy functional:

J(v) =
1

2
a(v, v)−b(v)

=
1

2

∫
Ω

λ(x)|∇v(x)|2 dx−
∫

Ω

f(x)v(x) dx ∀v ∈ V

In other words, to solve the energy minimisation problem minv∈V J(v) is equivalent to solve the variational formulation
(1.3.4).

Exercise 15. Show this assertion.
Hint. Write the necessary condition / Euler inequation, actually the Euler equation by setting v = −v.
Moreover, since the symmetric bilinear form a(·, ·) is coercive (also called elliptic) in V , the functional J is (strongly)

convex in V . As a consequence, the necessary condition is sufficient, see e.g. [?] p303.
Recall. The convexity (elliptic functions) inequality reads: J(θu+(1−θ)v) ≤ θJ(u)+(1−θ)J(v) ∀(u, v) ∈ V, ∀θ ∈ [0, 1].

Another proof of this result can be found in [?] p76.

1.3.1.6 Non homogeneous Dirichlet condition case

Let us consider the case of non homogeneous Dirichlet boundary conditions:{
−div(λ(x)∇u(x)) = f(x) in Ω

u(x) = ud(x) on ∂Ω
(1.3.7)

with ud given on ∂Ω.
In this case, the weak form of the BVP (1.3.9) reads as follows:{

Find u ∈ Vt such that:
a(u, v) = l(v) ∀v ∈ V0

(1.3.8)

with the affine subspace (translated space) Vt defined by:

Vt = {v, v ∈ H1(Ω), v = ud on ∂Ω}
Observe that the test functions belong to the vectorial subspace V0 = H1

0 (Ω).

Mathematical explanations To go further...
This function ud is the trace of a function H1(Ω), function still denoted ud.
To mathematically analyse this BVP , we set the shifted function: ũ = (u− ud).
Formally this new unknown satisfies the following BVP with homogeneous Dirichlet condition:{

−div(λ(x)∇ũ(x)) = f(x) + div(λ(x)∇ud(x)) in Ω

ũ(x) = 0 on ∂Ω
(1.3.9)

The RHS in its weak form reads: l̃(v) =
∫

Ω
[f(x) + div(λ(x)∇ud(x))] v(x) dx; the term div(λ(x)∇ud(x)) does not

belong to L2(Ω).... However it belongs to the dual space of H1
0 (Ω); it is denoted H−1(Ω). These “functions” (actually

distributions) are not defined almost everywhere but it can be shown that all is fine in this context....
Next, the analysis of the weak formulation is similar to those in the homogeneous case.

Finally, the weak form of the BVP (1.3.9) can be written as previously indicated.

Remark 16. The existence and uniqueness of the weak solution of the BVP (1.3.7) (with non homogeneous Dirichlet
boundary conditions) can be proved using the Stampacchia’s theorem. The latter is an extension of the Lax-Milgram
theorem. It is based on the same hypothesis but the solution space has to be a closed convex set of the Hilbert space V.
This is the case with u ∈ Vt, Vt the affine subspace defined above.
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1.3.2 The Neumann boundary conditions case
Let us consider the case of Neumann boundary conditions:{

−div(λ(x)∇u(x)) + c(x)u(x) = f(x) in Ω

−λ(x)∇u(x) · n(x) = ϕ(x) on ∂Ω
(1.3.10)

with n the unit outward norm and the flux ϕ given.
The considered BVP is based on the same second order operator as before plus a 0th order term, with the parameter

c given, c > 0. This 0-th order term prevents to have “a solution up to a constant” only (see below and Lax-Milgram
theory).

1.3.2.1 The weak formulation

Following the space approach as previously, we multiply the equation (1.3.10) by a test function v and we make an
integration by part assuming that the solution u and all other functions are sufficiently regular so that all the calculations
are valid. This gives: ∫

Ω

λ(x)∇u(x)·∇v(x)dx−
∫
∂Ω

λ∇u · nv ds+

∫
Ω

c u v dx =

∫
Ω

f v dx ∀v(x)

with (λ∇u · n)(x) = ϕ(x).
It is clear that choosing V = H1(Ω) is an adequate choice; also the parameter c(x) can be considered in L∞(Ω), ϕ(x)

can be considered in L2(∂Ω).
Hence the weak formulation of the BVP reads as follows.
Find u ∈ V = H1(Ω) such that:∫

Ω

λ∇u·∇v dx+

∫
Ω

c u v dx = −
∫
∂Ω

ϕv ds+

∫
Ω

f v dx ∀v ∈ V (1.3.11)

Remark 17. Observe that it is not necessary to include the Neumann boundary condition in the solution space V ,
V = H1(Ω), on contrary to Dirichlet boundary conditions. Indeed, the Neumann condition naturally appears after the
integration by parts. Therefore it would be useless to take into account the Neumann boundary condition in the definition
of V .

1.3.2.2 Well posedness (existence - uniqueness)

Let us denote:

a(u, v) =

∫
Ω

λ(x)∇u(x)·∇v(x)dx+

∫
Ω

c(x)u(x)v(x)dx

l(v) = −
∫
∂Ω

ϕ(x)v(x) dx+

∫
Ω

f(x)v(x)dx

Then all the hypotheses of the Lax-Milgram theorem are satisfied, in particular the coercivity property since a(v, v) ≥
α‖v‖H1 .

Note that the Poincaré’s inequality is not required because of the 0-th order term (with c(x) > 0 a.e. ).

Exercise. Prove these assertions.

1.3.2.3 Equivalence with the equations of the BVP

To go further...
Let us assume that the data (λ, c, f, ϕ) are regular enough i.e. Ck with k large enough, which make the unique solution

u in H2(Ω), hence in particular u in C0(Ω̄).
(Such regularity result can be proved see [?] for more details; note that a regularity assumption on the domain Ω is

required).
Next, we make the “reverse” integration by part on Eqn (1.3.11).
We obtain: ∀v ∈ V ,
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∫
Ω
−div(λ(x)∇u(x))v(x) dx+

∫
∂Ω
∇u · n v(x) ds+

∫
Ω
c(x)u(x)v(x)dx

= −
∫
∂Ω
ϕ(x)v(x) dx+

∫
Ω
f(x)v(x) dx

Hence for v = 0 on ∂Ω (v still belongs to V ):∫
Ω

[−div(λ(x)∇u(x)) + c(x)u(x)− f(x)] v(x) dx = 0 ∀v ∈ V

Next since −div(λ(x)∇u(x)) + c(x)u(x)− f(x)] is a continuous function, we obtain the original equation in Ω:

−div(λ(x)∇u(x)) + c(x)u(x) = f(x) ∀x ∈ Ω.

Next for all v ∈ V , one obtains:
∫
∂Ω
∇u · n v(x) ds = −

∫
∂Ω
ϕ(x)v(x) ds.

Therefore : −∇u · n = ϕ(x) on ∂Ω.

Therefore u is solution of the classical formulation (1.3.10).

1.3.2.4 Energy estimation and stability inequality

Energy estimation The unique solution of (1.3.10) satisfies the following a-priori inequality which is called the “energy
estimation” too:

‖u‖H1 ≤ C [ ‖f‖L2 + ‖ϕ‖L2(∂Ω)] (1.3.12)
with C a constant strictly positive, C independent of u, f and ϕ; C depends on Ω.

Proof (to be completed in exercise).
We set v = u in the weak formulation, we use the coercivity inequality and the continuity inequality. It follows:

λ−‖∇u‖2L2 ≤ a(u, u) = (f, u)L2(Ω) + (ϕ, u)L2(∂Ω)

Next we use the Poincaré’s inequality, the Cauchy-Schwartz inequality (and the trace application continuity).

Then it exists a constant C (constant dependent on the geometry but independent of u) such that:

‖u‖H1 ≤ C [ ‖f‖L2 + ‖ϕ‖L2(∂Ω)] (1.3.13)

�

Stability concept

Let us consider the same BVP but with the perturbed source terms (f + δf) and (ϕ+ δϕ) (instead of f and
ϕ). The BVP equations are linear so the weak formulation.

If we denote by (u+δu) the solution corresponding to the perturbed source terms above, it follows the following
“stability inequality”:

‖δu‖H1 ≤ c(‖δf‖L2 + ‖δϕ‖L2(∂Ω)) (1.3.14)

Let us interpret this inequality. The “perturbation” on the solution u due to the perturbations (δf, δϕ) on the
source terms is bounded; it varies continuously with respect to the data perturbations.

This shows the stability of the solution with respect to data perturbations.

Observe that c is the ratio between the continuity constant and the coercivity constant. If the coercivity
constant tends to 0 then c tends to +∞ and the problem becomes unstable.

Remark 18. This inequality can be employed to prove the uniqueness of the solution too. To do so it is sufficient to
apply the inequality to the difference of two potentials solutions uk, k = 1, 2; next applying the inequality to the solution
u = (u1 − u2)...

Exercise 19. Show the stability inequality (1.3.14).



CHAPTER 1. ANALYSIS OF ELLIPTIC PROBLEMS: VARIATIONAL FORMS, WEAK SOLUTIONS 22

1.3.3 On the regularity of the solution
1.3.3.1 Regular data - regular solution

To go further...
Previously, we have demonstrated the equivalence between the weak formulation and the classical form of the equa-

tions, under some hypothesis of regularity of the solution. For second order elliptic linear problems, u in H2(Ω) is enough
to obtain this equivalence.

Moreover more the data are regular, more the solution is regular. Let us illustrate this feature in the case of the typical
order 2 (linear) BVP (1.3.1).

Proposition 20. Let m be a integer. Let the data be regular in the sense: the geometrical domain Ω is an open bounded
set of Rd of class Cm+2; the source term f is in Hm(Ω); the equation coefficient λ is of class Cm+1 .

Then, the unique solution u ∈ V = H1
0 (Ω) of the BVP with Dirichlet conditions (1.3.1) belongs to Hm+2(Ω).

The same result holds for the unique solution u ∈ V = H1(Ω) of BVP with Neumann conditions (1.3.10); with the
boundary source term ϕ regular enough and the coefficient c in Cm.

Furthermore the “model operator” M : f 7→ u is linear continuous from Hm(Ω) into Hm+2(Ω) and there exits a
constant C such that (in the homogenous boundary condition cases):

‖u‖Hm+2 ≤ C ‖f‖Hm (1.3.15)

As a consequence, under these regularity hypothesis on data, if m > d
2 then the (weak) solution u ∈ V is a

“strong/classical/regular” solution since it belongs to C2(Ω̄) (recall Lemma 6).

The typical interesting case for second order elliptic linear problems in 3d is m = 0. That is if the RHS is L2(Ω), if
the coefficient λ in the divergence operator is C1−regular, then far from any potential geometrical or boundary condition
singularity, the solution u of the scalar linear elliptic model (1.3.1) is in H2(Ω). Therefore it is is continuous in Ω̄.

This additional regularity of the solution (H2(Ω) vs H1(Ω)) is very useful in the sequel in particular for the error
estimations between u and uh its Finite Element approximation.

1.3.3.2 Typical singularity origins

As shown above, the variational solution of the BVP (either Dirichlet or Neumann boundary conditions) can be infinitely
regular if all data are C∞ .

But what is a non-regular (i.e. a singular) solution ? What are the potential singularity origins ?
Let us consider the previous typical second order linear elliptic BVP. It admits an unique variational solution u in

H1(Ω).
Three reasons can limit “extra” regularity on its (unique) solution u. These three potential “singularity origins” are the

following:

1. Non regular equations parameters or source terms (set either in Ω or on ∂Ω),

2. Mixed boundary conditions (singularity in the change area of B.C. Dirichlet-Neumann),

3. A non regular geometrical domain Ω.

In Case 1, typical examples are the following.
If the source term f belongs to L2(Ω) “only” (it may be less regular...), the unique solution u cannot be more regular

than H2(Ω). (Actually H2 may considered as a regular solution compared to the minimal regularity H1(Ω)).
The diffusivity coefficient λ belongs to L∞(Ω) then the solution u cannot be “regular” in the sense C1 or more. In

particular the main operator of the BVP cannot be developed as follows: div(λ∇u) = −λ∆u−∇λ·∇u if λ is not regular
enough (λ has to be differentiable).

This last example highlights the interest of the weak form if the parameter λ is discontinuous. Concerning this point
we refer to the transmission problem below.

In Case 2, in a vicinity of the boundary condition change (make a figure), the solution is more than H1(Ω) but less
than H2(Ω) (it is H3/2(Ω)...); in practice it presents a local singularity, see Fig. ??.
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Figure 1.3.1: The domain Ω decomposed into two sub-domains.

In Case 3, any re-entring corner (worse, a crack !) generates a severe local singularity at the cone summit: the solu-
tion does not belong to H2(Ω) in the vicinity of the cone, see , see Fig. ?? and e.g. Fig. 2.4.4.

Recall that from the modeling point of view (in physics, mechanics, biology etc), the gradient ∇u provides to the quantity
flux ∇u · n (e.g. heat, electric, stress field etc). Hence a singularity means that the physical flux may be not in L∞ i.e.
not bounded..., see e.g. Fig. 2.4.4.

It is important to notice that these local singularities may be the critical modeling feature (e.g. those at the corner
summit). Singularities generates some difficulties for numerical methods; indeed if the modeled phenomena requires to
“catch” accurately the singularity, some particular treatments have to be developed: adaptive mesh (based on a consistent
a-posteriori error estimation, see later) or the introduction of additional FE basis function (xFEM, not studied here).

1.3.4 The transmission boundary condition
Let us consider the domain Ω splitted into two sub-domains Ωk, k = 1, 2, see Fig.

We denote by Γint the interface between the two sub-domains. We have: Ω = Ω1 ∪ Ω2 ∪ Γint.
We denote by uk = u|Ωk (resp. λk and fk) the restriction of the solution u (resp. λ and f) to Ωk, k = 1, 2.
Such a geometry splitting is natural in the case of a composite material: the two subdomains are occupied by different

materials with different conductivity λk.
Also such a splitting is required to apply Domain Decomposition Methods (DDM) (see the dedicated part of the course)

enabling the computation of the solution in parallel on multiple processors (HPC) e.g. by employing the Schwarz method.

We have the following result.

Proposition 21. The BVP: {
−div(λ(x)∇u(x)) = f(x) in Ω

u(x) = 0 on ∂Ω

is equivalent to the following BVP :

− div(λk(x)∇uk(x)) = fk(x) in Ωk (1.3.16)

accompanied with the original Dirichlet condition uk(x) = 0 on ∂Ω ∩ ∂Ωk,
plus the “transmission condition” on the interface Γint:{

u1 = u2 on Γint

λ1∇u1 · n = λ2∇u2 · n on Γint
(1.3.17)

This transmission condition imposes the continuity of: a) the solution u, b) the flux, through the interface Γint.

To prove this result, one needs first the following result.



CHAPTER 1. ANALYSIS OF ELLIPTIC PROBLEMS: VARIATIONAL FORMS, WEAK SOLUTIONS 24

Lemma 22. Let v be a fonction defined on Ω. It is assumed that:
a) the restriction of v on Ωk vk ≡ v|Ωk belongs to H1(Ωk),
b) v is continuous on Γint.
Then we have: v ∈ H1(Ω).

Proof. To be typed soon.

Proof of Proposition 21. This is the topic of the corresponding exercise session. Please consult the INSA Moodle page.
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1.4 Appendix. The Laplace operator: basic properties
This section has to be studied by your own. (It should be translated in English next season).

The Laplace operator: an omnipresent operator in modeling
L’équation elliptique linéaire type (et aussi la plus simple) est l’équation de Poisson −∆u(x) = f , ou encore plus générale-
ment l’équation suivante:

−div(λ∇u(x)) = f(x) dans Ω

où λ est donné, potentiellement dépendant de x. Rappelons que: div(∇u) = ∆u.

Cette équation d’équilibre est omniprésente en modélisation, citons les exemples suivants.

1. En thermique, cette équation modélise la diffusion du champ de température u(x) au sein d’un milieu ou
matériau de géométrie Ω. Le coefficient λ est alors la diffusivité thermique du matériau et f un éventuel terme
source extérieur. Le modèle doit être fermé en imposant des conditions aux limites. Pour cette équation, les
conditions imposées sur le bord du domaine ∂Ω, devront être une des conditions suivantes.

(a) La température est donnée: u = ud. Il s’agit des conditions de Dirichlet.

(b) Le flux de température est donné: −λ∇u ·n = ϕ. Il s’agit des conditions de Neumann. Le vecteur n désignera
toujours la normale sortante au bord.Dans le cas d’une paroi isolée, on aura: ϕ = 0, conditions de Neumann
homogène. Cette condition de flux nul au bord peut également représenter une symétrie de la solution, ou
encore une condition de sortie libre dans le cas d’une frontière ouverte.

(c) Une combinaision linéaire des deux conditions précédentes: −λ∇u·n = αu+ϕ. Il s’agit des conditions de Robin,
aussi dites de Fourier. Ces conditions de Fourier représentent, modélisent, un flux dépendant linéairement de
la valeur de u. En thermique, cela traduit un échange convectif sur une paroi. En propagation d’ondes, cela
traduirait les effets d’un matériau absorbant.

(d) Les conditions aux limites sont dites mixtes lorsque l’on considère plusieurs types de C.L.; par exemple une
condition de Dirichlet est imposée sur Γd et une condition de Neumann est imposée sur Γn. Attention on ne peut
imposer qu’une seule CL par morceau du bord, c’est à dire que dans notre exemple on aurait nécessairement:
Γd ∪ Γn = ∂Ω. Pour une équation elliptique une condition est requise sur l’intégralité du bord ∂Ω.

2. En mécanique des structures, cette équation modélise le déplacement d’une membrane plane élastique fixée sur
son bord ∂Ω. u représente alors le déplacement de la membrane, déplacement perpendiculaire au plan défini
par Ω, voir la figure précédente Fig. [fig:poisson].

3. En électrostatique, u représente le potentiel électrique associé à la distribution de charges f, voir la figure
ci-dessous. Sur ces deux exemples, vous noterez notamment l’aspect régulier de la solution.

Qualitative properties
Principe du maximum

Considérons le problème dit de Dirichlet suivant:

∆u(x) = 0 dans Ω avec u(x) = g(x) sur ∂Ω

Toute fonction solution u(x) est par définition une fonction harmonique (son laplacien est nul). On peut alors montrer
que u atteint ses extrema (minima et maxima) sur le bord de ∂Ω, et non à l’intérieur de Ω.

Cette propriété s’appelle le principe du maximum. Notons bien que le terme source f est nul. Par ailleurs, il est facile
de démontrer que cette propriété du maximum implique l’unicité de la solution u.
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Figure 1.4.1: Solution of the Poisson equation: u is the electric potential in the ring; u = 0 on the inner boundary and
u = Rsin(5θ) on the outer boundary. Image source: Wikipédia.

Propriété de la moyenne

La propriété de la moyenne s’énonce ainsi: la valeur de u, fonction harmonique, est en tout point égale à la moyenne de
ses valeurs alentours.

Autrement formulé, on a:

u(x) =
1

|B1,n|rn

∫
Bn(x,r)

u(x)dx

où|B1,n| est la mesure de la boule unité de Rn.
Dans les exemples donnés précédemment, cette propriété se traduirait ainsi:
la valeur à l’équilibre de la quantité modélisée (température, déplacement, potentiel´electrique) est égale à la moyenne

de ses valeurs environnantes.
(Rappelons que cela reste vrai en l’absence de terme source extérieur f).
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Chapter 2

Finite Element Methods: Fundamentals

Finite Element Methods (FEM) are the numerical methods of choice to solve elliptic models (e.g. those based on the
Laplace equation or on the advection-diffusion equation) and parabolic models (e.g. the heat equation). They can be used
for hyperbolic models too (e.g. the transport equation) by introducing stabilizing terms (e.g. artificial diffusion).

The principle of FEM directly derives from the variational approach studied in the previous chapter.
The basic principle consists is to replace the Hilbert space V of the -continuous- weak solutions by a subspace Vh of

finite dimension, with Vh approximating V .
The obtained discrete weak formulation posed in Vh is equivalent to an algebraic system.
This algebraic system is linear if the original PDE is linear. The corresponding matrix is called the stiffness matrix.

Origins of FEM from [?] : “Historically, the first premises of the finite element method have been proposed by the
mathematician R. Courant (without using this name) in the 1940s but it was mechanical engineers who have developed,
popularized, and proved the efficiency of this method in the 1950s and 1960s (as well as giving it its actual name). After
these first practical successes, mathematicians have then considerably developed the theoretical foundations of the method
and proposed significant improvements”.

In this chapter you will learn how to:

• derive a FE scheme,

• implement a FE code kernel (algorithm of assembly),

• validate a computational FE code.

On the utility of FE softwares, by Comsol company (Comsol Multiphyics software): “What Does Finite Element
Analysis Software Bring ? The purpose of finite element analysis (FEA) software is to reduce the number of prototypes
and experiments that have to be run when designing, optimizing, or controlling a device or process. This does not
necessarily mean that companies and research institutes save money by adopting FEA. They do, however, get more

Figure 2.0.1: Examples of FE computations - simulations. (L) A car crash test. (R) A human knee joint. Images source:
Wikipedia.
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development for their dollars, which may result in gaining a competitive edge against the competition. For this reason,
it may be reasonable to increase Research and Development resources for FEA. Once a FEA model is established and
has been found useful in predicting real-life properties, it may generate the understanding and intuition to significantly
improve a design and operation of a device or process. At this stage, optimization methods and automatic control may
provide the last degree of improvements that can be difficult to obtain with intuition only. Most modern FEA software
features methods for describing automatic control and incorporating such descriptions in mathematical and numerical
models. Optimization methods are usually included in the solution process.

The introduction of high-fidelity models have also contributed to an accelerated understanding. This has sparked new
ideas and completely new designs and operation schemes that would have been hidden or otherwise impossible without
modeling. Therefore, FEA is an integral tool for R&D departments in companies and institutions that operate in highly
competitive markets. Over time, the use of FEA software has expanded from larger companies and institutions that
support educating engineers to smaller companies in many different industries and institutions with a wide variety of
disciplines.” Text extracted from the Comsol webpage.

This chapter follows in great part the presentation in the excellent book [?], see also e.g. [?].
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2.1 Basic principles

2.1.1 Internal approximation and discrete weak formulation
Let us consider the following toy Boundary Value Problem (BVP) based on a linear elliptic PDE :

−div(λ(x)∇u(x)) + c(x) u(x) = f(x) in Ω

u(x) = 0 on Γd

−λ∂nu(x) = ϕ(x) on Γn

(2.1.1)

with ∂Ω = Γn ∪ Γd.
We assume that this BVP (2.1.1) satisfies the Lax-Milgram theory assumptions: it is assumed that λ, c ∈ L∞(Ω), λ, c >

0 a.e.
Then it admits an unique (weak) solution u in V0 = {v, v ∈ H1(Ω), v = 0 on Γd}; this solution u satisfying the

following weak formulation:∫
Ω

λ(x) ∇u(x)·∇v(x) dx+

∫
Ω

c(x)u(x)v(x) dx =

∫
Γn

ϕ(x) v(x) ds+

∫
Ω

f(x)v(x) dx ∀v ∈ V0 (2.1.2)

The basic principle of FEM to compute an approximation of the exact solution u is the following.

The weak formulation (2.1.2) is not solved in the infinite dimension Hilbert space V0 but in a finite dimension space
V0h; with V0h approximating V0 in a sense to be clarified.

The FEM consists to find uh ∈ V0h satisfying the following (discrete) weak formulation:

∫
Ω

λ(x) ∇uh(x)·∇vh(x) dx+

∫
Ω

c(x)uh(x)vh(x) dx =

∫
Γn

ϕ(x) vh(x) ds+

∫
Ω

f(x)vh(x) dx ∀vh ∈ V0h (2.1.3)

In terms of writing only, deriving the “discrete” weak formulation (2.1.2) from the “continuous” one (2.1.3) simply
consists to add subscripts h on the function space(s), the function test and the unknown.

Of course this basic principle identically applies to the general weak formulation in a Hilbert space V :{
Find u ∈ V such that:
a(u, v) = b(v) ∀v ∈ V

(2.1.4)

where the bilinear form a(., .) and the linear form l(.) satisfy the conditions of the Lax-Milgram theory.
In this case, the corresponding discrete weak formulation reads:{

Find uh ∈ Vh such that:
a(uh, vh) = b(vh) ∀vh ∈ Vh

(2.1.5)

with Vh satisfying the properties of an internal approximation (see Definition 23).
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Figure 2.1.1: Approximation of functions on meshes. (L) In 1d: a (continuous) function v ∈ V0 =H1
0 (I) approximated by

vh ∈ V0h, vh a continuous piecewise linear function; V0h ⊂ V0. (R) Same but on a 2d triangular mesh. Images source:
Wikipedia.

Definition 23. The discrete weak formulation (2.1.3) is an internal approximation of the (continuous) weak formulation
(2.1.2) if:

1. For all h, h > 0 a characteristic mesh element size (e.g. in 2d it may be the maximum value of the mesh triangles
edges), we have:

Vh ⊂ V (2.1.6)

2. ∀v ∈ V , ∃vh ∈ Vh such that:

‖v − vh‖V →h→0 0 (2.1.7)
In practice, vh(x) is an interpolation of v(x) on the mesh, defined from an interpolation operator rh : V −→ Vh, see

figures 2.1.1 and 2.1.4.

Existence-uniqueness of the FEM solution uh

Proposition 24. Let us consider the weak formulation (2.1.4) with the assumptions of the Lax-Milgram theorem satisfied.
Let Vh be an internal approximation. Then, the corresponding (discrete) weak formulation (2.1.5) in Vh is well-posed too.

This proposition is straightforward to prove. Indeed since based on an internal approximation the assumptions of the
Lax-Milgram theory are satisfied in Vh too. (Vh is equipped with the norm of V ).

FEM solution & orthogonal projection If employing an internal approximation, Vh ⊂ V , it follows that:

a(u, vh) = b(vh) ∀vh ∈ Vh, Vh ⊂ V (2.1.8)

Indeed the continuous weak formulation remains satisfied with function tests v in Vh.

Next by subtracting (2.1.5) to (2.1.8) it follows:

a(u− uh, vh) = 0 ∀vh ∈ Vh; Vh ⊂ V (2.1.9)
This equality (2.1.9) is called the fundamental Galerkin orthogonality condition.

If the bilinear form a(., .) is symmetric, a(., .) defines a scalar product. As a consequence (2.1.9) shows that :
If the bilinear form a(., .) is symmetric, if the FE solution uh(x) is defined from an internal approximation (Vh ⊂ V )

then uh is nothing else than the orthogonal projection of u onto Vh.
(Make a figure).

The great of majority of FE spaces Vh are internal approximation spaces of the Sobolev spaces Hm(Ω) (or Hm
0 (Ω) if

taking into account Dirichlet boundary conditions); a few of them are not (the latter are not studied here). When based
on an internal approximation we call the method a conforming FE method.
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2.1.2 On FE meshes
The construction of a finite dimensional space Vh is based on a mesh of the domain Ω. A mesh is a discrete representation
of the geometry Ω; essentially it partitions Ω into simple elementary “volumes” called “elements”, hence the terminology
Finite Elements. (Note that these elementary “volumes” are generally called “cells” if employing a Finite Volume method).

These elementary “volumes” may be:

• triangles or rectangles (or even quadrilateral) in 2D;

• tetrahedra, prisms, hexahedra or parallelepipeds in 3D, see Fig. 2.1.2 and 2.1.3.

The parameter h of Vh represents a characteristic size of the elements e.g. the maximum size of the circumcircles radius
of the triangles constituting the mesh.

Mesh generation is the practice of generating a polygonal or polyhedral mesh that approximates the geometric domain
Ω. This known-how is not addressed in the present course. This task may be done by an adequate software e.g. by
employing Gmsh software (Gnu license).

To be admissible a FE mesh has to satisfy a few properties. In particular, an admissible FE mesh (eg. in triangle or
quadrangles) have to satisfy the geometrical properties indicated in Fig. 2.1.2(Down).

On triangle meshes. If considering a triangulation of the geometrical domain Ω that is in 2D a subdivision of Ω
into triangles, and in higher dimension a subdivision into simplexes, tetrahedra in 3D. The triangles of a triangulation are
required to meet edge-to-edge and vertex-to-vertex, see Fig. 2.1.2(Down).

An admissible triangulation Th of the geometrical domain Ω has to satisfy the following criteria:

• Ω = ∪K∈ThK,

• The intersection between triangles is either void or equal to a single point or a complete edge,

• No element (triangle) K, K ∈ Th , can be flat.

Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation, with respect
to a metric.

The metric may the Euclidian one (the Delaunay triangulation provides almost equilateral triangles only) or a metric
derived from a-posteriori estimation of the FE solution; we refer to the sections “A-posteriori error estimations” and “Mesh
refinement” at the end of this course.

On rectangular meshes. If the domain Ω is “rectangular” in the sense its faces are parallel to the axes, Ω can be
meshed using rectangles if n = 2 and parallelepipeds if n = 3.

2.1.3 The (linear) algebraic system
Below we show that the weak FEM formulation (2.1.5) is equivalent to a system of algebraic equations. This algebraic
system is linear if (and only if) the original PDE is linear (in its unknown u(x)).
In this case, the matrix A of the linear system is called the matrix of rigidity or stiffness matrix.
Note that this terminology is usual even if the considered application is not related to structural mechanics. This termi-
nology is due to the origin of the FEM.

The FE solution is a values vector at “nodes” of the mesh. It is obtained by solving (“inverting”) the linear system.

Let us consider the problem (2.1.4) and its discrete version (2.1.5) in Vh.
The assumptions of the Lax-Milgram theory are supposed to be satisfied.

The definition of the FE space Vh sets the FE method.
We set {ϕi(x)}i=1..NN the function basis of Vh.
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Figure 2.1.2: Mesh of a 2D domain. (Up)(L) Unstructured mesh (pseudo-uniform). (Up)(R) A structured mesh (up) and
an unstructured one (containing local refinements) (down). (Images source: Wikipedia). (Down) Triangle meshes: non
conform elements.

Figure 2.1.3: Tetrahedra mesh of a domain Ω obtained with Gmsh software. This mesh contains “refined” elements.



CONTENTS 34

Classical FE spaces are studied in next section: the basis functions expressions are detailed.

The unique (discrete) solution uh(x) of (2.1.5) may be written in the basis of Vh as follows:

uh(x) =

NN∑
i=1

ui ϕi(x) (2.1.10)

Where:

• ui are the coefficients of uh(x) at the i-th node; they are called the degrees of freedom (dof);

• NN is the total number of “points”; actually they are called nodes (hence the notation NN).

Proposition 25. Let us consider the weak formulations (2.1.4) and (2.1.5) above. We assume that the assumptions of
Lax-Milgram theory are satisfied.
We consider the decomposition of uh(x) in Vh as in (2.1.10).
Then the discrete weak formulation (2.1.5) is equivalent to the following linear algebraic system:

AUh = F (2.1.11)

where:
Uh is the vector of degrees of freedom (dof), Uh = (u1, ..., uNN ), i = 1..N ; Uh ∈ RNN .
A = (aij)i,j=1..NN is the stiffness matrix defined by:

aij = a(ϕj , ϕi), 1 ≤ i, j ≤ NN (2.1.12)

F = (fi)i=1..NN is the RHS (also called source term) defined by: fi = b(ϕi(x)), 1 ≤ i ≤ NN .
Moreover since the bilinear form a(., .) is V0-elliptic then the stiffness matrix A is positive definite.
Moreover if a(., .) is symmetric then A is symmetric too.

The FE solution is the dof vector Uh i.e. the vector of values at the mesh nodes.

Proof. By combining (2.1.10) with (2.1.5), the discrete weak formulation is equivalent to:

a

(
NN∑
i=1

ui ϕi(x), ϕj(x)

)
= l (ϕj(x)) ∀j ∈ {1, .., NN}

Since the form a(., .) is bi-linear, in particular linear with respect to the unknown u (the original BVP being linear),
it follows:

NN∑
i=1

ui a (ϕi(x), ϕj(x)) = l (ϕj(x)) ∀j ∈ {1, .., NN}

Finally the equivalency with the linear system (2.1.11) follows.

The bilinear form a(., .) is supposed to V0-elliptic, see (1.2.11), therefore: ∀i, a(ϕi, ϕi) ≥ α‖ϕi‖2V .
As a consequence, the stiffness matrix A is positive definite.

2.1.4 A-priori error estimation
The a-priori estimation derived in this paragraph shows that the FE error is bounded by the distance separating the
continuous solution u ∈ V to the discrete FE space Vh.

The result below is due to J. Céa; it is called Céa’s lemma.
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Lemma 26. Let u be the solution of (2.1.4), let uh be the solution of (2.1.5) and Vh be an internal approximation of V .
We have:

‖u−uh‖V ≤ c̃ inf
vv∈Vh

‖u− vh‖V (2.1.13)

with the constant c̃ = c
ν , c the continuity constant of the bilinear form a(., .), see (1.2.10), and ν the ellipticity constant,

see (1.2.11).
Proof. We have:

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh) = a(u− uh, u− vh)

since (2.1.9) holds.
Therefore for all vh in Vh,

α‖u−uh‖2V ≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤ c‖u−uh‖V ‖u−vh‖V
It follows the inequality:

‖u−uh‖V ≤
c

ν
‖u− vh‖V ∀vh ∈ Vh

Hence the result.

Corollary 27. Let us assume that it exists :
i) a subspace V, V ⊂ V , V dense in V ;
ii) an interpolation operator rh defined from V into Vh such that: ∀v ∈ V, limh→0 ‖v − rh(v)‖V = 0.
Then the approximation method in Vh as builded above (with Vh an internal approximation of V ) converges:

lim
h→0
‖u−uh‖V = 0

Proof. We refer to [?].

In short, this proves that we have:

The FE error ‖u− uh‖V ≤ cst · the interpolation error ‖u− rh(u)‖V

2.1.5 Building up a good FE space Vh

Considering Proposition 25, Lemma 26 and Corollary 27, the FE space Vh should be built following (at least) the two
criteria below:

1. The linear system (2.1.11) is not too CPU-time consuming even for very large systems e.g. dozens of millions of dof
for 3D models.
As a consequence A must be sparse i.e. containing a very small percentage of non vanishing coefficients aij (2.1.12).

2. The distance between u ∈ V and Vh tends to 0 with the mesh size h.
This should be done by building an interpolation operator between V and Vh.

Defining a FE method consists to define the approximation space Vh.

2.1.5.1 On the Galerkin method

This a “to go further” paragraph.
Galerkin method denotes an approach to “discretize”-convert a continuous operator (e.g. a differential equation) to a

discrete problem.
Let us assume that the Hilbert space V is separable (Sobolev spaces are). Then V admits an orthonormal (Hilbertian)

basis {ei}i≥1, (ei, ej)V = δij .
For all v ∈ V , ∃αi such that v(x) =

∑
i≥1 αiei(x).

By setting h = 1/n, we may define Vh as the finite dimensional subspace generated by {e1, ..., en}.
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Figure 2.1.4: FE space Vh. Piecewise linear functions, globally continuous in Ω̄: the “hat” functions.
Up: (L&M) In 1D (R) In a 2D triangle mesh. Down: A continuous function approximated using a piecewise linear
interpolation.

However with such a choice of Vh, the stiffness matrix A is a-priori full, at least not sparse. Moreover A would be
ill-conditioned therefore providing a numerical solution very sensitive to any inherent error including rounding errors.

In brief, Galerkin’s method presents a huge interest in a theoretical point of view (for analysis of non linear problems),
but it is not relevant in a computational point of view. However Galerkin’s method has been a fundamental step for FEM.

2.1.5.2 Required features of any FE space Vh

Let us recall the two fundamentals properties the space Vh has to satisfy:

• sparsity of A,

• easy-to-build from an interpolation operator rh.

As a consequence, any FE space Vh should be composed of basis functions whose support is small i.e. supports localized
in a few mesh elements only.

Indeed this feature has two crucial consequences:

• the stiffness matrix A of the linear system is sparse;

• when the mesh size h tends to 0, the (finite dimensional) space Vh is larger and larger. As a consequence Vh should
approach better and better the (infinite dimension) space V.

A natural choice of basis functions are piecewise polynomials with small supports.
The simplest space Vh would be piecewise constant polynomials. However this choice would not lead to an internal

approximation. Indeed in the most classical context V = H1
0 (Ω), partial derivatives of vh would be Dirac measures and

not L2 functions...

The slightly more complex choice would be Vh defined as the space of linear functions (polynomials of degree 1), non
continuous in Ω; that is discontinuous piecewise linear functions. However this choice would not lead to an internal
approximation for the same reason as before.

The simplest conforming FE space The simplest FE space Vh with Vh ⊂ V (V typically being a Sobolev space)
seems to be the space of piecewise linear (affine) functions, globally continuous in Ω̄.

That is:

Vh = {vh, vh ∈ C0(Ω̄), vh|K linear (affine) for all element K of the mesh} (2.1.14)
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In vertu of Lemma 22, Vh defined as above is a subspace of H1(Ω).

For Vh defined by (2.1.14), we have, see Fig. 2.1.4:

a(ϕj , ϕi) 6= 0 if and only if Supp(ϕj) ∩ Supp(ϕi) 6= ∅ (2.1.15)
Therefore the stiffness matrix A remains extremely sparse (a dozen of non vanishing coefficients per rows) even for

very large numerical systems e.g. NN ∼ 106 − 109.
Therefore linear algebra methods, e.g. the preconditioned Conjugate Gradient or GMRES algorithms, may apply to

efficiently solve the FE linear system (2.1.11).

2.2 The Pk-Lagrange FE
The usual functional spaces to solve elliptic BVP are the spaces Wm,p(Ω), m, p ≥ 1. This includes the most classical
Sobolev spaces H1(Ω), H1

0 (Ω), H2(Ω). All of them are Hilbert spaces.
The basic principle of the mostly employed Finite Element Methods (FEM) are internal approximations as sketched

in the previous section.
In the next sections we study the most classical FEM for scalar linear order 2 BVP problems, namely the Pk-Lagrange

methods.

2.2.1 The P1-Lagrange FE in 1D
In the present section, the linear case i.e. k = 1 is studied in 1d for a typical linear BVP.

First let us point out that meshing a 1D domain is straightforward.
Let us consider Ω =]0, L[ . If we mesh this domain with an uniform mesh of size h, we have: h = L

(NN−1) with NN
the total number of the mesh points (“vertices”).

The mesh vertices xi satisfy:

xi = (i− 1)h, 1 ≤ i ≤ NN (2.2.1)

Exercise

Let us consider the following model (2.1.1) with Neumann bc:
−(λ(x)u′(x))′ + c(x) u(x) = f(x) in ]0, L[

−λ(0)u′(0) = 0

−λ(L)u′(L) = φ

(2.2.2)

with the following assumptions on its data: infx c(x) = c− > 0 and infx λ(x) = λ− > 0.

Q1) Show that under these assumptions and in vertu of the Lax-Milgram theorem, this BVP admits an unique weak
solution u in V with V = H1(0, L)
*

The P1 -Lagrange basis function in 1d The P1 FE scheme is defined from Vh builded up as the space of functions
which are globally continuous and linear (actually affine) on each element.

In the 1D case this reads:

Vh={vh,vh∈ C0([0, L]), vh|K ∈ P1 ∀K=[xi,xi+1], i=1,..,NN}Vh={vh,vh∈ C0([0, L]), vh|K ∈ P1 ∀K=[xi,xi+1], i=1,..,NN}
(2.2.3)

Q2) Show that Vh is a sub-space of V = H1(Ω).
Correction hint: In the present 1d case, this result is trivial. Indeed, let us recall Lemma 6 and Lemma 22.
*

Let us define the “hat functions” as follows, see Fig. 2.1.4:
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ϕi(x) = ϕ

(
x− xi
h

)
(2.2.4)

with ϕ(.) the “normalized hat function” defined by: ϕ(x) = (1− |x|) for |x| ≤ 1, ϕ(x) = 0 otherwise.

Q3) Let vh ∈ Vh. Following (2.1.10), we write: vh(x) =
∑NN
i=1 vi ϕi(x) with {ϕi(x)}i the hat functions defined above.

Show that any function vh ∈ Vh is uniquely defined by its values vi at the mesh vertices xi .
Deduce that the hat functions set {ϕi(x)}i defines a basis of Vh.

Correction. This result is proved in the 2d case in Proposition 29.
*

Q4) Show that:

u(xj) = uj ∀j, 1 ≤ j ≤ NN (2.2.5)

That is the i-th degree of freedom (dof) uj is nothing else than the value of the FE approximation at the i-th point xi.

Correction. For any function vh in Vh, we write the decomposition: vh(x) =
∑NN
i=1 viϕi(x).

One easily notice the following remarkable property of the P1 basis functions (the hat functions):

ϕi(xj) = δij ∀i, j, 1 ≤ i, j ≤ NN (2.2.6)

Then the results follows straighforwardly.
*

Q5) Show that the discrete weak formulation in Vh is equivalent to a linear system.
Detail the i-th equation of this system for xi inside the domain (i = 2..(NN − 1)) and for xi at the boundaries (i = 1 and
i = NN).

Correction. The discrete weak formulation of the BVP (2.2.2) reads as follows:

Find uh ∈ Vh satisfying: a(uh, vh) = l(vh) ∀vh ∈ Vh (2.2.7)

With:

a(uh, vh) =

∫ L

0

λ(x) u′h(x)v′h(x) dx+

∫ L

0

c(x)uh(x)vh(x) dx

l(vh) = φvh(L) +

∫ L

0

f(x)vh(x) dx

The discrete weak formulation is equivalent with: a(uh, ϕi) = l(ϕi) ∀i, i = 1, ..NN .

Moreover, we decompose uh into the basis: uh(x) =
∑
j ujϕj(x).

It follows the i-th equation (those related to the i-th node of the basis):

n∑
j=1

uj

∫ L

0

λ(x) ϕ′j(x)·ϕ′i(x) dx+

n∑
j=1

uj

∫ L

0

c(x)ϕj(x)ϕi(x) dx = φ ϕi(L) +

∫ L

0

f(x)ϕi(x) dx ∀i, j = 1..NN (2.2.8)

Note that ϕi(L) 6= 0 only for i = NN.
Then the NN equations are equivalent to the linear system:

AUh = F (2.2.9)

with Uh = (u1, ..., uNN ) the vector of degrees of freedom (dof), A = (aij)i,j=1..NN the stiffness matrix with:

aij = a(ϕj , ϕi) =

∫ L

0

λ(x) ϕ′j(x)ϕ′i(x) dx+

∫ L

0

c(x)ϕj(x)ϕi(x) dx 1 ≤ i, j ≤ NN (2.2.10)
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and

Fi = φ ϕi(L) +

∫ 1

0

f(x)ϕi(x)dx, 1 ≤ i ≤ NN

The basis functions ϕi have a small support, more precisely the two segments whose x
i
is an extremity, see Fig. 2.1.4.

Therefore the intersection of supports of ϕi and ϕj is empty excepted if xi and xj belong to the same segment (segments
are the 1D elements).

As a consequence, the coefficients in the stiffness matrix corresponding to the i-th equation for internal nodes of the
numerical model (i = 2, .., NN − 1) read:

aij =

∫ xi+1

xi−1

λ(x) ϕ′j(x)ϕ′i(x) dx+

∫ xi+1

xi−1

c(x)ϕj(x)ϕi(x) dx for j = {(i− 1), i, (i+ 1)} (2.2.11)

At the boundary x = 0, the first equation of the system (i = 1) simply reads:∫ x2=h

x1=0

λ(x) ϕ′j(x)ϕ′i(x) dx+

∫ x2

0

c(x)ϕj(x)ϕi(x) dx =

∫ x2

0

f(x)ϕi(x)dx for j = {1, 2} (2.2.12)

At the boundary x = L, the last equation (i = NN) reads:

∫ xNN=L

xNN−1

λ(x) ϕ′j(x)ϕ′i(x) dx+

∫ L

xNN−1

c(x)ϕj(x)ϕi(x) dx = φ +

∫ L

xNN−1

f(x)ϕi(x)dx for j = {NN − 1, NN}

(2.2.13)
*

Q6) Deduce from the previous question that the stiffness matrix A is tridiagonal (like it would be the case if using a
Finite Difference method).
*
Q7) Let us consider the particular case λ(x) = (λ0 + x), λ0 constant and c = c0 constant.
Propose two methods to calculate the matrix coefficients aij .

***

To compute the integrals: quadrature formulas The exact values of the integrals in (2.2.11) and in the RHS may
be difficult or even impossible to calculate, depending on the given functions λ(x), c(x) and f(x).

Moreover these calculations may be even more complex if the degree of the polynomials ϕi(x) is higher.
To handle general cases, numerical integration (quadrature formulas) is employed. We set:∫

Ω

F (x) dx ≈
NG∑
k=1

ωkF (xGk ) (2.2.14)

with ωk the weigh coefficients and xGk the (Gauss) points.
The choice of (xGk , ωk) determine the accuracy order of the quadrature formula.
The order of the employed quadrature Gauss formulas have to be in adequation with the degree of the integrand if

polynomial.
If the integrand is not polynomial it has to be consistent with the “complexity” of the integrand that is in function of

the expression of the equations parameters e.g. (λ, c)(x).

On the CPU time consumption It is worth to point out that the most CPU time consuming part of a FE code is
the resolution of the linear system AUh = F and the computation of the integrals...
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On the FE terminology

• Points xi are the mesh “vertices”. Moreover these points “carry” a value of the unknown uh; as a consequence they
called the nodes of the FEM too. Here the vertices set equals the nodes set.
In general cases, the “vertices” (geometry information on the mesh) can be “nodes” or not.

• Since vh is uniquely defined by its values at the nodes, the FE method above is called Lagrange FE.
Later we will introduce FE spaces for which functions vh will be uniquely defined by their value(s) at the node and
their derivative(s). Such FE are called Hermite FE.

Elements of Vh cannot be regular solutions (regular in the sense Ck) Functions of Vh do not admit second
derivatives; indeed they are Dirac measures therefore not regular functions. Therefore a solution of the classical form of
the BVP cannot be a function of Vh. On the contrary, functions of Vh can be weak solutions (i.e. solutions of the weak
formulation).

On the link between the FE method and the FD method It will be shown in the advection term section that in
1D the standard P1-Lagrange FEM (for the present equation) is nothing else than the standard FD scheme !
Moreover if considering in addition the linear advective term, the present FE scheme equals the centered FD scheme, see
next section on the advection term.

2.2.2 The Pk-Lagrange FE in nD
From now the geometric domain Ω is a bounded open set of Rn, n ≥ 2 . In practice n = 2 or 3.

2.2.2.1 Triangulation of Ω

It is assumed that Ω is a polyhedral (polygonal if n = 2); thus it is possible to mesh exactly the domain boundary ∂Ω.
For curves boundaries, we may use adequate Finite Element e.g. curved P2 elements, see the dedicated exercise session.

As a first step we consider here a mesh of Ω constituted by triangles if n = 2 or by tetrahedra if n = 3, see e.g. Fig.
2.1.2 and 2.1.3. (Following [?], triangles and tetrahedra may be grouped in the more general family of called N-simplices).

We consider an admissible triangulation Th of Ω, see Section 2.1.2.

Remark 28. As already indicated in Section 2.1.2 if the domain Ω is “rectangular” in the sense its faces are parallel to the
axes, Ω can be meshed using rectangles if n = 2 and parallelepipeds if n = 3. In this case the corresponding FE spaces Vh
differ from the Pk-Lagrange ones; they have to be adapted.

Rectangular elements lead to the so-called Qk-Lagrange FE. The Qk-Lagrange FE are studied as exercises (with k = 1
and 2).

2.2.2.2 The FE space Vh & basis functions

Lagrange type FE indicates that the degrees of freedom (dof) are point values of functions on the mesh.
On the contrary, the Hermite type FE are such dof are point values and derivative(s) values on the mesh.

Given an admissible triangulation Th of Ω , the Pk−Lagrange FE, k ≥ 1, is defined by the following FE space:

Vh = {vh, vh ∈ C0(Ω), vh|Ki ∈ Pk ∀Ki ∈ Th} (2.2.15)
In practice k = 1, 2 and at maximum k = 3.
We define the subspace Voh which includes the Dirichlet boundary conditions:

V0h = {vh, vh ∈ Vh, vh = 0 on Γd} (2.2.16)

with Γd the part of the boundary where (homogeneous or not !) Dirichlet conditions are applied. We may have
Γd = ∂Ω.
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Proposition 29. Let Vh be defined by (2.2.15) with k ≥ 1. The following properties hold:

• Vh is an internal approximation of V = H1(Ω) .

• There exists a basis {ϕi(x)}i=1..NN of Vh such that:

ϕi(xj) = δij 1 ≤ i, j ≤ NN (2.2.17)

• Any function vh in Vh is uniquely defined by its values at the nodes xi, with:

vh(x) =

NN∑
i=1

vi ϕi(x) ∀x ∈ Ω (2.2.18)

Indeed for all j ∈ {1 . . . NN}, vh(xj) = vj .

The set of values {v1, ...., vNN} are called the degree of freedom (dof) vector, that is the values of vh at the
nodes xi, i = 1..NN , see Fig. 2.2.1.

Proof. (* To go further *)
Let us prove these results in the case k = 1 (linear elements) and n = 2 (2D geometry).
i) Let us prove that Vh is an internal approximation of V = H1(Ω).
Let Tk and Tk′ be two adjacent triangles with the common edge denoted [A,B] (make a figure).
Let w ∈ Vh ; we set: v = w|Tk , v′ = w|Tk′ . We have: (v − v′)(A) = 0 and (v − v′)(B) = 0.
Let us show that: (v − v′)(s) = 0,∀s ∈]A,B[.
Let M ∈]A,B[, M = λA+ (1− λ)B with λ ∈]0, 1[.
The local functions v and v′ are linear therefore:

(v − v′)(M) = λ(v − v′)(A) + (1− λ)(v − v′)(B) = 0

Therefore: (v − v′) = 0 on [A,B].
In vertu of Lemma 22, we have: Vh ⊂ H1(Ω).

If considering the subspaces V0 = {v; v ∈ H1(Ω), v|Γd = 0} and V0h, V0h ⊂ V0, the same result holds.

ii) Next let us prove that any function vh in Vh is uniquely defined by its values at the nodes Ni of coordinates (xi, yi).
Let Tk be the triangle (A1, A2, A3). For P1-Lagrange elements, the nodes are the vertices of the element.
Then we show that the restriction of vh to Tk is entirely determined by its values at the vertices Al, l = 1, 2, 3.
We have vh|Tk ∈ P1 therefore ∃(α, β, γ) such that: vh(x) = αx+ βy + γ.
Moreover:

v(Al) = vl, l = 1, 2, 3⇐⇒

 α αx1 βy1

α αx2 βy2

α αx3 βy3

 =

 v1

v2

v3

 (2.2.19)

We have:

det

 1 x1 y1

1 x2 y2

1 x3 y3

 = (x2 − y3)(x3 − y2)− etc = ±2 area(Tk) (2.2.20)

Therefore for an admissible triangulation Th (no triangle is flat), the linear system above is invertible: it admits an
unique solution (α, β, γ). This ends to show the result.

2.2.2.3 The classical higher order Pk-Lagrange FE (k = 2, 3)

We illustrate on Fig. 2.5 the classical higher order Pk-Lagrange FE (k = 2 and 3) in 1D.
Recall that since for P1-Lagrange elements the functions are affine, the nodes are the vertices.
For more details on Pk-Lagrange FE, we refer to the exercises sessions.
It is worth to point out that a second order method (k = 2) is preferable to a first order one (k = 1) since much more

accurate, see the convergence section.
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Figure 2.2.1: (Up) Basis functions on the elementary segment [-1,+1] (element defined by 2 points): Pk-Lagrange with 2,
3 and 4 nodes. (Down) Pk-Lagrange FE in 2D and 3D (d-simplices elements): order 1, 2 and 3; number of nodes n.
Images extracted from [?] and “Lectures on the FEM” A. Logg, K.-A. Mardal Eds.
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2.3 FE code kernel: the assembly algorithm
The assembly algorithm constitutes the core of a FE code.

2.3.1 The assembly algorithm & elementary matrices
To obtain the FE solution, one has to solve the linear system AUh = b with for example:

aij = a(ϕj , ϕi) =

∫
Ω

λ(x) OϕjOϕi(x) dx+

∫
Ω

c(x)ϕjϕi(x) dx

li = l(ϕi) =

∫
Ω

f(x)ϕi(x) dx−
∫

Γn

Φ(s)ϕi(s) ds

The FE solution is the dof vector Uh.

2.3.1.1 The linear system coefficients to be computed

Each integral of the discrete weak formulation is decomposed onto the elements K of the mesh, or on their edges - faces
∂K: ∫

Ω

· dx =
∑
K∈T

· dx (2.3.1)

∫
Γ

· ds =
∑
∂K∈−

· ds (2.3.2)

Recall that each integral is non vanishing if and only if the considered nodes Ni and Nj belong to a same element, see
Fig. 2.3.1.1.

Let us consider as an example the 0-th order term:∫
Ω

c(x)ϕjϕi(x) dx =
∑
K∈T

∫
K

c(x)ϕjϕi(x) dx 6= 0 if and only if supp(ϕi ∩ ϕj) 6= 0

Data structures required from the mesh

To make the computations above, one needs the following information from the mesh.

• Points & elements (geometry): NE, NP, xk = coord(IP = 1..NP, k = 1 · · · d)

• Nodes (interpolation): NN, ref(IN = 1..NN)

For P2-Lagrange FE in 3d: 4 points (vertices) and 10 nodes per element.

2.3.1.2 The assembly algorithm

The assembly algorithm constitutes the core of a FE code. This algorithm consists to add, assembly the contribution of
each element K.

The algorithm is as follows: see Algorithm 2.1.
Remark 30. - A loop on the nodes instead on the elements (with the use of the connectivity table) would be much more
CPU time consuming.

The complexity of the assembly algorithm above is relatively low compared to the linear solver one (linear algebra,
typical complexity ∼ k NN2).
However a high-order quadrature formulae would greatly increase the assembming algorithm CPU time.

- If A is symmetrical then the loop on JN2 may be shorten as:

IN2 = modulo(IN1, NN(IE) + 1)

- Coding the assembly algorithm may be complicated.
Indeed e.g. for a coupled 3D model on tetrahedra, order 2, with ~10 dof per node, one get: ~ 100 dof per element).
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Figure 2.3.1: (L)(Up) Supp(ϕi ∩ ϕj) = ∅: the FE matrices are sparse.
(L)(Down) A sparse FE matrix (of relatively small size and weird numbering algorithm).
(R) Local and global node numbering: example for a P1 Lagrange FE.
NONO(IE, JN) is the connectivity table built up by the meshing software (and provided by file).

Exercise: make a very simple mesh by hand and write the information required to describe it.

On the elementary matrices.

We may define the elementary matrices E of sizes NNE ×NNE, NNE = NN(IE).
Then the assembly algorithm consists to add, “super-impose” all the elementary matrices.

2.3.1.3 Data structures required from the mesh (resumed)

In a FE code on need the following tabs and data; the latter are provided by the mesh generator.

• Points & elements (geometry):

– NE, ref(IE = 1..NE) if presence of few materials or areas within the domain
– NP, xk = coord(IP = 1..NP, k = 1 · · · d)

• Nodes (interpolation):

– NN,NNE(IE = ..NE) (if presence of a mix of elements),
– ref(IN = 1..NN) for boundary conditions.
– CONNEC(IE, JN)(called “NONO(IE, JN)” above): the connectivity table.

2.3.2 How to introduce the Dirichlet boundary conditions ?
Either a) by considering the equation as a weak constraint; or b) by imposing the node value in the stiffness matrix.

Solution a) implies to introduce a Lagrangian multiplier, see the dedicated section at the end of the course.
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Figure 2.3.2: Assembly algorithm illustration
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Algorithm 2.1 Assembly algorithm

• Loop on the elements IE = 1 . . . NE

– Loop on the local node numbers JN1 = 1 . . . NN(IE) (e.g. 3 nodes for a P1 element in 2d).
∗ IN1 = NONO(IE, JN1): global number IN1 of node JN1 of element IE.
IN = NONO(IE, JN): connectivity table provided by the mesh generator.

∗ Loop on the local node numbers JN2 = 1 . . . NN(IE):
· IN2 = NONO(IE, JN2): global number of JN2.
· Compute the integrals e.g.

∫
IE

c(x) ϕIN1(x)ϕIN2(x) dx,

in fact the integrals
∫
IE

c(x) ϕJN1(x)ϕJN2(x) dx, see details later when using the change of variables.

This integral may be viewed as of the coefficient of the “elementary matrix” E of size NN(IE)2 (e.g.
3× 3)
EJN1,JN2 =

∫
IE

c(x) ϕJN1(x)ϕJN2(x) dx.

· Assembly the rigidity matrix A of size NN2 (e.g. 104 × 104 in 2d):
AIN1,IN2 = AIN1,IN2 + EJN1,JN2

∗ End loop on JN2

∗ Assembly the RHS e.g. LJN1 =
∫
IE

f(x) ϕJN1(x) dx

bIN1 = bIN1 + LJN1

– End loop on JN1

• End loop on IE

Solution b) is as follows.
The dof vector Uh = (u1 · · ·uNN ) is augmented with the Dirichlet nodes.

Next, the corresponding (discrete) equation

ui = g(xi) i = 1, ..., nnd

is coded into the stiffness matrix as follows:

ith equation →



a11 0
. . .

...
. . . 0

0 0 aii 0 0

0
. . .

...
. . .

0 a(NN+nnd)





u1

...

ui

...

u(NN+nnd)


=



b1
...

bi−1

×
bi+1

...
b(NN+nnd)


→

−a1igi

aiigi

−a(NN+nnd)igi

(2.3.3)
The RHS b is modified as required:

• the i-th value bi is set to aiigi,

• For j = 1, · · · , (NN + nnd), j 6= i : bj = bj − ajigi.

As a consequence the i-th equation of the linear system reads as required: aiiui = aiigi with i corresponding to a Dirichlet
node.

The algorithm to impose the Dirichlet condition ui = g(xi) with i ∈ {1, .., nnd} is summarised in Algo. 2.2.
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Algorithm 2.2 Imposing the Dirichlet condition ui = gi in the linear system

• For j = 1, · · · , (NN + nnd), j 6= i ; j not a Dirichlet node number:

– aji = aij = 0

– bj = bj − ajigi

• bi = aiigi

Figure 2.3.3: Change of variables onto the reference element K̂. Here in the case of a triangle.

How to recognize a node on a given boundary ? By introducing a reference number for each node (or vertex). This
may be as a tab provided by the mesh generator.

Such a tab necessary to handle the boundary conditions.
By convention, the value ref = 0 corresponds to nodes in the interior of Ω.

2.3.3 Change of variables onto the reference element K̂

To compute the integral terms of the linear system coefficients it will be much more simple (and elegant) to make a change
of variables to a reference element K̂, see Fig. 2.3.3.1.

2.3.3.1 The geometric change of variable onto K̂

To do so we define the change of variable (geometric transformation) F such that:

K = F (K̂) (2.3.4)

with K̂ the “reference element” defined in [0, 1]n.
F is a change of variables if and only F is of class C1(

¯̂
K), F bijective, with F−1 of class C1.

In the case of a triangle K = (A1A2A3), vertex Ai has coordinates(xi, yi), the reference triangle K̂ is defined as
K̂ = (Â1Â2Â3) with, see Fig. 2.3.3.1: Âi = F−1(Ai) i = 1, · · · , 3.

The following property holds: n- simplexes (triangles, tetrahedra in 2d and 3d) are preserved by affine transformations
i.e. F (x) is affine.

For the triangle K = (A1A2A3), we have:

F : (x̂, ŷ) 7→ (x, y) = F (x̂, ŷ) =

{
(x2 − x1)x̂ +(x3 − x1)ŷ + x1

(y2 − y1)x̂ +(y3 − y1)ŷ + y1

(2.3.5)

Since F is affine, |det(DF )| is constant and:

x = DF · x̂ +A1 (2.3.6)

with:
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DF =

(
(x2 − x1) (x3 − x1)
(y2 − y1) (y3 − y1)

)
(2.3.7)

We have: |det(DF )| = 2|K| i.e. twice the element area.
It is worth to notice that the elements areas |K| should be computed from the mesh generator output files (i.e. out of

the computational code core).
Moreover these values can be computed by the following simple formula: |K| = 1

4

∣∣∣−−−→A1A2 ∧
−−−→
A1A3

∣∣∣.
Let us remark that the basis functions in K̂ are the image by F−1 of the basis functions defined in K. Indeed we have:

Lemma 31. Let {ϕi}i=1..NNE be the basis functions defined on K with ϕi(x) ∈ P , ∀i.
We assume that: ϕi(Nj) = δij ∀i, j, 1 ≤ i, j ≤ NNE.
Let F be the geometric transformation (change of variables) defined above.
Then {ϕ̂i = ϕi ◦ F}i=1..NNE is the basis functions defined on K.

Proof. We set: N̂i = F−1(Ni). We have: ϕ̂i(N̂j) = δij ∀i, j. This proves the result.

Change of variable for 0-th order terms

As an example, let us consider the following term:
∫
K
c(x)ϕj(x)ϕi(x) dx. We have:

∫
K

c(x)ϕj(x)ϕi(x) dx =

∫
K̂

c ◦ F (x̂) ϕj ◦ F (x̂)ϕi ◦ F (x̂) |det((DF )| dx̂ (2.3.8)

=

∫
K̂

ĉ(x̂) ϕ̂j(x̂)ϕ̂i(x̂) |det((DF )| dx̂ (2.3.9)

in vertu of the lemma above.

Change of variable for 1-st order terms

Let us consider the following term:
∫
K
λ(x) Oϕj(x)Oϕi(x) dx.

The ∇ operator is implicitly with respect to the current variable x. Thus, to make a change of variable in such integrals
we need the change the gradient too.

We have
Lemma 32. Let F be the geometric transformation (change of variables) defined above. We have:

Oxϕi ◦ F (x̂) = TDF−1 ◦ ∇̂x̂ϕ̂i(x̂) ∀i, 1 ≤ i ≤ NN (2.3.10)
Proof. We have: ϕi(x1, · · · , xn) = ϕ̂i(x̂1, · · · , x̂n). Therefore: ∀k ∈ {1, .., n},

∂kϕi(x1, · · · , xn) =

n∑
l=1

∂lϕ̂i(x̂1, · · · , x̂n).
∂x̂l
∂xk

(2.3.11)

Recall that:

DF (x̂, ŷ) =


∂x1

∂x̂1
· · · ∂x1

∂x̂n
...

...
∂xn
∂x̂n

· · · ∂xn
∂x̂n

 ; TDF−1(x, y) =


∂x̂1

∂x1
· · · ∂x̂n

∂x1

...
...

∂x̂1

∂xn
· · · ∂x̂n

∂xn

 (2.3.12)

The end of the proof is quite straightforward (calculations to be finished in exercise).

Let us point out that these change of variables are valid even if F is not affine.
In the case F affine, of course the Jacobian |det(DF )| is constant.

In the example above, we obtain:∫
K

λ(x) Oϕj(x)Oϕi(x) dx =

∫
K̂

λ̂(x̂)
(
TDF−1 ◦ ∇̂ϕ̂j

)
(x̂)

(
TDF−1 ◦ ∇̂ϕ̂i

)
(x̂) |det(DF )| dx̂ (2.3.13)
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Change of variable for boundary terms

The principle is exactly the same as above. If we consider for example the following 1d term
∫

Γ
Φ(s)ϕi(s) ds, we have:∫

Γ

Φ(s)ϕi(s) ds =

∫ +1

0

Φ̂(ŝ)ϕ̂i(ŝ) |Γ| dŝ (2.3.14)

2.3.3.2 Isoparametric FE

Isoparametric FE are FE with the geometric transformation (change of variables) F belonging to the interpolation space
P .

For example for P2-Lagrange FE, F is not simply an affine function, it is P2 too.
The typical classical Iso-FE are:

• (P2−iso FE): they enable to generate “triangles” with curved edges. These elements are particularly interesting to
properly approximate curved domain boundaries.

• (Q1-iso FE): they enable to generate quadrilaterals (also called quadrangles) and not simply parallelograms.

These two classical Iso-FE are studied in exercise(s).

2.3.4 On triangles & tetrahedra (n-simplexes): barycentric coordinates
In a n-simplex (triangles in 2d, tetrahedra in 3d), it is much more convenient to use the barycentric coordinates instead
of the Cartesian coordinates.

2.3.4.1 The barycentric coordinates

Definition 33. Let K be a (non-degenerated) n-simplex with vertices (Ai)1≤i≤n+1; Ai = (ai,j)1≤j≤n.
The barycentric coordinates (λj)1≤j≤n+1 of a point x ∈ Rn are defined as follows:

(n+1)∑
j=1

λj = 1, xi =

(n+1)∑
j=1

λjaj,i for i = 1, · · · , n. (2.3.15)

Proposition 34. Let K be a (non-degenerated) n-simplex and (λj)1≤j≤n+1 its barycentric coordinates. We have the
following properties:

1. The barycentric coordinates (λj)1≤j≤n+1 are affine functions of x.

2. K is characterized as:
K = {x ∈ Rn s.t. λj(x) ≥ 0, j = 1, · · · , n} (2.3.16)

3. The (n+ 1) faces of K are the intersections of K and the n hyperplanes λj(x) = 0, j = 1, · · · , n.

Make a figure.

2.3.4.2 Lattices

To go further.
From these barycentric coordinates, one can define particular points sets of the n-simplex K: the so-called lattices of

order k.
A lattice of order k denoted by Σk is defined by:

Σk = {x ∈ K s.t. λj(x) ∈ {0, 1

k
, · · · , (k − 1)

k
, 1}, for j = 1, · · · , n} (2.3.17)

For k = 1, Σ1 is the set of vertices of K.
For k = 2, Σ2 equals Σ1 plus the midpoints of the edges, see Fig. 2.3.4; etc.

Let us denote by {M1, · · · ,Mnk} the nk points contained in the lattice Σk.
For example, Σ1 = {A1,A2, A3} ; n1 = 3.
In an n-simplex K, the lattice Σk enables to characterize the polynomials of Pk as follows.
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Figure 2.3.4: Lattice of order 1, 2, and 3 for a triangle (top) and a tetrahedron (bottom). The circles represent the points
of the lattice. Image extracted from [?].

Lemma 35. Let K be an n-simplex.
For k ≥ 1, any polynomial of Pk is uniquely determined by its values at the lattice points {M1, · · · ,Mnk}.
In other words, it exists a basis {ψ1, · · · , ψnk} of Pk such that: ψi(Mj)=δij 1 ≤ i, j ≤ nk.

Proof. Please consult [?].

2.4 Convergence and error estimation
Céa’s lemma (Lemma [?]) shows that the (a-priori) FE error ‖u− uh‖V in the “energy space” V is upper bounded by the
distance separating the continuous solution u ∈ V to the discrete FE space Vh.

Below we define the interpolation operator πh in Vh and we present the resulting interpolation error.

2.4.1 Interpolation operator & error
We define the Pk-Lagrange interpolation operator πh as follows:

For all v ∈ V, πh(v)(x) =

NN∑
i=1

v(xi)ϕi(x) ∀x ∈ Ω (2.4.1)

with {ϕi(x)}i=1...NN the Pk-Lagrange FE basis.

If considering P1-Lagrange FE basis (k = 1) then the interpolation function πh(v)(x) is simply the piecewise linear
function which coincides with the values of v at nodes xi, i = 1, .., NN ({xi}i are the mesh vertices too), see Fig.2.1.4
(Down).

In 1D, πh(v) is well defined for any function in V since V = H1(I) ⊂ C0(Ī), see e.g. Fig. 2.1.4 (Down).
On the contrary in higher dimensions (n = 2, 3), the functions v of H1(Ω) are generally not continuous at all points...

Therefore, the interpolated functions v will need to be more regular than H1(Ω) to be in H1(Ω) ∩ C0(Ω̄).
Note that we have in 2D and 3D the following inclusion: H2(Ω) ⊂ C0(Ω̄).

The following estimation of the interpolation error is technical but crucial to establish the forthcoming FE error
estimation.
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Proposition 36. Let Vh be the FE space defined from the Pk-Lagrange FE basis, see (2.2.15).
The following properties hold.
i) For all v ∈ H1(Ω) ∩ C0(Ω), the interpolation function πh(v) defined by (2.4.1) is well defined and the interpolation

error is convergent:

lim
h→0
‖v − πh(v)‖H1 = 0 ∀v ∈ H1(Ω) (2.4.2)

ii) For all v ∈ Hk+1(Ω), the interpolation function πh(v) is well defined and it exists a constant c > 0 (c independent
of v and h) such that:

‖v − πhv‖H1 ≤ c hk ‖v‖Hk+1 (2.4.3)

Proof. Note that in 2D and 3D cases (n = 2, 3), we have (k + 1) > n
2 , therefore H

k+1(Ω) ⊂ C0(Ω), see Lemma 6.
Therefore, here by assumption the interpolation function πh(v) is well defined.

We refer to [?] for the proof of the proposition: Section 6.2.2 in 1d and Section 6.3.2 (Proposition 6.3.16) in nD.

2.4.2 FE error estimation in the energy space V

2.4.2.1 A-priori error estimation: general case

As an immediate consequence of the interpolation error estimations above and Céa’s lemma, it follows: a) the convergence
of the FE scheme follows; b) an estimation of the FE error in the “energy space” V = H1(Ω).

We have

Theorem 37. Let u be the (unique) solution of the general weak formulation (2.1.2), let Vh be the Pk-Lagrange FE space
defined by (2.2.15) and let uh be the solution of (2.1.5) (i.e. the FE solution). The Lax-Milgram theory assumptions are
supposed to be satisfied.
Then the Pk-Lagrange FE scheme is convergent:

lim
h→0
‖u− uh‖H1 = 0 (2.4.4)

Moreover if u ∈ Hk+1(Ω), it exists a constant c > 0 (c is independent of u and h) such that:

‖u− uh‖H1 ≤ c hk ‖u‖Hk+1 (2.4.5)
Proof. It is straightforward; the proof relies on the (relatively difficult) interpolation error estimation (2.4.3).
Indeed Lemma 26 states that:

‖u−uh‖H1 ≤ c inf
vh∈Vh

‖u− vh‖V

Using (2.4.3) we obtain (2.4.5).

2.4.2.2 Typical cases

The BVP is (linear) second order model (e.g. based on the Laplace operator) then the “energy space” is a subspace of
H1(Ω). Ω may be a 2d or 3d geometry, therefore the condition (k + 1) > n

2 is satisfied.
Typical cases are the following:

• Linear elements (k = 1) and a “regular” (H2) solution.
If the exact solution uex ∈ V ∩H2(Ω) then:

‖uex − uh‖H1 ≤ c h ‖uex‖H2 (2.4.6)

Then the FE scheme is linear (order 1) in the space energy V .
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• Quadratic elements, k = 2 and an “extra regular” (H3) solution.
If the exact solution uex ∈ V ∩H3(Ω) (i.e. the exact solution needs to be more regular than before...) then:

‖uex − uh‖H1 ≤ c h2 ‖uex‖H3 (2.4.7)

Then the FE scheme is quadratic (order 2) in the space energy V (if the solution is regular enough).

Remark 38. The actual FE scheme order of a computational code may be numerically measured, see next paragraph for
the method description.

When numerically measuring the FE scheme order, it turns out that the FE error estimation (2.4.5) is optimal if....
the solution is regular enough.

However this holds if the integrals (of the stiffness matrix coefficients and the RHS) are numerically evaluated without
errors: the numerical integration have to be consistent with the target accuracy.

2.4.2.3 On the numerical integration errors

In practice, these integrals are not exactly evaluated since they are computed by numerical integration. Nevertheless, if
the employed quadrature formulas are “high-order enough”, the order k of the FE scheme should be recovered.

Indeed the discrete weak form a(uh, vh) = l(vh) ∀vh ∈ Vh is equivalent to the linear system AUh = b with the
coefficients:

aij = a(ϕj , ϕi)and li = l(ϕi)

For example: a(ϕj , ϕi) =

∫
Ω

λ(x) ∇ϕj∇ϕi(x) dx and l(ϕi) =
∫

Ω
f(x)ϕi(x) dx.

However what is actually solved is the formulation:

ah(uh, vh) = lh(vh) ∀vh ∈ Vh (2.4.8)

That is the coefficients of the linear system are (in the example above):

aij = ah(ϕj , ϕi) =

NGP∑
p=1

ωp λ(xp) OϕjOϕi(xp) ∼ a(ϕj , ϕi)

li = lh(ϕi) =
∑
p

ωp f(xp)ϕi(xp) ∼ l(ϕi)

Therefore the quadrature formulas have to be accurate enough to preserve the order k of the FE scheme. It is worth
to notice that this feature depends on the BVP data regularity λ(x), f(x).

On the quadrature formula
∫

Ψ(x)dx ∼
∑
p ωpψ(xp). WE onvite the reader to consult the complementary documents

available on the Moodle page.

A typical example in 2d for a triangle T = (a1a2a3) with middle edges denoted by a4, a5, a6:
∫
T
ψ(x)dx ∼ 1

3
|T |

6∑
i=4

ψ(ai).

This formula is exact for ψ ∈ P2. fi

2.4.3 Measuring the convergence order: code validation
The best way to assess a FE computational code is to perform convergence curves following the technique described below.

The method

The principle is as follows.
1) We set the sough solution uex(x) e.g. uex(x1, x2) = cos(ω1x1) sin(ω2x2).
2) We calculate the corresponding RHS: f(x) = A(uex(x)) withA(.) the differential operator e.g. A(uex) = −div(λ∇uex)+

cuex = ...→ f(x).
3) We compute the numerical solution uh with the code and we plot the FE error value ‖uex−uh‖V vs a characteristic

mesh size h.
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Convergence curves from explicit solutions (1d solutions). (L) The optimal rate is obtained (the solution is regular); the
FE code is fully assessed. (R) The obtained rate of convergence is not optimal since the present exact solution is not

regular (here it is not in H2(Ω)). Curves extracted from [?].

We do so for a few values of h; typically for 4 mesh (therefore 4 values of h).
It turns out that the estimation (2.4.5) is optimal in the sense that if the chosen exact solution uex is regular then:
‖uex − uh‖H1 ∼ c hk ‖uex‖Hk+1 .

Therefore we have:

ln(‖uex − uh‖H1) ∼ cste + k lnh (2.4.9)

Hence in ln− ln scale the convergence curve is linear, with a slope equal to the order of convergence k, see Fig. 2.4.3(L).
It is possible that a super-convergence phenomena appears (the observed converge rate is higher than the general

theoretical one). This super-convergence phenomena is generally due to the uniformity of the mesh.

Such convergence curves constitute the most robust validation method of the computational code.

However, this method is possible for simple models only since based on an exact solution. Indeed, if the model is
complex (eg multi-physics system, potentially coupled) then the calculations to obtain uex may be too difficult to obtain.

In such complex cases, the reference solution (considered as almost exact) may be a solution computed on an extremely
fine mesh. Next, the differences (considered as being the “errors”) are evaluated between this reference solution and the
others obtained on the few (eg 4) coarser meshes with hcoarse, hcoarse/2, hcoarse/4 etc.

An illustration of mesh refinement is shown in Fig. 2.4.1 (L): h is locally decreased therefore a (local) decreasing of
the error. This is a called “h-adaptivity”.

Moreover, to validate a computational code, one generally consider benchmarks too.

On h− p adaptivity

The accuracy of the FE scheme can be improved too by increasing the order p of the polynomials in areas where the exact
solution u is regular enough, see Theorem 37.
This is the “p-adaptivity”, see Fig. 2.4.1(R).

Combinations of these two types of adaptivity is called hp-adaptivity.
So-called “hp-FEM” combines adaptively elements with variable size h and polynomial degree p in order to achieve

higher accuracy and/or convergence rates.
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Figure 2.4.1: “h or p” refinements?
(L) Mesh refinement : h decreases, the accuracy locally increases.
h-adaptivity (refining and un-refining elements) is well adapted for local singularities.
(R) Accuracy improvement by increasing the FE order : order p of polynomials is increased.
p-adaptivity is well adapted for smooth solutions. Image source: Wikipedia.

‘

Figure 2.4.2: “h or p” refinements? Convergence curves error vs #dofs in a particular case. Image source: agros2d.org.

In practice,

• in areas where the solution is regular, decreasing the FE error is achieved by increasing the polynomials order p.

• on the contrary, in areas where the solution lacks of regularity (e.g. a local singularity being between H1 and H2),
it is useless to increase the polynomials order p (see e.g. (2.4.5)).
In this case, decreasing the FE error may be achieved by decreasing the element size h (h adaptivity).

2.4.4 On non optimal FE scheme order: presence of singularity
The FE error estimation (2.4.5) is true if the exact solution u is regular enough. This may be not the case... See Paragraph
1.3.3.2.
If u is not regular, we say u is singular. Singularities are generally local only. Numerically the global convergence rate is
observed to be weaker. Typically the obtained order equals 1

2 (resp. 3
2 ) instead of 1 (resp. 2), see e.g. Fig. 2.4.3(R).

As an example let us consider the following BVP: the classical Laplace equation with constant Dirichlet conditions
solved with a RHS f(x) = 1 ∀x. This BVP is regular, data are all C∞, but it is solved in a domain Ω presenting a
‘re-entrant corner’. This ‘re-entrant corner’ generates a local singularity on the solution u : the solution may be C∞
far enough from the corner vertex but is H3/2(Ω) in a vicinity of this re-entrant corner. (This can be mathematically
demonstrated for the Laplace operator).

Therefore u is not (globally) H2(Ω). This implies that the gradient of uh is not L∞(Ω).
Then it is observed that more h tends to zero more ‖∇u‖L∞ increases: it diverges, see Fig. 2.4.4.
This example highlights a typical singularity for 2nd order BVP (see Paragraph 1.3.3.2 too).

Remark 39. One may enrich the approximation space Vh with well-chosen local singular functions enabling to better
approximate the targeted singularity; this is called extended finite element method (xFEM). The (great) difficulty consists
to find the adequate singular function(s)...
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Figure 2.4.3: (L) ‖∇u‖L∞ ≈ 0.92 for the “coarse” mesh (1187 vertices). (M) ‖∇u‖L∞ ≈ 1.18 for the intermediate mesh
(4606 vertices). (R) ‖∇u‖L∞ ≈ 1.50 for the “fine” mesh (18 572 vertices). Example and image extracted from [?].

2.4.5 Error estimation in norm L2(Ω)

Theorem 37 shows that the Pk-Lagrange FE error in H1(Ω) i.e. in the energy norm, behaves as hk (if the exact solution
is regular enough).

Under the same assumptions as Theorem 37, it can be proved (see e.g. 1) that the Pk-Lagrange FE error in L2(Ω)
(gradients are not “measured”) satisfies:

‖u− uh‖0 ≤ c hk+1 ‖u‖Hk+1 (2.4.10)
That is that the Pk-Lagrange FE error in L2(Ω) behaves as hk+1 (if the exact solution is regular enough): one order

is gained compared to the error in the energy norm H1(Ω).
In practice convergence curves in norm L2 provide a convergence rate equal to (k + 1); again if the exact solution is

regular enough.

2.5 Hermite FE: a brief presentation
In this section, we briefly present the Hermite FE principles, mainly in 1D.

For high-order BVP, typically order 4 such as the bi-laplacian ∆2 (this operator models linear plate deformations), we
may be interested to consider more regular solution: discrete solutions which are globally C1 and not C0 only (like those
obtained if using Pk-Lagrange FE).

To do so, in 1D the considered FE space Vh reads:

Vh ≡ V H,1Dh = {vh, vh ∈ C1([0, 1]), vh|[xi,xi+1] ∈ P3 ∀i, i = 1, . . . NN} (2.5.1)

In 1D the minimal regularity of polynomials to C1 -connect at triangle edges / tetrahedra faces is P3.
A 1D Hermite element is plotted on Fig. 2.5.
Every function vv of Vh is (uniquely) defined by its values and its derivatives values at the nodes.
In 1D, this reads:

vh(x) =

NN∑
i=1

v(xi)ϕi(x) +

NN∑
i=1

v′(xi)ψi(x) ∀x ∈ Ω (2.5.2)

In 2D the Hermite FE space reads:

Vh ≡ V H,2Dh = {vh, vh ∈ C1(Ω̄), vh|Ki ∈ P5 ∀Ki ∈ Th} (2.5.3)

In 2D the minimal regularity of polynomials to C1 -connect at triangle edges is P5.
Any polynomial p ∈ P5 is uniquely defined on a triangle by the following 21 values:

{p(ai), ∂1p(ai), ∂2p(ai), ∂
2
11p(ai), ∂

2
22p(ai), ∂

2
12p(ai), ∂np(aij)}1≤i<j≤3 (2.5.4)

with {ai}1≤i≤3 the triangles vertices and {aij}1≤i<j≤3 its edges midpoints.
1Quarteroni, Alfio, and Alberto Valli. “Numerical approximation of partial differential equations”. Springer Science, 2008.
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Figure 2.5.1: Hermite FE. Basis functions on the elementary segment [−1,+1] (hence defined by 2 nodes = the 2 element
vertices): 2 nodes, 4 dof. Function basis are polynomials in P3.

This Hermite FE method is suitable to solve the bi-Laplacian equation (e.g. modeling a plate deformation); it is called
the Argyris element. Its analysis is proposed in exercise (see Moodle page).

For all vh ∈ Vh, ∂xivh(x) is continuous and piecewise C1; therefore ∂xivh belongs to H1(Ω) and vh ∈ H2(Ω).
For more details on Hermite FE we refer to the dedicated exercises session.
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2.6 Appendix: Formalization of what is a FE
To go further...

2.6.1 A definition of FE & “P -unisolving property”
A Finite Element (FE) may be defined as follows.

Definition 40. We call a Finite Element (FE) a triplet (K,PK ,ΣK) with:

• K an elementary geometry (e.g. triangle, tetrahedra, quadrangle, parallelepiped, prism),

• PK a space function (the basis functions space),

• ΣK = {N1 · · ·NNNE} a set of points (the nodes) satisfying the “PK-unisolving property” below.
The PK-unisolving property characterizes the consistency between PK and ΣK .

Definition 41. The nodes set ΣK is PK-unisolving if and only if for any values set {αi}i=1..NN corresponds an unique
p ∈ PK .

In the Lagrange FE case (vs Hermite FE case), this means that it exists an unique p ∈ PK interpolating the
nodes values on K:

p(Ni) = αi i = 1, · · · , NNE (2.6.1)

Given a triplet (K,PK ,ΣK), how to verify that ΣK is PK-unisolving ? A necessary condition of PK-unisolving
property is:

dim(PK) = Card(Σ) = NNE (2.6.2)

Next verifying that ΣK is PK-unisolving may done by checking one of the following criteria:

1. Show that:
p(Ni) = 0 =⇒ p ≡ 0 ∀i, 1 ≤ i ≤ NNE (2.6.3)

2. Write the expression of the basis functions of Pk.

Let us prove that Criteria 1. above implies that ΣK is PK-unisolving.
Let us define the application L

K
by:

L
K

: p ∈ PK 7→ {p(N1), · · · , p(NNNE)} ∈ RNNE (2.6.4)

L
K

is linear. We have the following property:

"ΣK is PK-unisolving"⇔ L
K
is bijective (2.6.5)

Therefore (2.6.3) is equivalent to L
K
is injective (since L

K
is linear). Moreover since acting in finite dimensional spaces

(dim(PK) = NNE), this is equivalent to L
K

bijective; and the result follows from (2.6.5).

Criteria 2. above implies that ΣK is PK-unisolving too. Indeed basis functions {ϕi(x)}i=1,..,NNE of Pk enables to
prove that L

K
is surjective therefore bijective.

In the (usual) case where ϕi(Nj) = δij , 1 ≤ i, j ≤ NNE, we have:

p(x) =

NNE∑
k=1

αiϕi(x)⇒ p(Nj) = αi, 1 ≤ i ≤ NNE (2.6.6)

i.e. the coefficients of p in the functions basis are the nodes values.
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Figure 2.6.1: Generation of finite elements (K,P,Σ) from the reference finite element (K̂, P̂ , Σ̂). Here in the case of a
Q2-Lagrange FE with an affine change of variable (geometric transformation) F .

2.6.2 Generating finite elements from the reference element
Let us show how to generate Pk and Qk Lagrange FE from their corresponding reference element.

Proposition 42. Let F be the C1 bijective function (a change of variables) transforming the reference element (triangle,
tetrahedra, square, cube) K̂ into K (resp. triangle, tetrahedra, parallelogram, parallelepiped), see Fig 2.3.3.1.

Let (K̂, P̂ , Σ̂) be a Pk (resp. Qk) Lagrange FE . Then the triplet (K,P,Σ) defined by:

K = F (K̂); Σ = F (Σ̂) and P = {p : K → R; (p ◦ F ) ∈ P̂} (2.6.7)

is a Pk (resp. Qk) Lagrange FE too (in the sense of Definition 40).

We say that the FE (K̂, P̂ , Σ̂) and the FE (K,P,Σ) are equivalent.
Moreover if the geometric transformation F is affine, we say that (K̂, P̂ , Σ̂) and (K,P,Σ) are affine-equivalent.
Proof. We set: Σ̂ = {N̂i}i=1..NNE and Ni = F (N̂i); then: Σ = {Ni}i=1..NNE .
We have F bijective from K̂onto K then: dim(P̂ ) = Card(Σ̂) = NNE = dim(P ) = Card(Σ).
It remains to check that Σ is P -unisolving.
We have: ∀p̂ ∈ P̂ , p = (p̂ ◦ F−1) ∈ P .
Let {ϕ̂i(x)}i=1,..,NNE be the basis functions of P̂ . We set:

ϕi = ϕ̂i ◦ F−1

We have: ϕi = ϕ̂i ◦ F−1(Nj) = ϕ̂i(N̂j) = δij for all i, j. {ϕi(x)}i=1,..,NNE are the basis functions of P .
The triplet (K,P,Σ) is a FE (see Definition 40).
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2.7 Computational freewares
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Figure 2.7.1: FEniCS Project (https://fenicsproject.org) in Python: standard PDE models and FE schemes are available.
(Snapshot made in february 2019).
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Figure 2.7.2: FreeFem++: A high level multi-physics FE software for non-linear multi-physics in 2D and 3D. (Snapshot
made in february 2019).



Chapter 3

Finite Element Methods: Complements

Finite Element Methods (FEM) are the numerical methods of choice to solve elliptic models (e.g. those based on the
Laplace equation or on the advection-diffusion equation) and parabolic models (e.g. the heat equation). They can be used
for hyperbolic models too (e.g. the transport equation) by introducing stabilizing terms (e.g. artificial diffusion).

The basic principles of FEM are presented in Part 1 of the course manuscript entitled “Finite Element Methods:
Fundamentals”.

In this chapter you will learn how:

• to solve a non-linear model by FEM using the Newton-Raphson algorithm,

• to write FE schemes for time-dependent PDEs,

• to stabilize a FE scheme in presence of an advective term (transport term),

• an automatic mesh refinement works.

On all these topics, the reader may refer to e.g. [?, ?].

3.1 Non-linear stationary PDEs: linearization

3.1.1 The (scalar) non-linear BVP

Let us consider a non-linear BVP:the PDE or one of its boundary condition is non linear with respect to the unknown
function u(x). More precisely, we consider the following variational problem.

Find u ∈ V satisfying:
anl(u, v) = l(v) ∀v ∈ V

Where:

• u 7→ anl(u, ·) is continuous in V but non-linear,

• v 7→ anl(·, v) and v 7→ l(v) are linear continuous in V .

Simple examples are the following scalar PDEs:

• −µ4u+ u3 = f

• −div(µ(u)∇u) + u = f

accompanied by boundary conditions on ∂Ω.

Remark 43. It is convenient and generally possible to consider the non-linear form anl(u, ·) as follows: anl(u, ·) = a(u;u, ·),
where

62
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• u 7→ a(u; ·, ·) is non-linear: this partial map represents the non-linear term(s) of the form;

• u 7→ a(·;u, ·) is linear: this partial map represents the linear terms of the form;

By construction, v 7→ a(·, v) and v 7→ l(v) are always linear continuous in V .

Then, the variational problem reads as follows:

(P)

{
Find u ∈ V satisfying:
a(u;u, v) = l(v) ∀v ∈ V

(3.1.1)

On the mathematical analysis It is assumed that (P) is well-posed in a Banach space V . Observe that since the
PDE is non linear, the Lax-Milgram theory does not apply anymore. Moreover, the well-posedness of (P) is a-priori in a
Banach space and a-priori not in a Hilbert space.
For second-order problems, one typically has V = W 1,p(Ω) with p 6= 2 i.e. not the Sobolev space H1(Ω)....
However, the basic principle of weak formulations (and resulting weak solutions) remain the same.
A quite general theorem to address the existence of solutions for such elliptic non linear PDEs is the Leray-Schauder fixed
point theorem.

3.1.2 Linearized discrete system
Let us employ an internal approximation as previously.
Since the equation is non linear (in u), the discrete variational formulation is not equivalent to a linear system.
Indeed:

anl(
∑
i

uiϕi(x), ·) 6=
∑
i

uianl(ϕi(x), ·) (3.1.2)

The discrete variational formulation may be written as a non-linear system of the form:

A(U)U = b (3.1.3)

with U ∈ RNN the dof vector, A(U) a stiffness matrix depending on U and b the RHS.

Exercise. Write the variational (weak) formulation of a scalar diffusion equation with the diffusivity parameter µ
depending on the solution u.

Let us set F : U ∈ RNN 7→ F (U) ∈ RNN with

F (U) = A(U)U − b in RNN (3.1.4)

The most classical methods to solve the non-linear (NN ×NN)-system (3.1.4) are:

• A fixed point method as A(Un−1)Un = b.

• The Newton-Raphson method based on the linearized PDE therefore the differential DF (U).

Recall that the fixed point method is trivial to implement; it converges if F (·) is L-Lipschitz with L < 1. It is a 1st
order method only (if converging).

On the contrary, the Newton-Raphson method may be more complex to implement since it requires the differential
DF (·). However it is a 2nd order method hence much faster, if converging. The attractor(s) basins of these two methods
are different.

Exercise. Let us consider the (discrete) non-linear system F (U) = 0 with F : U ∈ RNN 7→ F (U) ∈ RNN .
Derive the Newton-Raphson algorithm.
Show that, in the end this consists to compute at each iteration the increment ∆U satisfying the following linear system:

DF (U(k)).∆U = −F (U(k)) (3.1.5)
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3.1.3 Linearized PDE (continuous form)
An elegant and concise approach consists to write the non linear variational problem and its corresponding linearized
equation in continuous form (in the function space V ), instead of manipulating potentially “heavy” discrete equations.

The map v 7→ (a(·; ·, v)− l(v)) is linear. Then, we set the map F (u) such that: F (u)(v) = a(u;u, v)− l(v).
Given u, F (u) is a linear map acting on V . Therefore, by definition F (u) is an element of V ′: F (u) ∈ V ′.
Thus we have:

F : V → V
′
with < F (u), v >V ′×V≡ F (u)(v) = a(u;u, v)− l(v) (3.1.6)

where < ., . >V ′×V denotes the so-called duality product V ′ × V .

Then the equation of problem (P), see (3.1.1), re-reads as:

F (u) = 0 in V ′ (3.1.7)

Equivalently: < F (u), v >V ′×V = 0 ∀v ∈ V .

Recall that V is an infinite dimensional space. Moreover, given u ∈ V , the differential DF (u) ∈ L(V, V ′).

On the dual space of a Hilbert space H Concerning the connection between a Hilbert space H and its dual H ′,
the Riez-Fréchet theorem constitutes a very nice and useful result. The reader may study the Riez-Fréchet representation
theorem presented in a supplementary note.

Moreover, a few exercises consisting of applying the Riez-Fréchet theorem in the present context are proposed.

The Newton-Raphson algorithm in continuous form

Based on the formalism above, the Newton-Raphson algorithm reads as follows.

Algorithm 3.1 Newton-Raphson

• Given u(0) (the best “first guess” as possible),

• k → (k + 1):

– Calculate or compute the differential DF (u(k)).

– Solve the linearized equation which reads:

{
Find δu∈V such that:
< DF (u(k)) · δu, v >V ′×V = − < F (u(k)), v >V ′′×V ∀v ∈ V

(3.1.8)

Using the notation a(w;u, v), this equation re-reads:

∂wa(u(k);u(k), v) · δu+ a(u(k); δu, v) = −a(u(k);u(k), v) + l(v) ∀v ∈ V (3.1.9)

• Update the solution: u(k+1) = u(k) + δu

• Test of convergence.
After FE discretization the convergence criteria may be: ‖u

(k+1)−u(k)‖
‖u(k)‖ < ε.

With ε ≈ 10−10 since it is an order 2 method.

Remark 44. Recall that the Newton algorithm is convergent at order 2 (quadratic convergence) if the differential DF (u(k))
is locally Lipschitz and if the first “point” (“first guess”) u(0) is close enough to the solution.

As a consequence, the choice of u(0) is crucial to make converge the algorithm.

Exercises. See the supplementary material.
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3.2 FEM for unsteady PDEs (parabolic models)
In this section, we present how the FEM is adapted to unsteady BVP.

In short, FE are employed for the spatial discretization, while time schemes for ODEs (Euler, RKn etc) are employed
for the temporal discretization.

3.2.1 The general model
Let us consider the general time-dependent BVP (first order in time):

∂tu(x, t) +A(u(x, t)) = f(x, t) in Ω×]0, T [

u(x, 0) = u0(x) in Ω

+ B.C. ∀t ∈]0, T [

(3.2.1)

where the Initial Condition (IC) u0(x) is given.
By default we assume in this section the same hypothesis as in the steady-case case in the following sense: at time t

given, the differential operator satisfies the Lax-Milgram theory, see Section 2.1.

The typical example of linear parabolic equation is the heat equation. An extended version of the reference model
includes a 0-th order term; it is the following unsteady linear diffusion reaction model :

∂tu(x, t)− div(µ∇u)(x, t) + c u(x, t) = f(x, t) in Ω×]0, T [

u(x, 0) = u0(x) in Ω

u(x, t) = ud(x, t) in ∂Ω×]0, T [

(3.2.2)

Of course, mixed boundary conditions could be considered to close the equation posed in Ω.
If the operator A(u) is an elliptic operator e.g. like those adressed in the previous sections, this general BVP (3.2.1)

is a parabolic model.
Recall that parabolic models have regularizing effects on the I.C.: even if u0 is not regular e.g. not continuous, then

the solution u(x, t) immediately (that is for any t > 0) becomes regular. This feature is not true with hyperbolic models.

The basic principles of time discretization presented below formaly apply to non-linear parabolic PDEs, or even to
hyperbolic PDEs, including those of second order in time (e.g. the wave equation

(
∂2
ttu−∆u

)
(x, t) = 0).

Of course, the B.C. have to be adequate with the differential operator A(u).

3.2.2 Weak formulation
Weak formulations of time-dependent equations are built like in the stationary case:

the equation is multiplied by a test function v(x) depending on the spatial variable x only i.e. not depending on the
time variable t.
Remark 45. We could build a FEM in space and time. However, the resulting formulation is not interesting excepted if
in a very few cases where Ω is time-dependent.

For the typical example (3.2.2), this reads:

∫
Ω

∂tu(x, t)v(x) dx+

∫
Ω

µ(x)∇u(x, t)·∇v(x) dx+

∫
Ω

c(x)u(x, t)v(x) dx =

∫
Ω

f(x, t)v(x) dx ∀v(x) ∈ V0 (3.2.3)

with V0 = {v, v ∈ H1(Ω), v = 0 on ∂Ω} = H1
0 (Ω).

The temporal term satisfies:∫
Ω

∂tu(x, t)v(x) dx =
d

dt

∫
Ω

u(x, t)v(x) dx =
d

dt
(u(t), v)L2(Ω) (3.2.4)

where (·, ·)L2(Ω) denotes the L2-scalar product in Ω.

Like in steady-state cases, we set: Vt = {v, v ∈ H1(Ω), v = ud on ∂Ω}.
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Then, by adopting the same notations as previously, we obtain the weak formulation:{
Find u(t) ∈ Vt such that:
d
dt (u(t), v)L2(Ω) + a(u(t), v) = b(v) ∀v ∈ V0, for 0 < t < T

(3.2.5)

where the solution u(t, x) is here considered as a function of time t with values in V0:

u : t ∈]0, T [7→ u(t) ∈ Vt (3.2.6)

Recall that a(·, ·) is here a bilinear form, continuous, and coercive in V0.

To mathematically analyse (3.2.5), one has to clarify the regularity in time of the functions u(t) and f(t). Classical
theorems establish the well-posedness of (3.2.5) in some functional spaces built from V0.

Exercise. Write the weak formulation for the typical (linear) example.

Energy estimation
Exercise. Considering the BVP (3.2.2), show the following estimation:

∫
Ω

u2(x, t) dx+

∫ t

0

∫
Ω

(
µ(x) |∇u|2(x, s) + c(x)u2(x, s)

)
dxds =

∫
Ω

u2
0(x)dx+

∫ t

0

∫
Ω

f(x, s) u(x, s) dxds (3.2.7)

The resulting energy space is L2(]0, T [;V0) ∩ C0(]0, T [;L2(Ω)).
For details the reader may refer e.g. to [?] Section 8.2.

3.2.3 Semi-discretization in space: the mass matrix
The semi-discrete formulation consists to consider the weak formulation above and to apply a FEM like those studied in
the steady-state cases.

We adopt here the same notations and the same FEMs as previously: internal approximations based on Pk-Lagrange
FE.

The solution uh(t) is decomposed in the FE basis {ϕi(x)}i=1..NN :

uh(t)(x) ≡ uh(x, t) =

NN∑
j=1

uj(t)ϕj(x) for all t, 0 < t < T (3.2.8)

The dof ui(t) are here time-dependent.

We obtain the following semi-discrete weak formulation (discrete in space, continuous in time):{
Find uh(t) ∈ Vth such that:(
duh
dt (t), vh

)
L2(Ω)

+ a(uh(t), vh) = b(vh) ∀vh ∈ V0h, 0 < t < T
(3.2.9)

(3.2.9) is equivalent to:{
Find Uh(t) = (u1(t), ..., uNN (t)) ∈ RNN such that:∑NN
j=1 (ϕj(x), ϕi(x))L2(Ω)

duj
dt (t) +

∑NN
j=1 a(ϕj(x), ϕi(x))uj(t) = b(t, ϕi(x)) ∀i, i = 1, . . . , NN, 0 < t < T

(3.2.10)
with the I.C.: ui(0) = u0,i, 1 ≤ i ≤ NN .

We recognize here the stiffness matrix A with, see Prop. 25: A = (aij)i,j=1..NN , aij = a(ϕj , ϕi).

Moreover, a new matrix naturally appears in (3.2.10): this is the mass matrix M , M = (mij)i,j=1..NN ,

mij = (ϕj , ϕi)L2(Ω) =

∫
Ω

ϕj(x)ϕi(x) dx (3.2.11)
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The mass matrix is sparse, symmetric, positive definite.
Using the matrix notations, (3.2.10) re-writes as:{

Find Uh(t) = (u1(t), ..., uNN (t)) ∈ RNN such that:
M dUh

dt (t) +AUh(t) = F (t) for t ∈]0, T [
(3.2.12)

with: F = (fi)i=1..NN , fi(t) = b(t, ϕi(x)), 1 ≤ i ≤ NN and Uh(t) = (u1(t), ..., uNN (t)) ∈ RNN .

Eqn (3.2.12) can be viewed as an ODE system.

The existence and the uniqueness of the discrete (finite-dimensional) solution Uh of (3.2.10) can be classically shown
by diagonalization of the matrices M and A.

Exercise. Detail the matrix coefficients for the typical (linear) example solved by using the RKn time scheme, with
n = 2.

3.2.4 Complete space-time discretisation
Recall the discrete system to be solved:

M
dUh
dt

(t) +AUh(t) = F (t) for t ∈]0, T [ (3.2.13)

To numerically solve this ODE system, the classical time schemes of ODEs can be employed: forward/backward Euler
schemes, θ-scheme, Runge-Kutta (RKn with n = 2 or 4 in practice), or the more sophisticated IMplicit EXplicit (IMEX)
time schemes.

In what follows, we discretize the time intervall ]0, T [ into constant time step ∆t .
We denote by tn the n-the time step: tn = n∆t, n = 0, . . . , NT . T = NT∆t.
We denote by Un the approximation of Uh(tn).

3.2.4.1 Using a Runge-Kutta scheme

Using a Runge-Kutta scheme is very likely the first good option to consider. In practice, RKn with n = 2 or 4 is often
enough.

Considering the system (3.2.12) the RK2 scheme reads as follows.
Given U0 ∈ RNN , compute Un+1 ∈ RNN solution of:
TO BE DETAILED

3.2.4.2 Using the θ-scheme

Mainly for educational purpose, we here discretize the system (3.2.12) by using the θ-scheme. This reads as follows.
Given U0 ∈ RNN , compute Un+1 ∈ RNN solution of:

M
Un+1 − Un

∆t
+A (θUn+1 + (1− θ)Un) = θFn+1 + (1− θ)Fn, n = 0, . . . , NT . (3.2.14)

Recall that the case:

• θ = 0 corresponds to the forward Euler scheme (explicit scheme, order 1 in ∆t);

• θ = 1 corresponds to the backward Euler scheme (implicit scheme, order 1 in ∆t);

• θ = 1/2 corresponds to the Crank-Nicholson scheme (implicit scheme, order 2 in ∆t).

The θ-scheme above can be re-written as:

(M + θ∆tA)Un+1 = (M − (1− θ)∆tA)Un + ∆t (θFn+1 + (1− θ)Fn) , n = 0, . . . , NT . (3.2.15)
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Remark 46. In the non linear PDE case, the nonlinear discrete (finite dimensional) system reads:

M
dUh
dt

(t) +A(Uh(t)) = F (t) for t ∈]0, T [ (3.2.16)

with U ∈ RNN 7→ A(U) ∈ RNN non linear.
Next, the θ-schema formally reads:

MUn+1 + θ∆tA(Un+1) = Gn, n = 0, . . . , NT . (3.2.17)

with A(Un+1) to be somehow linearized and Gn = MUn − (1− θ)∆tA(Un) + ∆t (θFn+1 + (1− θ)Fn).

3.2.4.3 On the stability condition & choice of the time scheme

Let us recall the stability condition of the θ-scheme.

For 1/2 ≤ θ ≤ 1, the θ-scheme is unconditionnaly stable.

The value θ = 1/2 (Crank-Nicholson scheme) is an interesting case since providing a second order scheme.

However, the implicit Euler scheme (θ = 1) may be prefered for ‘stiff’ problems since it is more robust even though it
is less accurate than the Crank–Nicolson scheme.

For 0 ≤ θ < 1/2, the θ-scheme is stable under the condition: maxi λi∆t ≤ 2
1−2θ , with {λi}i the eigenvalues of the

system: AUh = λ MUh.

3.2.4.4 Explicit schemes & non linear PDEs

Let us consider the general equation (∂tu+A(u) = f) based on a non linear differential operator A(u).
Then the form a(·, ·) in non linear: u 7→ a(u, ·) non linear.
If using an explicit time scheme, say using the forward Euler time scheme for sake of clarity, on has to solve at each

time step:

Mun+1
j = Munj −∆t a(unj , ϕj) + ln(ϕj) (3.2.18)

Consequently, at each time step, one do not have to linearize the PDE. Indeed, in this case the non linearity is in the
RHS.

However as all explicit schemes, a stability condition must be respected, which is very often (but not always) not
tractable.

For more information on the time scheme properties, the reader is invited to consult his favorite course on time-schemes
for ODEs and their mathematical analysis (order and stability conditions in particular).

3.2.4.5 Explicit schemes: mass lumping (condensation of mass)

Actually, Eq. (3.2.18) does not enable to explictly compute un+1
j !

Indeed, the mass matrix M has to be inverted.
Fortunatly, a trick to diagonalize M exists. Thus an actual explicit scheme is recovered.

Indeed, the classical second order quadrature formulae below to compute the integrals
∫

Ω
ϕj(x)ϕi(x) dx is equivalent

to diagnolize the matrix M following the so-called mass lumping.

In the case of n-simplex (triangle or tetrahedra) T , by applying the quadrature formula below, the mass matrix becomes
diagonal.

∫
T

Ψ(x)dx ≈ 1

3
|T |

3(or 4)∑
j=1

Ψ(Sj,T ) (3.2.19)
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with Sj,T the vertices of T .

Indeed, this quadrature formulae consists to lump all the extra diagonal coefficients to the diagonal term. Then, it is
called the mass condensation or mass lumping method.

Resulting temporal accuracy This quadrature formulae is exact for quadratic integrands Ψ(x), with here Ψ(x) =
ϕi(x)ϕj(x). Therefore, this approximation is exact for affine functions ϕi(x) thats is P1-Lagrange FE.

As a consequence, if applying this method with higher-order FE (e.g. k = 2), the resulting scheme won’t be at the
expected maximum order since the temporal term remains order 1...

3.3 Advection term: FE schemes stabilization
Let u(x) be a scalar field, the unknown of the PDE, and w(x) be a given velocity field.

The advection term div(wu) models the transport of the quantity u by the vector field w.

If the fluid flow is incompressible, that is div(w) = 0 then div(wu) = (w · ∇u).

Transport terms are of course extremely frequent in fluid flows modeling, but also in wave propagation etc.
The advection terms above are first order terms leading to numerical instabilities if no particular treatment is applied.
The stabilization of the advection terms in FE schemes is the topic addressed in the present section.

3.3.1 Equations with an advection term, Peclet number
The (pure) advection equation If modeling the transport of quantity u by the fluid of velocity w (u may be for
example the temperature or a chemical specie concentration in the fluid), one has the equation:

∂tu(x, t) + div(w u)(x, t) = f(x, t) in Ω× (0, T ) (3.3.1)

It is a first order PDE. It is a hyperbolic equation, in conservative form.
This equation has to be closed with an I.C. (u(x, 0) given) and an adequate B.C. (the quantity must be known at

inflow characteristics).

Remark 47. FE methods are naturally suitable for elliptic equations and less naturally for hyperbolic equations. However,
they can be employed for hyperbolic equations with stabilization procedures.

Remark 48. Recall that if the flow is incompressible then div(w) = 0 and Eqn (3.3.1) simplifies as:

∂tu(x, t) + w · ∇u(x, t) = f(x, t) (3.3.2)

The (linear) unsteady advection-diffusion equation If modeling in addition the diffusion of the same quantity u
in the media represented by Ω, the equation reads:

(∂tu− div(µ∇u) + div(w u)) (x, t) = f(x, t) in Ω× (0, T ) (3.3.3)

where µ denotes the diffusivity of u in the media.
The equation above is a linear parabolic equation.

The steady-state advection-diffusion equation In its steady-state version, Eqn (3.3.3) reads:

(−div(µ∇u) + div(w u)) (x) = f(x) in Ω (3.3.4)

The equation above is a linear elliptic equation.

Existence, uniqueness of the solution of Eqn. (3.3.5).
Please refer to the exercise available on the Moodle course page.
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Dimensionless form.
If µ is constant, if the velocity field is incompressible, then the dimensionless form of the equation reads:

− 1

Pe
∆̄ū(x̄) + (w̄ · ∇̄ū)(x̄) = F ∗f(x̄) in Ω̄ (3.3.5)

where the¯denotes the dimensionless quantities and Pe denotes the Peclet number defined by Pe = L∗W∗

µ .
The superscript ∗denotes orders of magnitude.

Exercise. Show this dimensionless form of the equation. (Moreover, you will clarify the value of F ∗).

The Peclet number Pe measures the ratio of the rate of advection by the flow to the diffusion rate:

Pe =
|advection|
|diffusion|

(3.3.6)

In the dimensionless form of the advective-diffusive equation (3.3.5), Pe−1 plays the role of the diffusion
coefficient.

If Pe→ 0 than the model tends to be purely diffusive one.
On the contrary, if Pe → +∞ then the model tends to be purely advective one: tending to the transport

equation (w · ∇u) = f .

Numerically, one observes that if 1
Pe is small (the advection term is dominating) than a standard FE scheme e.g. Pk-

Lagrange is unstable: the FE solution uh(x) blows up !
Indeed, one shows below that standard Pk-Lagrange FE schemes are centered.

Stabilizing FE schemes for the advection-diffusion equation is the topic addressed in the next paragraph.

3.3.2 Standard Pk-Lagrange FE schemes = centered schemes
We show below that on a regular grid, the P1-Lagrange FE scheme of the advection term (w · ∇u), like in Eq. (3.3.5), is
nothing else than the centered Finite Difference (FD) scheme.

As a consequence, the FE solution of Eq. (3.3.5) blows up as soon as the Peclet number is large enough.

3.3.2.1 Standard P1-Lagrange FE scheme of the advection term

Let us consider the advection term (w · ∇u), like in Eq. (3.3.5), in 1D. This term simply reads here: (wu′)(x).
We set Ω =]0, 1[ and we consider a regular grid (mesh): h = (xi+1 − xi) ∀i.

Let us recall that the i-th P1-Lagrange basis functions satisfies: ϕi(xi−1) = 0, ϕi(xi) = 1, ϕi(xi+1) = 0, and reads:

ϕi(x) =


h−1(x− xi−1) in [xi−1, xi]

h−1(xi+1 − x) in [xi, xi+1]

0 elsewhere
(3.3.7)

Exercise. Show that in 1D the P1-Lagrange FE scheme of the advective term (w · ∇u) in Eq. (3.3.5) equals the
centered Finite Difference formula.

Correction. The weak form of this advective term reads:
∫

Ω
w ∂xu(x)v(x) dx.

Let us consider w constant for a sake of simplicity. The corresponding i-th equation term reads as:

∫
Ω

w ∂xu(x)ϕi(x) dx = w

∫
Ω

ϕ(x)∂x(
∑
j

ujϕj(x)) dx

= w
∑
j

uj

∫
Ω

ϕi∂xϕj dx

= wui−1

∫
Ω

ϕi∂x(ϕi−1) dx+ wui

∫
Ω

ϕi∂x(ϕi) dx+ wui+1

∫
Ω

ϕi∂x(ϕi+1) dx
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We have:

∂xϕi(x) ≡ ϕ′i(x) =


h−1 in [xi−1, xi]

−h−1 in [xi, xi+1]

0 elsewhere
(3.3.8)

A short calculation shows that:∫
Ω

ϕi∂x(ϕi−1)dx = − 1

2h
;

∫
Ω

ϕi∂x(ϕi)dx = 0;

∫
Ω

ϕi∂x(ϕi+1)dx =
1

2h
(3.3.9)

Therefore: ∫
Ω

w ∂xu(x)ϕi(x) dx = w

(
ui+1 − ui−1

2

)
(3.3.10)

Hence the result.

This result remains true in nD and for non constant velocity fields.

3.3.2.2 Explicit solutions in the 1D case & unstabilities

Let us consider now the following 1D steady-state advection-diffusion BVP:{
−ε u′′(x) + w u

′
(x) = 0 x ∈]0, 1[

u(0) = 0 u(1) = 1
(3.3.11)

In the equation above, for |w| ≈ 1, Pe−1 ≈ ε, see (3.3.5).
The parameter ε is supposed to be small, equivalently Pe is supposed to be large.

Exercice. The velocity field w is supposed to be constant, w > 0.
1) Verify that the exact solution of the BVP above reads:

u(x) = c
[
exp(

wx

ε
)− 1

]
with c =

[
exp(

w

ε
)− 1

]−1

. (3.3.12)

2) Deduce that close to the outflow boundary at x = 1, the solution u presents a boundary layer i.e. a stiff gradient.

Exercice.
1) Verify that the solution of the centered FD scheme, with w = 1, reads:

ui =

(
1− Peh
1 + Peh

)i
− 1(

1− Peh
1 + Peh

)N+1

− 1

i = 1, . . . , (N + 1) (3.3.13)

with Peh the numerical Peclet number defined by:

Peh =
1

2ε
w h (3.3.14)

2) Deduce the scheme behavior if Peh > 1.

Remedy: to refine or to stabilize ? The natural solution to this unstability issue is to refine the mesh i.e. to reduce
the grid size h. However, for numerous real-world problems, this is not possible. Indeed, ...

Numerical example. Let us consider an air flow around a vehicle engine at 100 km/h, then Pe = L∗W∗

µ ∼ 105.
Stabilizing the numerical scheme by refining the mesh would mean to set: h ≈ 10−5 m....
In such a context, the remedy consists to stabilize the FE scheme.

On the upwinding technique.
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Figure 3.3.1: The centered FD solution oscillates if the numerical Peclet Peh is greater than 1.

The stabilization of the numerical solution uh can be simply done by upwinding the advective term as: (w ui−ui−1

h )

for w > 0 and (w ui+1−ui
h ) for w < 0.

However, as it will be shown in next section, such a simple upwinding of the gradient term ∇u introduces non-expected
numerical diffusion...

3.3.2.3 Equivalent equations & numerical diffusion (2D illustration)

Let us consider the (pure) advection equation (3.3.1) in 2D. We denote the velocity components as w = (w1, w2).
The P1-Lagrange FE discretization on a regular grid reads as the following (potentially unstable) centered scheme:

(un+1
ij − unij)

∆t
+ wn1,ij

(uni+1j − uni−1j)

2∆x
+ wn2,ij

(unij+1 − unij−1)

2∆y
= a ∀(i, j) (3.3.15)

In the following and for a sake of simplicity, wk are assumed to be strictly positive.

Exercise.
1) Show that the centered FD formula of the advective term (w · ∇u) equals the (adequate) uncentered one minus a
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diffusive term in O(∆x).
2) Deduce that the P1-Lagrange FE discretization (on a regular grid) (3.3.15) is equivalent to an uncentered scheme with
a diffusive term in O(∆x).

Correction.
1) It is easy to verify that:

wn1,ij
(uni+1j − uni−1j)

2∆x
= wn1,ij

(uni+1j − unij)
∆x

−
(

∆x

2
wn1,ij

)
(uni+1j − 2unij + uni−1j)

∆x2
(3.3.16)

2) As a consequence, the P1-Lagrange FE discretization (on a regular grid) (3.3.15) reads:

(un+1
ij − unij)

∆t
+ wn1,ij

(uni+1j − unij)
∆x

+ wn2,ij
(unij+1 − unij)

∆y

−
(
wn1,ij

∆x

2

)
(uni+1j − 2unij + uni−1j)

∆x2
−
(
wn2,ij

∆y

2

)
(unij+1 − 2unij + unij−1)

∆y2
= a (3.3.17)

As a consequence, on a regular grid, the P1-Lagrange FE scheme of the advection equation equals the upwinded FD
scheme with non-physical (“artificial”) diffusion.

The diffusion coefficient reads as: [velocity × (∆x, ∆y)/2].

Therefore, the centered schemes (which are potentially unstable) are equivalent to the corresponding upwinded schemes
with artificial diffusion, whose the diffusivity coefficient µh ∼ 1

2 |w|h.

Recall that these upwinded schemes are unconditionally stable, on contrary to the centered schemes.

3.3.3 Stabilization techniques: SD, SUPG, GLS
Let us consider here the following steady-state linear advection-diffusion equation:

− ε 4u(x) + w · ∇u(x) = f(x) (3.3.18)

with adequate boundary conditions.
The diffusion coefficient ε is supposed to be small, ε > 0. In the dimensionless equation, ε = Pe−1 therefore Pe large.

(Dissatisfaying) isotropic diffusion

A straightforward extension of the artificial diffusion term derived in the previous section is to add the term:

− h ‖w‖∞4u (3.3.19)

The latter stabilizes the FE scheme as expected. However, it does it in all directions. Therefore it introduces unnec-
essary (and unphysical) cross-wind diffusion.

The stabilization of FE schemes has to be done consistantly with respect to the physics.

Streamline Diffusion (SD) method

The principle of SD is to introduce artificial diffusion along the streamlines only.

This is done by adding the following anisotropic diffusion matrix
(
h

2ε2
wwT

)
.

Thus the diffusion matrix to be considered in the equation becomes:

εI ←
(
εI + α

h

2ε2
wwT

)
(3.3.20)

with α a weight coefficient to be set, α . 1.
Recall that: ε 4u = div(εI ∇u).
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Lemma 49. Let us denote by D the Streamline Diffusion (SD) matrix: D =
h

2ε2
wwT .

For any vector d ∈ Rn (n the dimension geometric space), the product (D · d) is co-linear to the streamline flow.

Proof. Let us show the result in 2d (n = 2). We set: w = (w1, w2). We have w
T

= (−w2,+w1) and:

D = w.wT =

(
w2

1 w1w2

w1w2 w2
2

)
In the coordinate system (w,w⊥), D has to be of the following form:

[
• 0
0 0

]
≡ DwwT .

We denote by P the change of variable matrix. We have: DwwT = P−1DP . P has to satisfy:

Pe1 = w and Pe2 = wT (3.3.21)

We set: P =

∣∣∣∣ a b
c d

∣∣∣∣. From (3.3.21) it follows: P =

∣∣∣∣ w1 −w2

w2 w1

∣∣∣∣.
We have: PDwwT =

∣∣∣∣ ãw1 0
ãw2 0

∣∣∣∣ . And: DP =

∣∣∣∣ w3
1 + w1w

2
2 −w2

1w2 + w2
1w

2
2

w2
1w2 + w3

2 −w1w
2
2 + w2

2w1

∣∣∣∣= ∣∣∣∣ w1(w2
1 + w2

2) 0
w2(w2

1 + w2
2) 0

∣∣∣∣.
Therefore: PDwwT = DP with ã = (w2

1 + w2
2)= ‖w‖

2
2. And: DwwT = P−1DP =

∣∣∣∣ ‖w‖22 0
0 0

∣∣∣∣.
In the local coordinate system (w,w⊥), the diffusion matrix has the following form:

∣∣∣∣ ‖w‖22 0
0 0

∣∣∣∣.
It is a Streamline Diffusion.

SD method is efficient since it stabilizes the FE scheme by introducing artificial diffusion along the streamlines only.
However the correction made to the (discrete) variational form is in O(h), see (3.3.20). Therefore the resulting FE scheme
is order 1 at most independently on the original FE order k, e.g. k = 2...

This is the drawback of SD method. This drawback may be circumvented by employing the SUPG or GLS methods
below.

Streamline Upwind Petrov-Galerkin (SUPG) and Galerkin Least-Square (GLS) methods*

* This is a to go further paragraph
The standard FE method (conforming FE i.e. an internal approximation) to solve (3.3.18) consists to find uh ∈ V0h

such that:

a(uh, vh) = l(vh) ∀vh ∈ V0h (3.3.22)

That is the function tests belongs to the same function space than the solution (here V0h).

The SD method consists to introduce the additional term, see (3.3.20): τvh(Th) =
∫

Ω

(
α
h

2ε2
wwT

)
∇uh · ∇vh dx.

This correction provides a consistent scheme in the sense: limh→0 τ(uh) = 0 ; but not in the classical ( strong) sense
τ(uh) = 0 ∀h > 0. Typically, the orthogonality property (2.1.9) does not hold anymore.

The Streamline Upwind Petrov-Galerkin (SUPG) method and the Galerkin-Least-Square (GLS) method are different.
They consist to consider modified test functions. As a consequence, the test functions belong to a different space than

the solution space V0h: it is so-called Petrov-Galerkin approximation.

Considering the equation (3.3.18), the modified weak form reads as:

a(uh, vh) + c(uh, vh) = l(vh) + k(vh) ∀vh ∈ V0h (3.3.23)
with:

c(uh, vh) =
∑
K

∫
K

αK(h) (−ε∆uh + w · ∇uh) zh(vh) dx (3.3.24)

k(vh) =
∑
K

∫
K

αK(h) f zh(vh) dx (3.3.25)
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αK(h) is the local weight coefficient detailed below.
The test function zh(vh) is defined as:{

zh(vh) = (w · ∇vh) in SUPG method
zh(vh) = (w · ∇vh)− ε∆vh in LS method

(3.3.26)

The additional terms c(·, ·) and k(·) in (3.3.23) consist to introduce diffusion along the streamlines.
Let us define the residual function of (3.3.18):

rh(uh) = (−ε∆uh + w · ∇uh − f) (3.3.27)
The additional terms introduced in (3.3.23) satisfy:

c(uh, vh)− k(vh) =
∑
K

∫
K

αK(h) rh(uh) zh(vh) dx (3.3.28)

The stability parameter αK(h) is locally defined depending on the flow regime as:

αK(h) = δ
hK

2‖w‖2
×

{
PeK if 0 ≤ PeK < 1

1 if PeK ≥ 1
(3.3.29)

with δ a coefficient to be set, δ ∼1, and PeK the local numerical Peclet number:

PeK = hK
‖w‖2

2ε
(3.3.30)

For more details, the reader may refer to1or e.g. to the short note review 2and references therein.

The resulting modified FE schemes above are well-posed; moreover they are strongly consistent.
Indeed we have:

a(u, vh) + c(u, vh) = l(vh) + k(vh) ∀vh ∈ V0h

with u(x) ∈ V0 the (unique) exact solution.
Moreover this approach enables to preserve higher order interpolations.

We have

Theorem 50. Let us assume that: a) the (unique) exact solution u(x) of the advection-diffusion equation (3.3.18) satisfies:
u ∈ V0 ∩Hk+1(Ω); b) Pk-Lagrange FE are employed.

Then the solution of the stabilized FE scheme (3.3.23)(3.3.26) converges to the exact solution u of (3.3.18) as follows:

ε‖∇(uh−u)‖20 + ‖α1/2 w · ∇(uh−u)‖20 (3.3.31)

≤ C
∑
K

h2k |u|2k+1,K [H(PeK − 1) h‖w‖ −H(1− PeK) ε] (3.3.32)

with H(·) the Heaviside function.

Proof. See [L. P. Franca, S. L. Frey, and T. J. R. Hughes ’ 1992].

Observe that the upper-bound error depends on the regime: advection dominated (PeK > 1) or diffusion dominated
(PeK < 1).

Remark 51. A few other stabilizing technique exist in particular those consisting to enrich the FE space Vh by adding a
cubic bubble function in each element K. For details the reader may refer to the numerical analysis book 3

1L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods: I. application to the advective-diffusive model, Comput.
Methods Appl. Mech. Engrg., 95, 253–276 (1992).

2Franca, Leopoldo P., G. Hauke, and A. Masud. "Stabilized finite element methods." International Center for Numerical Methods in
Engineering (CIMNE), Barcelona, 2004.

3Quarteroni, Alfio, and Alberto Valli. Numerical approximation of partial differential equations. Vol. 23. Springer, 2008.
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Figure 3.4.1: FE methods are particularly well adapted and popular in structural mechanics. Here a computation of the
von Mises Yield criterion. Image source:...

3.3.4 On conservative numerical methods: Finite Volume (FV) and Discontinuous Galerkin
(DG)

Finite Volume (FV) methods are the most adequate methods for conservative systems (or equations).
Recall that a conservative equation is an equation which reads as:

div(G(u))(x) = f(x) in Ω (3.3.33)

where G(.) is the (physical) flux (e.g. a mass flux). This flux may be linear (in u) or not.
A naturally conservative numerical method is the FV method.
Let us mention the Discontinuous Galerkin (DG) methods too. DG schemes combine the features of the FE

and the FV schemes. DG methods are particularly interesting for dominant first-order terms. They enable
to built up Pk-discontinuous approximations.

3.4 The linear elasticity system
The FE method has been presented up to now for scalar PDEs. Its extension to the system of linear elasticity does not
introduce big issues.

Section to be completed.
You may consult the short supplementary notes available on the INSA Moodle platform or your structural mechanics

course, or the aforementionned books.

3.5 A-posteriori error estimations and mesh refinement*
*This is a to go further section.

3.5.1 Introduction
3.5.1.1 The BVP context

Let us consider a scalar linear second order BVP. The weak formulation (3.5.1) reads:{
Find u ∈ V such that:
a(u, v) = b(v) ∀v ∈ V

(3.5.1)

where the bilinear form a(., .) and the linear form l(.) satisfy the conditions of the Lax-Milgram theory.
Let us supposed that the unique solution is regular in the sense u ∈ H1+k(Ω) for a given k, k ≥ 1.
Let us consider a Pk-Lagrange FE approximation in Vh, k ≥ 1.
Vh is a finite dimensional internal approximation of V (see Definition 23).
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Convergence curve obtained from an explicit solution: the theoritical rate is recovered. Image source: [?].

3.5.1.2 The general a-priori estimation

We then have the a-priori error estimation, see Theorem 37:

‖u− uh‖H1 ≤ c hk ‖u‖Hk+1 (3.5.2)

with the constant c independent of u and h, c > 0.

Note that these are asymptotic estimations where one do not knows the value of the constant c...

However given a mesh resolution h, equivalently given a number of nodes NN (the polynomial order k is fixed), this
shows that one can reach some accuracy of the FE solution.
Typically, one has the following convergence behavior, see Fig. 2.4.3 or the Fig. below.

Mesh adaptation can yield more accurate results with similar computational resources, on one hand by refining the
mesh where the solution sharply varies, on the other hand by relaxing the mesh where the solution is gently varies, see
e.g. Fig. 3.5.2.4.

3.5.2 A-posteriori estimators: basic properties
3.5.2.1 Desired properties of an a-posteriori error estimator

In next sections, methods to compute a-posteriori error estimations enabling to built refined meshes are presented.

• A-posterior error estimations differ from a-priori error estimations in that the upper bound does not depend on
‖u‖Hk+1 .

• A-posteriori error estimators provide local information on the error of the computed FE solution, from the data of
the PDE.

The perfect FE error estimator would guarantee a maximum error value at every node. However such estimator do not
exist yet !

Given the exact BVP solution u, given the FE approximlation uh, we denote the error estimator by e(h, uh, f). The
exact solution u is here represented by the RHS f .
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Algorithm 3.2 Mesh adaptation algorithm based on a local error estimator eK(uh, f).
• Given a mesh, solve the BVP A(uh) = f : the FE solution uh is obtained in Ω, Ω = ∪K∈ThK.

• Compute the local error indicator eK(uh, f) for each mesh element K, K ∈ Th.

– If eK(uh, f) is greater than a prescribed tolerance, then the mesh is locally refined, e.g. the element K is split.

– If eK(uh, f) is lower than another tolerance, then the mesh can be locally unrefined: the elementK is recombined
with its neighbors.

Definition 52. A function e(h, uh, f). is said to be an a-posteriori error estimator if:

‖u− uh‖V ≤ e(h, uh, f) (3.5.3)

This is the reliability property : the estimator controls the error in the energy norm.
Moreover, the estimator has to be locally computable as:

e(h, uh, f) =

( ∑
K∈Th

(eK(uh, f))
2

)1/2

(3.5.4)

The term eK(uh, f) denotes the local error indicator.

3.5.2.2 On the control of the local errors

Let us assume that one can “localize” the norm computation, that is:

‖ · ‖2V =
∑
K∈Th

‖ · ‖2V,K (3.5.5)

This is the case for the classical Sobolev norms.
Then, one would like that the local estimator satisfies the following double inequality:

∀h, ∀K ∈ Th, c1eK(uh, f) ≤ ‖u− uh‖V,K ≤ c2e(uh, f) (3.5.6)

where cu are constants independent of the mesh.
If this inequality is satisfied then the local estimator eK(uh, f) is equivalent to the local error ‖u− uh‖V,K .
Unfortunately, such inequalities are generally not satisfied or not established.

Instead, one generally manages to obtain the following two types of inequalities only:

• A global upper bound:

∀h,
∑
K∈Th

‖u− uh‖2V,K ≤ c2
∑
K∈Th

(eK(uh, f))
2 (3.5.7)

• A perturbed lower bound:

∀h, ∀K ∈ Th, c1eK(uh, f) ≤ ‖u− uh‖V,∆K
+ Π(hK ,∆K , f) (3.5.8)

where ∆K is a patch of elements around K.
The term Π(hK ,∆K , f) is either negligible or of the same order as ‖u− uh‖V,∆K

.

3.5.2.3 The mesh adaptation algorithm

Given a local error indicator eK(uh, f), the mesh refinement strategy is simply as follows (Algorithm 2.1).
This process can be repeated, then this provides a mesh adaptation strategy: the “automatic mesh refinement” proce-

dure, see Algo. 3.2.
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From Left to Right: The FE solution on a regular mesh, next (from (L) to (R)), on more and more refined meshes.
Image source: Comsol multi-physics webpage.

Also, note that a mesh refinement strategy enables to approximate the solution more accurately than on a regular mesh
with the similar computational resources.

3.5.2.4 The few types of estimators

Few types of a-posteriori error estimator exist. They may be classified as follows:

• Residual-based error estimators,

• Goal-oriented error estimators based on a dual formulation,

• Hierarchical techniques.

We briefly present in next sections these three first types of a-posteriori error estimators.
The presentation proposed in this chapter follows in good part the excellent book [?]. The reader may consult e.g. the

synthetic review 4 too.

Before addressing these three types of a-posteriori error estimators, we first present a pseudo-empirical method based
on the estimation of the Hessian of the FE solution uh.

3.5.3 A first method based on the interpolation error & anisitropic mesh adaptativity
We derive here a pseudo-empirical error indicator based on an estimation of the Hessian. This method is not based on
an actual a-posteriori error estimator. It is based on an error indicator inspired by the following interpolation error
estimations.

3.5.3.1 Interpolation errors in the case of linear elements

Let us consider the case of P1-Lagrange FE (linear elements). In this case, the a-priori FE error estimation (3.5.2), deriving
from Cea’s lemma (26) and the interpolation error estimation, reads:

‖u− uh‖H1 ≤ c0 ‖u− πh(u)‖V ≤ c h ‖u‖H2 (3.5.9)

with u the exact solution (u necessarily regular in the sense u ∈ H2(Ω)), and πh(v) the Lagrange interpolation operator.

It turns out that in 2D triangular meshes (actually in 3D tetrahedra meshes too), estimations of the interpolation error
‖u(x, y)− πh(u)(x, y)‖ can be detailed.

4Grätsch, Thomas, and Klaus-Jürgen Bathe. "A posteriori error estimation techniques in practical finite element analysis." Computers &
structures 83.4-5 (2005): 235-265.
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Proposition 53. In 2D triangular meshes, we have the following interpolation error estimations:

{
|u(x, y)− πh(u)(x, y)| ≤ 1

2h
2
max sup(x,y)∈Ω ‖D2u(x, y)‖

|∇u(x, y)−∇πh(u)(x, y)| ≤ 3 hmax
sin(θmin) sup(x,y)∈Ω ‖D2u(x, y)‖

(3.5.10)

where D2(·) denotes the Hessian, ‖D2u‖ its spectral norm, hmax the greatest triangle edge and θmin the lowest triangle
angle.

Moreover, we have the following local interpolation error estimation too:

∀K ∈ Th, |u(x, y)− πh(u)(x, y)|K ≤ c sup
E∈∂K

sup
(x,y)∈Ω

< e,D2u(x, y)e > (3.5.11)

with ∂K the set of edges of K, e an edge vector linking the two vertices, and the constant c depending on the element
geometry type (triangle, tetrahedra).

The proof of (3.5.10) can be found of e.g. in [?]. Those of (3.5.11) can be found e.g. in [Ainsworth, Oden, book, 2011]

Let us mention a few consequences of these estimations.

On the triangle-tetrahedra quality

• The dominating error is related to the gradient quantity, see (3.5.10)(b).
Recall that in physics-mechanics (in the large sense), the gradients represent the fluxes, the strains. It is therefore
important to accurately compute them.

• The constant value c in the general a-priori estimation, see (3.5.2), is unknown. This is not the case for linear
elements.
And this shows that in the present case the gradient estimation bound is minimal where hmax

sin(θmin) is minimal, see
(3.5.10)(b).

This implis that in an uniform mesh, the optimal triangles shape is the equilateral one.
This is not true anymore for non-isotropic equations where the solution varies greatly in a given direction, e.g. in a
boundary layer in an advection-diffusion problem. In this case, the optimal triangle shapes will be the ones which
maximizes its surface |K| in an ellipse defined by the eigenvalues of the Hessian matrix.

On the triangle - tetrahedra anisotropy The a-priori error estimation relying on (3.5.11) can be summarized as
follows:

FE error ‖u− uh‖V ≤ cst Interpolation error ‖u− πh(u)‖ ≤ cst Square of edge lengths in metric D2(u) (3.5.12)

The local interpolation errors are proportional to the square of the longest edge of K, provided that the edge is measured
in the metric determined by the Hessian D2(u).

This result seems natural: where the second derivatives is large one wants to decrease the edge lengths; conversely,
where the second derivatives are small, longer edge lengths may be employed.

Based on the estimation (3.5.11), the mesh adaptativity strategy will consist to build triangles-tetrahedra equilateral
for the D2(uh)-based metric. In practice, this requires to compute the eigenvalues of the Hessian.

3.5.3.2 Refinement based on the interpolation error and the Hessian eigenvalues

Basic principle For linear triangular elements, the interpolation error estimation (3.5.10) suggests to locally refine the
mesh where the Hessian norm ‖D2(u)‖ is large. However the Hessian of the exact solution is not known. Then, the basic
principle here consists to approximate ‖D2(u)‖ by the Hessian of the FE solution ‖D2(uh)‖.



CHAPTER 3. FINITE ELEMENT METHODS: COMPLEMENTS 81

Estimation of the Hessian ‖D2(uh)‖ for Pk-Lagrange elements First, let us observe that for Pk-Lagrange FE, the
gradient are piecewise P(k−1) , but they are non continuous between two elements. As a consequence, a direct computation
of the Hessian D2(uh) may be an issue. Then, a way to estimate D2(uh) is to do it in the weak sense as follows.

Let us denote by Hij(uh) = ∂2
ijuh, 1 ≤ i, j ≤ n.

To compute Hij(uh), we solve the equation:∫
Ω

Hij(uh)vh(x) dx = −
∫

Ω

∂iuh∂jvh(x) dx+

∫
∂Ω

∂iuhvhnj(x) ds ∀vh ∈ Vh (3.5.13)

Therefore: ∑
K∈Th

∫
K

H l
ij(uh)ϕl(x) dx = −

∫
Ω

∂iuh∂jϕl(x) dx+

∫
∂Ω

∂iuhϕlnj(x) ds ∀l, 1 ≤ l ≤ NN (3.5.14)

By applying the mass lumping technique, we obtain:

H l
ij(uh) ≈ 1(∑

K

∫
K

ϕl(x) dx

) (−∫
Ω

∂iuh∂jϕl(x) dx+

∫
∂Ω

∂iuhϕlnj(x) ds

)
∀l, 1 ≤ l ≤ NN (3.5.15)

The term H l
ij(uh) represents an approximation of the Hessian of uh at node l.

Local metric and anistropic adaptativity Inspired by the estimation (3.5.10), we define the following empirical
error indicator (abusely denoted by eK(uh, f)):

eK(uh, f) = maxE∈∂Kmaxxnode∈K (< e,H(uh)(xnode)e >) (3.5.16)

Observe that the equation < e,D2u(xnode)e >= 1 represents an ellipsoid in nD (an ellipse in 2D), whose the n axes
are the eigenvectors of H(uh) and the semi-axes lengths equal 1√

λi
, λi the eigenvalues, i = 1, · · · , n.

Make a draw.

In practice, the eigenvalues of H(uh) are obtained by computing the zeros of an order 2 (quadratic) or order 3 poly-
nomial.

Given the empirical error indicator eK(uh, f) above, one next applies the mesh adaptivity process as previously
described, see Algo. 3.2.

Recall that the present procedure does not rely on an actual a-posteriori error estimator.
Indeed, eK(uh, f) is here an “uncontrolled” approximation of the Hessian, and it does not satisfy the fundamental

estimation (3.5.3).
Moreover this pseudo-empirical error indicator is inspired from the interpolation estimation (3.5.10) valid for linear

elements. For higher-order elements, the estimations are more difficult to establish.
However, this method provides an easy and relatively efficient tool for many real-life problems.

Finally, in practice it is convenient to define the even more simpler error indicator defined by:

eK(uh, f) = eK,max λmax(H(uh)) (3.5.17)

3.5.4 Residual-based error estimator
In this section, we present an actual a-posterior error estimator. It is based on the equation residual.

3.5.4.1 The toy BVP

Let us consider a linear BVP whose the weak formulation reads as usual:

a(u, v) = b(v) ∀v ∈ V = H1
0 (Ω) (3.5.18)

where the Lax-Milgram theorem conditions are satisfied.
The FE approximation is Pk-Lagrange, k ≥ 1. The discrete weak formulation reads as usual.
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Vh denotes the corresponding internal approximation of V . Vh ⊂ V .

For the sake of simplicity, we detail below the residual-based error estimator for the following linear BVP:{
−∆u(x) + u(x) = f(x) in Ω

u(x) = 0 on ∂Ω
(3.5.19)

3.5.4.2 The residual

Let us define the residual as follows. ∀v ∈ V ,

r(uh, f ; v) = (f, v)− a(uh, v) (3.5.20)
= a(u− uh, v) (3.5.21)

For the present BVP, we have: r(uh, f ; v) = (∇(u− uh),∇v) + ((u− uh), v).

Let us recall the Galerkin orthogonality relation (37). Then, we have:

r(uh, f ; vh) = a(u− uh, vh) = 0 ∀vh ∈ Vh (3.5.22)

3.5.4.3 The fundamental estimation

Theorem 54. Let us consider the linear problem (3.5.18) solved by the Pk-Lagrange FEM, k ≥ 1.
Then, it exist a constant c such that:

∀h, ‖u− uh‖1,Ω ≤ c

( ∑
K∈Th

(eK(uh, f))
2

)1/2

(3.5.23)

In the case of the particular BVP (3.5.19), the local error indicator reads:

eK(uh, f) =hK‖f + ∆uh + uh‖0,K +
1

2

∑
F∈FK

h
1/2
F ‖[∂nKuh]‖0,F (3.5.24)

F denotes the interior faces (edges in 2d) of the element K and FK denotes the set of faces of Kwhich are not on ∂Ω.
Proof. Let πh be the Pk-Lagrange interpolation operator, see (2.4.1). We have: πh : v ∈ V → πh(v) ∈ Vh.

Let us develop the expression of a(u− uh, v − vh). Using (3.5.22), we obtain:

a(u− uh, v − πhv) = r(uh, f ; v − πhv) = r(uh, f ; v) (3.5.25)

due to the orthogonality relation above.
Therefore:

r(uh, f ; v) =(f, v − πhv)− (∇uh,∇(v − πhv))− (uh, v − πhv) (3.5.26)

By decomposing the integrals on each cell K and by applying the Green formula, we obtain:

r(uh, f ; v) =
∑
K∈Th

(f + ∆uh − uh, v − πhv)K −
∑
F∈FK

(∂nuh, v − πhv)F (3.5.27)
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In vertu of the Cauchy-Schwarz inequality, it follows:

|r(uh, f ; v)| ≤
∑
K∈Th

‖f + ∆uh − uh‖0,K‖v − πhv‖0,K +
∑
F∈FK

1

2
‖J∂nuhK‖0,F ‖v − πhv‖0,F (3.5.28)

where 1
2J∂nuhK denotes the mean value of the jump of ∂nuh through the interior face F .

Therefore:

|r(uh, f ; v)| ≤
∑
K∈Th

(
ηK(v − πhv)

(
hK‖f + ∆uh − uh‖0,K +

∑
F∈FK

1

2
h

1/2
F ‖J∂nuhK‖0,F

))
(3.5.29)

with:

ηK(v − πhv) = max

(
h−1
K ‖v − πhv‖0,K , h

−1/2
F max

F∈FK
‖v − πhv‖0,F

)
(3.5.30)

hK (resp. hF ) denotes the measure of K(resp. F ).
That is:

|r(uh, f ; v)| ≤
∑
K∈Th

ηK(v − πhv)eK(uh, f) (3.5.31)

with the local error indicator eK(uh, f) defined by (3.5.24).

In other respect, estimations of the interpolation errors in the expression of ηK enable to show that, see e.g. [?] Chapter
10 for details: ∑

K∈Th

(ηK(v − πhv))
2 ≤ c ‖v‖21,K (3.5.32)

We obtain from (3.5.31):

|r(uh, f ; v)| = a(u− uh, v − πhv) ≤ c ‖v‖1,K

( ∑
K∈Th

(eK(uh, f))
2

)1/2

(3.5.33)

In other respect, the inf-sup condition () provides the following stability inequality:

‖u− uh‖1 ≤ sup
v∈V

a(u− uh, v)

‖v‖1
≤ sup
v∈V

|r(uh, f ; v)|
‖v‖1

(3.5.34)

Hence the a-posteriori estimation (3.5.23).

3.5.5 Goal-oriented error estimator
3.5.5.1 Problem setup

The usual BVP context Let us consider a linear BVP whose the weak formulation reads as usual:

a(u, v) = b(v) ∀v ∈ V = H1
0 (Ω) (3.5.35)

where the Lax-Milgram theorem conditions are satisfied.
The FE approximation is Pk-Lagrange, k ≥ 1. The discrete weak formulation reads as usual.
As previously, see (3.5.20), we define the residual:

r(uh, f ; v) = (f, v)− a(uh, v) = a(u− uh, v) = a(eh,v) ∀v ∈ V (3.5.36)

with eh = (u− uh) the error.
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The model output In practice, the analyst is often interested by a particular model output / quantity of interest.
For example,

J(u) =
1

|ω|

∫
ω

|∇u|2dx or J(u) =
1

|ω|

∫
ω

∂xu dx (3.5.37)

with ω a subset of Ω.
The output functional J , J : V → R can be linear or not. If non-linear, it is supposed to be differentiable.

The goal is here to compute this model output J at a given accuracy.

To do so, one focuses on the following error measure E(u) defined by: Eh(u) = J(u)− J(uh).
If J is linear then:

Eh(u) = J(u− uh) = J(eh) (3.5.38)

For a sake of simplicity, we assume in the sequel that J is linear, therefore (3.5.38) holds.

3.5.5.2 Duality-based estimation

The presentation below follows those proposed in [?]Chapter 10. For details and demonstrations, the reader may consult
this reference and references therein.

We have the following result.
Proposition 55. The error Eh(u) on the model output J(u) satisfies:

Eh(u) = r(uh, f ; z − vh) ∀vh ∈ Vh (3.5.39)

where r(uh, f ; v) is the residual defined by (3.5.36)
and z is the unique solution of the dual problem:{

Given the solutions u and uh, find z ∈ V such that:
a∗(z, v) = J(u− uh) ∀v ∈ V

(3.5.40)

where a∗(·, ·) is the adjoint form of a(·, ·): a∗(·, v) = a(v, ·) ∀v ∈ V .

Remark 56. In the case J(u) non-linear, the estimation (3.5.39) still holds. However, in this case the dual problem reads:

a∗(z, v) =

∫ 1

0

J ′(uh + s (u− uh)) · v ds ∀v ∈ V (3.5.41)

3.5.5.3 Local error computation

We decompose the residual as sum of its values on each element:

r(uh, f ; v) =
∑
K∈Th

rK(uh, f ; v) (3.5.42)

Next, we write the local residual as follows:

rK(uh, f ; v) = (f −Auh, v)0,K + (∂nKuh, v)0,∂K (3.5.43)

with A the differential operator, e.g. A(u) = −div(λ∇u) + w · u+ c u.

We denote by F the interior faces (edges in 2d) of the element K, F ∈ FK , such that F = K1 ∩K2.
We define the following jumps and means values:

J∂nKuhK = ∇u(1)
h · n1 +∇u(2)

h · n2 (3.5.44)

{v} =
1

2

(
v(1) + v(2)

)
(3.5.45)

Then we have the following result.
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Proposition 57. The error Eh(u) on the model output J(u) can be computed as follows:
∀vh ∈ Vh,

Eh(u) =
∑
K∈Th

(f −Auh, z − vh)0,K +
∑
F∈FK

(∂nKuh, z − vh)0,∂K (3.5.46)

+
∑
F∈FK

(J∂nKuhK, {z − vh})0,∂K +
∑
F∈FK

({∇uh}, Jz − vhK)0,∂K (3.5.47)

where A denotes the differential operator, e.g. A(u) = −div(λ∇u) + w · u+ c u.
z is the solution of the dual problem (3.5.40).



Chapter 4

Weak Constraints: Mixed Formulations

It is frequent in mathematical - numerical modeling to have a constraint on the field to be respected, in addition to the PDE
model(s). And it may be interesting or necessary to consider this constraint in the weak sense and in the regular-”strong”
sense (i.e. point-wise).

In the present chapter, the considered PDE systems contain a constraint to be imposed in the weak sense.
The first illustrative example is the incompressibility condition in the (Navier)-Stokes equations which is in a mathe-

matical point of view nothing else than a constraint on the velocity field u.
An other important example are the continuity conditions at interfaces for unmatching meshes (in a model coupling

context or domain decomposition context).
This chapter aims at studying the derivation of the resulting equations: it is mixed formulations; net the numerical

resolution of such systems is addressed.

4.1 The (Navier-)Stokes fluid flow model

4.1.1 The flow model(s)
Let us consider the Navier-Stokes equations for an incompressible flow in a bounded domain Ω ⊂ Rn.

We denote by u the velocity field and by p the pressure.
Assuming that the fluid is incompressible, the mass conservation equation reads: div(u) = 0.
Given external forces f(x), the momentum equations reads:
\rho

ρdtu− div(σ(u)) = f in Ω× (0, T ) (4.1.1)

with ρ the fluid viscosity, σ(u) the constraint tensor: σ(u) = 2µD(u)− pId; µ the fluid viscosity (Newtonian fluid).
D(u) is the strain rate (deformation) tensor: D(u) = 1

2

(
∇u + T∇u

)
.

If using the incompressibility condition div(u) = 0, we obtain: div(σ(u)) = µ ∆u−∇p.
In dimensionless form, the Navier-Stokes system may read as:{

Re (∂tu + (u · ∇)u))−∆u +∇p = f in Ω× (0, T )

div(u) = 0 in Ω× (0, T )
(4.1.2)

with Re = ρL
∗U∗

µ the Reynolds number.
This PDE system is parabolic, non-linear (due to the inertial term (u · ∇)u). It has to be closed with adequate

boundary conditions on ∂Ω× (0, T ).

Remark 58. If Neumann type boundary conditions are considered (e.g. normal constraints are imposed as σn = −pextn),
then the momentum equation has to be kept in the divergence form as: Re (∂tu + (u · ∇)u))− div(σ(u)) = f .

For low Reynolds number (typically Re ≈ 1 and lower values), the Navier-Stokes system reduces to the linear Stokes
system: {

−∆u +∇p = f in Ω

div(u) = 0 in Ω
(4.1.3)

The Stokes model can be employed to model creeping flows e.g. in biology, micro-fluidics, geophysics.

86
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Figure 4.1.1: Viscous flows around a cylinder. Stokes model is valid for low Reynolds numbers Re ≈ 1 and lower (e.g.
creeping geophysical or biological flows).

For a sake of simplicity, from now homogeneous Dirichlet conditions are imposed on the boundary : u = 0 on ∂Ω.
This boundary condition is natural since representing the adherence of the viscous fluid on solid walls.

4.1.2 Formulation in the divergence free space Vdiv

A natural weak form of the Stokes system reads as follows. Find u ∈ Vdiv such that:∫
Ω

∇u : ∇v dx =

∫
Ω

fv dx ∀v ∈ Vdiv (4.1.4)

with

Vdiv = {v ∈
(
H1

0 (Ω)n
)
such that div(v) = 0} (4.1.5)

and the product: A : B = (aijbij)1≤i,j≤d.
The divergence free space Vdiv is a Hilbert space. In vertu of Lax-Milgram theorem, (4.1.4) is well-posed in Vdiv.
Since imposing the incompressibility condition in the functional space Vdiv, the pressure p has disappeared from the

equation (4.1.4). Recovering the pressure field p from the unique solution u ∈ Vdiv, is not trivial; it is based on the de
Rham theorem, see e.g. [?] Chapter 5 for a proof.

Let us point out that the Stokes system respects the same regularity results as the Laplacian or the system of linear
elasticity. On the contrary since it is a system, no maximum principle holds (like in the elasticity system case).

The bilinear form
∫

Ω
∇u : ∇v dx in (4.1.4) is symmetrical. Then the energy corresponding to the Stokes model (4.1.3)

reads:

J(v) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

f v dx (4.1.6)

Then the unique (weak) solution u ∈ Vdiv of (4.1.13) minimizes the energy above in Vdiv:

J(u) = min
v∈Vdiv

J(v) (4.1.7)

4.1.3 Formulation in variables (u, p): a mixed formulation
To approximate the Stokes solution by using a conforming FE method (i.e. an internal approximation), the solution space
Vdiv defined by (4.1.5) is not adequate. Indeed it is difficult (possible but difficult) to built up basis functions respecting
the divergence free condition... Then an other approach is adopted.
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The approach consists to write the weak forms of both equations: the momentum equation (4.1.3)(a) and the mass
equation (4.1.3)(b).

To do so, we multiply (4.1.3)(a) by a velocity test function v ∈
(
H1

0 (Ω)
)n and (4.1.3)(b) by a pressure test function

q ∈ L2(Ω).
After the usual integration by part it follows the weak form of the Stokes model:

Find (u, p) ∈
(
H1

0 (Ω)
)n × L2(Ω)/R such that:∫

Ω
∇u : ∇v dx−

∫
Ω
p div(v) dx =

∫
Ω
fv dx ∀v ∈

(
H1

0 (Ω)
)n∫

Ω
div(u) q dx = 0 ∀q ∈ L2(Ω)/R

(4.1.8)

The weak formulation (a system) (4.1.8) is well-posed and its (unique) solution (u, p) is the solution of (4.1.3) (in the
weak sense). The reader may refer to [?] for more details.

We set:

V =
(
H1

0 (Ω)
)n and M = L2(Ω)/R (4.1.9)

We define the following bilinear and linear forms.

a : V × V → R
(u,v) 7→

∫
Ω
∇u : ∇v dx

(4.1.10)

b : V ×M → R
(v, q) 7→ −

∫
Ω
q div(v) dx

(4.1.11)

l : V → R
v 7→

∫
Ω
f v dx

(4.1.12)

The bilinear form a(., .) is V -elliptic; moreover it is symmetric.

The weak formulation (4.1.8) re-reads as:
Find (u, p) ∈ V ×M such that:
a(u,v) + b(v, p) = l(v) ∀v ∈ V
b(u, q) = 0 ∀q ∈M

(4.1.13)

The weak formulation system (4.1.13) is somehow an extension of the previous standard weak formulation a(u, v) = l(v);
it is called a mixed formulation. Other mixed formulations will be derived in next section.

4.1.4 The incompressibility constraint: p is the Lagrangian multiplier
In the Stokes model (4.1.3), the pressure can be interpreted as the Lagrangian multiplier of the constraint div(u) = 0.
Indeed let us define the Lagrangian L by:

L(v, q) =
1

2
a(v,v) + b(v, q)− l(v) , ∀v ∈ V ∀q ∈M (4.1.14)

Observe that the Lagrangian L is defined as: Lagrangian=Energy + weak constraint.

The stationary point(s) of L(., .) are denoted (u, p). they satisfy:

∇L(u, p) = 0 (4.1.15)

This 1st order necessary optimality condition is equivalent to the mixed formulation (4.1.13) !
Indeed we have: {

∂vL(u, p).v = a(u,v) + b(v, p)− l(v) = 0 ∀v ∈ V
∂qL(u, p).q = b(u, q) = 0 ∀q ∈M

(4.1.16)

Therefore the fluid pressure p is nothing else than the Lagrangian multiplier of the incompressibility constraint div(u) =
0.
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Moreover the unique solution (u, p) ∈ V ×M of (4.1.13) satisfies:

L(u, p) = min
v∈V

max
q∈M

L(v, q) (4.1.17)

The Stokes solution (u, p) ∈ V ×M of (4.1.13) is the unique saddle-point of the Lagrangian L defined by (4.1.14).

The min-max formulation (4.1.17) suggests to compute the Stokes solution by using the Uzawa algorithm. (Please
refer to your previous optimization course). This approach is an excellent one to solve the Stokes model (4.1.3); other
approaches are possible, they are mentioned later.

4.1.5 Discrete form & linear system
Considering the mixed formulation (4.1.13) of the Stokes system, it is now much easier to build up internal approximations
than if considering the divergence free form (4.1.4). To do so we consider the standard FE spaces:

Vh = (Vh,d)
n

; Vh,d = {vh, vh ∈ C0(Ω), vh|Ki ∈ Pk ∀Ki ∈ Th} (4.1.18)

Mh = {qh, qh ∈
(
C0(Ω)\R

)
, qh|Ki ∈ Pk′ ∀Ki ∈ Th} (4.1.19)

Next we set as usual: V0h = {vh,vh ∈ Vh, vh = 0 on ∂Ω}.
Then the discrete weak formulation is straightforwardly obtained as:

Find (uh, ph) ∈ V0h ×Mh such that:
a(uh,vh) + b(vh, ph) = l(vh) ∀vh ∈ Vh
b(uh, qh) = 0 ∀qh ∈Mh

(4.1.20)

Let us write the linear system equivalent to (4.1.20).
We denote by {ϕi(x)}i=1..NNV and by {ψk(x)}k=1..NNM the function basis of Vh,d and Mh respectively.
Then the discrete variables are decomposed as:

vh,d(x) =

NNV∑
i=1

vi,d ϕi(x) d = 1 · · ·n and qh(x) =

NNM∑
l=1

ql ψl(x) (4.1.21)

We arrange the unknown variables as follows:

Uh,d = (u1,d · · ·uNNV,d) ∈ RNNV for d = 1 · · ·n and Ph = (p1 · · · pNNM ) ∈ RNNM (4.1.22)

Then (4.1.20) is equivalent to the following linear system (here n = 3):
A11 0 0 BT1
0 A22 0 BT2
0 0 A33 BT3
B1 B2 B3 0



Uh,1
Uh,2
Uh,3
Ph

 =


b1
b2
b3
0

 (4.1.23)

with:

A11 = A22 = A33 ≡ A =

(∫
Ω

∇ϕj ∇ϕi dx
)

1≤i,j≤NNV
, d = 1, .., n (4.1.24)

and Bd =
(
−
∫

Ω
ψl ∂dϕi dx

)
1≤l≤NNM ; 1≤j≤NNV .

The matrix A is of dimension NNV 2; it is symmetric, positive definite.
Each matrix Bd is rectangular of dimension (NNM ×NNV ).
The global matrix of (4.1.23) is of dimension (n × NNV + NNM)2; it is symmetric but it is a-priori not positive

definite...
As a consequence the global matrix may be not invertible !...

In fact one has to set compatible FE spaces Vh,Mh such that the solution (Uh,1, .., Uh,n, Ph) is unique.

Remark 59. If the viscous term is written as div(σ(u)) and not as (∆u −∇p), see Remark 58, then the “extra diagonal
blocks A�∗” in (4.1.23) do not equal 0.
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Figure 4.1.2: (P1 −P1)-Lagrange FE: a bad FE for the Stokes model. Unstable mode of the pressure p appear (here on
a uniform triangular mesh). Image source: [?].

Well-posedness depending on the FE spaces pair (Vh,Mh)

We follow the presentation and proofs proposed in [?] Section 6.3.4.
As a first existence - uniqueness result, we have

Proposition 60. Let us consider the linear Stokes system (4.1.23).
We denote by: Uh = (Uh,1, · · · , Uh,n) ∈ Rn×NNV and B = (B1, · · · , Bn) ∈M(RNNM ×Rn×NNV ).
i) Existence. The discrete Stokes system (4.1.23) admits a solution (Uh, Ph) ∈ Rn×NNV ×RNNM .
ii) Uniqueness. The velocity vector Uh is unique; Ph is unique up to the addition of an element of Ker(BT ) only.
iii) Ker(BT ) contains at least the vector 1NNM , 1NNM = (1, · · · , 1) ∈ RNNM .
As a consequence, the discrete pressure ph is at best defined up to a constant.

Proof. i) (4.1.23) reads as: AUh +BTPh = b with Ph ∈ Ker(B).
We have: (Ker(B))

⊥
= Im(BT ). Therefore (4.1.23) is equivalent to:

Find Uh ∈ Ker(B) such that: (AUh,Wh) = (b,Wh) for all Wh ∈ Ker(B) (4.1.25)

Next in vertu of the Lax–Milgram theorem (applied here in finite dimension), the existence and uniqueness of Uh ∈
Ker(B) follows.

Therefore (4.1.23) has at least a solution (Uh, Ph) ∈ Rn×NNV ×RNNM .
ii) As Uh must belong to Ker(B), it is unique in Rn×NNV .
iii) Next it can be verified that P is unique up to the addition of an element of Ker(BT ).
Let us consider (wh, rh) ∈ V0h ×Mh. By definition we have:

(Wh, B
TRh) = (BWh, Rh) =

∫
Ω

rh div(wh) dx (4.1.26)

Let us set: rh = 1; rh ∈Mh; that is: Rh = 1NNM = (1, · · · , 1) ∈ RNNM .
Observe that we have:

∫
Ω
div(wh) dx =

∫
∂Ω

wh · n ds = 0 for all wh ∈ V0h.
Therefore: (Wh, B

T1NNM ) = 0 for all Wh.
Therefore 1NNM belongs to Ker(BT ), hence the result.

Let us clarify the uniqueness of the discrete solution (Uh, Ph) ∈ RNNV ×RNNM for particular FE spaces.

Proposition 61. (P2 −P1)−Lagrange FE, the Hood-Taylor element.
Let us consider P2-Lagrange FE for the velocity and P1-Lagrange FE for the pressure i.e. (k, k′) = (2, 1) in

(4.1.18)(4.1.19).
Then dim(Ker(BT )) = 1: Ker(BT ) is generated by the vector 1NNM = (1, · · · , 1) ∈ RNNM only.

As a consequence, the (P2 −P1)-Lagrange FE Stokes solution is unique, with ph defined up to a constant.
The Hood-Taylor element is the most classical element if considering continuous pressure ph. It is an order 2 element.
In practice the constant may be set by imposing a value of pressure at a particular node, or by imposing its average

on Ω (equal to zero for example).

Now let us show that the following a-priori simple and good element is actually unstable, therefore unusable.

Proposition 62. (P1 −P1)-Lagrange FE: a bad element.
Let us consider P1-Lagrange FE both for the velocity and the pressure i.e. (k, k′) = (1, 1) in (4.1.18)(4.1.19).
Then generally: dim(Ker(BT )) > 1.
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Figure 4.1.3: A few elements for the Stokes model respecting the LBB inf-sup condition. (Up) Hood-Taylor element
(P2-Lagrange, P1-Lagrange): the classical one. Order 2, respect the mass conservation globally only. (Middle) The
mini-element (P1-bubble,P1). order 1: ok for uh but bad accuracy of ph. (Down) Crouzeix-Raviart element (P2-bubble,
P1-disc). Order 2; respect locally the mass conservation. Image source: semanticscholar.org

As a consequence, if using (P1 − P1)-Lagrange FE to solve the Stokes system then ph is not unique even up to a
constant....

In practice spurious pressure modes appear in the numerical solution, see e.g. Fig. 4.1.2. This FE scheme is unstable
therefore useless to solve the Stokes model.

FE pairs for the Stokes model and corresponding order. First let us point out that FE schemes applied to fluid
mechanics are studied in detail e.g. in 1.

In Fig. 4.1.3 are indicated a few standard FE pairs to solve the Stokes model (4.1.3) in variables (u, p).
We point out that if considering discontinuous pressure field, like e.g. the (P2 − b,P1 − disc) element, the mass is

preserved on each element K, see the dedicated exercise for the proof.
On the contrary if considering continuous pressure field e.g. the Hood-Taylor element, then the mass is globally

preserved only.

4.1.6 On the Ladyzhenskaya–Babuška–Brezzi (LBB) inf-sup condition
To go further...

We introduce below the condition such that the solution of (4.1.20) is unique. Equivalently a condition such that it
exists an unique solution (Uh, Ph) to (4.1.23).

To show the uniqueness, we show that b = 0 implies that the unique solution of (4.1.20) is (uh, ph) = (0, 0).
In (4.1.20) we set the test functions as: (vh, qh) = (uh, ph). It follows:{

a(uh,uh) + b(uh, ph) = 0

b(uh, ph) = 0
(4.1.27)

Therefore: a(uh,uh) = 0. Since a(uh,uh) is elliptic in V0h, it follows that uh = 0 in V0h.
Next the momentum equation of (4.1.20) reads:

b(vh, ph) = 0 ∀vh ∈ V0h (4.1.28)

Let us assume that the following condition holds:
1Pironneau O., “Finite element methods for fluids”; John Wiley & Sons; Masson (1989).
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inf
qh∈Mh

sup
vh∈V0h

(
b(vh, qh)

‖vh‖V

)
≥ β‖qh‖M (4.1.29)

That is ∃β > 0 such that:

sup
vh∈V0h

(
b(vh, qh)

‖vh‖V

)
≥ β‖qh‖M for all qh ∈Mh (4.1.30)

This is the so-called inf-sup condition, also called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition.

By combining (4.1.28) and (4.1.30), it follows that:

0 = b(vh, ph) ≥ β‖ph‖M‖vh‖V ∀vh ∈ V0h (4.1.31)

Therefore ph = 0, hence the uniqueness.

The LBB condition (4.1.30) is a sufficient condition for a saddle point problem to have a unique solution.
In the Stokes model case, the LBB inf-sup condition ensures that Ker(BT ) is reduced to the constant vectors.

To be admissible, any considered FE space pairs to solve the mixed formulation (4.1.20) should satisfy this LBB inf-sup
condition.

For the Stokes model, this is the case of all the FE spaces pairs (Vh ×Mh) indicated in Fig. 4.1.3.

4.2 Mixed formulations: other examples

4.2.1 General form & origins
Let us consider a general elliptic BVP and its variational form: find u ∈ X such that

a(u, v) = b(v) ∀v ∈ X (4.2.1)

Where a(., .) satisfies the Lax-Milgram theory assumptions. The problem (4.2.1) is assumed to be well-posed in X, X
an adequate Hilbert space.

Note that the mixed formulation formalism may be extended to forms a(., .) which are non-linear with respect to u
e.g. the Navier-Stokes equation.

There is many potential reasons to finally solve the corresponding mixed formulation:
Find (u, λ) ∈ V ×M such that:
a(u, v) + b(v, λ) = l(v) ∀v ∈ V
b(u, µ) = 0 ∀µ ∈M

(4.2.2)

Let us cite the few following examples.
Ex 1. The usual Dirichlet boundary condition u = 0 on Γ ⊂ ∂Ω may be weakly enforced i.e. as a weak constraint

while the original PDE is closed with the “natural”-”do-nothing” homogeneous Neumann b.c. on Γ.
For fluid flows (more precisely for the incompressible Navier-Stokes equations and the advection-diffusion equation),
strongly imposed no-slip conditions at a wall may lead to inaccurate mean flow quantities for coarse boundary-layer
meshes. Weakly imposed Dirichlet boundary conditions improve the scheme accuracy, see e.g. 2.

Ex 2. The non-penetration condition u · n = 0 on Γ ⊂ ∂Ω. This boundary condition is common in micro-fluidics e.g.
for biological flows, also for geophysical flows (with friction conditions at bottom). This condition has to be imposed in
the weak sense; indeed if strongly enforced, the numerical solution may be locally inaccurate.

Ex 3. A non-linear rheology flow law may be relaxed from the primitive equation (4.2.1) and taken into account as
an additional (weak) constraint: b(u, µ) = 0 ∀µ.

Ex 4. To couple two different models with non necessarily consistent grids, the coupling conditions at interface have
to be weakly enforced.

2Bazilevs, Yuri, and Thomas JR Hughes. "Weak imposition of Dirichlet boundary conditions in fluid mechanics." Computers & Fluids 36.1
(2007): 12-26.
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(Weak model coupling is addressed in the structural mechanics course, INSA Toulouse Applied mathematics department).

Below we briefly detail the principle for the cases Ex 1. and Ex 2.

4.2.2 Dirichlet boundary condition
Let us consider the general (and widely present in applications) linear elliptic BVP:{

−div(A∇u) = f in Ω

u = g on ∂Ω
(4.2.3)

Instead of imposing the boundary Dirichlet condition in the solution space V (e.g. V = H1
0 (Ω) for g = 0) next in the

stiffness matrix A as described in Algorithm 2.2, one consider the same BVP (−div(A∇u) = f in Ω) with the “natural -
do nothing” boundary condition plus the additional constraint : u = g on ∂Ω.

Then the problem reads as the following (weak) mixed formulation.
Find (u, λ) ∈ H1(Ω)× L2(∂Ω) satisfying:{∫

Ω
A∇u ∇v dx+

∫
∂Ω
v λ dx =

∫
Ω
f v dx ∀v ∈ H1(Ω)∫

∂Ω
(u− g) µ dx = 0 ∀µ ∈ L2(∂Ω)

(4.2.4)

The constraint “u = g on ∂Ω” is imposed in the weak sense.

The system (4.2.4) can be interpreted as follows.
To obtain u = g on ∂Ω, one has to find the corresponding normal incoming flux λ = (−∇u.n) such that (u − g) = 0

on ∂Ω, see (4.2.4)(a).

For fluid flows, weakly enforced Dirichlet conditions may provide better results than strongly enforced conditions. For
details on the formulation considered in fluid flow contexts (where adherence at a wall reads g = 0), the reader may refer
to [Bazilevs-Hughes, Computers & Fluids] aforementioned.

4.2.3 Non-penetration boundary condition
Let us consider the Stokes system in variables (u, p):

{
−(div(σ(u)))d = fd in Ω , d = 1, · · · , n
div(u) = 0 in Ω

(4.2.5)

with σ(u) the constraint tensor: σ(u) = 2ηD(u)− pId, η the fluid viscosity and D(u) the deformation tensor.
We have: σij(u) = −pδij + η(∂iuj + ∂jui) 1 ≤ i, j ≤ n and (div(σ(u)))i =

∑n
j=1 ∂jσij(u).

On the boundary ∂Ω, we set:

σn ≡ σ(u) · n = σnnn + σnττ (4.2.6)

with (τ,n) direct.

Here we set: ∂Ω = Γd ∪ Γf . On Γd , we consider homogeneous Dirichlet conditions:

u · n = 0 (4.2.7)

On Γf we consider a friction condition defined as:{
σnτ = −β2 u · τ
u · n = 0

(4.2.8)

where β2 is the friction parameter, a given positive function.
We denote by: un = u.n and uτ = u.τ .
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If the equation u.n = 0 is strongly enforced (i.e. point-wise imposed in the FE space Vh) then the accuracy of the
pressure ph is bad in the vicinity of the wall Γf ... Then the good option is to consider the equation u.n = 0 as a weak
constraint of the system.

Then we seek the (weak) velocity u solution of (4.2.5)-(4.2.8) in the functional space V0 defined as:
V0 = {v, v ∈ (H1(Ω)n, v = 0 on Γd}. The condition u · n = 0 on Γf is not strongly enforced in the function space

but weakly as a constraint. The pressure p is sough as usual in M = L2(Ω)/R.

Then we solve the following mixed formulation.
Find (u, p, λ) ∈ V0 ×M × Λ = L2(Γf ) such that:{

a(u,v) + b(v, p) +
∫

Γf
vn λ ds = l(v) ∀v ∈ V

b(u, q) = 0 ∀q ∈M
(4.2.9)

with the additional equation: ∫
Γf

un µ ds = 0 ∀µ ∈ Λ (4.2.10)

The forms a(u,v), b(v, q) and l(v) are defined as previously, see (4.1.10)-(4.1.12).

The resulting system (4.2.9)(4.2.10) reads as a mixed formulation with two Lagrangian multipliers: the pressure p and
the normal component of the normal constraint λ = σnn.

These two Lagrange multipliers are associated to the constraints div(u) = 0 in Ω and u · n = 0 on Γf respectively
The present example is studied more in detail as an exercise; see the accompanying exercises documents.

4.2.4 On the numerical resolution
Assuming that the PDE of the BVP is linear then the form a(., .) is bilinear and the discrete mixed formulation (4.2.2)
have the following structure: [

A BT

B 0

] [
Uh
Λh

]
=

[
b
0

]
(4.2.11)

As already mentioned the well-posedness of the problem (4.2.2), equivalently the invertibility of the global matrix of
(4.2.11), depends on the compatibility between the FE spaces Vh and Mh. It is assumed here that Vh and Mh are such
that (4.2.11) is invertible.

We set: dim(Vh) = NNV and dim(Mh) = NNM . Therefore dim(A) = NNV 2 and dim(B) = NNM ×NNV .

As already mentioned in the Stokes model section, to solve the particular linear system (4.2.11) it is natural to employ
the Uzawa algorithm based on the augmented Lagrangian. A Schur complement algorithm is well-suited too (see details
in Appendix). Oher approaches may be considered see e.g. the method(s) suggested in the FEniCS demo codes.

4.2.4.1 Augmented Lagrangian & Uzawa’s algorithm

Below we recall the augmented Lagrangian method to solve (4.2.11). For more details the reader may refer
to his previous optimization course.

We set the Lagrangian L : V ×M → R defined by:

L(v, µ) =
1

2
a(v, v) + b(v, µ)− l(v) (4.2.12)

Recall that the forms a(., .) and b(., .) are assumed to be bilinear V -elliptic and bilinear respectively. We
have

Proposition 63. The pair (u, λ) is solution of the mixed formulation (4.2.2) if and only if it is saddle-point of the
Lagrangian L(v, µ) defined by (4.2.12). That is:

L(u, λ) = min
v∈V

max
µ∈M

L(v, µ) (4.2.13)
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Next for numerical efficiency purpose we define the augmented Lagrangian:

Lr(v, µ) = L(v, µ) +
r

2
〈Bv,Bv〉 (4.2.14)

with r > 0, r large.
It is easy to show that any saddle-point of Lr(., .) is saddle-point of L(., .) too.

Let us set: λr = r Bur, λr ∈Mh. Then computing the saddle-point of the augmented Lagrangian Lr(., .) is equivalent
to solve the following penalized system, 3.

Find (ur, λr) ∈ Vh ×Mh such that: {
Aur + TBrλr = b

Bur − 1
rλr = 0

(4.2.15)

Resolution by the Uzawa algorithm.
The augmented - penalized system (4.2.15) is solved by the Uzawa algorithm.
After discretization in the FE spaces Vh and Mh, the algorithm reads as follows.
Let Λ0

h be given, for all k ≥ 0, solve:{
(A+ rBTB)Uk+1

h,r +BTΛkh,r = b

M(Λk+1
h,r − Λkh,r) = ρ BUk+1

h,r

(4.2.16)

where M is the pressure mass-matrix.
Note that M may be interpreted as a preconditioning matrix, hence potentially defined such that it improves the

iterative algorithm convergence.

Recall that we have

Proposition 64. For 0 < ρ < 2r and for all Λ0, the Uzawa algorithm converges to the FE solution Uh of the mixed
formulation (4.2.11).

In practice, r has to be set very large; typically one (empirically) set: ρ = r ≈ 107.
Larger r is, more efficient the minimization is, but worse the conditioning number of the momentum equation is too...

Remark 65. - Recall that the Uzawa algorithm may be viewed as a gradient algorithm applied to the dual function
J∗r (µ) = −L(v, µ). (Observe that J∗ is linear in µ).

- It follows from (4.2.16):

Λk+1
h,r = ρ M−1BUk+1

h,r + Λkh,r (4.2.17)

Next the momentum equation reads:

CUk+1
h,r = b−BTΛkh,r with C = (A+ ρ BTM−1B) (4.2.18)

The matrix C represents the "stiffness Stokes matrix” in the penalized system.

4.2.4.2 The Schur complement method

The Schur complement method consists to decompose and reduce the linear system (4.2.11); the reduced system may be
solved by the preconditioned conjugate gradient algorithm.

This approach leads to an efficient algorithm since it is parallelizable. It constitutes the earliest version of non-
overlapping Domain Decomposition Method (DDM).

For details the reader may consult the hand written notes available on the INSA Moodle platform and more importantly
the complimentary DDM part of the present course.

3see e.g. Fortin, M., & Brezzi, F. (1991). Mixed and hybrid finite element methods (Vol. 734). Springer-Verlag, pp. 80-82
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4.2.5 On the mixed FE method
To go further...

Let us finish by point out that the concept of mixed formulation may be considered for the Laplace operator or even
any elliptic operator.

For example let us consider the elliptic BVP:

−div(A∇u) = f (4.2.19)

with adequate boundary conditions e.g. u = 0 on ∂Ω.
Instead of solving these equations, one solve an extended problem taken into account the flux as a variable. To do so,

one set the new additional variable:

φ = A∇u (4.2.20)

and one consider the following mixed formulation. Find (φ, u) such that:{
−
∫

Ω
div(φ) v dx =

∫
Ω
f v dx ∀v

−
∫

Ω
A−1φ · τ dx+

∫
Ω
u div(τ) dx ∀τ

(4.2.21)

for all (v, τ) ∈ L2(Ω)×H(div).
Then the corresponding FE method differs from the one presented in the present course: it is the so-called mixed Finite

Element method.
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Introduction

The CPU-time of a FE code can be high, especially for 3D time-dependent non-linear models. High CPU-time for
computing a numerical solution can be critical in many modeling scenari. Extremly fast computations (achieving “real-
time” computations) may be necessary, for instance, when employing iterative optimization methods (requiring O(10

p

) ,
p = 2− 4, model solvings) or where real-time model outputs are necessary, such as for on-board predictions.

Another situation where fast computations are required arises when computing solutions for various values input pa-
rameter values µ, for instance if considering the µ-parametrized diffusive model −div(µ∇u) = f .

The computation of the model outputs u corresponding to different values input parameter µ is necessary in the
following cases:

a) optimal control problems where the objective is to control the model by adjusting the parameter µ;
b) calibration problems where the aim is to determine the value of the uncertain parameter µ;
c) optimization problems and design explorations.

In all of the aforementioned scenari, a large number of FE model resolutions are required. Therefore, in such contexts,
a drastical reduction in the CPU time needed for solving the model is necessary, while maintaining an acceptable level of
numerical solution accuracy....
Remark 66. Reduced modeling may be done by reducing the complexity of the mathematical model e.g. by reducing a
spatial dimension by integrating 3D equations along one direction.

This is the reduction technique classicaly employed e.g. in:
- (fluid mechanics) the depth-integrated shallow-water flows models;
- (structural mechanics) shell models where the solid thickness is small compared to the two other directions.
Even for such mathematically reduced models, an additional numerical model dimension may be required.
By a reduction of degrees of freedoms (dof) of the numerical model, an approximation of the High Resolution ( also

called high-fidelity) FE solution is computed: this is a Reduced Basis (RB) method.
The latter are projection-based techniques for reducing the computational complexity of parametrized PDEs.

In order to be applicable to real-world problems, the requirements of a reduced order model are :

• A low computational cost (nearly real-time) while conserving fundamentals properties e.g. consistancy and stability,

• A reasonable approximation error compared to the HR FE solution.

The methods presented in this part are:
a) the Proper Orthogonal Decomposition (POD) method (equivalently PCA) which is optimal in some sense in the

case of linear PDEs, moreover solved by FEM,

b) a hybrid POD-Neural Network method valid for non-linear PDEs (or for linear PDEs solved by the Finite Volume
method for example).

Moreover, the greedy algorithm is briefly presented.

Finally, the reduction property of Auto-Encoders is briefy presented too.

For linear PDE cases, the presentation done in this part has been greatly inspired by [?, ?, ?].
For non-linear PDE cases, the presentation is inspired from recent research articles (including ours) which are cited

along the text.
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5.1 Reduced-Basis models in a FE context: basic principles

5.1.1 The original High-Resolution (HR) FE model
Let us consider the following steady-state parametrized bilinear form.

Given µ ∈ P, find u(µ) ∈ V satisfying:

a(µ;u, v) = l(µ; v) ∀v ∈ V (5.1.1)

In this section and the POD method section, it is assumed that the PDE (5.1.1) is linear that is the mapping u 7→ a(µ;u, ·)
is linear.

Example. The parameter µ denotes the diffusivity in the diffusion-reaction operator A(µ;u) = −div(µ∇u) + cu with
µ ∈ P ⊂ L∞(Ω).

In this example the map µ 7→ A(µ;u) is affine.
In the general problem (5.1.1), the map µ 7→ A(µ;u) is a-priori non-affine: it is a non-affinely parametrized PDE.

As a consequence, the form a(µ; ·, ·) is bilinear. Moreover it is assumed to be V -coercitive. Therefore, Problem (5.1.1)
fits into the Lax-Milgram theory.

The corresponding FE parametrized model reads as follows.
Given µ ∈ P, find uh(µ) ∈ Vh satisfying:

a(µ;uh, vh) = l(µ; vh) ∀vh ∈ Vh (5.1.2)

with: uh(x) =
∑NN
i=1 uiϕi(x); ui the i-th dof, ϕi(x) the i-th FE function basis of Vh.

We denote by Φ(x) the FE basis, Φ(x) = {ϕi(x)}1≤i≤NN . Therefore: Vh = span Φ(x) and dim(Vh) = NN .

The vector of dof Uh = (u1, · · · , uNN ) ∈ RNN satisfies the following linear system:

AµUh = Fµ (5.1.3)
with Aµ = (aµij)i,j=1..NN the stiffness matrix; aµij = a(µ;ϕj , ϕi) .

Since it is assumed that the problem fits into the Lax-Milgram theory, the a-priori error estimation (2.4.5) holds. For
regular exact solutions u(µ) (given µ), the estimation reads:

‖u(µ)− uh(µ)‖V ≤ C(u(µ),Ω) hk (5.1.4)

for a given order interpolation k. (Classically k = 2 or 1).

In all the sequel, the FE basis Φ(x) is called the High-Resolution (HR) basis.

5.1.2 The Reduced Basis FE model
Let us define the Reduced Basis (RB) Vrb as an internal approximation of Vh:
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Vrb = span Ξ(x), Ξ(x) = (ξ1(x), . . . , ξNrb(x)), (5.1.5)
Vrb ⊂ Vh (Vh = span Φ(x)) (5.1.6)
ξn(x)∈ Vh for all n, 1 ≤ n ≤ Nrb (5.1.7)
dim(Vrb) = Nrb << NN = dim(Vh) (5.1.8)

At this stage, the RB Vrb is not specified. It will done in next section.

We define the RB problem as the same as the original one but in the RB Vrb :

Given µ ∈ P, find urb(µ) ∈ Vrb satisfying:

a(µ;urb, vrb) = l(µ; vrb) ∀vrb ∈ Vrb, Vrb ⊂ Vh (5.1.9)
urb(µ) is by definition the RB solution.

Let us set Brb the change of variable matrix between Vh and Vrb:

Brb = [ξ1| . . . |ξNrb ], Brb ∈MNN×Nrb (5.1.10)
The vector ξn denotes here the coordinate vector of the function ξn(x) in the FE basis Φ(x).
It follows:

Ξ(x) = BTrb Φ(x) (5.1.11)

The matrix BTrb encodes the change of variable from the HR FE basis Φ(x) to the Reduced Basis Ξ(x).

A classical algebra result states that the matrix
(
BTrbA

µBrb
)
represents the bilinear form a(·, ·) in the basis Vrb.

Given the HR FE system (AµUh = Fµ), see (5.1.3), the RB solution Urb ∈ RNrb is defined as the solution of the
following reduced dimension linear system: (

BTrbA
µBrb

)
Urb = BTrbF

µ (5.1.12)

⇔ RµUrb = fµ with Rµ = BTrbA
µBrb ∈ RNrb×Nrb , fµ = BTrbF

µ ∈ RNrb . (5.1.13)
Note that Rµ = BTrbA

µBrb is a dense matrix, however of small dimension Nrb ×Nrb.
Note that BrbUrb ∈ RNN .

Then, one expects to have:

BrbUrb ≈ Uh (5.1.14)

Of course, the key point of a Reduced Basis method is the definition of Vrb, Vrb = span{ξ1,··· ,ξNrb}, equivalently the
definition of the matrix Brb.
Remark 67. Note that if writing the basic FE decompositions, urb(x) = ΞT (x)Urb and uh(x) = ΦT (x)Uh, with Urb and
Uh the respective dof vectors, it follows that:

urb(x) = ΦT (x)Brb Urb (5.1.15)

Remark 68. The difference between the HR solution and the RB solution satisfies the following estimation:

‖u(µ)− urb(µ)‖V ≤ ‖u(µ)− uh(µ)‖V + ‖uh(µ)− urb(µ)‖V (5.1.16)

with (5.1.4) which holds.
The definition of Vrb has to provide a satisfying estimation of the error ‖uh(µ)− urb(µ)‖V .

5.2 Linear PDEs case: the POD reduction method
The Proper Orthogonal Decomposition (POD) method is far to be recent. It has been applied e.g. in turbulent fluid
mechanics by J.L. Lumley in 1967. Its fundamental feature remains very interesting: under some assumptions, the
POD-based RB is optimal in the energy norm ‖ · ‖V .
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Let us point out that given a matrix, its POD denotes nothing else than its Principal Component Analysis (PCA) in
statistics.

Indeed, the PCA performs an orthogonal transformation to convert a set of measured variables (potentially correlated)
into a set of linearly uncorrelated variables known as principal components.

5.2.1 The POD reduction method at a glance
The POD reduction method relies on a offline-online strategy.

• Offline phase.

– A set of HR solutions corresponding to a whole set of parameters values µ, µ ∈ {µ1, . . . , µM}, are computed.
These HR solutions are called snapshots. They are stored in the snapshot matrix S, S ∈ MNN×M , S =
(uµ,1| · · · |uµ,M ).

– From this collection of snapshots, a Reduced Basis representing “at best” S is extracted by using a POD
(equivalently a PCA).
The PODmethod consists to retain the most influent modes of S by computing its Singular Value Decomposition
(SVD).
The retained singular vectors, typically O(10), constitute the so-called POD modes.

• Online phase.
Given a new value of parameter µnew,

– The reduced model matrix
(
BTrbA

µnewBrb
)
corresponding to (5.1.9) is (re-)built. it is a matrix of dimension

Nrb, see (5.1.12).

– This small dimension linear system is solved in “real-time” (in ms CPU-time). 1

It is worth to notice that the offline phase is not restricted to FEM!
Indeed, the snapshots matrix may be obtained by employing any numerical scheme type such as Finite Volumes (FV)

for example.
On the contrary, the online phase as presented here relies on the weak form of the model equation therefore suitable

to FEM only.
For other type schemes, we will derive in next section a NN-based online phase which can applied to any type of

numerical schemes therefore to FV schemes.

5.2.2 Solution manifolds
A manifold is a collection of points forming a certain kind of set such as a closed surface (or an analogue of this) in three
or more dimensions. We present below a few concept related to the parametrized model solutions manifold.

5.2.2.1 Solution manifolds definition

Let us denote byM the set of all solutions u when the parameter µ describes P:
M = {u(µ), u(µ) solution of 5.1.9 with µ ∈ P}. The corresponding set for discrete solutions reads:

Mh = {uh(µ), uh(µ) solution of 5.1.9 with µ ∈ P} (5.2.1)

Mh (resp. M) is a subset of Vh (resp. V ) .
These sets are the solution manifolds, see Fig. 5.2.1.

1For steady-state models, real-time means here the shortest possible wall-clock time e.g. computations in ms.
For time-dependent computations, real-time typically denotes computations in 1 unit wall-clock time for each each second dynamic model

time.
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Figure 5.2.1: A solution manifold in: (Left) an affinely parametrized case (R) a non-affinely parametrized case.
The 3 axis represent here the 3 first components of the solutions in Vh.
Here M = 50 snapshots are represented (therefore 50 points).

5.2.2.2 Snapshots set

Let us consider the M -dimensional parameter space Pδ, Pδ ⊂ P . dim(Pδ) = M .

Given µm ∈ Pδ, 1 ≤ m ≤M , uµ,m ≡ uh(µm) denotes the HR FE solution, unique solutions of (5.1.2).
The set

Mh,δ = {uh(µ1), · · · , uh(µM )} (5.2.2)

is represented by the (NN ×M)-snapshot matrix S.

5.2.2.3 The Kolmogorov-width*

This is a “to go further section”. 2

Let us now introduce the “distance” between the functions uh(µ) and a subspace X, X ⊂ V , as follows:

E(Mh, X) = sup
uh(µ)∈Mh

inf
v∈X
‖uh(µ)− v‖X (5.2.3)

The Kolmogorov Nrb-width ofMh in reduced spaces of dimension Nrb is then defined as:

d(Mh, Nrb) = inf
Xrb,dim(Xrb)=Nrb

E(Mh, Xrb) (5.2.4)

In other words, the Kolmogorov N -width measures howMh (the set of all HR FE solutions when µ describes P) can
be approximated by reduced solutions urb of dimension Nrb.

5.2.3 Recalls on the Singular Value Decomposition (SVD) and pseudo-inverse
SVD denotes a diagonalization process that can be applied to rectangular matrices. It involves left and right multiplications
by orthogonal matrices.

The POD method and PCA method in data analysis are the same mathematical tool. Both rely on a SVD and an
analysis of the most influencial modes.

5.2.3.1 SVD, singular vectors

The SVD of a rectangular (real) matrix A is as follows.
For A ∈MN×M a (real) matrix, it exists two orthogonal matrices L = (l1| . . . |lN ) ∈MN×N , R = (r1| . . . |rM ) ∈MM×M
such that:

A = LΣRT with Σ = diag(σ1, . . . , σD) ∈MN×M (5.2.5)

with σ1 ≥ · · · ≥ σD ≥ 0, D = min(N,M).

2The Kolmogorov n-width si a tool to assess the effectiveness of approximating functions. It provides a characterization of optimal n-
dimensional spaces for approximating functions and their associated errors.
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Figure 5.2.2: SVD decomposition of a matrix A ∈MN×M with N > M . (Here: U ≡ L and Z ≡ R).

The numbers σi are the singular values of A.
The vectors {li}1≤i≤N are the left singular vectors of A, {ri}1≤i≤M are the right singular vectors. They satisfy:

For i = 1, . . . , D, Ari = σili and AT li = σiri (5.2.6)
Moreover the SVD (5.2.5) implies the following spectral decompositions:

AAT = LΣΣTLT and ATA = RΣTΣRT (5.2.7)

with
ΣΣT = diag(σ2

1 , . . . , σ
2
D, 0, . . . , 0) and ΣTΣ = diag(σ2

1 , . . . , σ
2
D, 0, . . . , 0) (5.2.8)

We have the relation: σi(A) =
√
λi(ATA), i = 1, . . . , D.

Since AAT (resp. ATA) is symmetric, the left (resp. right) singular vectors of A are the eigenvectors of AAT (resp. ATA).

Recall that Rank(A)=Rank(Σ).

5.2.3.2 Pseudo-inverse

Let us denote by r the rank of A ∈MN×M . Then the matrix A† = RΣ†LT with Σ† = diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0), is the
pseudo-inverse of A.

It satisfies:

A† =
(
ATA

)−1
AT (5.2.9)

for rank(A) = M < N .
Note that if rank(A) = M = N , we have: A† = A−1.

5.2.3.3 The Schmidt-Eckart-Young theorem

Let us mention the Schmidt-Eckart-Young theorem (beginning of 20th century) which provides the best approximation
(in some sense) of an arbitrary matrix by a matrix of lower rank n, n given.

We refer e.g. to [?] Chapter 6.

Theorem 69. (Schmidt-Eckart-Young theorem). Let A ∈MN×M be a real matrix of rank r.
The matrix

Ak =

k∑
i=1

σilir
T
i with k ≤ r (5.2.10)

is optimal in the sense

‖A−Ak‖F = min
Bk∈MN×M , rk(B)≤k

‖A−Bk‖F =

 r∑
m=(k+1)

σ2
m

1/2

(5.2.11)

The Schmidt-Eckart-Young approximation theorem will enable in next paragraph to establish an error estimation of
the POD method.
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5.2.4 The POD reduction method
The POD method enables to reduce the dimension of a given snapshot set by representing it onto an orthonormal basis
which is optimal in the least-squares sense (following the Schmidt-Eckart-Young theorem).

The primitive variables are transformed into uncorrelated variables (the POD modes).
The first modes are the most influencial in the sense they contain most of the “energy” of the snapshot set.
The presentation below follows those proposed in [?] Chapter 6.

5.2.4.1 Preliminaries: L2-norm vs energy V -norm

Let us first recall a basic result on scalar products and norms.
In the sequel we denote by (·, ·)� the scalar product either in L2 (� = L2 or by simply omiting the symbol �) or in

V : � = V .

Let us consider here the classical case V = H1(Ω).
Let us assume that the PDE model is well-posed in V. In this case, V is called the energy space: V is the largest space
such that the energy expression is well-defined in V .

With V = H1(Ω), (·, ·)V = (·, ·)L2 + (∇·,∇·)L2 .
In the discrete FE space Vh, considering internal approximation (Vh ⊂ V ), we have:

∀v ∈ Vh, (v, v)V = (Nhv, v) = vTNhv ≡ (v, v)Nh (5.2.12)

where Nh is a symmetric positive definite linear operator, a spd matrix ofMNN×NN , .

In this case, the matrix Nh is computed as the rigidity matrix of the bilinear form corresponding to the operator
(−∆v + v).

5.2.4.2 Definition of VPOD: SVD, eigenvectors

The snapshot matrix S and its SVD Let uµ,m = ((uµ,M )1, . . . , (uµ,M )NN ) ∈ RNN be the dof vector of the m-th
snapshot. Each snapshot uµ,m belongs to Vh.

The snapshot matrix S,S ∈MNN×M , is built as:

S = (uµ,1| · · · |uµ,M ) (5.2.13)
In all the sequel it is assumed that M < NN .
Moreover the snapshots are supposed to be linearly independent therefore rank(S)= M .

Let us write the SVD of S:

S = LΣRT with Σ = diag(σ1, . . . , σM ) ∈MNN×M (5.2.14)

with σ1 ≥ · · · ≥ σM ≥ 0.
Then:

Srm = σmlm and ST lm = σmrm m = 1, . . . ,M (5.2.15)
with {lm}1≤m≤M the left singular vectors and {rm}1≤m≤M the right singular vectors.

Equivalently, we have:

STSrm = σ2
mrm and SST lm = σ2

mlm m = 1, . . . ,M (5.2.16)

The correlation matrix C Recall the m-th snapshot decompositions: uµ,m(x) =
∑NN
i=1 (uµ,m)iϕi(x) and uµ,m =

((uµ,m)1, . . . , (uµ,m)NN ) ∈ RNN .
We define the M ×M correlation matrix C by C = (cmn)1≤m,n≤M ,

cmn = (uµ,m(x), uµ,n(x))� 1 ≤ m,n ≤M (5.2.17)
In the case of the basic L2-scalar product, (uµ,m, uµ,n)� = (uµ,m, uµ,n)L2 , we obtain:
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C = STS (5.2.18)

In the case of the V -scalar product, we obtain:

C = STNhS (5.2.19)

with Nh the symmetric positive definite matrix as previously defined.

Spectrum of C In both cases, C is symmetric positive definite then its spectrum is real strictly positive.
The eigenelements of C satisfies the relation, see (5.2.15):

C rm = λmrm 1 ≤ m ≤M (5.2.20)
where the eigenvalues λm(C) = σ2

m(S), m = 1, . . . ,M .
The eigenvectors of C defined as above are the right singular vectors of S.

Remark 70. One could consider the “other correlation matrix” i.e. the large dimension one defined by SST (L2-scalar
product case). In this case, the eigenelements problem to solve would be of large dimension therefore CPU-time consuming.

Definition of VPOD: the RB Ξ(x) and the matrix Brb
For a reduced basis dimension Nrb ≤M (see later for the choice of the rank Nrb), the POD space VPOD is defined

as:

VPOD ≡ Vrb = span {l1(x), . . . , lNrb(x)} (5.2.21)

with ln(x) ∈ Vh defined as the Nrb first left singular vectors {lm}1≤m≤Nrb of S.
(The singular vector lm is the coordinate vector of the function lm(x) in the FE basis Φ(x)).

In the case of the basic L2 scalar product, these singular vectors {lm}1≤m≤Nrb are defined by (5.2.15).
In the case of the V scalar product, these singular vectors {lm}1≤m≤Nrb are defined as in (5.2.15) but for the

matrix S̃, S̃ = N
1/2
h S.

The left singular vectors {lm}1≤m≤M can be efficiently deduced from the eigenvectors {rm}1≤m≤M of C (equivalently
the right singular vectors of S) as:

lm =
1

σm
Srm 1 ≤ m ≤M (5.2.22)

Following the basic principle (5.1.5)(5.1.12), we set:

Brb = [ξ1| . . . |ξNrb ] with ξm = lm. Brb ∈MNN×Nrb . (5.2.23)
The m-th column of Brb contains the coefficients of the m-th RB vector lm in the FE basis Φ(x) = {ϕi(x)}1≤i≤NN ,

see (5.2.23).

Brb: a semi-orthonormal matrix. By construction, Brb is an (semi-)orthonormal basis since we have (L2-scalar prod-
uct case) BTrbBrb = INrb ; however BrbBTrb 6= INN .

5.2.4.3 The orthogonal projector and error estimation

The orthogonal projector Prb Let us detail the expression of the orthogonal projection from Vh on Vrb = span Ξ(x) :

∀v ∈ Vh, Prb(v(x)) =

Nrb∑
m=1

(v(x), ξm(x))� ξm(x) (5.2.24)

Let us write the projector expression in matrix form.
For the L2-scalar product (·, ·), the projector expression reads:
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Figure 5.2.3: Normalized eigenvalues of the correlation matrix C for M = 20 snapshots of a non-affinely parametrized
linear BVP. In a dominant diffusive phenomena, the very first modes only are important.

Prbv = BrbB
T
rbv for v ∈ RNN (5.2.25)

For the V -scalar product (·, ·)V (energy norm case), the projector expression reads:

Prbv = BrbB
T
rbNhv for v ∈ RNN (5.2.26)

Observe that BTrbv ∈ RNrb ; also recall that BrbBTrb 6= INN .

Error estimation Before stating the error estimation, let us define the set of semi-orthonormal3 bases of dimension
Nrb:

B⊥Nrb = {B ∈MNN×Nrb , B
TNhB = INrb} (5.2.27)

Recall that Nh = IdNN in the case of the basic L2-norm.
Proposition 71. Among the semi-orthonormal basis of dimension Nrb, the POD space VPOD represented here by Brb
is optimal in the least square sense. Indeed we have:

M∑
m=1

‖uµ,m −BrbBTrbNhuµ,m‖22 = min
B∈B⊥Nrb

M∑
m=1

‖uµ,m −BBTNhuµ,m‖22 =

M∑
m=(Nrb+1)

λm (5.2.28)

where uµ,m denotes the m-th snapshot and λm denotes the m-th eigenvalue of the correlation matrix C.
In the present formalism, we necessarily have Nrb ≤M (M the total number of snapshots and Nrb the RB dimension).

The proof of Proposition 71 derives from the Schmidt-Eckart-Young theorem showing that the best approximation of
a given matrix by a lower rank matrix is the one obtained by SVD.

The complete proof of the proposition can be found in [?] Chapter 6.
Remark 72. Proposition 71 states that given Nrb, the POD basis Brb is the optimal basis (optimal in the least square
sense) to represent the M snapshots.
However it is a-priori not optimal for solutions corresponding to other values of parameter µ !

In practice, it is frequent to observe an exponential decay of the eigenvalues λm, see Fig. 5.2.3.

Reduced basis dimension: the maximal conserved rank Nrb In practice, the dimension of the RB is defined from
the error estimation (5.2.28).

From the “energy-based ratio” R(n) =
(∑M

i=1 λi/
∑n
i=1 λi

)
, 0 < R(n) ≤ 1, the modeler chooses the energy ratio to be

preserved.
3Semi-orthonormal property denotes here the orthonormal property for rectangular matrices
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The later is defined as defined as R(n) = (1−εlost) with εlost to be set. Typical values of energy loss will be εlost ∼ 10−5.
Then, Nrb is defined as the minimal value such that:

R(Nrb) ≥ (1− εlost) (5.2.29)

Nrb is the maximal conserved rank.

5.2.4.4 What relation(s) between Urb and Uh ?

Recall that:

• Uh ∈ RNN is defined as the unique solution of AUh = F , see (5.1.3).

• Urb ∈ RNrb is defined as the unique solution of
(
BTrbABrb

)
Urb = BTrbF , see (5.1.12).

• Given the HR FE solution Uh, if we define

Wrb = BTrbUh (5.2.30)

then Wrb represents Uh in the RB Vrb.

• Proposition 71 states that the snapshots approximations Wµ,m = BrbB
T
rbuµ,m (Wµ,m ∈ RNN , BTrbuµ,m ∈ RNrb) are

optimal in the least square sense (considering the L2-scalar product).

• The pseudo-inverse B‡rb satisfies: B
‡
rb =

(
BTrbBrb

)−1
BTrb = BTrb , see (5.2.9). Therefore: B‡rb = BTrb.

Indeed (L2-scalar product case), BTrbBrb = INrb since Brb is semi-orthonormal. However BrbBTrb 6= INN .

• As a consequence: BrbUrb ∈ RNN however Uh 6= BrbUrb.
Also, Urb 6= BTrbUh ≡Wrb.

Indeed, let us calculate the residual of the reduced model applied to Wrb:

(
BTrbABrb

)
Wrb −BTrbF = BTrbA

(
BrbB

T
rbUh −A−1F

)
= BTrbA

(
BrbB

T
rb − INN

)
Uh

6= 0Nrb (5.2.31)

Hence the statements.
However, for Uh not being a snapshot we expect to have:

BrbUrb ≈ Uh equivalently Urb ≈ BTrbUh (5.2.32)

5.2.4.5 A few other remarks

• The POD solution accuracy (the accuracy of urb) depends on the discretization of the parameter space P i.e. both
on the number M and on the choice of these M snapshots.
The sampling of P , equivalently the choice of the snapshots, is a key point of the method.
Unfortunately, the strategy to define P remains an open question.

• On the orthonormalization of the snapshots
If the M snapshots {uµ,1, · · · , uµ,M} are nearly linearly dependent then the snapshot matrix S presents a large
condition number. In this case, it is a good idea to orthonormalize the snapshots by using the Gram-Schmidt
algorithm before computing the eigenvectors.

5.2.5 The algorithm
The POD-based reduction method provides the algorithm below, Algo. 5.1.
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Algorithm 5.1 The POD-based Reduced Basis algorithm
Offline phase

• Define the M values of parameters µ you want the solution.
For µ ∈ Pδ with Pδ of dimension d, the parameter space may be regularly digitalized as a hypercube of dimension d, with
M =Md

0 .

• Compute the M corresponding snapshots (HR FE solutions) uµ,m ≡ uh(µm), 1 ≤ m ≤M with µm previously chosen.
The dof of the HR solution uµ,m(x) are denoted by uµ,m.

Store these HR solutions in the (NN ×M)-snapshot matrix: S = (uµ,1| · · · |uµ,M ).

• Build up the correlation (M ×M)-matrix C,
C = STNhS (5.2.33)

C is symmetric positive definite. It is a dense matrix.

• Compute its eigenelements: (λn, rn) ∈ R×RM with ‖rn‖V = 1,

C rn = λnrn 1 ≤ n ≤M (5.2.34)

Define the target conserved ratio energy (1− εlost) providing the maximal conserved rank Nrb from the “conserved
energy ratio” R(n) =

(∑M
i=1 λi/

∑n
i=1 λi

)
.

That is Nrb is defined the minimal rank such as R(Nrb) ≥(1− εlost).

• Deduce the Nrb largest left singular vectors of S from the eigenvectors rn:

ln =
1√
λn

Srn 1 ≤ n ≤ Nrb (5.2.35)

• Build up the (NN ×Nrb)-Reduced Basis matrix Brb:

B
rb

=
(
l1| · · · |lNrb

)
(5.2.36)

End: the reduced system has been built from the M (arbitraly?) chosen snapshots.

Online phase (real-time computations)
Given a new parameter value µ,

• Re-assembly the (NN ×NN)-rigidity matrix Aµ.
For non-affinely parametrized PDEs, this step necesitates O(kNN) operations: it is CPU-time consuming !... To avoid this
bottlneck, Empirical Interpolation Method (EIM) or a Hyper Reduction Method (HRM) can be considered, see e.g. [?] for
details.
For affinely parametrized PDEs, the stiffness matrix can be decomposed as Aµ = A0+µA1. As a consequence, the computation
of Aµ can be done in real-time.

• Build up the RB stiffness matrix Rµ, Rµ = BTrbA
µBrb, and the RHS fµ, see (5.1.12).

• Solve the low dimension (Nrb × Nrb)-linear system (5.1.12): the Reduced Basis (POD) solution Urb is obtained in
real-time, Urb ∈ RNrb .

The RB solution urb(x) can be written in the FE basis {ϕi(x)}1≤i≤NN , specifically to visualize it on the
FE mesh, as: UNNrb = BrbUrb; UNNrb ∈ RNN .

Given Nrb and following Proposition 71, the vector UNNrb belongs to the optimal RB.
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Figure 5.2.4: Sampling of the parameter space P : a key point of snapshots-based reduction methods.
Here a simple 1D example, P = [µmin, µmax], sampled by using a regular grid (equidistant points). Is it the best strategy
? Likely not...

5.2.6 Discussions
5.2.6.1 Summary of the method

Let us summarize the POD method (also called POD-Galerkin method).
An offline-online strategy is adopted.

At offline phase, a sample in the parameter space P is chosen.
The HR solver is performed to computed the M corresponding HR solutions. This constitutes the reference snapshots

set S.
The (spd dense) correlation matrix C is built and its eigenelements are computed (equivalently a SVD of the snapshot

matrix S).
The reduced dimension basis Vrb = VPOD of dimension Nrb given, is the optimal basis to represent the snapshots, see

Proposition 71.
The Nrb first most influencial modes of C are retained. The resulting (NN ×Nrb)-Reduced Basis matrix Brb follows.

As already mentioned, the offline phase can rely on any numerical method type: FE but also FV or FD etc.

At on-line phase, given a new parameter value µnew, the corresponding solution Uµ
new

rb is computed as the solution
of the reduced dimension (5.1.9).

Since the RB stiffness matrix Rµ
new

= BTrbA
µnewBrb is small dimension, the linear system (5.1.12) is solved in ex-

tremely short time (“real-time”).

In the end, we expect to have:

BrbUrb ≈ Uh equivalently Urb ≈ BTrbUh (5.2.37)

Remark 73. For non-affinely parametrized PDEs, an EIM method or a “Hyper Reduction Method” has to be adopted to
assembly the reduced matrix Rµ in real-time.

• The on-line phase above relies on the weak form of the model equation (5.1.9): the computation of the RB solution
Urb relies on the expression of the bilinear form a(·, ·) in the RB Vrb, see (5.1.9).
Consequently, the present online phase is specific to a FEM context.

• In a FV context, the on-line phase has to be differently built up e.g. using the NN-based approximation described
in the next section.

5.2.6.2 Advantages & disadvantages of the POD method

The advantages of the POD method are clear.

• Given the snapshots set {uµ,1, · · · , uµ,M}, the corresponding RB solutions urb(µ) are optimal, see Proposition 71.

• At the offline phase, the POD-based method is non-intrusive: the original HR code providing the snapshots set can
be employed as a black box.
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The snapshots can be generated using indifferently a Finite Element (FE) code or a Finite Volume (FV) code for
instance.

The disavantages of the POD method are clear too.

• The dimension of P must be very small. For instance a subset of R3 is already large if finely digitalized e.g. with
M = (102)3.

• The choice of the snapshots and the choice of their number M is a critical point and no one really known how to
choose them.

• Offline phase. The computation of the eigenvalues of the dense matrix C by a Lanczos method requires O(Nrb ·NN2)
operations. Therefore for a large number M of snapshots and for NN large, the offline phase can be very CPU-time
consuming.

• Online phase. For non-affinely parametrized linear model, one has A(µ) 6= A0 + µA1.
As a consequence, the assembly of the HR stiffness matrix Aµ depends on NN .
To be actually real-time, an Emprical Interpolation Method (EIM) or the Hyper Reduction Method as in e.g. [?],
has to be adopted to built up Aµ in real-time.

Finally, the POD method constitutes the reference method for linear PDEs, affinely parametrized or not, presenting a few
number of parameter µ only (µ ∈ P ⊂ Rd with d ≈ 3).

5.2.6.3 How about in the context of Finite Volumes or if dealing with a non-linear PDE?

In the case of a non-linear PDEs solved by a FEM, one naturally guess to reduce the linearized PDE solved e.g. in the
Newton-Raphson algorithm.

However this natural simple approach does not offer any guarantee of convergence.
Worse, the RB linearized may be ill-posed. In short, this approach may at best roughly work, or more likely not at all...

For non -linear PDEs, a few approaches are possible but none is universal for all types of non-linearity.
For a more detailed discussions, the reader may consult [?] Chapter 11.

However either for non-linear PDEs or in a FV context (whatever of the PDE is linear or not), the POD basis VPOD
can be employed if completed by a Machine Learning process.
Such a hybrid POD-DNN approach is presented in the next section.

5.2.7 Greedy algorithm*
Greedy algorithm denotes an iterative procedure where one (1) basis function is added at each iteration. Therefore the
computation of 1 HR FE solution is required at each iteration.

For a linear coercive equation, the fundamental feature of the greedy algorithm is the availability of an error estimation
predicting the error made at each iteration.

For complex non-linear problems, the greedy method can be empirically used only since no criteria is known for the
choice of the snapshots.

If interested, the reader may consult [?] Chapter 1.

5.3 Numerical results

5.3.1 Advection-diffusion equation
The numerical results below have been extracted from the proposed Programming Practical (PP).

Consult the INSA Moodle page of the course for details and to obtain Python codes. Other examples can be produced
by performing your own PP code :)

The domain Ω is a square. The boundary ∂Ω is decomposed as: ∂Ω = Γdiri ∪ Γneumann.
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Figure 5.3.1: POD method. Solutions of the µ-parametrized linear advection-diffusion model 5.3.1. Non-affine case with
λ(µ) = exp(µ0(1 + µ)).
Offline phase: M = 40 snapshots are considered.
Online phase. Solution for µ = 2.68 with 99% of energy which is conserved (this corresponds to Nrb = 2 i.e. 2 modes).
(Left) The HR FE solution. (Middle) The RB solution (projected on the mesh by using Brb). (Right) The absolute
difference between the two solutions (error).
Computations performed by M. Allabou (INSA-IMT, 2021).

The model is the following linear convection-diffusion one:
−div(λ(µ)∇u(x)) + w(x)∇u(x) = f(x) in Ω

−λ∇u · n(x) = ϕ on Γneuman = Γup ∪ Γdown ∪ Γright

u given on Γdiri = Γleft

(5.3.1)

The model is µ-parameter through the diffusivity coefficient λ(µ), λ(µ) > 0 a.e.
Offline phase
The number M of snapshots is empirically chosen following a few trial-error tests.
Each snapshot is a HR FE solution corresponding to a different value of the parameter µ.
Online phase
Given a new parameter value, the RB solution urb is computed.

5.3.2 A few Python libraries
Few open-source Python libraries to develop reduced models have been released. Let us mention some of them existing in
2021. (This may have evolved since !).

RBniCS (Reduced Basis in FEniCS) library 4 is “an implementation in FEniCS of several reduced order modelling
techniques (and, in particular, certified reduced basis method and Proper Orthogonal Decomposition-Galerkin methods)
for parametrized problems”.

We may mention a few others:

• The pyMOR library 56which is a “software library for building model order reduction applications with the Python
programming language. Implemented algorithms include reduced basis methods for parametric linear and non-linear
problems, as well as system-theoretic methods such as balanced truncation or IRKA (Iterative Rational Krylov
Algorithm)”.

• The EZyRB7 (Easy Reduced Basis method) Python library based on POD.

Please consult the indicated webpages to obtain detailed information and the accompanying scientific references.

4https://gitlab.com/RBniCS/RBniCS
5R. Milk, S. Rave, F. Schindler. “pyMOR - Generic Algorithms and Interfaces for Model Order Reduction”, SIAM J. Sci. Comput., 38(5),

pp. 194--216, 2016.
6https://mathlab.github.io/EZyRB/build/html/index.html
7https://mathlab.github.io/EZyRB/build/html/index.html



Chapter 6

Hybrid POD - ML method

Given the limitations of the standard PODmethod (linear PDEs solved by FEM only), we present here a method combining
the POD and a Machine Learning technique enabling to reduce non-linear PDEs or linear models solved by FV, on contrary
to the standard POD method.

The present hybrid POD - Machine Learning approach consists to:

1. consider the POD reduced basis, represented by Brb,

2. identify the coefficients of Urb in Brb by a Machine Learning (ML) process.

Consequently, the offline phase requires here an huge amount of data (ML process). Moreover, it is very CPU-time
consuming, without a-posteriori error estimation.

However, it can be applied to non-linear PDEs or to linear models solved by FV, on contrary to the standard POD
method.

This hybrid POD-NN method has been first proposed in [S. Hesthaven et al. JCP 2018].
For a non-linear PDEs, one has the following discrete non-linear system to solve:

Aµ(Uh)Uh = Fµ with Uh ∈ RNN (6.0.1)
By applying the same change of variables as in the linear case, one obtains the following reduced system:(

BTrbA
µ(BrbUrb)Brb

)
Urb = BTrbF

µ (6.0.2)

with Urb ∈ RNrb , BrbUrb ∈ RNN .

The goal is to obtain: BrbUrb ≈ Uh.

The issue is here to handle the NN non-linear equations represented by the term Aµ(BrbUrb).

During the last decades, a large litterature has tackled a variety of non-linear problems. The mathematical analyses are
extremely challenging. A few semi-empirical methods have been developed. Recently to handle non-linear model terms,
it has been proposed to combine classical RB methods, like POD, with ML techniques. This is what is done here.

114



Contents

6.1 Construction of the same RB Ξ(x) as in POD
The offline phase of the POD method consisting to built up Brb is performed exactly the same as in the linear case, see
5.1:

• The parameter space P is digitalized by choosing M values of parameters (µ1, . . . , µM ).

• The corresponding M snapshots (HR FE solutions) uµ,m, 1 ≤ m ≤M , are computed.
They are stored in the (NN ×M)-snapshot matrix S = (uµ,1| · · · |uµ,M ).

• The M ×M -correlation matrix is built up: C = STNhS.
Its eigenelements are computed: (λn, ψn) ∈ R×RM , ‖wn‖V = 1, 1 ≤ n ≤M .

• Nrb is set from the ratio R(n), see (5.2.29).

• The Nrb largest left singular vectors of S are deduced from the eigenvectors ψn:

ln =
1√
λn

Sψn 1 ≤ n ≤ Nrb (6.1.1)

• The (NN ×Nrb)-Reduced Basis matrix Brb is built up as:

B
rb

=
(
l1| · · · |lNrb

)
(6.1.2)

The matrix Brb encodes the change of variable from the FE basis Φ(x) to the RB Ξ(x).

The reduced dimension basis Vrb = VPOD is the optimal one to represent the snapshots (Proposition 71), whatever if
the undelying PDE is linear or not.

Indeed, the estimation (5.2.28) is purely algebraic and based on the snapshots set (dataset) S.

6.2 Learning the coefficients of each snapshot in the RB Ξ(x)

Next, the idea of the method is as follows.
Given Vrb = span Ξ(x), equivalently the matrix Brb, see (5.2.23), a Deep Neural Network (DNN) is trained to learn

the snapshot coefficients in Ξ(x).

More precisely, given the set of parameters (µ1, . . . , µM ), given the corresponding snapshots set S = (uµ,1| · · · |uµ,M ),
given the RB matrix Brb, a DNN is trained to learn the following map:

F : µ ∈ P 7→
(
BTrbU

µ
h

)
∈ RNrb (6.2.1)

where Uµh denotes the dof vector of the HR FE solution uµ, uµ ∈ Vh.

This mapping F represents the HR FE solution u(µ) of the PDE in the RB Vrb.

From a large set of (input(s), output(s)) pairs (called “examples” or “samples” in the ML jargon), a trained deep NN
may enable to simulate the non-linear map F , in an “interpolation mode”.
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Here, the learning samples are the M (parameter values µm, snapshots uµm).
Training a DNN necessitates to compute a very large number M of snaphots, typically M = 10p with p ≈ 3− 4 in 1D

only (i.e. for P ⊂ R).
The offline phase is very CPU time consuming too.

After training, the DNN outputs denoted by N (µ), are supposed to satisfy:

N (µm) ≈
(
BTrbU

µm
h

)
for each snapshot parameter value µm. (6.2.2)

Remark 74. This ML-based projection method, Eq. 6.2.1, can be applied to non linear PDEs.
Moreover, this approach is relevant too in a FV context.
Indeed, in a FV context, no natural reduced bilinear form (5.1.9) is available at online phase.

6.3 Online phase: definition of Urb
Given a new value of parameter µ, the reduced basis solution Uµrb is simply obtained by performing the trained Neural
Network with µ as a new input value, see (6.2.1).

Indeed, the reduced dimension solution Uµrb , U
µ
rb ∈ RNrb , is here defined as:

Uµrb = N (µ) (6.3.1)
Recall that Uµrb reads in the HR FE basis as:

Uµrb,NN = BrbU
µ
rb = BrbB

T
rbU

µ
h , Uµrb,NN ∈ R

NN . (6.3.2)

6.4 Summary of the method & remarks
The offline phase is the same as the in the standard POD method (adopted for linear PDEs) plus the training phase of
a NN to learn the map:

µ ∈ Ph 7→
(
BTrbU

µ
h

)
∈ RNrb (6.4.1)

That is:
A sample in the parameter space P is chosen.
The HR solver is performed to computed the M corresponding HR solutions. This constitutes the reference snapshots

set S. M must be large enough to well perform the NN.
The (spd dense) correlation matrix C is built and its eigenelements are computed (equivalently a SVD of the snapshot

matrix S).
The reduced dimension basis Vrb = VPOD of dimension Nrb given, is the optimal basis to represent the snapshots, see

Proposition 71.
The Nrb first most influencial modes of C are retained. The RB Brb is stored. The resulting (NN × Nrb)-Reduced

Basis matrix Brb follows.

Like in the standard POD method, this phase may be done by employing any numerical methods: FE, FV, FD etc.

The on-line phase simply consists to compute a RB solution Uµrb given a new parameter value µ by performing the
trained NN. Therefore, the computations can be done in real-time.

We obtain:

Uµrb = N (µ) (6.4.2)

We expect to have:

BrbU
µ
rb ≈ U

µ
h equivalently Uµrb ≈ B

T
rbU

µ
h (6.4.3)
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Finally let us point out that:

• The POD-NN method remains the same for linear or non-linear PDEs, affinely parametrized or not.

• The POD-NN method is relevant for non Galerkin-based solvers like Finite Volume schemes, even if the PDE is
linear.
It can be developed from any computational codes (employed as black box) relying on any numerical methods (FE,
FV, FD etc).

• Moreover, since the online phase does rely on any matrix-based system, the complete POD-NN method is non-
intrusive.

• Numerical experiments show that this empirical method provides reduced models with acceptable accuracies, at least
in a few cases...

6.5 Numerical results
We present below two examples. The first example relies on the classical linear unsteady convection-diffusion equation,
non-affinely parametrized. In this case, both the POD method and the POD-NN method can be applied. They are then
compared.

The second example relies on a more complex model: the 2D shallow-water flow model which is solved by a Finite
Volume (FV) scheme. This model is widely employed for instance to simulate flood plain dynamics (inundations).

6.5.1 Unsteady convection-diffusion equation
We consider a 2D parameter space: Ph ∈ R2, µ = (µ1, µ2) with µ1, µ2 ∈ R.

The model is the following unsteady advection-diffusion BVP in Ω = (−1, 1)× (−1, 1):
∂tu(µ; t)− div(λ(µ1)∇u(µ; t)) +w · ∇u(µ; t) = f(µ2) in QT = (0, T )× Ω,

u(µ; t) = 0 in ΓD,

−λ(µ1)∇u · n = 0 in ΓN ,

uh(µ; 0) = u0(µ) a.e in Ω.

(6.5.1)

The boundary of Ω is split into two parts as:
ΓN = (−1, 1)× {−1} ∪ (−1, 1)× {1} ∪ {1} × {−1, 1} and ΓD = {−1} × (−1, 1).

This BVP is here non-affinely parameterized since we set:

•
λ(µ1) = exp(µ1 − 11), (6.5.2)

where µ1 ∈ [µmin, µmax] with µmin = 1, µmax = 10.

•
f(µ2) = Acos(µ2Lx), (6.5.3)

with A = 10, L a domain boundary lenght Ω (L = 2 here). We have: µ2 ∈ [0, πL ].

The parameter space P = . The number of snapshots M =. The RB dimension Nrb =.

POD method results

POD-NN method results
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Figure 6.5.1: POD method. Linear PDE case with µ = (µ1, µ2),non-affine parameterization:λ(µ1) = exp(µ − 11)),
µ1 = 9.3 and f(µ2) given by 6.5.3 with µ2 = 1.48. (Left) The HR solution. (Middle) The RB solution with Nrb =. (Right)
The absolute error between the FE and RB solutions.
(Top) At initial instant t = 0s. (Bottom) At time instant t = 0.87s.

6.5.2 2D Shallow-Water model
The model is the 2D Shallow Water (SW) system which is implemented in the computational code DassFlow1.

The 2D SW model is a non-linear hyperbolic system whose the variables are the water depth h(t, x, y) (m) and the
discharge components (qx, qy)(t, x, y) (m3/s). Thus, the model output is (h; qx, qy)(t, x, y).

The equations are detailed in the DassFlow documentation.
They are solved by a Finite Volume scheme.

The parameter µ is here bi-dimensional, P ⊂ R2, defining the inflow hydrographs i.e. the BC at the incoming bound-
ary, see Fig. 6.5.4.

Each parameter value is defined as µ = (tmontee, Qmax), with tmontee the peak instant (s) and Qmax the maximum
value of the inflow discharge (m3/s). We consider: tmontee ∈ [2343.08, 3843.08] and Qmax ∈ [500., 3000.], see Fig. 6.5.3.

Therefore the parameter space P = [2343.08, 3843.08]× [500., 3000.].
Moreover, the number of snapshots M = and the RB dimension Nrb =.
On Fig. 6.5.4, the flow model outputs, the POD-NN solution and the relative errors at t = 5681.182(s) (= 1h57min)

are plotted.

1DassFlow computational code: https://www.math.univ-toulouse.fr/DassFlow
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Figure 6.5.2: POD-NN method. Same case as above. (Left) The HR solution. (Middle) The POD-NN RB solution with
Nrb =. (Right) The absolute error between the HR solution and the POD-NN solution.
Lines 1 and 2: mu1 = 9.3 at t = 0 and t = 0.87. Lines 3 and 4: mu2 = 2.68 at t = 0 and t = 0.87.

Figure 6.5.3: The 2-D parameter space. In green, the parameter value at online phase (tmontee = 2843.08s, Qmax =
2000m3s−1).
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Figure 6.5.4: POD-NN method. 2DSW flow model with µ defined as follows: tmontee = 2843.0 and Qmax = 2000 (see
Fig. 6.5.3).
(Line 1) The water depth h. (Line 2) The x-direction velocity u.
(Left) The HR model output. (Middle) The POD-NN solution. (Right) The relative error between both.



Chapter 7

Model reductions using Auto-Encoders (AE)*

This is a “to go further section”.
This section has been written with the help of M. Allabou, PhD INSA-IMT 2021-24.

AEs have been recently employed to reduce non-linear BVP, see e.g. [Fresca et al. JSC 2021]. This is the idea briefly
presented in this section.

Model reductions using AE constitutes a purely-data driven method. As a consequence no conservation law is respected
by the reduced model. This lack of physical consistency can be an issue.

Purely-driven approaches should be improved in the next few years by taking into account additionnal physical con-
straints such as e.g. mass conservation, symmetries of solutions etc. We called them “hybrid AI” or “Physics-Informed
Machine Learning”.
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7.1 Basic principles of AEs
Let us first recall what is an AE. An AE consists of two parts: the Encoder and the Decoder. Each part is a Feed-Forward
Neural Network.

The AE is trained to approximate the function FAE defined by:

FAE(WE ,WD; ·) : RNN → RNN

Xh 7→ X̂h = FD ◦ FE(WE ,WD; ·)

with the goal to obtain:

X̂h ≈ Xh (7.1.1)

WE (resp. WD) denotes the parameters of the Encoder (resp. of the Decoder).
The functions FD and FE are such that:

FE(WE ; ·) : RNN → RNrb

Uh 7→ U rb

FD(WD; ·) : RNrb → RNN

Urb 7→ X̂h

The Encoder (resp. the Decoder) aims at approximating the function FE (resp. FD).

AEs are trained by solving the following optimization problem:

(WE ,WD) = arg min(wE ,wD)

(
X̂h − FD ◦ FE(wE , wD;X)

)
(7.1.2)

That is FAE = (FD ◦ FE) aims at approximating the Identity function.

AE are forced to reconstruct the input by preserving the “most relevant aspects” of the data.
AEs are considered as an unsupervised ML method. AEs have appeared in the 80s.

The Encoder is classically chosen as a Convolution Neural Network aiming at down-sampling the input variable Uh.
In other words, the Encoder computes a projection of Uh onto a low-order space (the “latent space”).

On the contrary, the Decoder aims at up-sampling the Encoder output Urb, see Fig. 7.1.1. It is then defined as a
deconvolution NN.

7.2 The fundamental result
It is shown e.g. in (Kunin-Bloom et al., 2019) that a basic two-layers linear AE is equivalent to the probabilistic PCA
(that is the POD with Gausiann perturbed noise).
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Figure 7.1.1: (Left) An Auto-Encoder (AE) architecture. Image source: Wikipedia (Right) A simple Linear Auto-Encoder
(LAE) architecture.

Definitions

Definition 75. Let us consider a small dimension Nrb-dimensional vector Xrbwith Xrb ∼ N (0, I), a scalar value µ and
a NN -dimensional vector ε representing an error term, ε ∼ N (0, σ2I).

We set:
X = W0Xrb+ µ+ ε (7.2.1)

with W0 a NN ×Nrb-matrix.
Xrb is sometimes called a probabilistic PCA model.

Note that one has: p(X/Xrb) = N (X/W0Xrb+ µ, σ2I).

Definition 76. We call a Linear Auto Encoder (LAE) an AE with one Encoder layer only, and one Decoder layer only,
with Identity as activation functions.
With the previous notations, we then have: W1 ∈MNrb×NN and W2 ∈MNN×Nrb .

The loss function to be minimized is then defined as:

L(W1,W2) = ||X −W2W1X||2F

where ‖ · ‖F denotes the Frobenius norm.

The result of equivalence We have the following result, see [?].

Theorem 77. Let us consider the following regularization of the LAE loss function:

Lλ(W1,W2) = ||X −W2W1X||2F + λ(||W1||2F + ||W2||2F )

Then, the critical points of Lλ coincide with the probabilistic PCA model.

In other words, a regularized LAE is nothing else than the POD with a probabilistic input variable.

7.3 Reducing PDE-based models using AEs
Following the equivalency result above (Theorem 77 which is valid for a simple LAE only), one may be inspired to attempt
to reduce non-linear models using AEs... This is roughly the idea developed in [Fresca et al. JSC 2021].

The proposed algorithm is as follows.

Offline phase

• The parameter space P is digitalized: M snapshots (HR FE solutions) are computed and stored in the snapshot
matrix S. M has to be large enough to train an AE at next step.
We denote as previously: Umh = uh(µm), 1 ≤ m ≤M .
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Figure 7.4.1: AE method. Solutions of the µ-parametrized linear advection-diffusion model ??. Non-affine case with
λ(µ) = exp(µ0(1 + µ)).
Offline phase: M = 40 snapshots are considered.
(Left) The HR FE solution. (Middle) The AE solution (projected on the mesh by using Brb). (Right) The absolute
difference between the two solutions (error).
Computations performed by M. Allabou (INSA-IMT, 2021).

• The AE is trained by solving the optimization problem:

min
(WD,WE)

||Uµh − F
D
(
WD;FE(WE ;Uµh )

)
||22

The Encoder provides a reduced vector Uµrb hopefully approximating (in some sense) the HR FE solution Uµh .

• Given the numerous examples (µ,Uµrb) obtained at the previous step, another NN representing the following map is
trained:

G(WG; ·) : RM → RNrb

µ 7→ Uµ
rb

(7.3.1)

Online phase

• Given a new parameter value µ, the trained AE is performed to obtain the reduced dimension vector Uµrb.

Note that here no approximating result insures that the reduced vector Uµrb is satisfying approximation of the HR FE
solution Uµh ...

7.4 Numerical results
Numerical results are shown for the same BVP as previously (Section X): the steady-state linear convection-diffusion
equation.

The model is non-affinely parametrized through the diffusivity coefficient λ(µ), λ(µ) > 0 a.e.
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