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My formula for greatness in a human being is amor fati: that one wants
nothing to be different, not forward, not backward, not in all eternity. Not
merely bear what is necessary, still less conceal it—all idealism is
mendacity in the face of what is necessary—but love it.

— Friedrich Nietzsche

亦余心之所善兮，虽九死其犹未悔。1

—《离骚》 (Li Sao)

热爱生命，丰盈存在；手托日月，直面命运。2

— The Author

1For that which my heart affirms as true, I would have no regrets, even if I were to die nine times for it.
2Will this life passionately, and cultivate a boundless being; hold aloft your sun and moon, and affirm your destiny

steadfast.
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Introduction

This thesis investigates the regularity of Wasserstein barycenters, approached from a geometric
perspective. Building upon the geometric study of optimal transport, this research explores how
the geometric properties of the underlying space influence whether Wasserstein barycenters are
absolutely continuous or singular with respect to a reference measure.

Key contributions of this work include: first, establishing the absolute continuity of Wasserstein
barycenters on Riemannian manifolds with a lower Ricci curvature bound under weaker assumptions
than previously known; and second, characterizing the nature of singular Wasserstein barycenters
in the specific setting of metric trees, linking singularity to the tree’s branching structure.

We begin by introducing the concept of Wasserstein barycenters and the motivation for our
research project.

Background and motivations
The concept of a barycenter, or Fréchet mean, extends the familiar notion of the mean (expected
value) from Euclidean spaces to general metric spaces. For a metric space (E, d), a barycenter
zµ ∈ E of a probability measure µ on (E, d) is defined as a minimizer of the mean squared distance:∫

E

d(zµ, x)
2 dµ(x) = inf

y∈E

∫
E

d(y, x)2 dµ(x).

This definition provides a natural generalization; if (E, d) is a Euclidean space and µ is the law of
a random variable, zµ is its standard mean.

Wasserstein barycenters are barycenters defined for Wasserstein spaces, the metric spaces ex-
tensively studied in optimal transport theory. Throughout the subsequent discussion, we consider
(E, d) a proper metric space, meaning that bounded closed subsets of E are compact. Barycenters
are known to exist on such spaces; furthermore, proper metric spaces are Polish (i.e., complete and
separable). The Wasserstein space (of order 2) over (E, d), denoted by (W2(E), dW ), comprises
probability measures µ on (E, d) with finite second moments, i.e.,

∫
E
d(x0, x)

2 dµ(x) is finite for
some point (and thus any) x0 ∈ E. The Wasserstein metric dW quantifies the distance of two
measures µ, ν ∈ W2(E) via the optimal transport plans between them,

dW (µ, ν) :=

√
inf
γ

∫
E×E

d(x, y)2 d γ(x, y), (1)

where the infimum is taken over all transport plans γ, i.e., probability measures γ on E × E with
marginals µ and ν. This infimum is attained because (E, d) is Polish. Crucially, (W2(E), dW ) is
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itself a Polish space, which allows for the definition of a Wasserstein space over it, denoted by
(W2(W2(E)), dW). A Wasserstein barycenter µP ∈ W2(E) is a barycenter of a probability measure
P ∈ W2(W2(E)), meaning P is a measure on measures in W2(E). Such a barycenter µP is thus
a probability measure on E. This thesis focuses on establishing regularity properties of µP, such
as its absolute continuity or singularity with respect to a reference measure on E, by leveraging
geometric properties of the underlying space (E, d).

A primary motivation for studying Wasserstein barycenters is their remarkable ability to pre-
serve certain geometric features when averaging data represented as probability distributions. This
geometric fidelity is well-illustrated by the following example: the barycenter µP of a finite collection
of centered Gaussian measures {µi}ni=1 on Rm, with P =

∑n
i=1 λi δµi

for non-negative weights λi
summing to one, is itself a unique centered Gaussian measure [1, Theorem 6.1]. This property, cap-
turing structural elements during averaging, has fueled increasing interest in applying Wasserstein
barycenters across diverse fields such as image processing, machine learning, and statistics; see [78]
for a survey of such applications. Although this thesis focuses on theoretical aspects, understanding
the geometric properties of Wasserstein barycenters, including their regularity, is crucial to under-
pinning their effective and reliable use in practical settings. Moreover, investigating barycenter
regularity aligns with the broader program of exploring the rich geometric structures inherent in
optimal transport theory. This field has produced powerful concepts, notably the synthetic theory
of Ricci curvature bounds for metric measure spaces [105, Part III]. This thesis utilizes tools de-
veloped from the geometric study of optimal transport, such as displacement convexity and related
variational techniques. Conversely, we anticipate that our findings and the methodologies employed
will offer further insights into the geometric analysis of Wasserstein spaces and the behavior of their
barycenters.

Absolutely continuous Wasserstein barycenters on manifolds
Early investigations in optimal transport concerning the regularity of Wasserstein barycenters often
focused on displacement interpolations. Namely, given two probability measures µ, ν in the Wasser-
stein space W2(M) over a complete Riemannian manifold (M,dg), any minimal geodesic from µ
to ν consists of points µλ, which are barycenters of the measure (1 − λ)δµ + λ δν ∈ W2(W2(M))
as λ varying in [0, 1]. These barycenters µλ are termed displacement interpolations (or McCann
interpolants), and their absolute continuity, under various (and sometimes generalized) conditions,
have been extensively studied [72, 12, 36, 38, 105].

Agueh and Carlier [1] initiated the study of Wasserstein barycenters for finite collections of
probability measures on Euclidean spaces. These barycenters are solutions to the minimization
problem:

min
ν∈W2(Rm)

n∑
i=1

λi dW (ν, µi)
2, where µi ∈ W2(Rm). (2)

They established the existence of such barycenters constructively via a dual formulation and demon-
strated that if at least one of the input measures µi is absolutely continuous with a bounded density
function, then the unique barycenter inherits this absolute continuity. Kim and Pass [58] extended
this line of inquiry to Wasserstein barycenters on compact Riemannian manifolds M , reaching
similar conclusions. Their framework accommodates general probability measures P on W2(M),
provided P assigns positive mass to the set of absolutely continuous measures whose densities are
uniformly bounded from above. The absolute continuity of Wasserstein barycenters was indispens-
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able for their subsequent study of Jensen-type inequalities. Agueh and Carlier’s results were later
generalized by Jiang [52] to compact Alexandrov spaces with curvature bounded from below.

To contextualize our contributions to the geometric investigation of absolute continuity, we
first outline some pertinent known properties of Wasserstein barycenters. For a proper metric
space (E, d), the existence of a Wasserstein barycenter µP for a finitely supported measure P =∑n
i=1 λi δµi

(c.f. formulation (2)) is closely related to a multi-marginal optimal transport problem
(see Definition 2.11 for more details). Specifically, an optimal multi-marginal plan γ is a minimizer
for

∫
En

min
y∈E

n∑
i=1

λi d(y, xi)
2 d γ(x1, . . . , xn) = min

θ∈Θ

∫
En

min
y∈E

n∑
i=1

λi d(y, xi)
2 d θ(x1, . . . , xn),

where Θ denotes the set of all multi-marginal transport plans (probability measures on En) with
prescribed marginals µ1, . . . , µn in this given order. A barycenter selection map is a measurable
map B : En → E sending (x1, . . . , xn) to a barycenter of

∑n
i=1 λi δxi

, i.e.,

n∑
i=1

λi d(B(x1, . . . , xn), xi)
2 = min

y∈E

n∑
i=1

λi d(y, xi)
2.

If γ is a multi-marginal optimal transport plan and B is a barycenter selection map, then the
push-forward measure µP := B#γ is a barycenter of P. For a general measure P ∈ W2(W2(E)),
the existence of its barycenter µP is typically established by approximating P with a sequence of
finitely supported measures {Pj}, leveraging the guaranteed existence of a barycenter of Pj , which in
turn follows from the existence of multi-marginal optimal transport plans and barycenter selection
maps. Thanks to the consistency of Wasserstein barycenters [62], if dW(Pj ,P) → 0 and µPj

are
corresponding barycenters, then there exists a converging subsequence of {µPj}, and its limit is a
barycenter of P. Moreover, on a Riemannian manifold (M,dg), if P assigns positive mass to the set
of absolutely continuous measures, the functional µ 7→

∫
W2(M)

dW (µ, ν)2 dP(ν) is strictly convex
[90, Theorem 7.19]. This strict convexity implies the uniqueness of its minimizer µP, the Wasserstein
barycenter. With these preliminaries, we state a key result by Kim and Pass [58, Theorem 6.2] that
serves as a crucial reference point for our work:

Theorem 0.1 (Kim and Pass’ result on absolute continuity). Let (M,dg) be a compact Riemannian
manifold. For a positive number L > 0, denote by AL the set of absolutely continuous probability
measures (with respect to the volume measure Vol) on M whose density functions are bounded
from above by L. If a measure P ∈ W2(W2(M)) satisfies P(AL) > 0 for some L > 0, then P has a
unique barycenter µP, which is itself absolutely continuous with a bounded density function.

The proof of Theorem 0.1 by Kim and Pass involves applying their prior results on multi-
marginal optimal transport [57] to finitely supported measures. They subsequently establish a
uniform upper bound on the densities of barycenters for the approximating sequence, a step where
both the compactness of M and a lower Ricci curvature bound are utilized. While Theorem 0.1
marks a significant advance, its reliance on the compactness of M and the strong assumption that
P assigns positive mass to measures with uniformly bounded densities (P(AL) > 0) motivates our
objective: to establish a more direct link between lower Ricci curvature bounds and the absolute
continuity of Wasserstein barycenters, potentially under relaxed assumptions.
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To address these limitations, this thesis introduces a novel approach centered on displacement
functionals. These functionals assign to an absolutely continuous probability measure µ = f · Vol
the quantity G(µ) :=

∫
M
G(f)d Vol. The utility of G is tied to the properties of the function

G : R+ → R, particularly its convexity or growth conditions. Prominent examples, such as those
with G(ρ) = ρ log ρ or G(ρ) = −nρ1−1/n (n ∈ N∗), are intrinsically linked to lower Ricci curvature
bounds; indeed, synthetic definitions of these bounds on metric measure spaces often rely on the
convexity properties of such functionals along Wasserstein geodesics [69, 96, 97]. Drawing inspi-
ration from their role in encoding geometric information like lower Ricci curvature bounds, our
strategy involves choosing a specific class of functions G. Since a finite value of G(µ) implies the
absolute continuity of µ, the core element of our method is to establish an effective upper bound for
G(µP), the functional evaluated at the Wasserstein barycenter µP. Precisely, for a finitely supported
measure P =

∑n
i=1 λi δµi

where each µi has compact support and only a subset (say, the first k) are
absolutely continuous, our approach yields an upper bound for G(µP) in terms of the convex com-
bination

∑k
i=1 λi G(µi) plus some additional, well-controlled terms (Proposition 4.3). This result is

notably different from a similar inequality by Kim and Pass [58, Theorem 7.11], where a finite upper
bound requires all measures µi in the support of P to be absolutely continuous. Consequently, our
capacity to handle mixtures that include potentially singular measures significantly expands the
applicability of using such functionals to deduce barycenter regularity. This refined control is vital
for establishing the absolute continuity of Wasserstein barycenters, since it ensures G(µP) remains
bounded when transitioning from finitely supported P to general measures via approximation ar-
guments. Achieving this bound relies on two of our key technical contributions: the derivation of
a Hessian equality for Wasserstein barycenters (Theorem 4.1) and the application of new estimates
in proving the aforementioned upper bounds of G(µP).

These considerations lead to the following intermediate proposition (Proposition 4.9). Here, the
set B(G,L) comprises absolutely continuous measures µ = f · Vol such that G(µ) ≤ L, for some
L > 0 and a function G specified by Definition 4.7.

Proposition 0.2. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature
bound. If P ∈ W2(W2(M)) gives mass to some closed set B(G,L) defined in Definition 4.7 with
respect to the volume measure on M , then the unique barycenter of P is absolutely continuous.

To refine this result further, we leverage tools from functional analysis and Souslin space the-
ory. We revisit a modified de la Vallée Poussin criterion (Theorem 4.13) to connect the condition
P(B(G,L)) > 0 with conditions involving the σ(L1, L∞) weak topology on the densities of abso-
lutely continuous measures. Precisely, the closed set B(G,L) in Proposition 0.2 can be replaced by
a compact set with respect to the weak topology. This shift towards topological properties of sets
of absolutely continuous measures (or their densities) leads us to employ the Souslin space theory.
Though not commonly seen in the literature of optimal transport, the Souslin space theory provides
helpful tools to find connections between different topologies from a measure theoretical viewpoint.
Note that, since P is a Radon measure on the Polish space W2(M), if P assigns positive mass to the
(Borel) set of absolutely continuous measures, it must assign positive mass to some compact subset
of these absolutely continuous measures (in the W2(M) topology). The aforementioned tools help
demonstrate that such a compactness result also holds for the weak topology. This line of argument
culminates in the first main result of this thesis:

Theorem 0.3. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a measure P ∈ W2(W2(M)) assigns positive mass to the set of absolutely continuous probability
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measures with respect to the volume measure on M , then the unique barycenter of P is absolutely
continuous.

This result significantly extends Theorem 0.1 in two key aspects. Firstly, it establishes the abso-
lute continuity of the barycenter µP under the considerably weaker condition that P merely assigns
positive mass to the set of absolutely continuous measures. This requirement, often a natural one
for ensuring the uniqueness of µP, represents a crucial relaxation from Theorem 0.1, which demands
that P gives mass to measures with uniformly bounded densities (i.e., P(AL) > 0). Secondly, our
result holds for general complete manifolds with a lower Ricci curvature bound, thereby relaxing
the compactness assumption of the prior theorem. Consequently, even when applied to the com-
pact setting originally considered by Kim and Pass (as compact manifolds are indeed complete and
possess a lower Ricci curvature bound), our proposition provides a stronger statement due to this
less restrictive condition on P.

Singular Wasserstein barycenters on metric trees
Having established that a lower Ricci curvature bound ensures the absolute continuity of Wasserstein
barycenters, a natural subsequent inquiry concerns how their singularity relates to other geometric
structures. Inspired by [50], we begin with a concrete example on the tripod formed by attaching
three copies of the unit interval [0, 1] at a common endpoint 0 (Figure 1). Let ν1, ν2, ν3 be three

ν1ν2

ν3

0

1

1

1

1
2

1
2

1
2

Figure 1: P =
∑3
i=1

1
3 δνi on the tripod

probability measures, each supported in the sub-interval [ 12 , 1] of a distinct branch of this tripod.
As detailed in Proposition 6.59, a calculation involving the barycenter selection map reveals that
the unique Wasserstein barycenter of P :=

∑3
i=1

1
3 δνi is µP = δ0, a Dirac measure concentrated at

the central vertex 0.
To contextualize this example and relate it to our previous findings on absolute continuity, we

briefly introduce the setting of metric trees. A metric tree is a geodesic metric space Γ = (V,E, dl),
where V is the set of vertices, E is the set of edges, and dl(x, y) is the length of the unique
shortest path connecting any two points x, y ∈ Γ. The canonical reference measure on Γ is the
one-dimensional Hausdorff measure H, which coincides with the Lebesgue measure on each edge
and assigns zero measure to the vertices V . The tripod in our example is a metric tree with three
edges of length 1 and four vertices.
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Consider the specific case where each νi in the tripod example is the uniform probability measure
on the interval [ 12 , 1] of its respective branch. Each νi is then absolutely continuous with respect to
H. Consequently, the measure P = 1

3

∑
δνi is supported entirely on absolutely continuous measures.

Nevertheless, its barycenter µP = δ0 is singular with respect to H. While a tripod is not a smooth
manifold, we can still infer from various generalized notions of curvature bounds that around the
common vertex 0, the curvature of the tripod is not bounded from below. This observation suggests
a link between the failure of such curvature bounds and the emergence of singular barycenters. The
flexibility in choosing the measures νi further hints at a rich, yet potentially tractable, structure
for singular Wasserstein barycenters on metric trees, motivating our focused study in this setting.

Auxiliary techniques for metric trees

To systematically investigate this phenomenon, we develop and utilize two key auxiliary tools.
The first one is a localization principle for Wasserstein barycenters, which we term the restriction
property (Corollary 5.4):

Theorem 0.4 (Restriction property of Wasserstein barycenters). Let (E, d) be a proper metric
space, and let µP be a Wasserstein barycenter of a probability measure P ∈ W2(W2(E)). Given an
equality µP = λµ1+(1−λ)µ2 with µi ∈ W2(E) for i = 1, 2 and λ ∈ (0, 1), there exist two probability
measures Q1,Q2 such that µi is a barycenter of Qi for i = 1, 2. Furthermore, Q1 and Q2 inherit
the following properties from P concerning absolute continuity with respect to any given reference
measure η on E:

1. If P assigns positive mass to the set of measures absolutely continuous with respect to η, then
Q1 and Q2 also assign positive mass to this set.

2. If P is supported entirely in the set of measures absolutely continuous with respect to η, then
Q1 and Q2 are also supported entirely on this set.

This restriction property (Theorem 0.4), particularly when η is a canonical reference measure
(e.g., the volume measure on a Riemannian manifold or H on a metric tree), provides a foundation
for local-to-global arguments, facilitating the extension of results like Theorem 0.3 to more complex
scenarios.

The second auxiliary tool is a reduction technique specifically designed for optimal transport
problems on metric trees. For any oriented edge ~e of the metric tree Γ, we define a reduction map
T~e : Γ → R. This map effectively “flattens” the tree into the real line by identifying ~e with an
interval and mapping the rest of Γ accordingly (see Figure 2 and Definition 6.20).

Thanks to the c-cyclical monotonicity characterization of optimal transport plans, we establish
that these reduction maps preserve Wasserstein distances under certain conditions:

Theorem 0.5 (Reduction property of optimal transport on metric trees). Let Γ = (V,E, dl) be a
metric tree. Fix an oriented edge ~e of Γ and let T~e : Γ → R be the reduction map associated to ~e
(Definition 6.20). For two given probability measures µ, ν ∈ W2(Γ), if µ is supported in the edge ~e,
then

dW (µ, ν) = dW (T~e#µ, T
~e
#ν),

where dW denotes both the Wasserstein metrics on W2(Γ) and on W2(R).
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Figure 2: Illustrative example of the reduction map T~e.

Wasserstein barycenters on the real line

The combination of the reduction technique (Theorem 0.5) and the restriction property (Theorem
0.4) guides our strategy: first, investigate properties of Wasserstein barycenters on the real line R,
and then apply the auxiliary techniques to extend the findings to metric trees.

On the real line, the Wasserstein space (W2(R), dW ) possesses a well-known linear structure. It
can be isometrically embedded into the Hilbert space L2([0, 1]) by mapping a measure µ ∈ W2(R)
to its quantile function f−1

µ : [0, 1] → R. The quantile function here is the (generalized) right-
continuous inverse of the distribution function fµ(t) := µ((−∞, t]). This linear structure leads to
an explicit formula for the Wasserstein barycenter µP of any P ∈ W2(W2(R)): its quantile function
is the P-average of the quantile functions of the measures in its support:

f−1
µP

(t) =

∫
W2(R)

f−1
ν (t)dP(ν), ∀ t ∈ [0, 1]. (3)

To analyze singularity properties using this formula, particularly for measures supported in [0, 1],
we introduce the concept of dual measure µ̃.

Definition 0.6. Let µ be a probability measure supported in [0, 1]. Its dual measure µ̃ is the
probability measure whose distribution function fµ̃ is given by the quantile function of µ:

fµ̃(t) = f−1
µ (t), for t ∈ (0, 1). (4)

Dual measures share many regularity and singularity properties. It can be verified that µ̃
is also supported in [0, 1] and that the duality is involutive, i.e., ˜̃µ = µ. Crucially, as shown
in Proposition 6.33 and Theorem 6.40, µ exhibits certain types of singularities if and only if µ̃
does. These include being finitely supported, countably supported, or singular with respect to the
Lebesgue measure L1. By combining the properties of dual measures with the barycenter formula
(3), we derive the following rigidity properties for Wasserstein barycenters on R.

Theorem 0.7 (Rigid Properties of Wasserstein Barycenters on R). Let P ∈ W2(W2(R)) be a
probability measure, and let µP be its Wasserstein barycenter. We say a property Q is a rigid
property of µP if the following implication holds,

µP satisfies property Q =⇒ ν satisfies property Q for P-almost every ν.

7



The following properties of µP are rigid:

1. Being a Dirac measure.

2. Having compact support.

3. Being singular (with respect to the Lebesgue measure).

4. Having support of Lebesgue measure zero (i.e., being supported in a negligible set).

5. Being not absolutely continuous.

These rigid properties mean that if the barycenter µP is, for example, singular, then almost all
measures ν in the support of P must also be singular. This is a powerful constraint on the measures
being averaged.

Characterizing singular Wasserstein barycenters on metric trees

Equipped with these tools, we can now describe the nature of singular Wasserstein barycenters on
metric trees. As an illustration of how properties of Wasserstein barycenters are extended from
R to trees, recall that Theorem 0.3, when applied to R (which has zero Ricci curvature), states
that if Q ∈ W2(W2(R)) gives mass to absolutely continuous measures, then its barycenter µQ is
also absolutely continuous. By applying the restriction property and the reduction technique, we
generalize this to obtain the following partial regularity result on metric trees (Theorem 6.28):

Proposition 0.8. Let Γ = (V,E, dl) be a metric tree. Let P ∈ W2(W2(Γ)) be a measure that
assigns positive mass to the set of measures on Γ that are absolutely continuous (with respect to H).
If µP is a barycenter of P, then the restriction of µP to the interior of any edge e ∈ E is absolutely
continuous. Consequently, if µP is not absolutely continuous, its singular part must be supported in
the set of vertices V , which is a weighted sum of Dirac measures at these vertices.

Proposition 0.8 reveals a general principle for characterizing Wasserstein barycenters µP on
metric trees: the behavior of µP on the interior of edges often mirrors that of barycenters on R,
while its behavior at vertices requires separate analysis, confirming the observation from the tripod
example. In Section 6.5, we present a method for determining the mass of µP at vertices, which
involves applying the reduction technique to all edges incident to a given vertex.

Our general strategy for describing Wasserstein barycenters on metric trees then follows two
steps:

1. Analyze the mass distribution at vertices using reduction techniques applied to edges incident
to each vertex (Section 6.5).

2. Analyze the barycenter’s restriction to the interior of each edge by reducing the problem to
the real line, utilizing formula (3) and the rigid properties (Theorem 0.7) to characterize the
possible types of measures.

Several examples illustrating distinctive features of Wasserstein barycenters on metric trees,
derived using this approach, are presented in Section 6.6.
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Summary and future research directions
This thesis advances the geometric study of optimal transport and Wasserstein barycenters through
several key contributions.

1. Hessian Equality for Wasserstein Barycenters: In Theorem 4.1, we establish a novel Hessian
equality for Wasserstein barycenters of finitely supported measures. This result provides a
rigorous geometric underpinning for the intuition that the weighted sum of “tangent vec-
tors” from the barycenter to the supporting measures vanishes, reinforcing the analogy of
Wasserstein spaces as infinite-dimensional Riemannian manifolds. The introduction of the
“approximate Hessian” (Section 1.3.2) in its derivation also offers a versatile tool for future
differential investigations of Wasserstein barycenters.

2. Absolute Continuity of Wasserstein Barycenters under Relaxed Assumptions: Our main result
on absolute continuity, Theorem 4.5 (restated as Theorem 0.3), significantly extends the work
of Kim and Pass (Theorem 0.1). It demonstrates that a lower Ricci curvature bound is suffi-
cient for the absolute continuity of the barycenter µP if the measure P merely assigns positive
mass to the set of absolutely continuous measures. This clarifies the crucial role of Ricci cur-
vature, independent of the assumptions regarding compactness or the uniform boundedness of
densities. The proof introduces innovative displacement functionals and incorporates Souslin
space theory, enriching the analytical toolkit for optimal transport research.

3. Restriction Property for Wasserstein Barycenters: The restriction property (Proposition 5.2
and Corollary 5.4, summarized in Theorem 0.4) establishes a powerful localization principle
for Wasserstein barycenters on proper metric spaces. As demonstrated by its application in
various proofs (e.g., Theorem 6.28), this technique enables local-to-global arguments, offering
a way to tackle problems in singular settings like metric trees by breaking them down into
more manageable components.

4. Systematic Study of Wasserstein Barycenters on Metric Trees: This work initiates a system-
atic investigation into singular Wasserstein barycenters on metric trees (Chapter 6). For the
real line, we introduce concepts such as dual measures and rigid properties, shedding new light
on the fine structure of barycenters in this fundamental setting. Our novel reduction tech-
nique provides an intuitive and effective approach to optimal transport on metric trees, with
promising implications for extensions to general metric graphs. The illustrative examples in
Section 6.6 reveal intricate behaviors, including the non-uniqueness of Wasserstein barycen-
ters. This phenomenon sharply distinguishes metric trees from smoother settings, where
uniqueness is guaranteed under analogous conditions, thereby paving the way for deeper ex-
plorations.

The research presented in this thesis naturally opens up several promising avenues for future
investigation.

Extending displacement functional arguments to metric measure spaces

Our proof of Theorem 0.3 introduces a novel approach using displacement functionals that en-
capsulate the lower Ricci curvature bound within an inequality for Wasserstein barycenters. This
mirrors the standard definition of lower Ricci curvature bounds for metric measure spaces (MMS),
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which often involves analogous inequalities (e.g., convexity of entropy functionals) along Wasser-
stein geodesics. This structural parallel suggests that many of our arguments could be adapted
to the general MMS setting. Recent advancements have indeed seen the proposal and study of
barycenter curvature-dimension conditions for MMS [46, 47]. However, these developments are pri-
marily based on the Wasserstein Jensen’s inequality from [58, Theorem 7.11], which, as discussed,
essentially requires all measures in the support to be absolutely continuous. Our approach, which
circumvents this limitation, could therefore offer a valuable alternative. Given that the measure-
theoretic components of our arguments, particularly those involving Souslin space theory, readily
apply to general Polish spaces (the underlying framework for many MMS), the principal hurdle in
such an extension appears to be the establishment of our core displacement functional inequality
(Proposition 4.3) for barycenters of finitely supported measures P on an MMS.

In Chapter 3, we reformulate Kim and Pass’ proof that µP is absolutely continuous if P =∑n
i=1 λi δµi with µ1 being absolutely continuous, to clarify its validity for non-compact manifolds

and its dependence on Riemannian structure. This proof relies significantly on the Brenier–McCann
theorem, which characterizes optimal transport maps via gradients of c-concave potentials φ (e.g.,
as exp(−∇φ), c.f. Theorem 1.27). In particular, the Hessian equality for Wasserstein barycenters
(Theorem 4.1), expressed in terms of φ, is vital for deriving our displacement functional inequality.
A significant challenge, therefore, is to extend these arguments to MMS that lack such smooth
Riemannian structures and direct analogues of these tools.

Quantitative estimates for barycenter densities

The framework of displacement functionals offers the potential to derive qualitative estimates for
the density functions of absolutely continuous Wasserstein barycenters. By selecting appropri-
ate functionals, one might obtain bounds on these densities, thus providing information beyond
mere absolute continuity. This approach is exemplified by results such as the L∞ density bound
for displacement interpolations in CD(0, N) spaces (c.f. [105, Theorem 30.20]), suggesting similar
estimates could be attainable for general barycenters under suitable curvature conditions.

Necessity of curvature bounds and the role of branching

While this thesis establishes that a lower Ricci curvature bound is a sufficient condition for the
absolute continuity of Wasserstein barycenters on Riemannian manifolds, its necessity remains an
open question. Despite efforts, we have not identified a Riemannian manifold lacking a global lower
Ricci curvature bound where barycenters of absolutely continuous measures exhibit singularity.
This raises the possibility that a weaker condition, perhaps related to the non-branching property
of manifolds, might suffice.

Specifically, we conjecture that on non-branching metric spaces, the absolute continuity of µP
might hold even without a global lower Ricci curvature bound, potentially provable by contradiction
using an enhanced version of our restriction property (Theorem 0.4). If true, this would imply that
the emergence of singular Wasserstein barycenters on metric trees is fundamentally linked to their
branching structure, distinguishing them from (non-branching) Riemannian manifolds.

Generalizing reduction techniques to metric graphs

Optimal transport problems rarely admit explicit solutions, rendering techniques that simplify
them highly valuable. Our reduction technique for metric trees (Theorem 0.5) proved effective. A
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promising avenue for future work is to generalize this technique to broader classes of spaces, such
as general metric graphs (which may contain cycles). Developing such a generalization would not
only provide tools for solving concrete optimal transport problems on graphs in practice, but would
also deepen our understanding of optimal transport by expanding the repertoire of settings where
(at least partial) computations are feasible. Our detailed exposition of the reduction map T~e and
its properties in Section 6.2 was intentionally presented to aid such future extensions.
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Chapter 1

Prerequisites and notation

Due to varying implicit assumptions in different references, concepts in metric geometry and mea-
sure theory are often defined with subtle differences. In this chapter, we aim to clarify the usage
of these terminologies and establish the notational conventions that will be consistently followed in
this document.

We begin with some definitions in set theory. Symbols Z,N,N∗,R,C are reserved to denote
respectively the set of integers, natural numbers with 0 included, natural numbers with 0 excluded,
real numbers and complex numbers. A map f from a set X to a set Y is an assignment of one
element f(x) of Y to each element x of X. The set X is called the domain of f , the set Y is called
the codomain of f , and f(X) := ∪x∈Xf(x) ⊂ Y is called the image of f . We shall use Id : X → X
to denote the identity map. When the codomain Y of f is a subset of the Euclidean spaces Rm
(m ∈ N∗), we also call f a function. In certain instances, which will be clearly indicated, functions
are permitted to take the values +∞ and −∞.

For a real number x ∈ R, we define x as positive if x > 0 and negative if x < 0. To explicitly stress
that x is not equal to 0, we also use the terms strictly positive or strictly negative. R+ := [0,+∞) is
the set of non-negative numbers, R− := (−∞, 0] is the set of non-positive numbers. Given two real
numbers x, y ∈ R, we say x is smaller than or less than y if x ≤ y, and x is bigger than or larger than
y if x ≥ y. For a real-valued function f defined on a subset X ⊂ R of the real numbers, f is defined
as increasing (or non-decreasing) if x1, x2 ∈ X with x1 ≤ x2 implies f(x1) ≤ f(x2). Similarly,
f is decreasing (or non-increasing) if x1 ≤ x2 implies f(x1) ≥ f(x2). The definitions of strictly
increasing and strictly decreasing functions are obtained by replacing the non-strict inequalities
with their corresponding strict counterparts.

For a function f defined on a subset A ⊂ R of the real line, its right limit at some point x ∈ R,
denoted by limy↓x f(y), is defined as the limit of f(y) as y converges to x through values in A that
are strictly greater than x. Such limits are only defined for x in the set {x ∈ R | ∃ yi ∈ A, yi >
x, for i ∈ N∗ s.t. limi→∞ yi = x}. The left limit limy↑x f(y) of f at x is defined analogously.

A set is countable if it can be mapped bijectively to N, and is thus always infinite. A set is
uncountable if it is infinite but not countable. For a given set X, we denote by 2X := {A | A ⊂ X}
the set of all subsets of X.

For clarity of notation, we employ brackets [] and parentheses () to divide cluster of symbols
into meaningful sub-groups. Unless explicitly stated otherwise, these symbols carry no additional
semantic meaning.
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1.1 Length spaces and Riemannian manifolds
Given a set E, a metric d on E is a function d : E×E → R satisfying the following three conditions
for all points x, y, z ∈ E: a) positiveness: d(x, y) > 0 if x 6= y, and d(x, x) = 0; b) symmetry:
d(x, y) = d(y, x); c) triangle inequality: d(x, z) ≤ d(y, x) + d(y, z). For x, y ∈ E, the non-negative
number d(x, y) is the called distance between x and y. The ordered pair (E, d) is referred to as a
metric space. For a point x ∈ E and a non-empty subset A ⊂ E, we define d(x,A) := infy∈A d(x, y).
Denote by B(x, r) := {y ∈ E | d(x, y) ≤ r} the closed metric ball center at x with radius r.

Consider a metric space (E, d). We recall that E is proper if every closed and bounded subset
of E is compact, separable if it contains a countable dense subset, and complete if every Cauchy
sequence in E converges to a point within E. Since compact metric spaces are complete and
separable [20, Theorem 9.4], proper metric spaces inherit these properties [93, Corollary 2.3.32]. A
Polish space is defined as a topological space that is homeomorphic to a complete and separable
metric space. When we write (for example, in assumptions) that (E, d) is a Polish metric space
we specifically mean that the metric d on E makes E a complete and separable metric space. In
particular, proper metric spaces are Polish metric spaces.

Length spaces

Let (E, d) be a metric space. A curve in E is a continuous map γ from a compact interval [a, b] ⊂ R
to E. We say that γ joins (or connects) its endpoints γ(a), γ(b) ∈ E, or γ is a curve from γ(a) to
γ(b).

Definition 1.1 (Length of curves in metric spaces). Let (E, d) be a metric space. The length Ld(γ)
of a curve γ : [a, b] 7→ E is

Ld(γ) := sup
a=t0≤t1≤···≤tn=b

n∑
i=1

d(γ(ti−1), γ(ti)), (1.1)

where the supremum is taken over all possible partitions (no bound on n) with a = t0 ≤ t1 ≤ · · · ≤
tn = b.

The length of γ is either a non-negative number or it is infinite. The curve γ is said to be
rectifiable if its length is finite. Length spaces and geodesic spaces are defined via the intrinsic
metric, which associates two points with the infimum of the lengths of all curves joining them.

Definition 1.2 (Length spaces and geodesic spaces). Let (E, d) be a metric space. E is a length
space (or an intrinsic metric space) if for any two points x, y ∈ E,

d(x, y) = inf
γ from x to y

Ld(γ), (1.2)

where the infimum is taking over all curves γ joining x, y, and Ld(γ) denotes the length of γ. E is
a geodesic space (or a strictly intrinsic metric space) if the infimum in (1.2) is always reached by
some rectifiable curve joining x and y.

For length spaces, we recall the following two notable properties: a) a complete locally compact
length space is geodesic [23, Theorem 2.5.23]; b) given a locally compact length space, the Hopf–Ri-
now–Cohn-Vossen theorem states that it is complete if and only if it is proper [23, Theorem 2.5.28].
Moreover, we distinguish shortest paths and geodesics.
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Definition 1.3 (Shortest paths and geodesics). Let (E, d) be a length space. A curve γ : [a, b] → E
is a shortest path if its length is equal to the distance d(γ(a), γ(b)) between its endpoints. The
curve γ is a geodesic if it is a locally a shortest path, i.e., for any t ∈ [a, b], there exists an interval
J := [c, d] ⊂ [a, b] such that c < t < d and the restricted map γ|J is a shortest path.

Riemannian Manifolds

A Riemannian manifold, denoted by (M,g), is composed of a smooth manifold M , which is Haus-
dorff and second-countable (as defined in [65, Chapter 1]), and a Euclidean inner product gx defined
on each tangent space TxM at every point x ∈M . In accordance with McCann’s work [73] of opti-
mal transport on manifolds, we shall adhere to the following assumption throughout this document.

Assumption. All Riemannian manifolds (M,g) are assumed to satisfy the following properties:

1. M is an m-dimensional (m ∈ N∗), connected and smooth manifold without boundary;

2. given a local coordinate system {xi}i=1,2,...,m, the metric tensor components gij := g( ∂
∂xi ,

∂
∂xj )

are C∞ smooth (differentiable for all degrees of differentiation) functions of local coordinates.

Assumptions related to compactness and completeness will be explicitly stated.
For a Riemannian manifold (M,g), we introduce the following notation. Denote by dg the

Riemannian distance function of M determined by g [80, §5.3]. As the Riemannian metric tensor g
can be reconstructed from the Riemannian distance dg [80, §5.6.3], we can alternatively denote the
Riemannian manifold as (M,dg), thus highlighting its metric structure. The metric space (M,dg)
is always a locally compact length space. For x ∈ M , we introduce the squared distance function
d2x :M → R, i.e., d2x(y) = dg(x, y)

2.
Denote by Vol the volume measure of M . Given a local chart (ϕ,U) with coordinate system

{xi}i=1,2,...,m, the integral of a Vol-integrable function f : U → R is defined as [88, §5 of Chapter
II], ∫

U

f d Vol :=
∫
ϕ(U)

f ◦ ϕ−1
√

det(gij) ◦ ϕ−1 dLm,

where (gij) denotes the m × m matrix with components gij as previously introduced, and Lm
denotes the Lebesgue measure on Rm. The volume measure Vol coincides with the m-dimensional
Hausdorff measure on (M,dg) [100, Proposition 12.6].

For a tangent vector u ∈ TxM , denote by ‖u‖ :=
√

g(u, u) its norm of the Riemannian metric.
Denote by expx : TxM → M the exponential map defined on TxM and by exp : TM → M the
exponential map defined on the tangent bundle TM . In the rest of this paragraph, suppose in
addition that (M,dg) is a complete Riemannian manifold. The exponential maps are C∞ smooth
since g is C∞ smooth [88, §2 of Chapter 2] [73, Proof of Proposition 6]. For a point x ∈ M , its
tangent cut locus is the boundary of the set

{u ∈ TxM | dg(expx u, x) = ‖u‖ },

and its cut locus is the image of its tangent cut locus under the exponential map expx. The
injectivity domain of x is the following subset of TxM ,

{t u ∈ TxM | t ∈ [0, 1), u ∈ TxM is in the tangent cut locus of x}.
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We shall denote by Cut(x) the cut locus of x. The set Cut(x) is closed and negligible with re-
spect to the volume measure Vol [66, (a) of Theorem 10.34]. The exponential map expx is a
C∞-diffeomorphism from the injectivity domain of x to M \ Cut(x) [66, (c) of Theorem 10.34].
Since the gradient of d2y at x is ∇d2y(x) = −2 exp−1

x (y) for y /∈ Cut(x) [73, Proposition 6], d2x is a
C∞ function on M \ Cut(x). For two points x, y ∈ M , x is in the cut locus of y if and only if y is
in the cut locus of x [41, Scholium 3.78].

1.2 Tools from measure theory
A measurable space (Ω,F) is an ordered pair of set Ω and a σ-algebra F of Ω. The elements of F are
called measurable sets of Ω. A measure on (Ω,F), or simply a measure on Ω when F is clearly given,
is a set function µ : F → [0,+∞] that satisfies the condition µ(∅) = 0 and is countably additive
(σ-additive) [17, Definition 1.6.1]. This means that for all pairwise disjoint sets {Ai}i∈N∗ ⊂ F ,
we have µ(∪∞

i=1Ai) =
∑∞
i=1 µ(Ai), where infinite values are permitted. The trivial function that

assigns value 0 to every element of F , also known as null measure, will not be considered. Given
a topological space E, we denote by B(E) its Borel σ-algebra, which is the σ-algebra generated
by the open sets of E. Measures defined for the the measurable space (E,B(E)) are called Borel
measures.

The Lebesgue measure Lm on the Euclidean space Rm is not only defined on the Borel σ-algebra
B(Rm), but also assigns zero mass to all subsets of negligible Borel sets. We shall denote by u the
uniform probability measure on [0, 1], which by definition is the restricted Lebesgue measure L1|[0,1].
In Chapter 6, by singular measures µ, we mean measures on R that singular with respect to L1, i.e.,
µ and L1 are mutually singular. Apart from the Lebesgue measures, which are defined for Lebesgue
measurable sets [17, Definition 1.5.1], we exclusively consider measures without completions. The
volume measure Vol on a Riemannian manifold is treated as a Borel measure.

Fix a topological space E and a Borel measure µ on it. Given a measurable subset A ⊂ E, we
define that: µ gives mass to A if µ(A) > 0; µ is supported in A (or µ assigns full mass to A) if
µ(E \ A) = 0; A is the support of µ if A is closed, µ(E \ A) = 0, and for any open subset O of E,
µ(O) = 0 implies O ⊂ E \ A; A is an atom set [17, Definition 1.12.7] of µ if µ(A) > 0 and for any
subset A′ ⊂ A, µ(A′) = 0 or µ(A′) = µ(A). A point x ∈ E is called an atom of µ if the singleton
A := {x} is an atom set of µ. A Borel measure is atomless if it has no atom sets, and it is diffused
if it has no atoms. For separable metric spaces, atomless measures coincide with diffused measures
[3, Lemma 3.4, Lemma 12.18]. For any point x ∈ E, the Dirac measure at x, denoted by δx, is the
probability measure with {x} being its support. Moreover, on a separable metric space, any Borel
measure µ has support [17, Proposition 7.2.9], and we denote it by supp(µ).

A finite Borel measure µ on E is called a Radon measure if for every Borel set A ∈ B(X) and
ε > 0, there exists a compact set Kε ⊂ A such that µ(A \Kε) < ε. A finite Borel measure on a
Polish space is always a Radon measure [17, Theorem 7.1.7] [3, Theorem 12.7].

Recall that a finite Borel measure has at most countably many atoms, which follows directly
from the following lemma.

Lemma 1.4. The sum of any uncountably many strictly positive real numbers must be infinite.

Proof. Fix a set of strictly positive numbers {tα, α ∈ A}, where tα > 0 and A is an uncountable
index set. Define An := {α ∈ A | tα > 1/n} for integers n ≥ 1. Since A = ∪n≥1An, there exists an
integer n0 such that An0

is an infinite set, otherwise A becomes a countable set. It follows that the
sum

∑
α∈A tα ≥

∑
α∈An0

1/n0 must diverge.
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Measurable selections

A map f : (Ω1,F1) → (Ω2,F2) between two measurable spaces is measurable (with respect to the
σ-algebras F1 and F2) if f−1(A) ∈ F1 for A ∈ F2. For a set-valued map Ψ : Ω1 → 2Ω2 whose
values are non-empty subsets of Ω2, f : Ω1 → Ω2 is a selection of Ψ if for any ω ∈ Ω, f(ω) ∈ Ψ(w).

We shall apply the following widely used measurable selection theorem to construct Wasserstein
barycenters. Its proof could be found in [17, Theorem 6.9.3], [3, Theorem 18.13], and [93, Theorem
5.2.1].

Theorem 1.5 (Kuratowski and Ryll-Nardzewski measurable selection theorem). Let E be a Polish
space, and let Ψ be a map defined on a measurable space (Ω,F) with values in the set of non-empty
closed subsets of E. Suppose that for every open set U ⊂ E, we have

{ω ∈ Ω | Ψ(ω) ∩ U 6= ∅} ∈ F . (1.3)

Then Ψ has a selection that is measurable with respect to the pair of σ-algebras F and B(E).

With the help of additional metric assumptions, we can simplify (1.3) as follows [93, Lemma
5.1.2]. We remark that the complement of the set {ω ∈ Ω | Ψ(ω) ∩ U 6= ∅} is not the set {ω ∈ Ω |
Ψ(ω) ∩ (E \ U) 6= ∅}.

Lemma 1.6. Let (E, d) be a proper metric space, and let Ψ be a map on a measurable space (Ω,F)
with values in the set of subsets of E. If for every compact set K ⊂ E, we have

{ω ∈ Ω | Ψ(ω) ∩K 6= ∅} ∈ F ,

then for every open set U ⊂ E, we have

{ω ∈ Ω | Ψ(ω) ∩ U 6= ∅} ∈ F .

Proof. Observe that for a sequence of subsets {Aj}j∈N∗ , we have

{ω ∈ Ω | Ψ(ω) ∩A 6= ∅} = ∪j≥1{ω ∈ Ω | Ψ(ω) ∩Aj 6= ∅}, where A := ∪j≥1Aj .

Hence, to prove the lemma, it suffices to express any open sets U as a countable union of compact
sets. Fix a point z ∈ E, and define Kj := {x ∈ E | d(x, z) ≤ j and d(x,E \ U) ≥ 1

j } for j ∈ N∗.
The equality U = ∪j≥1Kj holds for any metric space. Moreover, since (E, d) is a proper metric
space, each set Kj is compact as a closed and bounded set.

Conditional probability measures

For the definition of conditional measures, as given in [17, Definition 10.4.2], we focus on the special
case of the product space En−1×E. This restriction facilitates the introduction of necessary notation
for Proposition 3.4 and ultimately aids in its proof.

Definition 1.7 (Conditional probability measures). Let E be a Polish space and let n ≥ 2 be
a positive integer. Denote by x′ = (x2, . . . , xn) ∈ En−1 the last n − 1 components of a point
x = (x1, x2, . . . , xn) ∈ En. Given a probability measure γ on En, define the measure π := p2#γ on
En−1, where p2 is the projection x ∈ E × En−1 7→ x′ ∈ En−1. We call γ(·, ·) : B(En)× En−1 → R
a conditional measure for γ, written as d γ(x) = γ(d x, x′) dπ(x′), if
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1. for all x′ ∈ En−1, γ(·, x′) is a probability measure on En,

2. for π-almost every x′ ∈ En−1, γ(·, x′) is supported in E × {x′},

3. for any Borel set R ⊂ En, the function x′ 7→ γ(R, x′) is measurable, and

4. for any Borel set R ⊂ En and S ⊂ En−1, γ[R ∩ (E × S)] =
∫
S
γ(R, x′)dπ(x′).

Under our assumption that E is a Polish space, conditional measures always exist [17, Corollary
10.4.10]. For π-almost every x′, the measure γ(·, x′) is unique [17, Lemma 10.4.3] and coincides
with the disintegration [39, 452E] of γ that is consistent with the projection p2.

Souslin spaces

Souslin space theory is vital for proving one of our main results, Theorem 4.5, presented in Chap-
ter 4. Also known as Suslin spaces or analytic sets, this theory’s application in measure theory is
mainly referenced in Bogachev [17, Sections 1.10, 6.6, 6.7, 7.4]. For historical context and intro-
ductory material, see also [39, Chapter 42] and [92, p.28].

Definition 1.8 (Souslin spaces). A subset of a Hausdorff space is called Souslin if it is the image of
a Polish space under a continuous map. The empty set is considered as Souslin as well. A Souslin
space is a Hausdorff space that is a Souslin set.

By definition, Polish spaces are Souslin. Here are some properties of Souslin spaces:

1. Every Borel subset of a Souslin space is a Souslin space [17, Theorem 6.6.7];

2. Let E and F be Souslin spaces and let f : E 7→ F be a measurable map. If f is bijective,
then E and F share the same Borel sets, see [39, Proposition 423F] or [17, Theorem 6.7.3];

3. If E is a Souslin space, then every finite Borel measure µ on E is Radon [17, Theorem 7.4.3].

For a Polish space E, such as the Euclidean space Rm, a subset A of E is a Souslin set if
and only if it is the projection of a Borel subset of the product space E × R [17, Theorem 6.7.2].
Nevertheless, every uncountable Polish space contains a Souslin subset that is not a Borel set [55,
Theorem (14.2)]. For concrete examples of such sets, see [17, Theorem 6.7.10] and [3, Examples
12.33, 12.34].

Functional analysis

In this subsection, we recall a few results selected from functional analysis that will be used in
Section 4.3, especially in the proof of Proposition 4.12.

For vector spaces, we fix the scalar field to be R. Let (E, ‖ · ‖) be a normed vector space. The
dual space of E is the space E∗ of all continuous linear functionals f : E → R, and it is equipped
with the following operator norm,

∀ f ∈ E∗, ‖f‖ := sup
‖x‖≤1,x∈E

|f(x)|.

A Banach space is a complete normed vector space. Since R is a Banach space, the dual space of a
norm space is always a Banach space [102, Proposition 1.16, Definition 1.17]. For example, consider
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a measurable space (Ω,F) with a σ-finite measure µ on it. Then the space L1(µ) of µ-integrable
functions on Ω is a Banach space [21, Theorem 4.8], and L∞(µ) is the dual space of L1(µ) [21,
Theorem 4.14] [17, Theorem 4.4.1]. The weak topology of E, usually denoted by σ(E,E∗), is the
coarsest topology such that for any f ∈ E∗, the function x ∈ E 7→ f(x) is continuous. In other
words, {xn}n∈N∗ ⊂ E converges weakly to x ∈ E if and only if limn→∞ f(xn) = f(x) for all f ∈ E∗.

The Eberlein–Šmulian theorem characterizes compact sets with respect to the weak topology of
a Banach space. For its proof, see [2, Theorem 1.6.3] or [68, Theorem II.3].

Theorem 1.9 (Eberlein–Šmulian theorem). A subset K of a Banach space E is pre-compact with
respect to the weak topology if and only if, from each sequence of elements of K, we can extract a
weakly convergent subsequence.

The following Banach–Steinhaus theorem is also known as the uniform boundedness principle.
For its proof, see [17, Theorem 4.4.3] or [21, Theorem 2.2].

Theorem 1.10 (Banach–Steinhaus theorem). Let E be a Banach space. Let F ⊂ E∗ be a set of
continuous linear functional on E. If for any x ∈ E,

sup
f∈F

|f(x)| < +∞,

then F is unfiormly bounded with respect to the operator norm,

sup
f∈F

‖f‖ < +∞.

Remark 1.11. Thanks to the isometric embedding of a normed vector space E into the dual space of
E∗ [21, §1.3], Theorem 1.10 applied to the Banach space E∗ implies that every weakly converging
sequence of E is bounded in norm.

Given a measurable space (Ω,F), a real-valued countably additive set function ν : F → R is
also referred to as a finite signed measure on Ω. To deal with the set-wise convergence of countably
additive set functions, we introduce the following Vitali–Hahn–Saks theorem. For its proof, see [98,
§3.14], [17, Theorem 4.6.3] or [4, Theorem A8.15].

Theorem 1.12 (Vitali–Hahn–Saks theorem). Let (Ω,F) be a measurable space with a probability
measure µ on it. Let νn : F → R, n ∈ N be a sequence of real-valued countably additive set functions
such that

1. the limit limn→∞ νn(A) ∈ R exists and is finite for any A ∈ F ;

2. each νn is absolutely continuous with respect to µ, i.e., for A ∈ F , µ(A) = 0 implies νn(A) = 0.

Then {νn}n∈N is uniformly absolutely continuous with respect to µ, i.e.,

sup
n∈N

|νn(A)| → 0 as µ(A) → 0.

As a corollary, we illustrate how to apply Theorem 1.12 with a σ-finite measure µ.

Corollary 1.13. Let (Ω,F) be a measurable space with a σ-finite measure µ on it. Let {fn}n∈N ⊂
L1(µ) be a sequence of µ-integrable function such that there exists a µ-integrable function f ∈ L1(µ)
satisfying

∀A ∈ F , lim
n→∞

∫
A

fn dµ =

∫
A

f dµ.
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Then for any ε > 0, there exists δ > 0 such that for A ∈ F ,

µ(A) < δ =⇒ sup
n∈N

∫
A

fn dµ < ε.

Proof. Since µ is σ-finite, there exists an at most countable family of pairwise disjoint measurable
sets, {Ej , j ∈ J} (J ⊂ N), such that 0 < µ(Ej) < +∞ and µ(Ω \ ∪j∈JEj) = 0. Define the measure
η :=

∑
j∈J λj

1
µ(Ej)

µ|Ej with λj := 2−j/
∑
k∈J 2

−k. Since
∑
j∈J λj = 1, η is a probability measure

satisfying
∀A ∈ F , η(A) =

∫
A

∑
j∈J

λj
µ(Ej)

1Ej dµ. (1.4)

As µ(Ω \ ∪j∈JEj) = 0, (1.4) implies that η(A) = 0 if and only if µ(A) = 0.
For n ∈ N, define the countably additive function νn : F → R,

νn(A) :=

∫
A

fn dµ, A ∈ F .

As f ∈ L1(µ), the limit limn→∞ νn(A) =
∫
A
f dµ always exists and is finite. Since η(A) = 0 implies

µ(A) = 0 and thus νn(A) = 0, Theorem 1.12 is applicable to {νn}n∈N with the probability measure
η, which implies that supn∈N |νn(A)| → 0 as η(A) → 0. Moreover, since η is finite measure that is
absolutely continuous with respect to µ, the convergence µ(A) → 0 implies η(A) → 0 [29, Lemma
4.2.1]. Hence, µ(A) → 0 implies supn∈N |νn(A)| → 0, which concludes the proof.

1.3 Analysis on manifolds
In this section, we establish a rigorous framework and develop the necessary technical tools to
differentiate optimal transport maps in the subsequent section. We introduce the concept of ap-
proximate Hessian for Riemannian manifolds, which we define as approximate derivative of the
gradient expressed in normal coordinates. To achieve this, we first define the approximate deriva-
tive on Riemannian manifolds, using the notion of density points.

1.3.1 Approximate differentiability
We justify the definition of density point for Riemannian manifolds by comparing it to its usual
Euclidean counterpart.

Lemma 1.14 (Density points). Let (M,dg) be a Riemannian manifold and let A be a Borel subset
of M . We call x ∈M a density point of A (with respect to Vol) if

lim
r↓0

Vol[B(x, r) \A]
Vol[B(x, r)]

= 0.

This definition is equivalent to the standard one with respect to the Lebesgue measure after pulling
x and A back to the Euclidean space through an arbitrary chart around x. In particular, almost
every point of A is a density point of A with respect to Vol.
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Proof. Denote by m the dimension of M . In a (smooth) local chart (ϕ,U) with U a small enough
neighborhood of x ∈ M , the metric of M is bounded (from both sides) by the metric of Rm with
constant scales 0 < c1 < c2. It follows that cm1 Lm(ϕ(N)) ≤ Vol(N) ≤ cm2 Lm(ϕ(N)) for any
measurable subset N ⊂ U [100, Proposition 12.6 and 12.7]. Hence, x is a density point of A if and
only if

lim
r↓0

Lm[ϕ(B(x, r)) \ ϕ(A ∩ U)]

Lm[ϕ(B(x, r))]
= 0. (1.5)

Applying again the relation between the metric of M and the metric of Rm, for any r > 0, we have
B(ϕ(x), c1 r) ⊂ ϕ(B(x, r)) ⊂ B(ϕ(x), c2 r). Therefore, (1.5) is equivalent to that ϕ(x) is a density
point of ϕ(A) with respect to Lm.

We now recall the definition of approximate derivatives first on Euclidean space (see [17, 5.8(v)]
and [37, 3.1.2] for more detailed discussions), then on manifolds.

Definition 1.15 (Approximate derivatives on Euclidean spaces). Let m,n ≥ 1 be two positive
integers. Given a function F : Ω → Rn defined on a subset Ω of Rm, l ∈ Rn is an approximate limit
of F at a point x ∈ Rm, for which we write l = ap limy→x F (y), if there exists a Borel set Ωx ⊂ Ω
such that x is a density point of Ωx and lim

y∈Ωx,y→x
F (y) = l. The approximate derivatives of F are

defined via the approximate limits of its difference quotients as follows.
A linear map L : Rm → Rn is called the approximate derivative of a function F : Ω → Rn at a

point x ∈ Ω ⊂ Rm if

ap lim
y→x

|F (y)− F (x)− L(y − x)|
|y − x|

= 0. (1.6)

The approximate derivative L will be denoted by apDxF .

The previous definition can be extended to the Riemannian setting as follows:

Lemma 1.16 (Approximate derivatives on manifolds). Let (M,dg) be an m-dimensional Rieman-
nian manifold M and let f : A→ Rn be a function defined on a subset A of M . Given an arbitrary
local chart (ϕ,U) around a point x ∈ A, f is said to be approximately differentiable at x if the
approximate derivative apDϕ(x)[f ◦ ϕ−1|ϕ(A∩U)] exists. The approximate derivative of f at x is
then defined as

apDxf := apDϕ(x)[f ◦ ϕ−1|ϕ(A∩U)] ◦Dxϕ : TxM → Rn,

where Dxϕ : TxM → Tϕ(x)Rm denotes the differential map of ϕ at x and the tangent space Tϕ(x)Rm
is canonically identified with Rm in the above composition of functions. In particular, a constant
function has null approximate derivative at density points located in its domain.

Proof. In Euclidean space, approximate derivatives are unique when they exist [35, Theorem 6.3].
Since density points are well-defined for Riemannian manifolds by Lemma 1.14 and coordinate
changes for M are smooth diffeomorphisms, it follows from (1.6) that the existence of approximate
derivative at a given point is independent of the choice of the chart and the change of variables rule
applies. To show our last statement, note that L = 0 satisfies (1.6) whenever F := f ◦ ϕ−1 is a
constant function.
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1.3.2 Approximate Hessian of locally semi-concave functions
The properties of locally semi-concave functions provide a valuable toolbox for analyzing optimal
transport maps on manifolds. In this section, we examine the weak second-order regularity of these
functions.

In a Riemannian manifold (M,dg), a subset C of M is said to be a geodesically convex (or simple
and convex) set if, given any two points in C, there is a unique minimizing geodesic contained within
C that joins those two points. A function f : C → R defined on a geodesically convex set C ⊂M is
said to be geodesically convex (respectively geodesically concave) if the composition f ◦ γ of f and
any geodesic curve γ contained within C is convex (respectively concave). It is noteworthy that for
any point x ∈M , there exists an open ball centered at x that is geodesically convex [106, 60], and
such a ball is referred to as a geodesically convex ball.

Definition 1.17 (Semi-concavity). Let (M,dg) be a Riemannian manifold. Fix an open subset
O ⊂ M . A function φ : O → R is semi-concave at x ∈ O if there exists an open and geodesically
convex set C(x) centered at x and a C2 function V : C(x) → R such that φ + V is geodesically
concave throughout C(x). The function φ is locally semi-concave on O if it is semi-concave at each
point of O.

Bangert [9, (2.3) Satz] proved that the notion of local semi-concavity is independent of the
Riemannian metric. This property also follows from the following characterization of locally semi-
concave functions (with a linear module), whose proof for the Euclidean case is detailed in [103,
Proposition 4.3, Proposition 4.8] and [27, Theorem 5.1]. In [36, Appendix A], it is adopted as the
definition of local semi-concavity. Denote by 〈·, ·〉 and ‖·‖2 respectively the Euclidean inner product
and its associated norm. To stress that certain points are coordinate representations of manifold
points, we denote them by tilde symbols x̃ and z̃.

Proposition 1.18 (Characterization of local semi-concavity, [105, Proposition 10.12]). Let (M,dg)
be an m-dimensional Riemannian manifold. Fix an open subset O of M . A function f : O → R
is locally semi-concave if and only if for each point in O, there exist a chart (ϕ,U) defined around
the point and a positive constant C > 0 such that ∀ x̃ ∈ ϕ(U), ∃ lx̃ ∈ Rm, ∀ z̃ ∈ ϕ(U),

(f ◦ ϕ−1) (z̃) ≤ (f ◦ ϕ−1)(x̃) + 〈lx̃, z̃ − x̃〉 + C ‖z̃ − x̃‖22.

Hence, a function is locally semi-concave if and only if it is so when expressed in local charts
[36, discussion after Lemma A.9]. We shall apply this chart-independence, along with Alexandrov’s
theorem, to establish the weak second-order regularity of locally semi-concave functions.

In the following theorem, we revisit Alexandrov’s theorem stated via approximate derivatives.
The proofs of this theorem can be found in [105, Theorem 14.1] and [76, Theorem D.2.1]. To
maintain clarity of notation, for a function f : U → R defined on an open subset U ⊂ Rm, we define
its Euclidean gradient ∇Ef(x) ∈ Rm at x ∈ U as the (column) vector (∂1f(x), ∂2f(x), . . . , ∂mf(x))
when all of these partial derivatives of f exist at x. By contrast, the symbol ∇f is reserved to denote
the gradient of functions f : U → R defined on some open subset U of a Riemannian manifold,
which is a (possibly not continuous) vector field defined at points where f is differentiable.

Theorem 1.19 (Alexandrov’s theorem). Let f : U ⊂ Rm → R be a semi-concave function. Then
the Euclidean gradient ∇Ef of f is defined Lm-almost everywhere on U :

∇Ef : A −→ Rm with A ∈ B(Rm) and Lm(U \A) = 0.
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For Lm-almost everywhere on A, the function ∇Ef is approximately differentiable and its approx-
imate derivative (∂2ijf)1≤i,j≤m forms a symmetric matrix. Moreover, at every point x where such
approximate derivative of ∇Ef exists, f admits a second-order Taylor expansion:

f(z) = f(x) + 〈∇Ef(x), z − x〉+ 1

2
〈apDx∇Ef(z − x), z − x〉+ o(‖z − x‖22). (1.7)

Remark 1.20. In the literature, the weak second-order regularity in Alexandrov’s theorem is ex-
pressed in different formulations, including the one that differentiates super-gradients of semi-
concave functions [76, Theorem D.2.1, Theorem D.2.2]. Their equivalence to (1.7) is proven in [105,
Theorem 14.25]. Compared to these equivalent formulations, our Theorem 1.19 further requires x
to be a density point of A for the existence of apDx∇Ef . However, under our assumption that U
is an open set, the condition Lm(U \A) = 0 implies that every point of A is a density point.

To extend our results to the Riemannian setting, we provide a concise review of the Riemannian
Hessian. For a C2 function defined on a Riemannian manifold (M,g), the Hessian at a point x ∈M
can be interpreted either as a self-adjoint linear map from the tangent space TxM to itself or as a
symmetric bilinear form on TxM × TxM . These two interpretations are related by duality through
the Riemannian metric g at x [80, Proposition 2.2.6]. While we shall primarily adopt the linear map
perspective in the subsequent sections, we shall utilize the bilinear form viewpoint in the following
two paragraphs. This choice is motivated by the fact that the chart-based expression of the Hessian
is simpler when viewed as a bilinear form.

In what follows, the Hessian of a C2 function on a Riemannian manifold is a particular instance
of a continuous (0, 2)-tensor S. Namely, for any two given charts ϕ,ψ defined on a common open
subset U ⊂M , there exist two bilinear forms Sϕ and Sψ whose coefficients are continuous functions
such that ∀ x̃ ∈ ϕ(U) ⊂ Rm, ∀u, v ∈ Rm,

[Sϕ(x̃)] (u, v) = [Sψ(T (x̃))](Dx̃T (u),Dx̃T (v)),

where T = ψ ◦ϕ−1 is assumed to be a smooth (transition) map defined on ϕ(U). In the case of the
Hessian of a C2 function f , its expression in a chart ϕ is given by

Hessx̃(f ◦ ϕ−1)(∂i, ∂j) = ∂2ij(f ◦ ϕ−1)(x̃)−
m∑
k=1

Γkij(x̃) ∂k(f ◦ ϕ−1)(x̃),

where ∂i are the coordinate vectors associated with the given coordinate system [65, p.60 of Chapter
3], and Γkij are the Christoffel symbols of the chart, see [80, Chapter 2] for more details.

In the particular case of a chart ϕ inducing a normal coordinate system at x0 ∈ M [88, §2 of
Chapter II], i.e., ϕ−1(u) = expx0

(u) after identifying Tx0
M with Rm by choosing an orthonormal

basis of Tx0
M , the matrix made with the metric components gij is the identity at x̃0 = ϕ(x0), and

all its first-order partial derivatives (and thus the Christoffel symbols) vanish at x̃0 [41, 2.89 bis].
Hence, the above formula at the point x̃0 is simplified into

Hessx̃0
(f ◦ ϕ−1)(∂i, ∂j) = ∂2ij(f ◦ ϕ−1)(x̃0). (1.8)

Since the metric matrix (gij)1≤i,j≤m at x̃0 is the identity, if we consider Hessx̃0
(f ◦ϕ−1) as a linear

map from Rm ∼= Tx0
M to itself, then it coincides with the derivative of ∇E(f ◦ ϕ−1) at x̃0.

As a consequence, we are led to the following definition of Hessian for semi-concave functions
on a Riemannian manifold.
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Definition 1.21 (Hessian of semi-concave functions). Let (M,g) be an m-dimensional complete
Riemannian manifold, f : O → R be a semi-concave function defined on an open subset O ⊂ M ,
and A ⊂ O be the subset of points where f is differentiable.

The function f is said to have an approximate Hessian or simply a Hessian at a point x ∈ A if
there exists a chart (ϕ,U) inducing a normal coordinate system around x such that ∇E(f ◦ ϕ−1)
is approximately differentiable at ϕ(x), and its approximate derivative is symmetric. Then the
Hessian of f at x is the function Hessx f from TxM to TxM defined by

Hessx f(u) := (Dxϕ)
−1 ◦ apDϕ(x)∇E(f ◦ ϕ−1) ◦Dxϕ(u), ∀u ∈ TxM. (1.9)

Remark 1.22. To justify Definition 1.21, first note that if (ψ, V ) is another chart defined in a
neighborhood of x, then ∇E(f ◦ ϕ−1) is approximately differentiable at ϕ(x) if and only if ∇E(f ◦
ψ−1) is approximately differentiable at ψ(x); indeed both vector fields are related by the formula

t(Dψ(z)T ) · [∇E(f ◦ ϕ−1)(ϕ(z))] = ∇E(f ◦ ψ−1)(ψ(z)), (1.10)

where z is close to x, T := ϕ ◦ ψ−1 is a C∞ diffeomorphism defined around ψ(x) and t(Dψ(z)T )
is the transpose of T ’s differential at ψ(z). See the proof of Lemma 1.16 for a similar argument.
Moreover, in our definition (1.9) of Hessx f(u), we can justify the independence of charts (inducing
normal coordinate systems) in two different ways. Since the Hessian of a C2 function defined on
manifolds is a tensor, the required independence is guaranteed by its simplified local expressions
(1.8) in normal coordinate systems. Alternatively, we suppose that (ψ, V ) also induces a normal
coordinate system around x, which implies that the transition map T = ϕ ◦ ψ−1 is linear. By
applying the chain rule to (1.9) for the chart (ψ, V ), the independence follows from the linearity of
Dψ(z)T = T and the equality (1.10).

To summarize the content of this part, we have obtained the following analog of Alexandrov’s
theorem for locally semi-concave functions on Riemannian manifolds.

Proposition 1.23. Let (M,g) be a complete Riemannian manifold. Fix an open subset O ⊂ M
and a locally semi-concave function f : O → R. For Vol-almost every x ∈ O, there exists a function
Hessx f : TxM → TxM , called the Hessian of f at x, such that

• Hessx f is a self-adjoint operator on TxM ;

• the function f satisfies the following second-order expansion at x,

f(expx u) = f(x) +Dxf(u) +
1

2
gx(Hessx f(u), u) + o(‖u‖2), (1.11)

for u ∈ TxM .

1.4 Optimal transport and Wasserstein spaces
Let (E, d) be a Polish metric space. We consider the (2-)Wasserstein space (W2(E), dW ) of proba-
bility measures on E with

W2(E) : =

{
µ is a probability measure on E

∣∣∃x0 ∈ E,

∫
E

d(x0, y)
2 dµ(y) <∞

}
,

dW (µ, ν)2 : = inf
γ∈Π(µ,ν)

∫
E×E

d(x, y)2 d γ(x, y), (1.12)
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where Π(µ, ν) is the set of probability measures on E×E with marginals µ and ν respectively, i.e.,

γ ∈ Π(µ, ν) ⇐⇒ ∀A ∈ B(E), γ(A× E) = µ(A) and γ(E ×A) = ν(A).

The infimum in (1.12) is always attained by some measure γ ∈ Π(µ, ν), and we call it an optimal
transport plan between µ and ν. Wasserstein spaces enjoy the following well-known topological
properties.

Theorem 1.24 (Topology of the Wasserstein spaces, [105, Theorem 6.18]). Let (E, d) be a Polish
metric space. Then the Wasserstein space (W2(E), dW ) is a Polish metric space.

The fact that (W2(E), dW ) is a Polish space allows for an iterative construction. Thus, we can
define the Wasserstein space (W2(W2(E)), dW) over the Polish space (W2(E), dW ), where dW is
the 2-Wasserstein distance on W2(W2(E)). Convergence with respect to the Wasserstein metric is
characterized as follows.

Proposition 1.25 (Convergence with respect to the Wasserstein metric, [105, Theorem 6.9]). Let
(E, d) be a Polish metric space. Given a sequence of probability measures {µn}n∈N in the Wasserstein
space (W2(E), dW ) and a probability measure µ ∈ W2(E), the limit limn→∞ dW (µn, µ) = 0 holds if
and only if there exist a point x0 ∈ E and a positive constant C > 0 such that for all continuous
functions φ : E → R with |φ(x)| ≤ C

(
1 + d(x0, x)

2
)
, we have

lim
n→∞

∫
E

φdµn =

∫
E

φdµ.

In particular, it follows from Proposition 1.25 that convergence of probability measures with
respect to the Wasserstein metric implies weak convergence.

The Wasserstein space W2(E) is not proper unless the base space E is compact [8, Remark
7.19]. If (E, d) is a Polish and geodesic space, then (W2(E), dW ) is geodesic as well [7, Theorem
2.10]. We refer the reader to the classic references [105, 104, 90] for a comprehensive treatment of
optimal transport theory and Wasserstein spaces.

Optimal transport on Riemannian manifolds

Let us first recall the definition of c-concave functions on Riemannian manifolds.

Definition 1.26 (c-transforms and c-concave functions). Let (M,dg) be a Riemannian manifold.
Define the function c :M ×M → R as the half of the squared distance function, i.e., for x, y ∈M ,

c(x, y) :=
1

2
dg(x, y)

2. (1.13)

Let X and Y be two non-empty compact subsets of M . A function φ : X → R is c-concave if there
exists a function ψ : Y → R such that

φ(x) = inf
y∈Y

c(x, y)− ψ(y), ∀x ∈ X. (1.14)

We write it as φ = ψc and call φ the c-transform of ψ. The set of all c-concave functions with
respect to X and Y is denoted by Ic(X,Y ).
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The significance of c-concave functions in optimal transport theory is highlighted by the fol-
lowing theorem of McCann [73], which extends Brenier’s seminal theorem [104, Theorem 2.12] to
Riemannian manifolds. Recall that given a c-concave function φ on a compact set X with X ⊂M
open, its gradient ∇φ exists on X almost everywhere with respect to Vol since φ is Lipschitz [73,
Lemma 4].

Theorem 1.27 (Optimal transport on manifolds, [30, Theorem 3.2]). Let (M,dg) be a complete
Riemannian manifold. Fix two measures µ, ν ∈ W2(M) with compact support such that µ is
absolutely continuous (with respect to the volume measure Vol). Given two bounded open subsets
X ,Y ⊂ M containing the supports of µ and ν respectively, there exists φ ∈ Ic(X ,Y) such that
(Id, F )#µ is the unique optimal transport plan between µ and ν, where the function F := exp(−∇φ)
is µ-almost everywhere well-defined.

1.4.1 Optimal transport on the real line
The real line provides a notable setting where the optimal transport problem admits an explicit
solution, expressed via quantile functions (Theorem 1.37). In this subsection, we shall first re-
view interesting basic properties of quantile functions. As many of these properties will be used
repeatedly in Chapter 6, we also provide detailed proofs for most of them.

Quantile functions

The definition of quantile functions involves taking the infimum of a given subset of R. A subtlety
arises when this subset is empty. To address this, we adopt the following convention for the infimum
of an empty set with a specified domain (y, z) ⊂ R:

inf
x∈(y,z)

∅ = z, (1.15)

where y is allowed to be −∞ and z is allowed to be +∞. In contrast, when we are certain that we
are not taking the infimum of an empty set, we shall use the notation infx or inf

x
, which omits the

specified domain.

Definition 1.28 (Distribution functions and quantile functions). Let µ be a probability measure
on R. Its distribution function fµ : R → [0, 1] is defined by fµ(x) := µ((−∞, x]), and its quantile
function f−1

µ : [0, 1] → R is defined by

f−1
µ (t) := inf

x
{x ∈ R | fµ(x) > t} for 0 < t < 1

and f−1
µ (0) := lim

t↓0
f−1
µ (t), f−1

µ (1) := lim
t↑1

f−1
µ (t),

where the extended real line R is the set of real numbers plus two infinite values {−∞,+∞}.

In the literature, there exist different definitions of distribution functions and quantile functions.
Our choice ensures that they share common properties such as right-continuity and monotonicity.
To justify this point, it is helpful to recall the general definition of right-continuous inverse.
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Lemma 1.29 (Right-continuous inverses). Let f : (y, z) → R be function defined on a possibly
unbounded interval (y, z) ⊂ R. Define its right-continuous inverse f−1 : R → R as follows,

f−1(t) := inf
x∈(y,z)

{x ∈ (y, z) | f(x) > t}, t ∈ R.

If the function f−1 is finite on an open interval I := (a, b), then its restriction f−1|I is right-
continuous and non-decreasing.

Proof. Assuming that f−1|I : (a, b) → R is a finite function, we show that it is right-continuous.
Observe that if f(x) > t with t ∈ (a, b), then there exists ε > 0 such that f(x) > t + ε. Hence,
the set {x | f(x) > t} is the union of {x | f(x) > t + ε} for ε > 0, which shows that f−1 is
right-continuous and non-decreasing on (a, b).

According to Definition 1.28, quantile functions are completely determined by their values on
the open interval (0, 1). Moreover, on this interval, Lemma 1.29 guarantees their right-continuity
and monotonicity, as shown in the following lemma.

Lemma 1.30. Fix a probability measure µ on R. Its distribution function fµ is right-continuous
and non-decreasing on R. Its quantile function f−1

µ is finite on the open interval (0, 1), and the
real-valued function f−1

µ |(0,1) : (0, 1) → R is right-continuous and non-decreasing.

Proof. By definition, for x ∈ R, fµ(x) := µ((−∞, x]). Thanks to the relation (−∞, x] = ∩y>x(−∞, y],
this function is right-continuous [17, Proposition 1.3.3] and non-decreasing. Moreover, [17, Propo-
sition 1.3.3] also implies the basic properties that limx→−∞ fµ(x) = 0 and limx→+∞ fµ(x) = 1.

It follows that for any 0 < t < 1, the set {x ∈ R | fµ(x) > t} is non-empty with a finite infimum,
and f−1

µ (t) is thus finite. Hence, Lemma 1.29 applies to f−1
µ with the interval I = (0, 1).

Remark 1.31. According to Definition 1.28, the quantile function f−1
µ is right-continuous at 0.

Furthermore, it follows from the proof of Lemma 1.30 that f−1
µ (0) can be equivalently defined as

infx{x ∈ R | fµ(x) > 0}. However, since the set {x ∈ R | fµ(x) > 1} is always empty, if we
define f−1

µ (t) uniformly as infx∈R{x | fµ(x) > t} for all t ∈ [0, 1], then f−1
µ (1) = +∞ for any

probability measure µ on R. This is not convenient to express some properties of quantile functions
(c.f. Lemma 1.33) compared to Definition 1.28.

For the discontinuity points of quantile functions, we characterize them as follows.

Lemma 1.32. Fix a probability measure µ on R. Denote by f−1
µ (t−) := lims↑t f

−1
µ (s) the left limit

of the quantile function f−1
µ at t ∈ (0, 1). Fix t ∈ (0, 1). If y = f−1

µ (t−), z = f−1
µ (t) with y < z,

then
fµ(θ) = t for θ ∈ (y, z) and fµ(y − ε) < t < fµ(z + ε) for ε > 0. (1.16)

Conversely, if (1.16) holds for y < z, then y = f−1
µ (t−), z = f−1

µ (t). Therefore, t ∈ (0, 1) is a
discontinuity point of f−1

µ if and only if the interval (f−1
µ (t−), f

−1
µ (t)) is a connected component of

the complement of the support of µ.

Proof. Note that if 0 < t < 1, then both f−1
µ (t−) and f−1

µ (t) are finite according to Lemma 1.30.
Moreover, since fµ is non-decreasing, the set {x ∈ R | fµ(x) > t} is an interval unbounded from
above. This interval could be possibly closed or open, but must have f−1

µ (t) as its left endpoint by
definition of f−1

µ (t).
(Proof of ⇒) Assuming y = f−1

µ (t−), z = f−1
µ (t) with y < z, we prove (1.16) by considering the

value fµ(w) for w ∈ R in different cases as follows.
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1. If w > z = f−1
µ (t), then by our preceding description of the set {x ∈ R | fµ(x) > t}, it

contains the point w, which implies fµ(w) > t.

2. If w < y = f−1
µ (t−) = limε↓0 f

−1
µ (t − ε), then there exists ε > 0 such that w < f−1

µ (t − ε),
which implies fµ(w) ≤ t− ε by definition of f−1

µ (t− ε) and thus fµ(w) < t.

3. If f−1
µ (t−) = y < w < z = f−1

µ (t), then w /∈ {x ∈ R | fµ(x) > t} and thus fµ(w) ≤ t. Since
w > f−1

µ (t− ε) for any ε > 0, fµ(w) > t− ε, which further implies fµ(w) = t by the preceding
inequality fµ(w) ≤ t.

(Proof of ⇐) Now assume that (1.16) holds for y < z. Since fµ(z− δ) = t < fµ(z+ δ) holds for
δ ∈ (0, z− y), we have f−1

µ (t) = infx{x ∈ R | fµ(x) > t} = z. By the right-continuity of fµ, fµ(y) =
limθ↓y fµ(θ) = t. If 0 < s < t = fµ(y), then f−1

µ (s) ≤ y and thus f−1
µ (t−) = lims↑t f

−1
µ (s) ≤ y.

We prove by contradiction that f−1
µ (t−) = y. Indeed, if w := f−1

µ (t−) < y, then for any w′ > w
and 0 < s < t, f−1

µ (s) ≤ w < w′ and thus fµ(w′) > s (c.f. Case 1 in the previous paragraph),
which further implies fµ(w) ≥ t by the right-continuity of fµ. However, this is a contradiction since
fµ(w) ≤ fµ(y − ε) for 0 < ε < y − w by the monotonicity of fµ and fµ(y − ε) < t for any ε > 0 by
assumption.

For the last part, note that the open set R \ supp(µ) is a disjoint union of open intervals, with
each of them being a connected component of R \ supp(µ). By definition of support, a bounded
interval (y, z) (y < z) is one of these connected component if and only if the distribution function
fµ is constant on the interval (y, z) but not constant on any interval (y − δ, z + δ) for δ > 0.

Moreover, for a probability measure µ on R with compact support, we can describe its support
with the two values f−1

µ (0) and f−1
µ (1) as follows.

Lemma 1.33. Let µ be a probability measure on R. The infimum and supremum of the support of
µ are related to its quantile function as follows,

f−1
µ (0) = inf supp(µ) and f−1

µ (1) = sup supp(µ).

In particular, µ has compact support if and only if f−1
µ is finite on the whole unit interval [0, 1].

Proof. We first prove the following two inequalities,

f−1
µ (0) ≤ inf supp(µ) and f−1

µ (1) ≥ sup supp(µ).

The case that f−1
µ (0) = −∞ or f−1

µ (1) = +∞ is trivial, we are left to consider the case where
they are finite. If y < f−1

µ (0), then for any t ∈ (0, 1), 1
2y + 1

2f
−1
µ (0) < f−1

µ (t) and thus 1
2y +

1
2f

−1
µ (0) /∈ {x ∈ R | fµ(x) > t}. It follows that fµ( 12y + 1

2f
−1
µ (0)) = 0, and hence the point

y, strictly smaller than 1
2y + 1

2f
−1
µ (0), is not in the support of µ. As y is arbitrarily chosen, we

have (−∞, f−1
µ (0)) ∩ supp(µ) = ∅ and thus f−1

µ (0) ≤ inf supp(µ). If z > f−1
µ (1), then for any

t ∈ (0, 1), 1
2z +

1
2f

−1
µ (1) > f−1

µ (t) and thus 1
2z +

1
2f

−1
µ (1) ∈ {x ∈ R | fµ(x) > t}. It follows that

fµ(
1
2z+

1
2f

−1
µ (1)) = 1, and hence the point z, strictly bigger than 1

2z+
1
2f

−1
µ (1), is not in the support

of µ. As z is arbitrarily chosen, we have (f−1
µ (1),+∞)∩supp(µ) = ∅ and thus f−1

µ (1) ≥ sup supp(µ).
We now prove the inequalities,

f−1
µ (0) ≥ inf supp(µ) and f−1

µ (1) ≤ sup supp(µ).
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The case that inf supp(µ) = −∞ or sup supp(µ) = +∞ is trivial, we are left to consider the case
where they are finite. If y < inf supp(µ), then fµ(y) = 0 and thus y ≤ f−1

µ (t) for all t ∈ (0, 1),
which implies y ≤ f−1

µ (0). As y is arbitrarily chosen, we must have f−1
µ (0) ≥ inf supp(µ) since

the opposite inequality f−1
µ (0) < inf supp(µ) and y := 1

2f
−1
µ (0) + 1

2 inf supp(µ) would lead to a
contradiction. If z > sup supp(µ), then fµ(z) = 1 and thus z ≥ f−1

µ (t) for all t ∈ (0, 1), which
implies z ≥ f−1

µ (1). As z is arbitrarily chosen, we must have f−1
µ (1) ≤ inf supp(µ) since the opposite

inequality f−1
µ (1) > inf supp(µ) and z := 1

2f
−1
µ (1) + 1

2 sup supp(µ) would lead to a contradiction.
Since µ has compact support if and only if both inf supp(µ) and sup supp(µ) are finite, our last

statement in the lemma follows.

In Definition 1.28, we define quantile functions as the right-continuous inverses (Lemma 1.29)
of distribution functions. The following technical lemma [83, Lemma (4.8) of Chapter 0] holds
for general right-continuous and non-decreasing functions defined on properly chosen intervals. It
implies that quantile functions fully characterize probability measures, a property to be used later.

Lemma 1.34. Let f : R → [0, 1] and g : (0, 1) → R be two right-continuous and non-decreasing
functions. Then

g(t) = inf
x∈R

{x | f(x) > t} for t ∈ (0, 1) ⇐⇒ f(x) = inf
t∈(0,1)

{t | g(t) > x} for x ∈ R,

where we followed the convention (1.15), i.e., infx∈R ∅ := +∞ and inft∈(0,1) ∅ := 1. In particular,
for a probability measure µ on R, its distribution function fµ is the right-continuous inverse (defined
in Lemma 1.29) of f−1

µ |(0,1), i.e., [f−1
µ |(0,1)]−1 = fµ.

Proof. For simplicity, we write {f > t} and {g > x} to denote the sets {x ∈ R | f(x) > t} and
{t ∈ (0, 1) | g(t) > x} respectively. We drop the subscripts of inf in symbols infx∈R{f > t} and
inft∈(0,1){g > x} when the sets are shown to be non-empty.

Let us prove the implication from left to right. Assume that the left-hand side is true. For
x ∈ R, define h(x) := inft∈(0,1){g > x}. Fix an arbitrary real number x ∈ R, we prove the equality
f(x) = h(x) by showing the following two inequalities.

1. We first prove the inequality f(x) ≤ h(x). It holds trivially when h(x) = 1. We are left
to prove the case that h(x) < 1, i.e., the set {g > x} is non-empty. For any t ∈ {g > x},
since g(t) = inf{f > t} > x, we have x /∈ {f > t} and thus f(x) ≤ t. It follows that
f(x) ≤ inf{g > x} = h(x).

2. We then prove the inequality f(x) ≥ h(x). Again, this inequality is trivial when f(x) = 1.
Hence, we proceed with case that f(x) < 1. As f is right-continuous at x, for δ > 0 sufficiently
small, we have f(x) ≤ f(x + δ) < 1. For such a δ, since g(f(x + δ)) = inf{f > f(x + δ)} ≥
x+ δ > x, we have f(x+ δ) ≥ inf{g > x} = h(x). Therefore, f(x) = limδ↓0 f(x+ δ) ≥ h(x).

The implication from right to left can be proven similarly. For the last statement, it suffices to
set f := fµ and g := f−1

µ |(0,1).

The following lemma is analogous to the characterization of weak convergence using distribution
functions. It helps to deal with the measurability issues of maps related to µ 7→ f−1

µ (t) with t fixed,
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Lemma 1.35. Let {µn}n∈N be a sequence of probability measures on R. The sequence {µn}n∈N
converges weakly to a probability measure µ on R if and only if f−1

µn
(t) converges to f−1

µ (t) for any
0 < t < 1 such that f−1

µ is continuous at t. Moreover, if the convergence holds, then

lim sup
n→+∞

f−1
µn

(t) ≤ f−1
µ (t), ∀ t ∈ [0, 1) and lim inf

n→+∞
f−1
µn

(1) ≥ f−1
µ (1). (1.17)

Proof. The characterization of weak convergence in terms of convergence of quantile functions at
continuity points is proven in references such as [26, Proposition 5.7 of Chapter III] and [101,
Lemma 21.2]. We are left to show the inequalities in (1.17). Assume that the weak convergence of
{µn}n∈N to µ holds.

For t ∈ [0, 1), there is sequence of decreasing and positive numbers {εk}k∈N such that t+ εk ∈
(0, 1) and f−1

µ is continuous at t+ εk. Since quantile functions are non-decreasing, we have

lim sup
n→+∞

f−1
µn

(t) ≤ lim sup
n→+∞

f−1
µn

(t+ εk) = lim
n→+∞

f−1
µn

(t+ εk) = f−1
µ (t+ εk),

which implies lim supn→+∞ f−1
µn

(t) ≤ f−1
µ (t) by the right-continuity of f−1

µ at t.
We prove the case t = 1 by contradiction. Assume that there exists x ∈ R such that

lim inf
n→+∞

f−1
µn

(1) = lim
n→+∞

inf
k>n

f−1
µk

(1) < x < f−1
µ (1).

It follows from Definition 1.28 that µ((−∞, x]) < 1 and µk((−∞, x]) = 1 for infinitely many k.
Since {µn}n∈N converges weakly to µ, the upper semi-continuity of distribution functions implies

1 = lim sup
n→+∞

µn((−∞, x]) = lim sup
n→+∞

fµn
(x) ≤ fµ(x) = µ((−∞, x]) < 1,

which is a contradiction.

We provide an example showing that the inequalities in (1.17) can be strict.

Example 1.36. For n = 1, 2, . . ., denote by µn := N (0, 1/n) the normal distribution on the real
line with mean 0 and variance 1/n. By the convergence of their quantile functions on the interval
(0, 1), the sequence µn with n ≥ 1 converges weakly to the Dirac measure µ := δ0 at 0. However,
we have f−1

µn
(0) = −∞ and f−1

µn
(1) = +∞ for any n ≥ 1 while f−1

µ (0) = f−1
µ (1) = 0.

The importance of quantile functions in the optimal transport theory is highlighted by the
following theorem. We refer to [104, Theorem 2.18] for a proof.

Theorem 1.37. Let µ, ν be two probability measures in the Wasserstein space (W2(R), dW ). Then
their quantile functions f−1

µ , f−1
ν ∈ L2([0, 1]) are squared integrable and

dW (µ, ν)2 =

∫ 1

0

[f−1
µ (t)− f−1

ν (t)]2 d t. (1.18)

To further derive optimal transport maps between probability measures on R, we first prove the
following well-known lemma related to the uniform probability u restricted on [0, 1].

Lemma 1.38. Let µ be a probability measure on R and let u := L1|[0,1] be the uniform measure on
R. The quantile function f−1

µ of µ pushes forward u to µ, i.e., [f−1
µ ]#u = µ. If µ is atomless, then

the distribution function fµ of µ pushes forward µ to u, i.e., [fµ]#µ = u.
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Proof. We first prove the equality [f−1
µ ]#u = µ. It suffices to show that, for any x ∈ R,

µ((−∞, x]) = [f−1
µ ]#u((−∞, x]),

or equivalently, inf
t∈(0,1)

{t | f−1
µ (t) > x} = u({t ∈ [0, 1] | f−1

µ (t) ≤ x}), (1.19)

where we applied Lemma 1.34 with the definition fµ(x) := µ((−∞, x]) in the left-hand side. If the
set {f−1

µ > x} is empty, then both sides of (1.19) are equal to 1. If the set {f−1
µ > x} is non-empty,

then it is a sub-interval of [0, 1]. Moreover, this sub-interval has 1 as its right endpoint, and shares
a common endpoint with its complement {f−1

µ ≤ x}, which has 0 as its left endpoint. Hence, in
this case, both sides of (1.19) are equal to the common endpoint.

Now we assume that µ is atomless and prove the equality [fµ]#µ = u, which is equivalent to
the following statement,

∀ t ∈ [0, 1], µ({x ∈ R | fµ(x) ≤ t}) = t. (1.20)

For t = 0 or t = 1, the equality (1.20) holds trivially. As µ is atomless, its distribution function fµ
is continuous, which implies that the image set fµ(R) is connected and thus contains the interval
(0, 1). Hence, for any given t ∈ (0, 1), there exists y ∈ R such that fµ(y) = t. Since fµ is non-
decreasing, the set {fµ ≤ t} \ (−∞, y] is contained in the set {fµ = t}. As fµ is continuous and
non-decreasing, {fµ = t} is either a singleton or a closed interval, and in both cases, the set is
µ-negligible since µ is atomless. Therefore, µ({fµ ≤ t}) = µ((−∞, y]) = fµ(y) = t, which is the
equality (1.20) to prove.

As a corollary, we obtain the following equalities when compositing distribution functions and
quantile functions.

Corollary 1.39. Let µ be a probability measure on R and let u := L1|[0,1]. If µ is atomless, then

fµ ◦ f−1
µ (t) = t, for every t ∈ (0, 1), (1.21)

f−1
µ ◦ fµ(x) = x, for µ-almost every x ∈ R. (1.22)

Proof. Let us first prove (1.21) for u-almost everywhere:

fµ ◦ f−1
µ (t) = t, for u-almost every t ∈ (0, 1), (1.23)

Since f−1
µ (t) is finite for t ∈ (0, 1) by Lemma 1.30, Lemma 1.34 implies that

fµ ◦ f−1
µ (t) = inf

s∈(0,1)
{s | f−1

µ (s) > f−1
µ (t)}.

As t is smaller than any possible element in {f−1
µ > f−1

µ (t)}, we have fµ ◦ f−1
µ (t) ≥ t. Hence,∫ 1

0

|fµ ◦ f−1
µ (t)− t|d t =

∫
R
fµ ◦ f−1

µ du−
∫
R

Id du

=

∫
R

Id d[fµ ◦ f−1
µ ]#u−

∫
R

Id du = 0,

where we applied the equality [fµ ◦ f−1
µ ]#u = [fµ]#µ = u implied by Lemma 1.38. It follows that

|fµ ◦ f−1
µ (t)− t| = 0 for u-almost every t ∈ (0, 1), which implies (1.23).
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By considering the integral
∫
R |f−1

µ ◦ fµ(x) − x|dµ(x), we can prove the µ-almost everywhere
equality (1.22) similarly thanks to the inequality f−1

µ ◦fµ(x) ≥ x and the equality [f−1
µ ◦fµ]#µ = µ.

Finally, let us deduce (1.21) from (1.23). Define A := {t ∈ (0, 1) | fµ ◦ f−1
µ (t) = t}. Since

u(A) = u([0, 1]) = 1 and any open subset of [0, 1] has strictly positive u-measure, for any t ∈ (0, 1),
there exists a sequence {tn}n≥1 ⊂ A such that tn ≥ tn+1 and limn→∞ tn = t. Hence, by the
right-continuity of fµ and f−1

µ ,

t = lim
n→∞

tn = lim fµ ◦ f−1
µ (tn) = fµ ◦

(
lim
n→∞

f−1
µ (tn)

)
= fµ ◦ f−1

µ (t),

which implies t ∈ A and thus the statement (1.21).

We are thus able to deduce the following corollary of Theorem 1.37.

Corollary 1.40. Let µ, ν be two probability measures in the Wasserstein space (W2(R), dW ). If µ
is atomless, then f−1

ν ◦ fµ is an optimal transport map pushing forward µ to ν.

Proof. Thanks to the equality (1.22) and [fµ]#µ = u, we have∫
R
[f−1
ν ◦ fµ(x)− x]2 dµ =

∫
R
[f−1
ν ◦ fµ(x)− f−1

µ ◦ fµ(x)]2 dµ =

∫ 1

0

[f−1
µ (t)− f−1

ν (t)]2 d t.

Hence, it follows from Theorem 1.37 that

dW (µ, ν)2 =

∫
R
[f−1
ν ◦ fµ(x)− x]2 dµ,

which implies that f−1
ν ◦ fµ is an optimal transport map.

1.4.2 Differentiating optimal transport maps
In this part, we collect some properties of optimal transport maps between absolutely continuous
measures on a Riemannian manifold, which are taken from [30, Sections 4 & 5]. These properties
will be used in Chapter 4. To justify them, we remark that our definition of Hessian enjoys the
second-order expansion (1.11), which allows us to apply properties proven for the Hessian defined
in [30, Definition 3.9]. See Remark 1.20 and [30, Discussion after Definition 3.9] for more details.

To motivate the definition of differentiating optimal transport maps, we first illustrate how to
differentiate the maps exp(−∇φ) with φ being C2 smooth. Let us first recall the definition of parallel
transport. We denote by ∇ the Levi-Civita connection on a Riemannian manifold.

Definition 1.41 (Parallel transport). Let (M,g) be a Riemannian manifold. Given a smooth curve
γ : I → M on an open interval I, t0 ∈ I and v ∈ Tγ(t0)M , a vector field X along γ is called the
parallel transport of v along γ if

Xγ(t0) = v, and ∇γ′(t)X = 0 for t ∈ I.

When a particular point t ∈ I is selected in the context, for example, by explicitly considering the
tangent space Tγ(t)M , we also call the tangent vector Xγ(t) ∈ Tγ(t)M the parallel transport of v.

For the existence and uniqueness of parallel transport, see [66, Theorem 4.32]. Parallel transport
is deeply connected with the Riemannian metric. For example, it is a linear isometry along the
smooth curve [66, Proposition 5.5]. Moreover, it determines the Levi-Civita connection.
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Proposition 1.42 (Parallel transport determines the connection, [66, Corollary 4.35]). Let (M,g)
be a Riemannian manifold. Suppose X and Y are smooth vector fields on M . Fix a point p ∈ M
and a smooth curve γ : I →M with t0 ∈ I such that γ(t0) = p and γ′(t0) = Xp. For t ∈ I, denote
by Πγt→t0 : Tγ(t)M → Tγ(t0)M the parallel transport map, sending tangent vectors in Tγ(t)M to their
parallel transports in Tγ(t0)M along the curve γ. Then

∇XY |p = lim
t→t0

Πγt→t0Yγ(t) − Yp

t− t0
. (1.24)

Note that in the equality (1.24), the right-hand is independent of the smooth curve γ, provided
γ′(t0) = Xp. Also, we remind that the vector ∇XY |p can be also written as ∇XpY as it only
depends on Xp and the value of Y in a neighborhood of p [66, Proposition 4.5]. Since parallel
transports along different curves are considered in the following proof, we introduce the symbol
Πz→w : TzM → TwM without indicating the curve explicitly, to represent the map sending a
tangent vector v ∈ TzM to its parallel transport in TwM along the minimal geodesic γ from z to
w.

Lemma 1.43. Let (M,g) be a complete Riemannian manifold. Fix an open set U ⊂ M , a point
x ∈ U , and a C2 smooth function φ defined on U . Define F := exp(−∇φ) on U . Assume that the
(fixed) point y := F (x) is out of the cut locus of x. If the two functions, φ and d2y/2, have the same
gradient at x, then

DxF = [D−∇φ(x) expx] ◦ (Hessx d2y/2− Hessx φ). (1.25)

In the above formula,

1. D−∇φ(x) expx : T−∇φ(x)TxM → TyM denotes the differential of the exponential map expx :
TxM →M at −∇φ(x);

2. the composition is defined via the canonical identification of T−∇φ(x)TxM with TxM .

Proof. The formula (1.25) is already proven in [30, Proposition 4.1], whose proof can be simplified
thanks to our assumptions. Define y := F (x). By the assumption that y is not in the cut locus of x,
Hessx d2y/2 is well-defined. Shrink the neighborhood U of x if necessary so that for (w, z) ∈ U ×U ,
w is not in the cut loci of y and z [88, (2) of Proposition 4.1 in Chapter III]. Define the following
function g on U × U ,

g(w, z) := expw
(
−∇d2y(w)/2 + Πz→w

[
∇d2y(z)/2−∇φ(z)

])
,

where Πz→w : TzM → TwM denotes the parallel transport of tangent vectors along the minimal
geodesic from z to w. For z ∈ U , since Πz→z is the identity map on TzM , g(z, z) = F (z). For w ∈ U ,
g(w, x) = expw(−∇d2y(w)/2) ≡ y is a constant, where we used the assumption ∇d2y(x)/2 = ∇φ(x)
for the first equality and used that w is not in the cut locus of y for the second one. Let us verify
that the differential at x of the map z ∈M 7→ Πz→x∇φ(z) ∈ TxM is Hessx φ, i.e.,

DxG = Hessx φ with G(z) := Πz→x∇φ(z), (1.26)

where the tangent space TG(x)TxM is identified with TxM so that DxG : TxM → TG(x)TxM is
regarded as map from the space TxM to itself. Indeed, given a vector v ∈ TxM , by introducing the
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minimal geodesic γ : t ∈ (−δ, δ) 7→ expx tv for small δ > 0, we have Πγt→0 = Πγ(t)→x according to
Definition 1.41. Hence, Proposition 1.42 implies

Hessx φ(v) = ∇v∇φ = lim
t→0

Πγt→0∇φ(γ(t))−∇φ(x)
t

= lim
t→0

G(γ(t))−G(γ(0))

t
= DxG(v),

where we used the definition of Hessian as the covariant derivative of gradients [80, Proposition
2.2.6]. Since v ∈ TxM is arbitrarily chosen, (1.26) is thus proven. Therefore,

DxF = ∂wg(x, x) + ∂zg(x, x) = ∂zg(x, x) (1.27)
= [D−∇φ(x) ◦ expx] ◦ (Hessx d2y/2− Hessx φ), (1.28)

where we applied F (z) = g(z, z), the chain rule and g(w, x) ≡ y for the line (1.27), and applied
the relation between Hessians and differential of parallel transports, as illustrated by (1.26), for the
line (1.28).

We are now ready to import the definition of the (weak) differential of optimal transport maps
from [30], with which we can then state the change of variables formula.

Proposition 1.44 (Differentiating optimal transport maps, [30, Proposition 4.1]). Let (M,dg) be
a complete Riemannian manifold. Given a c-concave function φ defined on X ⊂ M with X a
bounded open set, we set F := exp(−∇φ), which is Vol-almost everywhere well-defined on X . Fix
a point x ∈ X such that Hessx φ exists (1.9). Then the point y := F (x) is not in the cut locus of
x, ∇φ(x) = ∇d2y/2(x), and Hessx d2y/2 − Hessx φ is positive semi-definite. Define the differential
DxF : TxM → TyM of F at x as

DxF := [D−∇φ(x) expx] ◦ (Hessx d2y/2− Hessx φ), (1.29)

and define JacF (x) := detDxF as the Jacobian determinant of DxF .

The Jacobian determinant of the differential DxF , as defined in Proposition 1.44, is calculated
with respect to normal coordinate systems of the tangent spaces TxM and TyM [30, Lemma 2.1].
By [30, Claim 4.5], these algebraic Jacobians are equivalent to their geometric counterparts, which
results in the following change of variables formula. For further details, see [105, p.364 of Chapter
14].

Proposition 1.45 (Interpolation and change of variables formula). Let (M,dg) be a complete Rie-
mannian manifold. Fix two absolutely continuous measures µ, ν ∈ W2(M) with supports contained
in two bounded open sets X and Y respectively. Let F := exp(−∇φ) be the optimal transport map
that pushes µ forward to ν, where φ ∈ Ic(X ,Y) is a c-concave function given by Theorem 1.27.

Denote by φc ∈ Ic(Y,X ) the c-conjugate of φ. The set

Ω :=
{
x ∈ X | F (x) ∈ Y, Hessx φ and HessF (x) φ

c exist
}

satisfies the following properties:

1. µ(Ω) = 1;

2. defining F t := exp(−t∇φ) for 0 ≤ t ≤ 1, we have JacF t > 0 on Ω;
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3. denote by f and g the density functions of µ and ν respectively; there exists a measurable
subset N ⊂ Ω depending on these two density functions such that µ(N) = 1 and for x ∈ N ,

f(x) = g(F (x)) JacF (x) > 0;

4. for any Borel function A on [0,+∞) with A(0) = 0, with N as in Property 3,∫
M

A(g)d Vol =
∫
N

A

(
f

JacF

)
JacF d Vol . (1.30)

(Either both integrals are undefined or both take the same value in R ∪ {+∞,−∞}.)

Proof. All the statements follow from [30, Claim 4.4, Theorem 4.2, Corollary 4.7] except Property 2
for t ∈ (0, 1). To justify this proposition, we fix t ∈ (0, 1) and deduce Property 2 from the following
known results:

(a) det[D−t∇φ(x) expx] > 0 since expx(−t∇φ(x)) is not in the cut locus of x [66, (c) of Theorem
10.34].

(b) tφ is c-concave [30, Lemma 5.1].

(c) Hessx d2F t(x)/2− tHessx d2F (x)/2 is positive semi-definite [30, Lemma 2.3].

(d) Hessx d2F (x)/2 − Hessx φ is positive definite since it is positive semi-definite [30, Proposition
4.1] and detDxF = det[D−∇φ(x) expx] · det[Hessx d2F (x)/2− Hessx φ] > 0 [30, Claim 3.4].

Since detDxF
t = det[D−t∇φ(x) expx] · det[Hessx d2F t(x)/2− tHessx φ] according to Proposition 1.44

and Result (b), it suffices to show det[Hessx d2F t(x)/2− tHessx φ] > 0 by Result (a). Denote by m
the dimension of M . Recall that the Minkowski’s determinant inequality [104, (5.23)] states, if A,B
are two symmetric m×m matrices such that A is positive semi-definite and B is positive definite,
then

det[A+B]
1
m ≥ detA 1

m + detB 1
m .

Considering the equality

Hessx d2F t(x)/2− tHessx φ =
[
Hessx d2F t(x)/2− tHessx d2F (x)/2

]
+
[
tHessx d2F (x)/2− tHessx φ

]
,

it follows from Result (c) and Result (d) that

det
[
Hessx d2F t(x)/2− tHessx φ

] 1
m ≥det

[
Hessx d2F t(x)/2− tHessx d2F (x)/2

] 1
m

+ tdet
[
Hessx d2F (x)/2− Hessx φ

] 1
m

> 0,

which concludes the proof.
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Chapter 2

General framework for barycenters

Barycenter is the notion of mean for probability measures on metric spaces. Given a probability
measure µ on the Euclidean space Rm, if its second moment is finite, then its mean

∫
Rm xdµ(x)

can be equivalently defined as the unique point where the infimum

inf
y∈Rm

∫
Rm

‖y − x‖22 dµ(x)

is reached. This formulation in terms of minimization and metric is still valid for general metric
spaces, and it leads to our definition of barycenter (see Definition 2.1).

For barycenters in proper metric spaces, their existence is a consequence of the compactness
property. Furthermore, in Section 2.1, we also demonstrate the existence of measurable barycenter
selection maps, a crucial element for the construction of Wasserstein barycenters (Proposition 2.12).
Consequently, the framework for barycenters in this chapter involves considering a proper metric
space (E, d) and studying barycenters within E or Wasserstein barycenters in W2(E). To provide
partial justification for this framework, we also include Section 2.2, which presents counter-examples
illustrating the failure of barycenter’s existence in metric spaces that are not proper. Finally,
Section 2.3 reviews established results concerning the existence and uniqueness of Wasserstein
barycenters.

2.1 Barycenters on proper metric spaces
Given that Wasserstein spaces are composed of probability measures with finite second moments,
the definition of barycenters for these measures is sufficient for our development. For a slightly
more general definition, we refer to [94, Proposition 4.3]. For clarity, we shall use the symbol zµ
to represent a chosen barycenter of the measure µ, but it is important to note that this does not
imply the uniqueness of zµ.

Definition 2.1 (Barycenter). Let (E, d) be a metric space and let µ be a probability measure on
E such that

∫
E
d(x0, y)

2 dµ(y) <∞ for some point x0 ∈ E. We call zµ ∈ E a barycenter of µ if∫
E

d(zµ, y)
2 dµ(y) = min

x∈E

∫
E

d(x, y)2 dµ(y).
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Recall that a metric space is proper if its bounded closed subsets are also compact. Barycenters
always exist in proper spaces since a minimizing sequence is bounded and thus pre-compact. We
refer to Ohta [77] for more details and some other properties of barycenters in a proper space.

We can readily construct counter-examples demonstrating the lack of uniqueness for barycenters.

Example 2.2. Let S2 be the two-dimensional sphere and fix two antipodal points x, y of S2.
Consider the measure µ = 1

2δx+
1
2δy on S2. Then all points in the equator, i.e., the set of all points

with equal distances to x and y, are barycenters of µ.

Given the prevalence of the phenomenon illustrated by Example 2.2, we prioritize investigating
measurable selections of barycenters, which are necessary for our subsequent development, rather
than identifying conditions ensuring uniqueness.

2.1.1 Measurable selection of barycenters
Let us recall the following topological property of projection maps. For two topological spaces E1

and E2, we denote by p1 and p2 the canonical projection maps defined on E1 ×E2, where p1 maps
(x, y) ∈ E1 × E2 to x ∈ E1 and p2 maps (x, y) to y ∈ E2. Recall that these projection maps are
continuous and open (i.e., mapping open sets to open sets). The map p1 (respectively p2) is closed
if E2 (respectively E1) is compact [20, Proposition 8.2].

Proposition 2.3 (Measurable selections of barycenters). Let (E, d) be a proper metric space. The
function f : W2(E) → R defined by

f(µ) := min
x∈E

dW (µ, δx)

is continuous. There exists a measurable map Z : W2(E) → E such that for µ ∈ W2(E), Z(µ) is a
barycenter of µ. Moreover, if A ⊂ W2(E) is a compact set, then the set of all barycenters of µ for
µ running through A is compact.

Proof. Observe that dW (µ, δx)
2 =

∫
x∈E d(x, y)

2 dµ(y) is exactly the term to be minimized when
we define the barycenters of µ. As (E, d) is a proper metric space, the minimum in the definition
of f(µ) = minx∈E dW (µ, δx) is reached by the barycenters of µ, which shows that f is well-defined.
We now prove the continuity of f . For µ, ν ∈ W2(E) and y ∈ E, thanks to the triangle inequality
of the Wasserstein metric dW , we have

f(µ) = min
x∈E

dW (µ, δx) ≤ dW (µ, δy) ≤ dW (µ, ν) + dW (ν, δy). (2.1)

By taking the infimum of the right-hand side of (2.1) over all y ∈ E, we obtain f(µ) ≤ dW (µ, ν) +
f(ν). After exchanging the roles of µ and ν, it follows that |f(µ)− f(ν)| ≤ dW (µ, ν), which implies
the continuity of f . Hence, the following set

Γ := {(µ, z) ∈ W2(E)× E | dW (µ, δz) = f(µ)},

is closed. Furthermore, (µ, z) ∈ Γ if and only if z is a barycenter of µ.
We then prove the existence of measurable selection of barycenters. Fix a compact subset K of

E. Consider the following set

ΓK := p1[Γ ∩ (W2(E)×K)] ⊂ W2(E),
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where p1 : W2(E) ×K → W2(E) is the first projection map. Note that ΓK is set of all measures
in W2(E) with one barycenter located at K. Since K is a compact set, p1 is a closed map [20,
Proposition 8.2], which implies that ΓK is a closed set and thus measurable. Consider the map
Ψ : W2(E) → 2E sending µ ∈ W2(E) to the set of barycenters of µ. By definition of Γ and ΓK , we
have

Ψ(µ) = p2[Γ ∩ ({µ} × E)] and {µ ∈ W2(E) | Ψ(µ) ∩K 6= ∅} = ΓK .

Therefore, according to Theorem 1.5 and Lemma 1.6, to obtain a measurable selection map Z :
W2(E) → E of Ψ, we are left to show that Ψ(µ) is closed for any µ ∈ W2(E). However, this
property follows from the fact that Γ ∩ ({µ} × E) is a closed set as an intersection of two closed
sets. It remains to prove the “moreover” part of the proposition, which is a generalization of the
previous property.

For a compact set A ⊂ W2(E), the set of all barycenters of µ for µ running through A can be
equivalently expressed as

bary(A) := p2[Γ ∩ (A× E)] ⊂ E,

where p2 : A× E → E is the second projection map. Since A is compact, p2 is then a closed map
[20, Proposition 8.2], which further implies that bary(A) is a closed set. We claim that the set
bary(A) is bounded. Fix two arbitrarily chosen points x, y ∈ bary(A), and suppose that they are
respectively barycenters of µx, µy ∈ A. By the triangle inequality of dW , we have

d(x, y) = dW (δx, δy) ≤ dW (µx, δx) + dW (µy, δy) + dW (µx, µy)

= f(µx) + f(µy) + dW (µx, µy)

≤ 2 sup
µ∈A

f(µ) + sup
µ,ν∈A

dW (µ, ν).

Thanks to the continuity of f and the compactness of A, the term 2 supµ∈A f(µ) < +∞ is bounded.
By the continuity of the distance function dW : W2(E) ×W2(E) → R and compactness of the set
A × A, the term supµ,ν∈A dW (µ, ν) < +∞ is also bounded. Hence, our preceding claim is proven
as points x, y ∈ bary(A) are arbitrarily chosen. It follows that bary(A) ⊂ E is compact since E is
a proper metric space.

We shall apply Proposition 2.3 mainly with the following type of measures that are supported
in finitely many points.

Corollary 2.4. Let (E, d) be a proper metric space. Fix a positive integer n ≥ 1 and n positive
real numbers λi > 0 for i = 1, . . . , n such that

∑n
i=1 λi = 1. The function f : En → Rn defined by

f(x1, . . . , xn) := min
y∈E

n∑
i=1

λi d(y, xi)
2 (2.2)

is continuous. There exists a measurable map B : En → E such that for x = (x1, . . . , xn) ∈ En,
B(x) is a barycenter of the probability

∑n
i=1 λi δxi

. Moreover, if A ⊂ En is a compact set, then the
set of all barycenters of

∑n
i=1 λi δxi for x = (x1, . . . , xn) running through A is compact.

Proof. Consider the following map from En to W2(E):

θ : (x1, . . . , xn) ∈ En 7→
n∑
i=1

λi δxi
∈ W2(E).
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We first prove that θ is a continuous map. For two points x = (x1, . . . , xn) ∈ En and y =
(y1, . . . , yn) ∈ En, by considering the transport plan sending xi to yi for each 1 ≤ i ≤ n, we have

dW (θ(x), θ(y))2 = dW (

n∑
i=1

λi δxi
,

n∑
i=1

λi δyi)
2 ≤

n∑
i=i

λi d(xi, yi)
2.

It follows that if y converges to x in En, then θ(y) converges to θ(x) in W2(E).
By definition of f in (2.2), for x = (x1, . . . , xn) ∈ En, we have

f(x) = min
y∈E

n∑
i=1

λi d(xi, y)
2 = min

y∈E
dW (

n∑
i=1

λi δxi
, δy)

2 = min
y∈E

dW (θ(x), δy)
2.

It follows from Proposition 2.3 and the continuity of θ that f is also continuous. Moreover, according
to Proposition 2.3, there exists a measurable barycenter selection map Z : W2(E) → E. Hence,
the map B := Z ◦ θ is measurable and sends (x1, . . . , xn) to a barycenter of

∑n
i=1 λi δxi

. Moreover,
since θ is continuous, the set A := θ(A) ⊂ W2(E) is compact if A ⊂ En is compact, which implies
the last part of the corollary by Proposition 2.3.

2.1.2 Barycenters and cut-loci
In the context of Riemannian manifolds, the problem of finding barycenters for a finite set of points
exhibits a close relationship with optimal transport problems through the presence of c-concave
functions. This connection will be leveraged in Chapter 3.

Lemma 2.5. Let (M,dg) be a complete Riemannian manifold. Given an integer n ≥ 2, let
λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1. With the function c given in

(1.13), we define

f : (x1, x2, . . . , xn) ∈Mn 7→ min
w∈M

n∑
i=1

λi c(w, xi) =
1

2
min
w∈M

n∑
i=1

λi dg(w, xi)
2. (2.3)

Fix a non-empty compact subset X ⊂M and n−1 points xi ∈M for 2 ≤ i ≤ n. Denote by Y the set
of all barycenters of

∑n
i=1 λi δxi

when x1 runs through X. Define f1 : x1 ∈ X 7→ f(x1, . . . , xn)/λ1
and g1 : y ∈ Y 7→ −1/λ1

∑n
i=2 λi c(y, xi), then f1 = gc1 ∈ Ic(X,Y ) and g1 = f c1 ∈ Ic(Y,X).

Proof. The set Y ⊂M is compact by Corollary 2.4. Using the given definition of Y , we can replace
the minimum over M in (2.3) by the minimum over X, which shows the equality f1 = gc1 ∈ Ic(X,Y ).

Since f1(x) + g1(y) ≤ c(x, y) for any (x, y) ∈ X × Y , we have

g1(y) ≤ f c1(y) := inf
x∈X

c(x, y)− f1(x). (2.4)

Fix an arbitrary point y ∈ Y . Our definition of Y implies the existence of x1 ∈ X such that y is a
barycenter of

∑n
i=1 λi δxi

. For such a pair (x1, y) ∈ X×Y , f1(x1)+g1(y) = c(x1, y) by the definitions
of f1 and g1. It follows from the two inequalities, f1(x1) + f c1(y) ≤ c(x1, y) = f1(x1) + g1(y) and
(2.4), that g1(y) = f c1(y). Since y is arbitrarily chosen, we conclude that g1 = f c1 ∈ Ic(Y,X).

The c-concave function g1 ∈ Ic(Y,X) defined in Lemma 2.5 has simple expression unlike its
c-transform f1. Furthermore, thanks to the following lemma by Kim and Pass [57, Lemma 3.1], we
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conclude that g1 is C2 smooth since squared distance functions are C2 smooth out of cut-locus. This
differential property of g1 (to be used in Lemma 3.2) is crucial to prove the absolute continuity of
Wasserstein barycenters.

Lemma 2.6 (Barycenters and cut loci, [57, Lemma 3.1 and proof of Theorem 6.1]). Let (M,dg)
be a complete Riemannian manifold. Given an integer n ≥ 1, let λi > 0, 1 ≤ i ≤ n, be n positive
real numbers such that

∑n
i=1 λi = 1 and let xi ∈ M, 1 ≤ i ≤ n, be n points of M . For 1 ≤ i ≤ n,

xi is out of the cut locus of any barycenters of
∑n
i=1 λi δxi

.

2.2 Counter-examples of barycenter’s existence
Recall that the Wasserstein space W2(E) over a metric space E is not proper unless the space E is
compact [8, Remark 7.19]. Consequently, the existence of barycenter in Wasserstein spaces is not
guaranteed a priori. To better illustrate the obstacles toward barycenter’s existence, we dedicate
this section to examining the existence of barycenters in general metric spaces that are not proper.

As recalled in Definition 1.2, a length space [23, Chapter 2] is a metric space where the distance
between two points is the infimum of the lengths of all rectifiable curves joining them. Here,
curves are continuous maps from compact intervals [a, b] ⊂ R to the metric space. For example,
Riemannian manifolds and Wasserstein spaces over them are length spaces. We shall provide
some counter-examples of barycenters’ existence in length spaces. The following lemma facilitates
determining whether a point is a barycenter.

Lemma 2.7. Given two points x, y in a length space (E, d), zµ is a barycenter of µ := 1
2δx +

1
2δy

if and only if it is a midpoint between x and y, i.e., d(x, zµ) = d(zµ, y) =
1
2d(x, y).

Proof. A midpoint z between x and y reaches the two equalities in the following long inequality,

d(x, y)2 ≤ (d(x, z) + d(z, y))
2 ≤ 2

(
d(x, z)2 + d(z, y)2

)
= 4

∫
E

d(z, w)2 dµ(w),

which implies that z is a barycenter of µ if z is a midpoint.
Assume that zµ is a barycenter of µ := 1

2δx +
1
2δy. For a rectifiable curve γ : [0, 1] → E, denote

by γ|[s,t] its restriction on [s, t] ⊂ [0, 1] and by τγ ∈ [0, 1] a “midway position” such that Ld(γ[0,τγ ]) =
Ld(γ[τγ ,1]) (see (1.1) for the definition of Ld), whose existence follows from the continuity of length
structure with respect to concatenation [23, §2.2.1]. For a rectifiable curve γ from x to y, since zµ
is a barycenter of µ,

d(x, zµ)
2 + d(zµ, y)

2 = 2

∫
E

d(zµ, w)
2 dµ(w) ≤ 2

∫
E

d(γ(τγ), w)
2 dµ(w)

≤ Ld(γ[0,τγ ])
2
+ Ld(γ[τγ ,1])

2
=

1

2
Ld(γ)

2
.

Taking the infimum over all possible γ on the right-hand side, we obtain d(x, zµ)
2 + d(zµ, y)

2 ≤
1
2d(x, y)

2, which shows that zµ is a midpoint between x and y.

With Lemma 2.7, we can construct counter-examples in length spaces as follows.

Example 2.8 (No existence of barycenters in some length spaces). Recall that a locally com-
pact complete length space is proper [23, Theorem 2.5.28] and thus guarantees the existence of
barycenters. Here are two counter-examples of barycenter’s existence when the space is not proper.
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1. For a locally compact but not complete length space, consider the unit disk without origin.
From physical intuition there is no barycenter for its uniform measure. Alternatively, we can
pick two center-symmetric points x = −y and consider the measure 1

2δx+
1
2δy as an example.

2. For a complete but not locally compact length space, we shall prove Lemma 2.9 as an example.

To justify the second example above, it suffices to show that the given space is not geodesic,
since in a complete length space, shortest paths always exist if midpoints always exist [23, Theorem
2.4.16]. Recall that a length space is called geodesic (Definition 1.3) if the distance between two
points is equal to the length of some rectifiable curve connecting them.

In the following example inspired by [45, Example 5.1] (see also [91, Example 4.43]), we express
the induced lengths of Lipschitz curves using integrals of their derivatives, similar to the case of
Riemannian manifolds. Since energy variation shares the same solutions as arc-length variation,
we can disprove the existence of shortest paths between two selected points by showing that the
corresponding energy variation has no solution. Note that starting from an arbitrary metric space,
we can always define an induced length structure (Definition 1.1) on it, and further turn the space
into a length metric space by equipping it with the metric induced by the previous length structure.
See [23, §2.3.3] for more details of this construction.

Lemma 2.9 (Infinite dimensional ellipsoids in the Hilbert space R∞). Let (cn)n∈N∗ be a strictly
decreasing sequence with a positive lower bound. We define

E :=

{
(x1, x2, . . .) ∈ R∞ |

∞∑
n=1

x2n
c2n

= 1

}
.

Let d be the metric on E inherited from the Hilbert space R∞ and let Ld be the length structure on E
induced by d. Then there is no curve γ connecting two poles e := (c1, 0, . . .) and −e := (−c1, 0, . . .)
that reaches the infimum length Ld(γ) between them.

Moreover, there exists a length space (E, d̂) defined via Ld that is complete but not geodesic.

Proof. Denote by 〈·, ·〉 and ‖ · ‖ respectively the inner product and norm of the Hilbert space
R∞. Let u := L1|[0,1] the uniform measure on [0, 1]. A rectifiable curve γ always admits an arc-
length proportional parametrization on [0, 1] and its length does not depend on its parametrization
[23, Proposition 2.5.9]. For a Lipschitz curve γ, one can define its derivative γ′ : [0, 1] → R∞

almost everywhere since it has countably many components and each component of γ is a Lipschitz
function from [0, 1] to R. It follows from the Newton–Leibniz formula [17, Theorem 5.4.2] that for
0 < s ≤ t < 1, γ(t) − γ(s) =

∫ t
s
γ′ du. Hence, ‖γ′‖ is equal to the metric derivative (speed) of γ

for u-almost everywhere [8, Remark 1.1.3]. We thus have the following arc-length integral formula
[23, Theorem 2.7.6],

Ld(γ|[s,t]) =
∫ t

s

‖γ′‖du for 0 ≤ s ≤ t ≤ 1.

We show that there is no curve connecting e and −e with infimum length. Indeed, if there is
one, then it could be realized by a Lipschitz curve. We claim that arc-length variation shares the
same solution as energy variation over Lipschitz curves on [0, 1]:

arg min
γ
L(γ) := arg min

γ

∫ 1

0

‖γ′‖du = arg min
γ

∫ 1

0

‖γ′‖2 du,
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where the minimum is taken over all Lipschitz curves γ : [0, 1] → E with given endpoints. For
this claim, the Cauchy-Schwarz inequality implies that solutions to the energy variation should
have arc-length proportional parametrizations. In this case, the energy is exactly the square of the
arc-length, so they attain their minima simultaneously.

It remains to show that there is no solution to the corresponding energy variation. Given a
Lipschitz curve γ = (γ1, γ2, . . .) : [0, 1] → E connecting e and −e, we shall construct a Lipschitz
curve η : [0, 1] → E whose energy is strictly smaller than γ. Since γ is continuous, it is impossible to
have all functions γi with i ≥ 2 being zero. Fix an arbitrary integer n ≥ 3 such that γn−1 is not a zero
function. We modify γ leaving γ1 and γk for k > n unchanged to lower the energy of γ as follows.
Define the continuous function q := ‖(γ2c2 , . . . ,

γn
cn
)‖ and the open subset A := q−1(0,∞) ⊂ [0, 1].

Note that A is not empty since γn−1([0, 1]) 6= {0} by our choice of n. We modify γ only on A to
define a new curve η : [0, 1] → E connecting e and −e,

η(t) := (γ1(t), 0, . . . , 0, cnq(t), γn+1(t), . . .), t ∈ A.

For t ∈ A, we have q(t) > 0 and thus q′(t) = [q2]′

2q = 1
q

∑n
i=2

γi(t)·γ′
i(t)

ci
. Hence, we obtain the

following inequality on A,

‖γ′‖2 − ‖η′‖2 = ‖(γ′2, . . . , γ′n)‖2 − (cnq
′)2

= ‖(γ′2, . . . , γ′n)‖2 − 〈(γ′2, . . . , γ′n),
1

q
(
cn
c2

γ2
c2
, . . . ,

cn
cn

γn
cn

)〉2

≥ ‖(γ′2, . . . , γ′n)‖2 − ‖(γ′2, . . . , γ′n)‖2 ·
1

q2
· ‖(cn

c2

γ2
c2
, . . . ,

cn
cn

γn
cn

)‖2

≥ ‖(γ′2, . . . , γ′n)‖2 − ‖(γ′2, . . . , γ′n)‖2 ·
q2

q2
= 0,

where in the above two inequalities, we applied respectively the Cauchy-Schwarz inequality and the
assumption that cn

ci
< 1 for 1 ≤ i ≤ n. However, the obtained inequality ‖γ′‖2−‖η′‖2 ≥ 0 becomes

strict on the set where ‖(γ′2(t), . . . , γ′n−1(t))‖ 6= 0, which by our choice of n is not negligible. It
follows that the curve η has strictly lower energy than γ. Since the curve γ is arbitrarily chosen,
the energy variation has no solution.

The induced length space (E, d̂) is defined via the length structure Ld such that d̂(x, y) is the
infimum of Ld(γ) for all rectifiable curves γ connecting x and y [23, §2.3.3]. It is shown above that
(E, d̂) is not geodesic. We are left to show that it is complete. Since d(x, y) ≤ d̂(x, y) and (E, d) is
complete, it suffices to show the claim that d and d̂ induce the same topology on E. To prove this
claim, we first consider the case where E is replaced by the unit sphere B in the Hilbert space R∞.
Denote by dB and d̂B the metrics constructed from B in the same way how d and d̂ are constructed
for E. The distance formula d̂B(x, y) = arccos〈x, y〉 for x, y ∈ B holds since we can approximate
x, y by points with finitely many non-zero components and apply the distance formulae for finite-
dimensional unit spheres. It follows from the distance formula that (B, dB) and (B, d̂B) share the
same topology. Now we argue that the general case of E for the claim can be reduced to the previous
case. Consider the map f : B → E that sends (x1, · · · , xn, . . .) ∈ B to (c1 x1, . . . , cn xn, . . .) ∈ E.
Since both the sequence {ci}i∈N∗ and the sequence {c−1

i }i∈N∗ are bounded, the map f and its
inverse f−1 are Lipschitz continuous, with respect to the pair of metric spaces (E, d) and (B, dB)

or the pair of metric spaces (E, d̂) and (B, d̂B). Therefore, (E, d) is homeomorphic to (B, dB) and
(E, d̂) is homeomorphic to (B, d̂B), which thus proves the claim.
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As a complement to Example 2.8, we also present the following counter-example demonstrating
the non-existence of barycenters on a metric space that is locally compact and complete but not a
length space.

Example 2.10. We endow R with the metric function d(x, y) = φ(|x− y|) for x, y ∈ R, where φ is
a sub-additive piece-wisely linear function defined as: φ(0) = 0, φ(x) = x + 0.5 for 0 < x < 1 and
φ(x) = x + 1 for x ≥ 1. This metric space is locally compact since all singletons are open, closed
and compact. It is not a proper space since a closed ball with radius 1 contains infinitely many
points while each point is an open set, so this ball is not compact. It is a complete space since if
d(x, y) < 0.5 then x = y. We consider the probability measure µ := 1

2δ−1 +
1
2δ1 on (R, d).

Define f(x) :=
∫
R d

2(x, y)dµ(y) =
∫
R φ

2(|x − y|)dµ(y). We plot these two functions φ and f
below. Red points are values of functions where they are discontinuous.

0.5 1.0 1.5 2.0 2.5 3.0
x

1

2

3

4

ϕ

0 x ≤ 0

x +0.5 0 < x < 1

x +1 x ≥ 1

Figure 2.1: d(x, y) := φ(|x− y|)
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Figure 2.2: f(x) :=
∫
R d

2(x, y)dµ(y)

Then f(−x) = f(x) and f is increasing on (0,+∞). Moreover, f is continuous on (0, 1) but
limx→0 f(x) < f(0) < f(1). This shows that f has no minimum value and thus µ has no barycenter.

2.3 Known properties of Wasserstein barycenters
Wasserstein barycenters are barycenters of probability measures on Wasserstein spaces. In this
section, we outline some established properties related to the existence and uniqueness of Wasser-
stein barycenters. Following the development of [62], to prove the existence, which is not obvious
given the conter-examples presented in the last section, we shall begin by constructing Wasserstein
barycenters of finitely many measures. This construction will rely on a specific type of multi-
marginal optimal transport plans, which we now introduce.

Definition 2.11 (Multi-marginal optimal transport plans). Let (E, d) be a proper metric space.
Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1

and let µi ∈ W2(E), 1 ≤ i ≤ n, be n probability measures on E. Denote by Θ the set of probability
measures on En with marginals µ1, . . . , µn in this order. We call γ ∈ Θ a multi-marginal optimal
transport plan (of its marginals) if∫

En

min
y∈E

n∑
i=1

λi d(y, xi)
2 d γ(x1, . . . , xn) = min

θ∈Θ

∫
En

min
y∈E

n∑
i=1

λi d(y, xi)
2 d θ(x1, . . . , xn). (2.5)

In what follows, the marginal measures µi and constants λi will be clear from the context, and
Definition 2.11 is the sole type of multi-marginal optimal transport problems we shall consider. By
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Corollary 2.4, the cost function infy∈E
∑n
i=1 λi d(xi, y)

2 is continuous with respect to (x1, . . . , xn) ∈
En. Hence, we can prove the existence of a multi-marginal optimal transport plan γ in the same
way as the classic proof for the existence of optimal couplings between two measures [105, Theorem
4.1]. Now we are ready to construct Wasserstein barycenters. It is important to note that although
we shall use the notation µP to indicate that a measure is a barycenter of P, this notation should
not be interpreted as implying the uniqueness of such a barycenter.

Proposition 2.12 (Construction of Wasserstein barycenters of
∑n
i=1 λi δµi). Let (E, d) be a proper

metric space. Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that∑n
i=1 λi = 1. Let µ1, . . . , µn ∈ W2(E) be n probability measures and let γ be a multi-marginal

optimal transport plan of them, i.e., satisfying (2.5). If B : En → E is a measurable map such that
B(x1, . . . , xn) is a barycenter of

∑n
i=1 λi δxi

, then

1. µP := B#γ is a barycenter of P :=
∑n
i=1 λi δµi ;

2. (B, pi)#γ is an optimal transport plan between µP and µi, where pi denotes the canonical
projection (x1, . . . , xn) ∈ En 7→ xi ∈ E;

3. if X,X1, . . . , Xn are n + 1 random variables from a probability space (Ω,F , P ) to (E, d)
with law µP, µ1, . . . , µn such that E d(X,Xi)

2 = dW (µP, µi)
2, i.e., (X,Xi) is an optimal

transport coupling between µP and µi, then for P -almost every ω ∈ Ω, X(ω) is a barycenter
of
∑n
i=1 λi δXi(ω).

Proof. Given an arbitrary probability measure ν ∈ W2(E), thanks to the gluing lemma [104, Lemma
7.1], there are n + 1 random variables X,X1, . . . Xn valued in E with laws ν, µ1, . . . µn such that
E d(X,Xi)

2 = dW (ν, µi)
2. We introduce the symbol x := (x1, . . . , xn) to represent a general point

in En with components x1, . . . , xn in this order. Since µi = pi#γ, we have

n∑
i=1

λi dW (µP, µi)
2 ≤

n∑
i=1

∫
En

λi d(B(x), xi)
2 d γ(x) =

∫
En

min
y∈E

n∑
i=1

λi d(y, xi)
2 d γ(x)

≤ E min
y∈E

n∑
i=1

λi d(y,Xi)
2 ≤ E

n∑
i=1

λi d(X,Xi)
2

=

n∑
i=1

λi dW (ν, µi)
2,

where we sequentially applied the definitions of µP = B#γ, dW (µP, µi), γ, B and X,X1, . . . , Xn.
Since ν is arbitrarily chosen, it follows that µP is a Wasserstein barycenter. By setting ν = µP
in the above inequality, we actually obtain an equality. Our last two statements follow from this
inequality. Firstly, this equality implies that

∑n
i=1 λi dW (µP, µi)

2 ≤
∑n
i=1

∫
En λi d(B(x), xi)

2 d γ(x)
is indeed always an equality, which proves the second statement. Secondly, it also implies that the
law of (X1, . . . , Xn) is a multi-marginal optimal transport plan and miny∈E

∑n
i=1 λi d(y,Xi(ω))

2 =∑n
i=1 λi d(X(ω), Xi(ω))

2 for P -almost every ω ∈ Ω, which proves the third statement.

The general existence of Wasserstein barycenters was first established in [62], which is based on
the consistency of Wasserstein barycenters.
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Theorem 2.13 (Consistency of Wasserstein barycenters, [62]). Let (E, d) be a proper metric space.
Fix a probability measure P ∈ (W2(W2(E)), dW) on (W2(E), dW ). Given a sequence of measures
Pj ∈ W2(W2(E)) with their corresponding barycenters µPj

∈ W2(E), if dW(Pj ,P) → 0 as j goes to
+∞, then dW (µPj

, µP) → 0 for some barycenter µP of P up to extracting a subsequence of µPj
.

Recall that finitely supported probability measures are dense in Wasserstein spaces [105, Theo-
rem 6.18], so the consistency of Wasserstein barycenters together with the previous construction of
Wasserstein barycenters (Proposition 2.12) implies the following theorem.

Theorem 2.14 (Existence of Wasserstein barycenters, [62]). If (E, d) is a proper space, then any
P ∈ W2(W2(E)) has a barycenter.

Note that in Theorem 2.13, we may need to pass to a subsequence of Wasserstein barycenters
µPj

and the limit barycenter µP is not known in advance. Hence, Theorem 2.13 will be enhanced if
we can assert the uniqueness of barycenters under some additional assumptions, as follows.

Proposition 2.15 (Uniqueness of Wasserstein barycenters). Let (E, d) be a proper space. If a
probability measure P ∈ W2(W2(E)) gives mass to a Borel subset A ⊂ W2(E) such that for µ ∈ A
and ν ∈ W2(E), any optimal transport plan between µ and ν is induced by a measurable map T
pushing µ forward to ν, i.e., ν = T#µ and dW (µ, ν)2 =

∫
E
d(x, T (x))2 dµ, then P has a unique

barycenter in W2(E).

Proof. The uniqueness follows from the strict convexity of the squared distance function to a given
point in W2(E), as shown by [90, Theorem 7.19] and [58, Theorem 3.1]. We recall the proof for the
sake of completeness.

Observe that any convex combination of probability measures in the space W2(E) is still a
probability measure in it. Fix µ ∈ A and consider the squared Wasserstein distance function
dW (µ, ·)2 with respect to this convex structure. For λ ∈ [0, 1] and two different probability measures
ν1, ν2 ∈ W2(E), by definition of Wasserstein metric we have

dW (µ, λ ν1 + (1− λ)ν2)
2 ≤ λ dW (µ, ν1)

2 + (1− λ)dW (µ, ν2)
2. (2.6)

By our assumptions, there are two measurable maps T1, T2 : E → E such that γ1 := (Id×T1)#µ
and γ2 := (Id×T2)#µ are optimal transport plans between µ and the two measures ν1 and ν2
respectively. We claim that (2.6) cannot be an equality unless λ = 0 or λ = 1. Indeed, if (2.6) is
an equality for some 0 < λ < 1, then by setting γ := λ γ1 + (1− λ) γ2 we have

λ dW (µ, ν1)
2 + (1− λ)dW (µ, ν2)

2 = dW (µ, λ ν1 + (1− λ)ν2)
2

≤
∫
E×E

d(x, y)2 d γ(x, y)

= λ dW (µ, ν1)
2 + (1− λ)dW (µ, ν2)

2,

and thus γ is an optimal plan between µ and λ ν1 + (1 − λ)ν2. By assumptions, there exists a
measurable map T : E → E such that γ = (Id×T )#µ. Denote by graph(S) ⊂ E2 the graph of a
map S : E → E. Note that if S is a measurable map, then graph(S) = {(x, y) ∈ E2 | d(S(x), y) = 0}
is a Borel subset of E2. Since γ[graph(T )] = λ γ1[graph(T )]+(1−λ)γ2[graph(T )] = 1 and 0 < λ < 1,
we have γ1[graph(T )] = γ2[graph(T )] = 1. Hence, for i ∈ {1, 2}, µ({x ∈ E | Ti(x) = T (x)}) =
γi[graph(T ) ∩ graph(Ti)] = 1. It follows that both T1 and T2 coincide with T almost everywhere
with respect to µ and thus γ1 = γ2, which is a contradiction since ν1 6= ν2.

44



This shows that dW (µ, ·)2 is strictly convex on W2(E) for µ ∈ A. Since P(A) > 0, the map

ν ∈ W2(E) 7→
∫
W2(E)

dW (ν, µ)2 dP(µ)

is also strictly convex on W2(E) by the linearity and positivity of the above integral. It follows that
the Wasserstein barycenter of P asserted by Theorem 2.14 is unique.

Remark 2.16. Under the assumptions of Proposition 2.15, the optimal transport plan between µ ∈ A
and ν ∈ W2(M) is unique. Indeed, if we set ν1 = ν2 = ν, then (2.6) becomes an equality for any
λ ∈ [0, 1]. Hence, given any two optimal transport plans γ1 and γ2 between measures µ and ν, our
arguments on the measure γ := λ γ1 + (1− λ) γ2 imply that they must coincide.

There are many setups in which we can apply Proposition 2.15. We typically choose A as the
set of absolutely continuous measures with respect to some given reference measure. The following
lemma will be applied in Section 4.3.2, whose particular case, ensuring that A is a Borel set of
(W2(E), dW ), is now needed in this section.

Lemma 2.17. Let (E, d) be a metric space equipped with a σ-finite Borel measure µ on E. Assume
that µ is outer regular, i.e., for any Borel set N ∈ B(E),

µ(N) = inf{µ(O) | O open neighborhood of N }.

Denote by A the set of probability measures in W2(E) that are absolutely continuous with respect
to µ. For ε, δ > 0, define the set

Eε,δ := {ν ∈ W2(E) | ∀N ∈ B(E), µ(N) < δ =⇒ ν(N) ≤ ε} .

It is a closed set with respect to the weak convergence topology of W2(E), and we have

A =
⋂
k∈N

⋃
l∈N

E2−k,2−l .

In particular, if E is a proper space and µ is a locally finite Borel measure, i.e., µ gives finite (possibly
null) mass to some open neighborhood of every point in E, then with respect to the Wasserstein
metric topology, Eε,δ is a closed set and A is a Borel set.

Proof. Our proof is based on [58, Proposition 2.1, Remark 2.2] though we use different assumptions.
Suppose that νj ∈ Eε,δ converges weakly to ν ∈ W2(E). For any N ∈ B(E) such that µ(N) < δ,

there exists an open set O such that N ⊂ O and µ(O) < δ since µ is outer regular. By the
characterization of weak convergence of probability measures on metric spaces [17, Corollary 8.2.10],
we have

ν(N) ≤ ν(O) ≤ lim inf
j→∞

νj(O) ≤ ε

and thus Eε,δ is closed with respect to weak convergence topology of W2(E).
The inclusion A ⊃

⋂
k∈N

⋃
l∈N E2−k,2−l follows from the definition of a measure ν being absolutely

continuous with respect to µ: ∀N ∈ B(E), µ(N) = 0 =⇒ ν(N) = 0. We now prove the reverse
inclusion. Fix a measure ν ∈ A. Since µ is σ-finite, we can apply the Radon-Nikodym theorem to
write ν = f · µ. The reverse inclusion A ⊂

⋂
k∈N

⋃
l∈N E2−k,2−l follows from the absolute continuity

of Lebesgue integral [17, Theorem 2.5.7, Proposition 2.6.4].

45



Given a proper space E and a locally finite Borel measure µ on E, observe that µ gives finite
mass to compact sets, and every open subset of E is σ-compact. It follows that µ is outer regular
[98, Theorem 6 of §2.7] and also σ-finite. Since Wasserstein convergence implies weak convergence,
the set Eε,δ is closed with respect to the Wasserstein metric. It follows that A is a Borel set of
W2(E).

Remark 2.18. On a metric space, any finite Borel measure is outer regular, see [17, Definition 7.1.5,
Theorem 7.1.7] or [16, Theorem 1.1]. However, this is not true for σ-finite Borel measures. For
example, define the Borel measure µ on R such that for N ∈ B(R), µ counts the number of rational
points in N . This measure is σ-finite but not outer regular since µ never gives finite mass to open
sets. As for the assumption regarding the σ-compactness of open sets in the above cited theorem
[98, Theorem 6 of §2.7], for metric spaces it can be replaced by assuming that µ gives finite mass
to a sequence of open sets Oi, i ≥ 1 such that E = ∪i≥1Oi. We also mention that there exists a
σ-finite and locally finite but not outer regular Borel measure on a locally compact Hausdorff space
[19, problem 5 of Exercise §1, INT IV.119].

Thanks to Proposition 2.15 and Lemma 2.17, the Wasserstein barycenter of P is unique for
the following spaces, provided that P gives mass to the set of absolutely continuous measures with
respect to the corresponding canonical reference measure:

1. complete Riemannian manifolds, see Villani [105, Theorem 10.41] or Gigli [42, Theorem 7.4];

2. compact finite dimensional Alexandrov spaces, see Bertrand [13, Theorem 1.1];

3. for K ∈ R and N ≥ 1, non-branching CD(K,N) spaces, see Gigli [43, Theorem 3.3];

4. for K ∈ R and N ≥ 1, RCD*(K,N) spaces, see Gigli, Rajala and Sturm [44, Theorem 1.1];

5. for K ∈ R and N ≥ 1, essentially non-branching MCP(K,N) spaces, see Cavalletti and
Mondino [25, Theorem 1.1];

6. (2-)essentially non-branching spaces with qualitatively non-degenerate reference measures, see
Kell [56, Theorem 5.8].

The above spaces are listed in (nearly) ascending order of generality. For the metric measure
spaces, we assume that the metric space is proper and the reference measure is locally finite. The
references cited above demonstrate that the unique optimal transport plan (Remark 2.16) between
an absolutely continuous probability measure and a given probability measure is induced by a
measurable map, allowing us to apply Proposition 2.15.
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Chapter 3

Absolutely continuous barycenters
of finitely many measures

Given the established existence and uniqueness of Wasserstein barycenters (under mild assumptions)
on Riemannian manifolds (M,dg), we are now prepared to demonstrate the absolute continuity of
these barycenters with respect to the volume measure Vol. In this chapter, we turn our attention
to Wasserstein spaces W2(M) defined over Riemannian manifolds and aim to prove that the unique
Wasserstein barycenter of a finite collection of measures is absolutely continuous with respect to
Vol, provided that at least one measure in the collection possesses this property.

To achieve this, we adapt the proof of absolute continuity developed by Kim and Pass [58] for
the specific case of compact manifolds. Our adaptation will incorporate a geometric perspective and
will address both the case of finitely many measures with compact support and the more general
scenario where compactness assumptions are relaxed.

3.1 Lipschitz continuity of optimal transport maps
To better illustrate our approach towards the absolute continuity of Wasserstein barycenters of
finitely many measures, we recall the following result corresponding to the case of two measures.

Proposition 3.1 (Regularity of displacement interpolations, [105, Theorem 8.5, Theorem 8.7]).
Let (M,dg) be a complete Riemannian manifold. Let t ∈ [0, 1] 7→ µt ∈ W2(M) be a minimal
geodesic in the Wasserstein space W2(M) such that both µ0 and µ1 have compact support. For any
0 < λ < 1, µλ is the barycenter of (1− λ)δµ0 + λ δµ1 . The optimal transport map from µλ to µ0 is
Lipschitz continuous, and it follows that µλ is absolutely continuous provided that µ0 is absolutely
continuous.

In [105, Chapter 8], the Lipschitz continuity presented in Proposition 3.1 is demonstrated as
a consequence of Mather’s shortening lemma. Furthermore, the subsequent statement regarding
absolute continuity follows from the property that Lipschitz maps preserve sets of Lebesgue measure
zero. An alternative approach to establishing Lipschitz continuity is provided by Bernard and
Buffoni [12] through the Hamilton-Jacobi equation, a method extended to non-compact settings by
Fathi and Figalli [36]. For the specific case of absolutely continuous measures on Euclidean spaces,
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McCann [72, Proposition 1.3] presented a concise proof of Lipschitz continuity. Further relevant
references can be found in the bibliographical notes of Chapter 8 in Villani [105]. The objective of
this subsection is to generalize the result stated in Proposition 3.1.

We deduce the following Lipschitz continuity from the c-concave functions defined in Lemma 2.5,
which are related to barycenter selection maps and thus Wasserstein barycenters of the probability
measures λ1δµ1

+
∑n
i=2 λi δδxi

. Recall that a measurable barycenter selection map B : Mn → M

(Corollary 2.4) sends x = (x1, . . . , xn) ∈Mn to a barycenter of
∑n
i=1 λi δxi

. In the following results,
the constants λi, 1 ≤ i ≤ n for B are given in the context.

As a convention to simplify the notation, we denote by x′ = (x2, . . . , xn) ∈Mn−1 the last n− 1
components of x ∈Mn, and identify the pair (x1, x′) with x. Introduce the following two projection
maps,

p1 :M ×Mn−1 →M, p1(x1, x
′) = x1;

p2 :M ×Mn−1 →Mn−1, p2(x1, x
′) = x′.

Lemma 3.2 (Lipschitz continuous maps F = exp(−∇g1)). Let (M,dg) be a complete Riemannian
manifold. Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that∑n
i=1 λi = 1. Fix a non-empty compact subset X ⊂ M and a point x′ = (x2, . . . , xn) ∈ Mn−1.

Denote by Y the compact set of all barycenters of
∑n
i=1 λi δxi

when x1 runs through X. Define the
function g1 : y ∈ M 7→ −1/λ1

∑n
i=2 λi c(y, xi) (the function c is defined in (1.13)). It is smooth

in a neighborhood of Y and thus F := exp(−∇g1) : Y → M is a well-defined Lipschitz continuous
function. We have F (Y ) = X and the following characterization of F :

z ∈ Y and x1 = F (z) ⇐⇒ x1 ∈ X and z is a barycenter of
n∑
i=1

λi δxi . (3.1)

Given a measure µ1 ∈ W2(M) with support X and a measurable barycenter selection map B :Mn →
M , µP := B#(µ1 ⊗ δx2

⊗ · · · ⊗ δxn
) is a barycenter of P := λ1 δµ1

+
∑n
i=2 λi δδxi

and (Id, F )#µP is
an optimal transport plan between µP and µ1.
Proof. According to Lemma 2.6, g1 is smooth in a neighborhood of Y , which implies that F is
continuously differentiable on this neighborhood. Since g1 restricted to Y is a c-concave function
(Lemma 2.5) and ∇g1 exists on Y , by defining gc1 : x ∈ X 7→ miny∈Y {c(x, y)−g1(y)}, a well-known
property of c-concave functions proven by McCann [73, Lemma 7] shows that

z ∈ Y and x1 = exp(−∇g1)(z) =: F (z) ⇐⇒ (x1, z) ∈ X × Y and gc1(x1) + g1(z) = c(x1, z).

Note that though the cited lemma of McCann is proven for compact manifolds, the arguments of
its proof only depend on the existence of the gradient ∇g1 and the compactness of X and Y . For
x1 ∈ X, we have gc1(x1) = 1/λ1 infw∈M

∑n
i=1 λi c(w, xi)

2 (Lemma 2.5) and thus

(x1, z) ∈ X × Y and gc1(x1) + g1(z) = c(x1, z) ⇐⇒
n∑
i=1

λi dg(z, xi)
2 = inf

w∈M

n∑
i=1

λi dg(w, xi)
2,

which implies the characterization (3.1). F (Y ) = X follows from (3.1) and the definition of Y .
Since γ := µ1⊗δx2

⊗· · ·⊗δxn
is the only measure on Mn with marginals µ1, δx2

, . . . , δxn
in this or-

der, it is the (unique) multi-marginal optimal transport plan of its marginals. Proposition 2.12 shows
that µP = B#γ is a Wasserstein barycenter of P. Moreover, since p1(x1, x′) = x1 = F (B(x1, x

′))
for x1 ∈ X by (3.1), Proposition 2.12 shows that (B, p1)#γ = (B,F ◦ B)#γ = (Id, F )#µP is an
optimal transport plan between µP and µ1.

48



3.2 Divide-and-conquer via conditional measures
Lemma 3.2 implies that any barycenter selection map on X × {x′} is injective (note that this is
different from being unique). The following lemma by Kim and Pass [57, Lemma 3.5] generalizes
this injectivity, and it will help us to generalize Lemma 3.2.

Lemma 3.3. Let (M,dg) be a complete Riemannian manifold. Given an integer n ≥ 2, let
λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1 and let µi ∈ W2(M), 1 ≤ i ≤ n,

be n probability measures with compact support. If γ is a multi-marginal optimal transport plan
with marginals µ1, . . . , µn, then

x,y ∈ supp(γ), x 6= y =⇒ bary({x}) ∩ bary({y}) = ∅,

where bary({(x1, . . . , xn)}) is the set of barycenters of
∑n
i=1 λi δxi

.

To avoid being lengthy, we skip the proof of above lemma [57, Lemma 3.5], which is based on
c-cyclical monotonicity and Lemma 2.6. Though the proof in the given reference is for the case
when λ1 = · · · = λn = 1/n, there is no essential difficulty to apply it to the stated case [57, proof
of Theorem 6.1]. The following proposition constructs an optimal transport map pushing forward
µP := B#γ to µ1 when µi, 2 ≤ i ≤ n, are discrete measures and thus generalizes Lemma 3.2. The
optimal transport map may fail to be a Lipschitz map, but it is a disjoint union of Lipschitz maps
defined as follows. Given (at most) countably many disjoint subsets Yj ⊂ M, j ∈ J ⊂ N with
functions Fj : Yj → M , the disjoint union F of Fj , j ∈ J is the function defined on ∪j∈JFj such
that F |Yj

= Fj . We shall use conditional measures (Definition 1.7) to deduce further conclusions
from Fj ’s Lipschitz continuity.

Proposition 3.4. Let (M,dg) be an m-dimensional complete Riemannian manifold. Given an
integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1. Let

µ1 ∈ W2(M) be a probability measure with compact support and let µi ∈ W2(M), 2 ≤ i ≤ n, be n−1
discrete measures, i.e., probability measures supported in at most countably many points. Given
a multi-marginal optimal transport plan γ of µ1, . . . , µn in this order and a measurable barycenter
selection map B : Mn → M , the measure µP := B#γ is a barycenter of P :=

∑n
i=1 λi δµi

. The
measure µP is supported in a disjoint union of at most countably many compact sets, and on each
of them Lemma 3.2 defines a Lipschitz continuous map with a compact subset X ⊂M and a point
x′ ∈Mn−1 such that X × {x′} is contained in the support of γ. Denote by F the disjoint union of
these Lipschitz maps. (Id, F )#µP is an optimal transport plan between µP and µ1.

For positive real numbers δ, ε > 0, we define the set

Eε,δ := {µ ∈ W2(M) | ∀N ∈ B(M), Vol(N) < δ =⇒ µ(N) ≤ ε} .

If there is a common Lipschitz constant C of the Lipschitz maps, then µ1 ∈ Eε,δ =⇒ µP ∈ Eε,δ/Cm .

Proof. Proposition 2.12 shows that µP is a Wasserstein barycenter. Let us reveal more details of
γ. The measure π := p2#γ on Mn−1 is discrete since its marginals µ2, . . . , µn are so. Denote
by {x′j}j∈J the set of all atoms of π, where J ⊂ N is an at most countable set (Lemma 1.4).
For each j ∈ J , we introduce the following definitions. Define πj := π({x′j}) > 0 and define
Xj := p1(supp γ ∩ (M × {x′j})). Applying Lemma 3.2 to Xj and x′j ∈Mn−1, we obtain a compact
set Yj and a Lipschitz continuous map Fj : Yj → M such that Fj(Yj) = Xj . Since π is supported
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in the union
⋃
j∈J{xj}, γ is supported in the union

⋃
j∈J Xj × {x′j}. As in Lemma 3.3, we denote

by bary({(x1, . . . , xn)}) the set of barycenters of
∑n
l=1 λl δxl

.
We claim that Yi ∩ Yk = ∅ for two different indices i, k ∈ J . Indeed, if z ∈ Yi ∩ Yk for i, k ∈ J ,

then by the characterization of Fi, Fk in Lemma 3.2, z ∈ bary({(Fi(z), x′i)}) ∩ bary({(Fk(z), x′k)}).
Since

⋃
j∈J Xj × {x′j} ⊂ supp γ and Fj(Yj) = Xj , Lemma 3.3 forces that x′i = x′k and thus i = k,

which implies our claim. Define F as the disjoint union of Fj , j ∈ J , i.e., F |Yj
= Fj . Since

p1(x, x
′
j) = x = F (B(x, x′j)) for x ∈ Xj and γ is supported in the union

⋃
j∈J Xj × {x′j}, it follows

from Proposition 2.12 that (B, p1)#γ = (B,F ◦ B)#γ = (Id, F )#µP is an optimal transport plan
between µP and µ1. Since the union

⋃
j∈J Yj is the domain of F and F#µP = µ1, µP is supported

in a union of at most countably many compact sets that satisfies our description.
We claim that µ1(Xi ∩ Xk) = 0 for two different indices i, k ∈ J . Consider the conditional

measure such that d γ(x) = γ(d x, x′)dπ(x′). In accordance with the notation in Lemma 3.2, for
each j ∈ J , denote by (y2j , . . . , y

n
j ) =: x′j ∈Mn−1 the re-writing of x′j in components and introduce

νj :=
1

πj
µ1|Xj , Qj := λ1 δνj +

n∑
l=2

λl δδ
yl
j

, νQj := B#γ(·, x′j).

Lemma 3.2 implies that Fj#νQj
= νj and νQj

is a barycenter of Qj . For R ∈ B(Mn) and j ∈ J ,
thanks to the property πj = π({x′j}) > 0, we have γ[R∩ (M ×{x′j})] = γ(R, x′j)πj by Definition 1.7,
which implies that γ(·, x′j) is supported in Xj ×{x′j}. Since γ is supported in the union

⋃
j∈J Xj ×

{x′j}, we obtain the following equality by choosing R of the form A×Mn−1 with A ∈ B(M),

γ(A×Mn−1, x′j) =
1

πj
γ[A× {x′j}] =

1

πj
γ[(A ∩Xj)×Mn−1] =

1

πj
µ1(A ∩Xj),

which implies that the first marginal of γ(·, x′j) is νj as A is arbitrarily chosen. Furthermore, for a
measurable map f :Mn →M ,

∀N ∈ B(M), [f#γ](N) = γ(f−1(N)) =
∑
j∈J

γ(f−1(N), x′j)πj =
∑
j∈J

[f#γ(·, x′j)](N)πj .

By setting f = p1 and f = B, we obtain

µ1 =
∑
j∈J

πj νj and µP =
∑
j∈J

πj νQj
. (3.2)

Hence, given i ∈ J , µ1(Xi) =
∑
j∈J µ1|Xj

(Xi) and thus µ1(Xi ∩Xk) = 0 for k ∈ J different from i.
We now assume the existence of a common Lipschitz constant C of all Fj , j ∈ J . As the images of

a Borel set under the Lipschitz maps Fj are not necessarily Borel sets, we state the regularity of the
volume measure as follows (c.f. [105, Proof of Theorem 8.7]) to simplify the subsequent arguments.
For any Borel set N ∈ B(M), there exist Borel sets Wj , j ∈ J such that Fj(N ∩Yj) ⊂Wj ⊂ Xj and
Vol(Wj) ≤ Cm Vol(N ∩ Yj) [100, Proposition 12.6, Proposition 12.12, Remark after Proposition
12.12].

For j ∈ J , with the re-writing x′j = (y2j , y
3
j , . . . , y

n
j ) ∈ Mn−1, γ(·, x′j) is equal to the product

measure νj ⊗ δy2j ⊗ · · · ⊗ δynj . It follows from Lemma 3.2 that

Fj#νQj = νj =
1

πj
µ1|Xj . (3.3)
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As Fj(N ∩ Yj) ⊂ Wj , we have νQj (N ∩ Yj) ≤ νQj (F
−1
j (Wj)) = νj(Wj). Therefore, according to

(3.2) and (3.3),

µP(N) =
∑
j∈J

πj νQj
(N ∩ Yj) ≤

∑
j∈J

πj
1

πj
µ1|Xj

(Wj) =
∑
j∈J

µ1(Wj) = µ1(
⋃
j∈J

Wj), (3.4)

where we used Wj ⊂ Xj and µ1(Xi ∩ Xk) = 0 if i 6= k ∈ J . Since Yj , j ∈ J are disjoint,
Vol(

⋃
j∈JWj) ≤ Cm

∑
j∈J Vol(N ∩ Yj) ≤ Cm Vol(N). Assuming that µ1 ∈ Eε,δ, then for any

N ∈ B(M) with Vol(N) < δ/Cm, we have Vol(
⋃
j∈JWj) < δ and thus µP(N) ≤ µ1(

⋃
j∈JWj) ≤ ε

by (3.4). Therefore, the implication µ1 ∈ Eε,δ =⇒ µP ∈ Eε,δ/Cm is proven, which concludes our
proof.

Remark 3.5. Figuratively speaking, the sets Xj , j ∈ J create a tiling of the support of µ1 and the
points x′j , j ∈ J pull them apart (via barycenter selection maps) into disjoint sets Yj , j ∈ J , which
contain different pieces of the support of µP separately.

3.3 Absolute continuity implied by compactness
Consider the probability measure P =

∑n
i=1 λi δµi with positive real numbers λi and compactly

supported measures µi ∈ W2(M). We can approximate each µi for 2 ≤ i ≤ n with discrete measures
to apply Proposition 3.4. If µ1 is absolutely continuous, then P has a unique barycenter µP, which is
approximated by the barycenters of the approximating sequence (Theorem 2.13). Recalling that the
sets Eε,δ (defined in Lemma 2.17) provide a full characterization of absolutely continuous measures
and are closed under weak convergence, the remaining task to prove the absolute continuity of µP
is to establish the existence of a common Lipschitz constant C for the optimal transport map F
(defined as in Lemma 3.2) across all elements of the approximating sequence. Proposition 3.4 will
then allow us to conclude the result. It is important to note that the domain Y of the map F changes
along the approximating sequence, thus the existence of the constant C is not a straightforward
consequence of compactness. More precisely, our goal is to prove:

Theorem 3.6 (Absolute continuity of the barycenter of
∑n
i=1 λi δµi

). Let (M,dg) be a complete
Riemannian manifold. Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such
that

∑n
i=1 λi = 1 and let µi ∈ W2(M), 1 ≤ i ≤ n, be n probability measures with compact support.

If µ1 is absolutely continuous, then the unique barycenter µP of P :=
∑n
i=1 λi δµi

is absolutely
continuous with compact support.

Proof. The uniqueness of µP and the compactness of supp(µP) follow from Proposition 2.15, Propo-
sition 2.12, and Corollary 2.4. We are left to show the absolute continuity of µP. To prove
it, we approximate each µi for 2 ≤ i ≤ n in (W2(M), dW ) by a sequence of finitely supported
probability measures {µji}j≥1 whose supports are contained in the compact support of µi. Then
Pj := λ1δµ1 +

∑n
i=2 λi δµj

i
converges to P in W2(W2(M)). By the consistency of Wasserstein

barycenters (Theorem 2.13), the unique barycenter µPj of Pj converges in (W2(M), dW ) to the
unique barycenter µP of P.

Denote by γj a multi-marginal optimal transport plan of marginal measures µ1, µ
j
2, . . . , µ

j
n in this

order. Fix an index j, a non-empty compact subset X ⊂M and a point x′ := (x2, . . . , xn) ∈Mn−1

such that X ×{x′} ⊂ supp γj . Applying Lemma 3.2 to X and x′, we obtain a Lipschitz continuous
function F = exp(−∇g1) on a compact set Y .
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We claim that there exists a Lipschitz constant C of F on Y independent of j,X and x′. Recall
that g1(y) := −1/λ1

∑n
i=2 λi c(y, xi) is smooth in a neighborhood of Y . Given z ∈ Y , since the

point z is a barycenter of
∑n
i=1 λi δxi

(Lemma 3.2) with x1 := F (z), it is a critical point of the
following map

w ∈M 7→
n∑
i=1

λi dg(w, xi)
2, (3.5)

which implies
∑n
i=1 λi∇d2xi

(z) = 0 thanks to Lemma 2.6. Hence, by definition of g1, we get
∇d2x1

/2(z) = ∇g1(z). Moreover, Lemma 2.6 enables us to apply Lemma 1.43 to compute the
differential of F at z,

DzF = Dz exp(−∇g1) = [D−∇g1(z) expz] ◦ (Hessz d2x1
/2− Hessz g1)

= [D−∇g1(z) expz] ◦
1

2λ1

n∑
i=1

λi Hessz d2xi
. (3.6)

In (3.6),
∑n
i=1 λi Hessz d2xi

is positive semi-definite since z reaches the global minimum of the
map (3.5). We now bound (3.6) via compactness as follows. Consider the compact set A :=
supp(µ1)×· · ·× supp(µn) ⊂Mn. Corollary 2.4 implies that the set of all barycenters of

∑n
i=1 λi δyi

for (y1, . . . , yn) running through the set A is compact. Moreover, by our construction of Pj , the
union of the supports of µP, µi, µPj

and µji for 1 ≤ i ≤ n and j ≥ 1 is compact. Hence, independent
of z, j and x′, D−∇g1(z) expz is uniformly bounded (in norm) and

∑n
i=1 λi Hessz d2xi

is uniformly
bounded from above by the Rauch comparison theorem for Hessians of distance functions, which
is applicable here and gives a constant upper bound thanks to the compactness, see [30, Lemma
3.12 and Corollary 3.13] or [80, Theorem 6.4.3]. This shows the existence of the claimed Lipschitz
constant C. We remark that the absolute continuity of µ1 is not needed for the existence of C.

Applying Proposition 3.4 to measures µ1, µ
j
2, . . . , µ

j
n, we have for ε, δ > 0, µ1 ∈ Eε,δ =⇒ µPj

∈
Eε,δ/Cm since µPj

is the unique barycenter of Pj . As µPj
converges to µP weakly, Lemma 2.17 shows

that all measures µPj
for j ≥ 1 and µP are absolutely continuous since µ1 is so.

3.4 Absolute continuity without compactness
Theorem 3.6 can be further generalized to the case where the measures do not have compact support.
This extension is achieved by decomposing the support of a multi-marginal optimal transport plan
γ into a countable union of compact sets. Such a decomposition is feasible because complete
Riemannian manifolds are proper metric spaces.

Theorem 3.7 (Absolute continuity of Wasserstein barycenter of finitely many measures). Let
(M,dg) be a complete Riemannian manifold. Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n
positive real numbers such that

∑n
i=1 λi = 1. Fix n probability measures µi ∈ W2(M), 1 ≤ i ≤ n

such that µ1 is absolutely continuous. The unique barycenter µP of P :=
∑n
i=1 λi δµi is absolutely

continuous.

Proof. According to the construction of Wasserstein barycenters in Proposition 2.12 and the unique-
ness of µP, we can write µP = B#γ with a measurable barycenter selection map B and a multi-
marginal optimal transport plan γ of marginal measures µ1, µ2, . . . , µn in this order.

Since Mn is a manifold and γ is a probability measure, there exist at most countably many
compact sets Kj ⊂ Mn, j ∈ J ⊂ N such that kj := γ(Kj) > 0,

∑
j∈J kj = 1 and γ(Ki ∩Kj) = 0
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for indices i 6= j. To justify the existence of these sets, we choose Kj as a closed metric annulus of
Mn with a fixed center and two finite radii. To decide the radii, we require that Ki ∩Kj is either
empty or the boundary set of a metric ball. For our choice of the radii, it suffices to show that γ
can only give non-zero mass to at most countably many boundary sets of metric balls. Recall that
uncountable sum of positive real numbers must diverge (Lemma 1.4), so the previously required
argument follows from the fact that γ is a probability measure.

For j ∈ J , we define the probability measure γj := 1
kj
γ|Kj to be the normalized restriction of γ

to the set Kj . By assumptions, for N ∈ B(M),

µP(N) = γ(B−1(N)) =
∑
j∈J

kj γj(B
−1(N)) =

∑
j∈J

kj [B#γj ](N). (3.7)

For j ∈ J , denote by νj1 , . . . , ν
j
n ∈ W2(M) the n marginals of γj in this order, and define Qj :=∑n

i=1 λi δνj
i
, µQj

:= B#γj . We prove by contradiction that γj must be a multi-marginal optimal
transport plan of its marginals (c.f. [105, Theorem 4.6]). Indeed, if this is not true and γ′j is a multi-
marginal optimal transport plan of the marginals of γj , then γ no longer satisfies our assumption
of being optimal, since its cost (i.e., the integral (2.5)) becomes strictly bigger than the cost of
the measure γ′ := γ|Mn\Kj

+ kj γ
′
j . It follows from Proposition 2.12 that µQj

= B#γj is the
unique Wasserstein barycenter of Qj . Since γj has compact support and the first marginal µ1 of
γ is absolutely continuous, all marginals νj1 , . . . , νjn have compact support and the first one νj1 is
absolutely continuous. Hence, by Theorem 3.6, the barycenter µQj of Qj is absolutely continuous.
According to (3.7), if Vol(N) = 0, then µP(N) =

∑
j∈J kj µQj (N) = 0. Therefore, the probability

measure µP is absolutely continuous.

Remark 3.8. The proof of Theorem 3.6 involves three steps:

1. Lemma 3.2 handles the case where µi (2 ≤ i ≤ n) are Dirac measures, leveraging the product
structure of γ = µ1 ⊗ · · · ⊗ µn.

2. Proposition 3.4 establishes an estimate based on the existence of a uniform Lipschitz constant
for the case where µi (2 ≤ i ≤ n) are discrete measures, building upon the previous case.

3. Compactness is used to obtain a uniform Lipschitz constant for approximation sequences of
discrete measures converging to the given compactly supported measures µi (2 ≤ i ≤ n).

To show absolute continuity for the discrete marginal case (step 2) alone, measure-theoretic argu-
ments similar to the proof of Theorem 3.7 suffice, employing a “divide-and-conquer” strategy. As
seen in Proposition 3.4, this corresponds to the use of conditional measures. However, this corre-
spondence might be subtle, as Proposition 3.4 primarily prepares Lipschitz constant arguments for
Theorem 3.6 to handle uncountable supports, which goes beyond the scope of the measure-theoretic
approach.
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Chapter 4

Absolute continuity via lower Ricci
curvature bounds

In the last chapter, we have seen that for P :=
∑n
i=1 λi δµi

with µ1 being absolutely continuous,
Kim and Pass’ proof of the absolute continuity of the (unique) barycenter µP of P remains valid
for non-compact manifolds M (Theorem 3.6). For a general measure P giving mass to absolutely
continuous measures, the strategy is to approximate P with finitely supported measures Pj whose
barycenters µPj

are already shown to be absolutely continuous. Thanks to the consistency of
Wasserstein barycenters (Theorem 2.13), µPj

converges to µP weakly. However, this is not sufficient
to ensure that µP is also absolutely continuous. To overcome this difficulty, Kim and Pass [58]
imposed a uniform upper density bound on µPj

’s, which forced them to include the assumption
that P gives mass to a set of absolutely continuous probability measures whose density functions
are uniformly bounded.

In this chapter, instead of following their quantitative approach, we seek for proper integral
functionals G on W2(M) that admit finite values only for absolutely continuous measures. The
continuity of these functionals has been studied in various sources, including [24], [105, Theorem
29.20], [90, Chapter 7], and [5, Chapter 15]. We summarize their assumptions and conclusions
in Lemma 4.6. Additionally, we aim to control the value of G at µPj by those at the support
of Pj , which enables us to use the convergence Pj → P effectively. Classic references, such as
Villani’s monograph [105], focus on the λ-convexity of G, a widely studied property that would
satisfy our requirements if we tolerate some independent constants in its inequality expression
of convexity (Proposition 4.3). Functionals defined in this way generalize the entropy functional
f · Vol 7→

∫
M
f log f d Vol, which is an important example in the study of synthetic treatment of

Ricci curvature lower bounds developed in [69, 96, 97]. Proposition 4.3 reveals how Ricci curvature
affects the properties of Wasserstein barycenters and suggests possible extensions of our current
work to general metric measures spaces.

The methodology previously described leads us to Proposition 4.9 on the absolute continuity of
Wasserstein barycenters, where an extra assumption on P is needed. With the help of a generalized
de la Vallée Poussin criterion (Theorem 4.13), this assumption can be further simplified: we ask
that P gives mass to a compact subset in some weak topology of absolutely continuous measures.
Although this topology is barely mentioned in the literature of optimal transport, it generates
the same Borel sets as the topology induced by the Wasserstein metric according to the theory of
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Souslin space. This helps us to state our main result with a natural assumption on P:
Theorem. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a probability measure P ∈ W2(W2(M)) gives mass to the set of absolutely continuous probability
measures on M , then its unique barycenter is absolutely continuous.

4.1 Hessian equality of Wasserstein barycenters
In this section, we prove the Hessian equality for Wasserstein barycenters of finitely many measures
(Theorem 4.1). A similar property is named as the 2nd order balance (inequality) by Kim and
Pass [58, Theorem 4.4], but being an equality instead of an inequality is crucial for our proof of
Proposition 4.3. Let us take a special case to illustrate this equality. Consider the reduced case
in Lemma 3.2. Namely, take n (≥ 2) positive numbers λi > 0 such that

∑n
i=1 λi = 1 and denote

by µP the barycenter of P :=
∑n
i=1 λi δµi , where µ1 is absolutely continuous with compact support

and µi = δxi
, 2 ≤ i ≤ n, are Dirac measures. Let us set φ1(z) := g1(z) := −1/λ1

∑n
i=2 λi c(z, xi)

and φi(z) := c(z, xi), 2 ≤ i ≤ n. Thanks to Lemma 3.2 and Lemma 2.6, if z is in the support of
µP, then z is not in the cut locus of any xi, which implies exp(−∇φi)#µP = µi for 2 ≤ i ≤ n.
Besides, by definition of the φi’s,

∑n
i=1 λi φi ≡ 0; therefore

∑n
i=1 λi∇φi(z) = 0. Consequently, we

get
∑n
i=1 λi Hessz φi = 0, which is the Hessian equality we are referring to.

The Hessian equality (4.1) to prove is a second-order relation. We first demonstrate a first-
order counterpart of this equality using the conclusion of Proposition 2.12 that relates barycenters
in manifolds to Wasserstein barycenters.
Theorem 4.1 (Hessian equality for Wasserstein barycenters). Let (M,dg) be a complete Rieman-
nian manifold. Given an integer n ≥ 2, let λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that∑n
i=1 λi = 1 and let µi ∈ W2(M), 1 ≤ i ≤ n, be n probability measures with compact support. We

assume that µ1 is absolutely continuous. The unique barycenter µP of P :=
∑n
i=1 λi δµi is absolutely

continuous with compact support. For 1 ≤ i ≤ n, let Fi = exp(−∇φi) be the optimal transport map
pushing µP forward to µi, where φi is a c-concave function given by Theorem 1.27.

For µP-almost every x ∈M , x is a barycenter of
∑n
i=1 λi δFi(x), and we have the Hessian equality

n∑
i=1

λi Hessx φi = 0. (4.1)

Proof. By Theorem 3.6, µP is absolutely continuous with compact support. We now apply Proposi-
tion 2.12 to P. Since µP is the unique barycenter of P, it coincides with the barycenter constructed
in Proposition 2.12. Consider the identity map Id : (M,B(M), µP) → M as a random variable
taking values in M . It has law µP, and the random variable Fi = Fi ◦ Id has law µi for 1 ≤ i ≤ n.
Proposition 2.12 implies that for µP-almost every x ∈M , x is a barycenter of

∑n
i=1 λi δFi(x).

Let Ω be a Borel subset of M with µP(Ω) = 1 such that for x ∈ Ω, ∇φi(x) exists for 1 ≤ i ≤ n
and x is a barycenter of

∑n
i=1 λi δFi(x). Fix a point x ∈ Ω. By definition, x reaches the minimum

of the function

h : w ∈M 7→ dW (δw,

n∑
i=1

λi δFi(x))
2 =

n∑
i=1

λi dg(w,Fi(x))
2.

By Lemma 2.6, the fixed point x is out of the cut locus of any point Fi(x) for 1 ≤ i ≤ n. We can
thus differentiate h at w = x and get ∇h|w=x = 0. Since ∇φi(x) = 1

2∇d
2
Fi(x)

|w=x holds as both
gradients exist [30, Lemma 3.3], it follows that

∑n
i=1 λi∇φi(x) =

1
2∇h|w=x = 0.
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Define f :=
∑n
i=1 λi φi on a neighborhood of Ω that is a common domain for φi, 1 ≤ i ≤ n. The

function f is locally semi-concave as each φi is so, and for x ∈ Ω, ∇f(x) =
∑n
i=1 λi∇φi(x) = 0 ∈

TxM by the previous arguments. Let Ω1 ⊂ Ω be the set where the (approximate) Hessians of f
and φi, 1 ≤ i ≤ n, all exist. Let Ω2 be the set of density points of Ω. We have Vol(Ω \ Ω1) = 0 by
Proposition 1.23, and Vol(Ω \ Ω2) = 0 by [35, Theorem 1.35].

For x ∈ Ω1, using the linearity of the Hessian operator, we get Hessx f =
∑n
i=1 λi Hessx φi by

(1.9). Besides, noting that ∇f is constant on Ω, we infer from the last statement of Lemma 1.16
that for x ∈ Ω2∩Ω, Hessx f = 0. It follows that for x ∈ Ω1∩Ω2,

∑n
i=1 λi Hessx φi = 0. This proves

the theorem since µP(Ω1 ∩ Ω2) = 1 thanks to the absolute continuity of µP.

4.2 Displacement functionals for Wasserstein barycenters
Recall that the notion of Hessian plays a central role in differentiating optimal transport maps
(Proposition 1.44). There is also the following widely used connection between Hessx φ and Jacobi
equations involving exp(−∇φ), which is demonstrated in various works including Sturm [95], Lott
and Villani [69, §7], Cordero-Erausquin et al. [31] and Villani [105, Chapter 14]. The function J(t)
defined below is actually Dx exp(−∇t φ) using (1.29). By convention, for a function f with variable
t ∈ R, we denote by ḟ its derivative with respect to t.

Proposition 4.2. Let (M,dg) be an m-dimensional complete Riemannian manifold and let φ be
a c-concave function defined on X ⊂ M with X a bounded open set. Fix a point x ∈ X such that
Hessx φ (Proposition 1.23) exists. Then t ∈ [0, 1] 7→ γ(t) = exp(−t∇φ)(x) is a minimal geodesic.
Define

J : t ∈ [0, 1] 7→ [D−t∇φ(x) expx] ◦ (Hessx d2γ(t)/2− tHessx φ).

Denote by ∆φ(x) the trace of Hessx φ and by det J(t), 0 ≤ t ≤ 1 the determinant of J(t) calculated
in coordinates using orthonormal bases of TxM and Tγ(t)M . If −K ∈ R is a lower Ricci curvature
bound of M along γ and det J > 0, then ` := − log det J defined on [0, 1] satisfies

῭≥ ˙̀2/m−K‖∇φ(x)‖2

with `(0) = 0 and ˙̀(0) = ∆φ(x). In particular,

l ≥ ∆φ(x)−K‖∇φ(x)‖2/2,

where we define l := `(1) = − log det J(1).

Proof. Since Hessx φ exists, γ(1) is not in the cut-locus of x [30, Proposition 4.1] and thus γ is a
minimal geodesic. Let {e1, . . . , em} ⊂ TxM be an orthonormal basis. Fix an index 1 ≤ i ≤ m. Fix
δ > 0 such that the curve t ∈ [0, 1] 7→ expx(t δei) is a minimal geodesic. For s ∈ (−δ, δ), define
ys := expx s ei and consider the following family of geodesics (with parameter s)

α : [0, 1]× (−δ, δ) →M

(t, s) 7→ expys {−tΠx→ys [∇φ(x) + sHessx φ(ei)]} ,

where Πx→ys : TxM → TysM (c.f. Lemma 1.43) is the parallel transport along the minimal geodesic
t ∈ [0, 1] 7→ expx(t δei). Note that the variation field ∂sα(t, 0) of α satisfies the Jacobi equation
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along γ with initial condition ∂2t,sα(0, 0) = ei and ∂3t,t,sα(0, 0) = −Hessx φ(ei) [66, Proposition
10.4].

We now compute the Jacobi field ∂sα(t, 0). If ∇φ exists at ys, then the infinitesimal character-
ization of Hessx φ [30, Definition 3.9] implies,

∇φ(ys) = Πx→ys [∇φ(x) + sHessx φ(ei) + o(s)] as s→ 0, (4.2)

which is a non-smooth version of the relation (1.26) between Hessian and parallel transport. Fix
a t ∈ [0, 1] and a sequence of real numbers sj → 0 with |sj | < δ such that ∇φ exists at wj :=
expx(sjei). By definition of α and (4.2), we have exp(−t∇φ)(wj) = α(t, sj) + o(sj) as j → ∞.
Hence, using the normal coordinates around exp(−t∇φ)(x), we can compute ∂sα(t, 0) as follows,

∂sα(t, 0) = lim
j→∞

exp−1
exp(−t∇φ)(x)[exp(−t∇φ)(wj)]

sj − 0
= Dx exp(−∇t φ) · ei = J(t) · ei,

where in the second equality we used the fact that t φ is a c-concave function [30, Lemma 5.1] and
the infinitesimal justification [30, (b) of Proposition 4.1] of differentiating exp(−∇t φ).

Since ∂tα(t, 0) = γ̇(t), we obtain the following Jacobi equation derived from α,

J̈i(t) +R(Ji(t), γ̇(t)) · γ̇(t) = 0, Ji(0) = ei, J̇i(0) = −Hessx φ(ei),

where Ji(t) := J(t) · ei and R is the Riemannian curvature tensor on M .
Therefore, J satisfies a matrix form of Jacobi equation to which we can apply differential equa-

tion comparison theorems, and then conclude our proposition. The details are given in many
references such as Villani [105, Theorem 14.8].

The following displacement functionals f d Vol ∈ W2(M) 7→
∫
G(f)d Vol are inspired by the

entropy functional, where G(x) := x logx. To uniformly bound (from above) their values of the
approximating sequence of barycenter measures to which the consistency of Wasserstein barycenters
is applied, we add the assumption of bounded derivatives. Examples of G can be constructed
according to Theorem 4.13.

Proposition 4.3 (Displacement functionals). Let (M,dg) be an m-dimensional complete Rieman-
nian manifold with a lower Ricci curvature bound −K (K ≥ 0). Given an integer n ≥ 2, let
λi > 0, 1 ≤ i ≤ n, be n positive real numbers such that

∑n
i=1 λi = 1 and let µi ∈ W2(M), 1 ≤ i ≤ n,

be n probability measures with compact support. Assume that there is an integer 1 ≤ k ≤ n such
that for any index 1 ≤ i ≤ k, µi is absolutely continuous with density function gi. Denote by µP
the unique Wasserstein barycenter of P :=

∑n
i=1 λi δµi

∈ (W2(W2(M)), dW), which is absolutely
continuous, and we denote by f its density function.

Let G be a function on [0,∞) with G(0) = 0 such that the function H : x ∈ R 7→ G(ex) e−x is
continuously differentiable with non-negative derivative bounded above by some constant LH > 0.
The following inequality holds,∫

M

G(f)d Vol ≤
k∑
i=1

λi
Λ

∫
M

G(gi)d Vol+LHK
2Λ

dW(P, δµP)
2 +

LH
2Λ

(m2 + 2m), (4.3)

where we define the constant Λ :=
∑k
i=1 λi.
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Remark 4.4. The following example helps to understand (4.3). Take P = λ δµ1 + (1 − λ)δµ2 with
0 < λ < 1 and absolutely continuous measures µ1, µ2 ∈ W2(M). Set G(x) := x logx. Since
H(x) = x, we choose LH = 1. Define Ent(f · Vol) :=

∫
M
G(f)d Vol. The inequality (4.3) becomes

Ent(µP) ≤ λEnt(µ1) + (1− λ)Ent(µ2) +
K

2
λ(1− λ)dW (µ1, µ2)

2 +
m2

2
+m,

which has exactly one additional term LH(m2 +2m)/(2Λ) compared to the λ-convexity expression
of Ent used to define lower Ricci curvature bound −K for metric measure spaces in [96, §4,2] and
[69, Definition 0.7].

Moreover, LH(m2 + 2m)/(2Λ) is also the only additional term when we compare inequality
(4.3) with the Wasserstein Jensen’s inequality proven by Kim and Pass [58, Theorem 7.11], which
corresponds to the case k = n. However, our inequality (4.3) for the case k < n is crucial to the
proof of our main result in the next section.

Proof of Proposition 4.3. For 1 ≤ i ≤ n, let Fi := exp(−∇φi) be the optimal transport map from
µP to µi with φi a c-concave function given by Theorem 1.27. According to Theorem 4.1 and
Proposition 1.45, there exists a Borel set Ω ⊂ M with µP(Ω) = 1 such that

∑n
i=1 λi Hessx φi = 0

for x ∈ Ω, Jac exp(−t∇φi) > 0 on Ω for t ∈ [0, 1] and 1 ≤ i ≤ k, and∫
M

G (gi)d Vol =
∫
Ni

G

(
f

JacFi

)
JacFi d Vol, 1 ≤ i ≤ k, (4.4)

where Ni ⊂ Ω for 1 ≤ i ≤ k are Borel sets such that µP(Ni) = 1 and f = gi(Fi) JacFi > 0 on Ni.
Hence, log f is well-defined on ∪ki=1Ni. Define li(x) := − log JacFi(x) on Ω. It follows from (4.4)
that ∫

M

G(gi)d Vol =
∫
Ni

H(log f + li)dµP, 1 ≤ i ≤ k. (4.5)

Applying Proposition 4.2 to φi for 1 ≤ i ≤ k, we have on Ω,

li ≥ ∆φi −K‖∇φi‖2/2, 1 ≤ i ≤ k. (4.6)

For x ∈ Ω and 1 ≤ i ≤ n, since Hessx d2Fi(x)
/2 − Hessx φi is positive semi-definite (Propo-

sition 1.44), we can also bound ∆φi(x) from above using the upper bound of the Laplacian of
distance functions, as observed by Kim and Pass [58, Lemmma 2.7]:

∆φi(x) ≤ ∆d2Fi(x)
/2 ≤ m

√
Kdg(x, Fi(x))

tanh(
√
Kdg(x, Fi(x)))

≤ m(1 +
√
Kdg(x, Fi(x))) ≤ m+m2/2 +K ‖∇φi(x)‖2/2, (4.7)

where we used the general inequality α/ tanhα ≤ 1+α for α ≥ 0 1, applied the inequality of arith-
metic and geometric means to

√
K dg(x, Fi(x))2 ·

√
m2, and employed the equality dg(x, Fi(x)) =

1Since limα↓0
α

tanh α
= 1, it suffices to show that the function f(α) := sinhα+α sinhα−α coshα is non-negative

for α ≥ 0. As f(0) = 0 and f ′(α) = sinhα + α(coshα − sinhα) = sinhα + α e−α, we have f ′(α) ≥ 0 and thus
f(α) ≥ f(0) = 0.
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‖∇φi(x)‖ for x ∈ Ω. With our assumptions on H, (4.6) and (4.7) imply that for 1 ≤ i ≤ k, on the
set ∪ki=1Ni (where log f is well-defined),

H(log f + li)−H(log f) = H ′(ξ) li ≥ H ′(ξ)[∆φi −K‖∇φi‖2/2]
≥ H ′(ξ)[∆φi −K‖∇φi‖2/2−m−m2/2]

≥ LH(∆φi −K‖∇φi‖2/2)− LH(m+m2/2), (4.8)

where we applied the mean value theorem to H that gave the real number ξ between log f + li and
log f . Sum up k inequalities as (4.8) with coefficients λi/Λ on the set ∪ki=1Ni,

H(log f) ≤
k∑
i=1

λi
Λ
H(log f + li)−

LH
Λ

k∑
i=1

λi(∆φi −K‖∇φi‖2/2) + LH(m+m2/2)

=

k∑
i=1

λi
Λ
H(log f + li) +

LH
Λ

n∑
i>k

λi∆φi +
LHK

2Λ

k∑
i=1

λi ‖∇φi‖2 + LH(m+m2/2)

≤
k∑
i=1

λi
Λ
H(log f + li) +

LHK

2Λ

n∑
i=1

λi ‖∇φi‖2 +
LH
2Λ

(m2 + 2m), (4.9)

where we used
∑n
i=1 λi∆φi = 0 derived from the Hessian equality for the first equality and used

(4.7) for the last inequality. Finally, (4.3) follows from (4.5) after integrating (4.9) over N1∩ . . .∩Nk
against µP since µP(Ni) = 1 for 1 ≤ i ≤ k and dW (µP, µi)

2 =
∫
M

‖∇φi‖2 dµP for 1 ≤ i ≤ n.

4.3 Proof of absolute continuity
In this section, we prove our main result of this chapter, i.e., the following theorem.

Theorem 4.5. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a probability measure P ∈ W2(W2(M)) gives mass to the set of absolutely continuous probability
measures on M , then its unique Wasserstein barycenter is absolutely continuous.

New auxiliary results in this section no longer require Riemannian structure, so we usually
consider a Polish space equipped with a σ-finite Borel measure.

4.3.1 Preserving absolute continuity along approximating sequences
We first deduce an intermediate result by applying the consistency of Wasserstein barycenters to
the displacement functionals introduced in Proposition 4.3.

The following lemma, taken from Santambrogio [90, Proposition 7.7, Remak 7.8], originates from
Buttazzo and Freddi [24, Theorem 2.2], which was slightly generalized later in [6, Theorem 2.34].
One can find another slightly generalized version by Ambrosio et al. [5, Theorem 15.8, Theorem
15.9] with a proof for the case of Euclidean spaces.

Lemma 4.6. Let E be a Polish space equipped with a σ-finite Borel measure µ. Let G be a function
on [0,∞) such that

1. G(x) ≥ 0 with G(0) = 0;
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2. G is continuous and convex;

3. lim
x→∞

G(x)/x = ∞.

With respect to the reference measure µ, if there is a sequence of absolutely continuous probability
measures νi = fi dµ, i ≥ 1 converging weakly to a probability measure ν such that lim inf

i→∞

∫
E

G(fi)dµ

is finite, then ν is also absolutely continuous and∫
E

G(f)dµ ≤ lim inf
i→∞

∫
E

G(fi)dµ <∞, (4.10)

where f is the density of ν.

Since convergence in Wasserstein metric implies weak convergence (Proposition 1.25), Lemma 4.6
ensures that the set below is closed in W2(E).

Definition 4.7 (B(G,L) sets). Let E be a Polish space equipped with a σ-finite Borel measure µ.
Let G be a function on [0,∞) such that

1. G(x) ≥ 0 with G(0) = 0;

2. G is non-decreasing, continuous, and convex;

3. lim
x→∞

G(x)/x = ∞;

4. the function H(x) := G(ex)/ex has continuous, non-negative, and bounded derivative.

Given a positive number L > 0, we refer to the following subset of W2(E) as B(G,L),

B(G,L) :=

{
ν ∈ W2(E)

∣∣∣∣ ν = f · µ,
∫
E

G(f)dµ ≤ L

}
,

which is a closed subset of W2(E) thanks to Lemma 4.6.

The function Ĝ : x 7→ x logx on [0,+∞) is not always positive and non-decreasing, so it fails to
meet the above assumptions. Since Ĝ(e−1) = −e−1 is the minimum value of Ĝ, we can consider the
function that is equal to 0 on [0, 1] and is equal to Ĝ(x/e) + e−1 on x ∈ [1,+∞), which is a valid
example. Indeed, we include the property that G is non-decreasing to ensure that each element in
B(G,L) can be approximated by elements in B(G,L + 1) with compact support, as shown in the
following lemma.

Lemma 4.8. Let (E, d) be a proper metric space equipped with a σ-finite Borel measure µ. Fix
a B(G,L) set as defined in Definition 4.7. For any probability measure ν ∈ B(G,L), there exists
a sequence of probability measures in B(G,L + 1) with compact support that converges to ν with
respect to the Wasserstein metric.

Proof. Let f be the density function of ν with respect to µ, i.e., ν = f · µ. Since the integral∫
E
f dµ = 1 is non-zero, there exists a positive number l > 0 such that the set {x ∈ E | f(x) ≤ l}

is not µ-negligible. Since µ is σ-finite, there exists a bounded subset Y ⊂ E such that f(y) ≤ l for
y ∈ Y and 0 < µ(Y ) < +∞. We define for (k, x) ∈ N∗ × E,

g(k, x) := f(x)1B(x0,k)
(x) + αk 1Y ∩B(x0,k)

(x), (4.11)
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where we set αk := 0 if µ(Y ∩ B(x0, k)) = 0 and αk := [1 − ν(B(x0, k))]/µ(Y ∩ B(x0, k)) if
µ(Y ∩ B(x0, k)) > 0. Since limk→∞ µ(Y ∩ B(x0, k)) = µ(Y ) > 0, for k sufficiently large such that
ak > 0, the sequence αk is decreasing with limk→+∞ αk = 0. Let k0 ∈ N∗ be the smallest integer
such that αk0 > 0. Our choices of αk and k0 ensure that for n ∈ N∗, αk0+n > 0 and g(k0 + n, ·)
is a probability density function with respect to µ. Define νn := g(k0 + n, ·) · µ. Since (E, d) is a
proper metric space, νn is a probability measure with compact support and thus νn ∈ W2(E). We
now prove the convergence νn → ν with respect to dW using the characterization Proposition 1.25.
For a continuous function φ : E → R such that |φ(x)| ≤ 1 + d(x0, x)

2, note that

|φ(x) g(k0 + n, x)| ≤
(
1 + d(x0, x)

2
)
· (f(x) + αk0 1Y (x)) and lim

n→∞
g(k0 + n, x) = f(x).

As Y is pre-compact with µ(Y ) < +∞ and ν ∈ W2(E), it follows from the dominated convergence
theorem that

lim
n→∞

∫
E

φd νn = lim
n→∞

∫
E

φ(x) g(k0 + n, x)dµ(x) =
∫
E

φ(x) f(x)dµ(x) =
∫
E

φd ν,

which implies limn→∞ dW (νn, ν) = 0 according to Proposition 1.25.
Since f(y) ≤ l for y ∈ Y and G is non-decreasing, we have

∀ (n, x) ∈ N∗ × E, G(g(k0 + n, x)) ≤ G(f(x)) +G(l + αk0)1Y (x). (4.12)

Since G is a continuous function and µ(Y ) < 0, we can apply the dominated convergence theorem
to (4.12) and obtain

lim
n→∞

∫
E

G(g(k0 + n, x))dµ(x) =
∫
E

G(f(x))dµ(x).

Hence, for n sufficiently large, νn ∈ B(G,L+ 1), which concludes the proof.

As the assumptions in Definition 4.7 include the ones we used to construct displacement func-
tionals in Proposition 4.3, we obtain the following intermediate result.

Proposition 4.9. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature
bound. If P ∈ W2(W2(M)) gives mass to some closed set B(G,L) defined in Definition 4.7 with
respect to the volume measure on M , then the unique barycenter of P is absolutely continuous.

Proof. Write P = P(B(G,L))P1 + (1 − P(B(G,L))P2 with P1,P2 ∈ W2(W2(M)) such that P1 is
supported in B(G,L). We approximate P in the Wasserstein metric dW with finitely supported
measures Pj ∈ W2(W2(M)) by approximating P1 and P2 as follows.

Since B(G,L) equipped with the Wasserstein metric dW is a non-empty closed subspace of
W2(M), we can construct the Wasserstein space W2(B(G,L)) and treat P1 as an element in it.
Recall that the set of finitely supported measures is dense in Wasserstein spaces [105, Theorem 6.18].
Applying this property to the Wasserstein spaces W2(B(G,L)) and W2(W2(M)), we obtain two
sequences of finitely supported probability measures {P1

j}j≥1 and {P2
j}j≥1 satisfying dW(P1

j ,P1) →
0, dW(P2

j ,P2) → 0 when j → ∞. Furthermore, thanks to Lemma 4.8, we can further refine the two
approximating sequences to ensure that all P1

j ,P2
j for j ≥ 1 are supported in probability measures

with compact support and P1
j (B(G,L + 1)) = 1. Define Pj := P(B(G,L))P1

j + (1 − P(B(G,L))P2
j .

It follows that dW(Pj ,P) → 0 as j → ∞.
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Consider the displacement functional G : f · Vol 7→
∫
M
G(f)d Vol. Proposition 4.3 implies the

following estimate of G(µPj ) at the barycenter µPj of Pj ,

G(µPj
) ≤

∫
W2(M)

G(ν)dP1
j (ν) +

LHK

2Λ
dW(Pj , δµPj

)2 +
LH
2Λ

(m2 + 2m), (4.13)

where Λ := P(B(G,L)), −K is a lower Ricci curvature bound of M , m is the dimension of M , and
LH is an upper bounded of the H ′ with H(x) := G(ex)e−x. Denote by µP the unique barycenter
of P, the consistency of Wasserstein barycenters (Theorem 2.13) implies that dW (µPj

, µP) → 0 and
thus dW(Pj , δµPj

) → dW(P, δµP) as j → ∞. Since the support of P1
j is a subset of B(G,L + 1) and

dW(Pj , δµPj
) is bounded for j ≥ 1, by setting

L′ := (L+ 1) +
LHK

2Λ
sup
j≥1

dW(Pj , δµPj
)2 +

LH
2Λ

(m2 + 2m),

we have µPj ∈ B(G,L′) for all j ≥ 1. It follows from Lemma 4.6 that µP is absolutely continuous.

We replace the assumption P(B(G,L)) > 0 by a more natural one in the next subsection.

4.3.2 Compactness via Souslin space theory
The last step towards our main result is to show that the closed subset B(G,L) needed in Proposi-
tion 4.9 always exists if P gives mass to the set of absolutely continuous measures. Our inspiration
is the criterion of uniform integrability by Charles-Jean de la Vallée Poussin. This criterion [17,
Theorem 4.5.9] constructs a functional f 7→

∫
G(f)dµ that is uniformly bounded for a family of

uniformly integrable functions. We have enough freedom in its construction to impose the proper-
ties required by Definition 4.7 on the function G. Pre-compact sets of measures with respect to the
topology τ defined below are closely related to uniformly integrable families.

Definition 4.10 (The set A and four topologies τw, τW , τ, τL). Let E be a Polish space with a σ-
finite reference measure µ. Pick a point x0 ∈ E and define the following set of measurable functions
on E,

A :=

{
f ∈ L1(µ)

∣∣∣∣ f ≥ 0,

∫
E

f dµ = 1,

∫
E

d(x0, x)
2f(x)dµ(x) <∞

}
, (4.14)

which is independent of the chosen point x0. The set A is naturally identified via f ↔ f · µ with
the set of probability measures in W2(E) that are absolutely continuous with respect to µ. We
introduce the following four topologies. Denote by τw the topology on W2(E) with respect to
the weak convergence, denote by τW the topology of the Wasserstein space W2(E), denote by τ
the weak topology on L1(µ) induced by its dual space L∞(µ) [17, Theorem 4.4.1] and denote by
τL the topology of the Lebesgue space L1(µ). By definition, τw ⊂ τW and τ ⊂ τL. Denote by
(A, τw), (A, τW ), (A, τ) and (A, τL) the four topological subspaces induced by these topologies on
the set A.

Consider the case when E is a complete Riemannian manifold and µ is the volume measure on E.
By Lemma 2.17, A is a Borel set for the topology τW . Given a probability measure P ∈ W2(W2(E))
such that P(A) > 0, our goal is to find a compact subset F in (A, τ) with P(F) > 0. If we can
accomplish this, then F forms a family of uniformly integrable functions by the Dunford-Pettis
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theorem (Proposition 4.12), bringing us closer to the main result. To find such an F, a direct but
problematic approach is to argue that P is a Radon measure. However, this argument overlooks
that crucial point that P (restricted on A) must be a Borel measure with respect to the Borel sets
of (A, τ).

To address this issue, we employ some well-known results from the Souslin space theory, which
can fill the gap in the previous argument with Radon measures.

Lemma 4.11. Let (E, d) be a Polish space with an outer regular and σ-finite Borel measure µ on
E. Let A be as in (4.14). The four topological subspaces, (A, τw), (A, τW ), (A, τ), and (A, τL) share
the same Borel sets.

In particular, if P ∈ W2(W2(E)) gives mass to the set A, then it gives mass to a compact subset
of (A, τ).

Proof. For spaces (A, τw) and (A, τW ), the first statement is already proven in [79, Lemma 2.4.2],
and we recall its arguments here. By Lemma 2.17, A is a Borel set for both τw and τW . Since
(W2(E), dW ) is a Polish space, (A, τW ) is then a Souslin space as a Borel subset of (W2(E), dW ) [17,
Theorem 6.6.7]. Consider the identity map Id : (A, τW ) → (A, τw), it is continuous and bijective.
According to definition 1.8, (A, τw) is a Souslin space as the image of the Souslin space (A, τW )
under the continuous map Id. Moreover, (A, τW ) and (A, τw) share the same Borel sets since the
measurable map Id is bijective [17, Theorem 6.7.3].

We claim that (A, τL) is also a Souslin space. We first prove that the Lebesgue space L1(µ) is
complete and separable using the assumption that E is Polish. L1(µ) is complete for any measurable
space E [17, Theorem 4.1.3]. Its separability is asserted in Brézis [21, Theorem 4.13] and Bogachev
[17, Section 1.12(iii), Corollary 4.2.2, Exercise 4.7.63] but only proven for the case of Euclidean
spaces. Here is a brief proof of it. Every Polish space is homeomorphic to a closed subspace of
R∞ [17, Theorem 6.1.12]. Moreover, one can show that L1(µ) is separable when E = R∞ using
the same arguments for Euclidean spaces. It follows that L1(µ) is a Polish space. We then prove
that A is a Borel set for the topology τL. Fix a point x0 ∈ E. Define the following sets for integers
k, j ≥ 1,

Ak,j :=

{
f ∈ L1(µ)

∣∣∣∣ f ≥ 0,

∫
E

f dµ = 1,

∫
E

min{d(x0, x)2, k}f(x)dµ(x) ≤ j

}
.

Fix two integers k, j ≥ 1. We show that the set Ak,j is a closed subset of L1(µ). Let {fi}i≥1 ⊂ Ak,j
be a sequence converging to f ∈ L1(µ) in L1(µ). Since {fi}i≥1 has a subsequence converging almost
everywhere to f , f is non-negative for µ-almost everywhere. It follows that

∫
E
f dµ = ‖f‖L1(µ) =

limi→∞ ‖fi‖L1(µ) = 1. Noting that as i→ ∞,

‖min{d(x0, ·)2, k}fi − min{d(x0, ·)2, k}f‖L1(µ) ≤ k‖fi − f‖L1(µ) → 0,

which implies that f ∈ Ak,j . Hence, Ak,j is a closed subset of L1(µ). By the monotone convergence
theorem, we have A = ∪j≥1 ∩k≥1 Ak,j , which proves that A is a Borel set. Finally, (A, τL) is a
Souslin space as A is a Borel set of the Polish space L1(µ) [17, Theorem 6.6.7].

By definition of τw and τ , we have the topological inclusions (A, τw) ⊂ (A, τ) ⊂ (A, τL). Using
the identity map as before, we conclude that the three topological spaces, (A, τw), (A, τ) and (A, τL),
share the same Borel sets since (A, τL) is a Souslin space [17, Theorem 6.7.3].

P, restricted on A, is then a Radon measure with respect to the common Borel sets for the four
topological subspaces since finite Borel measures on Souslin spaces are Radon [17, Theorem 7.4.3].
Hence, P(A) > 0 can be approximated by the P-measure of compact subsets of (A, τ).
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We prove the following slightly generalized Dunford-Pettis theorem that connects uniform inte-
grability and the weak topology τ .

Proposition 4.12 (Dunford-Pettis theorem). Let (Ω,F) be a measurable space with a σ-finite
measure µ on it. Let F ⊂ L1(µ) be a set of µ-integrable functions. If F has compact closure in the
weak topology induced by the dual space L∞(µ) of L1(µ), then F is uniformly integrable, i.e.,

lim
C→∞

sup
f∈F

∫
{|f |>C}

|f |dµ = 0.

Proof. We need the assumption of µ being σ-finite to ensure that L∞(µ) is the dual space of L1(µ),
see [17, Theorem 4.4.1] and [87, Exercise 6.12]. The above definition of uniform integrability is taken
from Bogachev [17, Definition 4.5.1]. When µ is finite, the equivalence between pre-compactness in
the weak topology and uniform integrability is already proven by Bogachev [17, Theorem 4.7.18].
The following arguments for the general case are based on his proof.

We prove our statement for σ-finite measures by contradiction. Suppose that F has compact
closure in the weak topology, but is not uniformly integrable. Then, there are ε > 0 and a sequence
{fn}n≥1 ⊂ F such that

inf
n≥1

∫
{|fn|>n}

|fn|dµ ≥ ε. (4.15)

Applying the Eberlein–Šmulian theorem (Theorem 1.9) to {fn} and the Banach space L1(µ) [21,
Theorem 4.8], we obtain a subsequence {fnk

}k≥1 convergent to some function f ∈ L1(µ) in the
weak topology. In particular, for every measurable set A ∈ F we have

lim
k→∞

∫
A

fnk
dµ =

∫
A

f dµ. (4.16)

It follows from the Vitali–Hahn–Saks theorem (Corollary 1.13) that sequence {fnk
}k≥1 has uni-

formly absolutely continuous integrals, i.e., for every ε > 0, there exists δ > 0 such that

µ(A) < δ =⇒ sup
k≥1

∫
A

|fnk
|dµ < ε. (4.17)

Via the isometric embedding of L1(µ) into the dual space of L∞(µ) [21, Corollary 1.4], the Ba-
nach–Steinhaus theorem (Theorem 1.10) is applicable to the Banach space L∞(µ) and the conver-
gent sequence of functional {fnk

}k≥1, which implies that C := supk≥1 ‖fnk
‖L1(µ) < ∞ is finite.

Take the δ given by (4.17) for the ε in (4.15), and let n be an integer bigger than C/δ. Then by
Chebyshev’s inequality,

sup
k≥1

µ({|fnk
| > n}) ≤ 1

n
sup
k≥1

‖fnk
‖L1(µ) < δ,

which leads to a contradiction between (4.15) and (4.17).

We also generalize the de la Vallée Poussin criterion to construct the function G in Definition 4.7.
In the following proposition, the σ-finiteness of µ allows us to apply Fubini’s theorem.
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Theorem 4.13 (De la Vallée Poussin criterion). Let (Ω,F) be a measurable space with a σ-finite
measure µ on it. A subset F ⊂ L1(µ) is uniformly integrable, i.e.,

lim
C→∞

sup
f∈F

∫
{|f |>C}

|f |dµ = 0

if and only if there exists a function G defined on [0,+∞) such that

1. G(x) = 0 for 0 ≤ x ≤ 1;

2. G is a non-decreasing and convex function that is smooth on (0,+∞);

3. supf∈F

∫
Ω
G(|f |)dµ ≤ 1;

4. if we define the function H(x) := G(ex)e−x on R, then lim
x→+∞

H(x) = +∞, and its derivative
H ′ is smooth with 0 ≤ H ′(x) ≤ 1.

Proof. If we have the asserted function G for some subset F ⊂ L1(µ), then for every ε > 0, we can
find a real number C > 0 such thatG(t)/t ≥ 2/ε for any t > C. It implies that |f(x)| ≤ εG(|f(x)|)/2
for all f ∈ F when |f(x)| > C. Hence,∫

{|f |>C}
|f |dµ ≤ ε

2

∫
{|f |>C}

G ◦ |f |dµ ≤ ε,

which shows that F is uniformly integrable.
Now assume that we are given a uniformly integrable subset F ⊂ L1(µ). To better motivate

our construction of G, we postpone the definition of a smooth function H with H(x) = 0, x ≤ 0
to (4.21) but use it here to define G(x) := H(logx)x. Differentiate this equation twice, we obtain
G′′(x) = [H ′(logx) +H ′′(logx)]/x. By our requirements on H, G(x) = 0 for 0 ≤ x ≤ 1. Hence, we
have G(x) =

∫ x
0

∫ s
0
G′′(t)d td s for x > 0 and thus∫

Ω

G(|f |)dµ =

∫
Ω

∫ |f |

0

∫ s

0

G′′(t)d td sdµ =

∫
Ω

∫
R

∫
R
G′′(t) · 10<t<s<|f | d td sdµ

=

∫
R

∫
R
G′′(t) · 10<t<s · µ(|f | > s)d td s

=

∫
R
G′′(t) · 1t>0

∫ ∞

t

µ(|f | > s)d sd t

=

∫ ∞

0

H ′(log t) +H ′′(log t)
t

∫ ∞

t

µ(|f | > s)d sd t

=

∫
R
[H ′(y) +H ′′(y)]

∫ ∞

ey
µ(|f | > s)d sd y, (4.18)

where we applied Fubini’s theorem twice and a change of variables y := log t. According to (4.18),
we need to control H ′ +H ′′ and the integral of µ(|f | > s) at the same time. For the integral, note
that by Fubini’s theorem again, we have for t > 0 and f ∈ L1(µ) that∫

{|f |>t}
|f |dµ =

∫
{|f |>t}

∫
R
10<s<|f | d sdµ =

∫
R

∫
E

1|f |>t · 10<s<|f | dµd s

=

∫
R

∫
Ω

10<s<t<|f | + 10<t≤s<|f | dµd s = t µ(|f | > t) +

∫ ∞

t

µ(|f | > s)d s. (4.19)
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Let α : N → N be a strictly increasing function such that α(0) ≥ 0 and

sup
f∈F

∫ ∞

eα(n)

µ(|f | > s)d s ≤ sup
f∈F

∫
{|f |>eα(n)}

|f |dµ ≤ 2−(n+1),

where we used (4.19) for the first inequality and the uniform integrability of F for the second one.
It follows that

sup
f∈F

∑
n≥0

∫ ∞

eα(n)

µ(|f | > s)d s ≤ 1. (4.20)

For the term H ′ +H ′′ in (4.18), we bound it from above with a function that is non-zero only on
selected intervals based on our choice of α(n), allowing us to convert the integral of

∫∞
ey
µ(|f | > s)d s

into the series summation (4.20). To achieve this, we first select a smooth function γ : R → [0, 1]
such that γ(x) = 1 for x ∈ [α(n) + 1/3, α(n) + 2/3] and γ(x) = 0 for x /∈ (α(n), α(n) + 1). Then we
define

H(x) :=

{∫ x
0
e−s

∫ s
0
γ(t)et d td s, x > 0

0, x ≤ 0
. (4.21)

In this way, we have H ′′(x) +H ′(x) = γ(x). Using this construction, (4.18) and (4.20) imply that

sup
f∈F

∫
Ω

G(|f |)dµ = sup
f∈F

∑
n≥0

∫ α(n)+1

α(n)

γ(y)

∫ ∞

ey
µ(|f | > s)d sd y ≤ sup

f∈F

∑
n≥0

∫ ∞

eα(n)

µ(|f | > s)d s ≤ 1.

For the first derivative of H, we have

0 ≤ H ′(x) = e−x
∫ x

0

γ(t)et d t ≤ e−x(ex − 1) ≤ 1.

And by direct calculation we have that the difference

H(α(n) + 1)−H(α(n)) >

∫ α(n)+1

α(n)+ 2
3

e−s
∫ α(n)+ 2

3

α(n)+ 1
3

et d td s = (1− e−
1
3 )2

is bigger than a constant independent of n, which implies that lim
x→+∞

H(x) = +∞ since H is non-
decreasing. It follows from 0 ≤ γ ≤ 1 that G is non-decreasing and convex as G′′(x) = γ(logx)/x ≥
0 for x > 1 and G(x) = 0 for 0 ≤ x ≤ 1.

4.3.3 Final step of the proof
To prove Theorem 4.5, it remains to combine the previous auxiliary propositions to replace the
assumption in Proposition 4.9 that P(B(G,L)) > 0 for some set B(G,L) (Definition 4.7).

As in Definition 4.10, we denote by A the set of absolutely continuous measures in W2(M). If
P(A) > 0, then Lemma 4.11 provides a compact subset F of (A, τ) such that P(F) > 0. Applying the
Dunford-Pettis theorem (Proposition 4.12) to F with µ := Vol, we see that F is uniformly integrable.
Then the de la Vallée Poussin criterion (Theorem 4.13) asserts the existence of a smooth function G
such that F ⊂ B(G, 1) ⊂ A. Therefore, our theorem follows from Proposition 4.9 and the property
P(B(G, 1)) ≥ P(F) > 0.
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Chapter 5

Restriction property of
Wasserstein barycenters

Our main goal in this chapter is to generalize the divide-and-conquer technique used in the proofs
of Proposition 3.4 and Theorem 3.7. This generalization enables us to construct a new probabil-
ity measure such that one of its barycenters is a (normalized) restriction of a given Wasserstein
barycenter. Consequently, we can study local properties of Wasserstein barycenters and deduce
global properties via local restrictions.

In our restriction technique, we avoid operating on multi-marginal optimal transport plans (as
they are not defined for general measures P), and instead construct a push-forward map. This map
modifies each element ν in the support of P by restricting the optimal transport plans between a
fixed barycenter of P and ν. We begin with a technical lemma that establishes the measurability of
these modifications, which is crucial for dividing couplings of two measures (one of which is fixed)
according to a given bounded measurable function.

Lemma 5.1. Let (E, d1), (F, d2) be two Polish spaces. Consider their product space E×F endowed
with the product metric d((x1, y1), (x2, y2))2 := d1(x1, x2)

2 + d2(x2, y2)
2 for x1, x2 ∈ E and y1, y2 ∈

F . Fix a measure µ ∈ W2(E), denote by Γµ the subset of measures in W2(E×F ) whose first marginal
measure is µ. Given a non-negative bounded measurable function g on E such that g · µ ∈ W2(E),
the following map

G : Π ∈ Γµ 7→ g ·Π ∈ W2(E × F )

is continuous with respect to the Wasserstein metric dW of W2(E × F ), where g ·Π stands for the
measure g(x) ·Π(dx,d y) on E × F .

Proof. Let σ be an optimal transport plan between Π1,Π2 ∈ Γµ. Then the following probability
measure

g(x1)g(x2) · σ(dx1,d y1,dx2,d y2) ∈ W2(E × F × E × F )

is a coupling between g ·Π1 and g ·Π2. Hence,

dW (G(Π1),G(Π2))
2 ≤ ‖g‖2∞dW (Π1,Π2)

2,

where ‖g‖∞ denotes the L∞-norm of g with respect to µ. It follows that G is a continuous map
with respect to the Wasserstein metric.
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The following proposition details our method of constructing new Wasserstein barycenters by
restricting an existing one.

Proposition 5.2 (Restriction property of Wasserstein barycenters). Let (E, d) be a proper metric
space and let µ ∈ W2(E) be a probability measure on E. Then there exists a measurable function
Π : ν 7→ Πν from W2(E) to W2(E × E) such that Πν is an optimal transport plan between µ
and ν, where the metric on E × E is given by d((x1, y1), (x2, y2))

2 = d(x1, x2)
2 + d(y1, y2)

2 for
x1, x2, y1, y2 ∈ E. If one can write µ = λµ1 + (1 − λ)µ2 with µi ∈ W2(E) for i = 1, 2 and some
fixed positive number 0 < λ < 1, then for any ν ∈ W2(E), we can write Πν = λΠ1

ν +(1−λ)Π2
ν and

ν = λ ν1 + (1 − λ)ν2 such that Πiν is an optimal transport plan between µi and νi ∈ W2(E), and
the map F i : W2(E) → W2(E) that sends ν to νi is continuous.

Moreover, in the above rewriting, if µ is a Wasserstein barycenter of P ∈ W2(W2(E)), then µi

is a Wasserstein barycenter of Qi := F i#P.

Proof. The existence of a measurable selection ν 7→ Πν of optimal transport plans is proven in
[105, Corollary 5.22]. By definition of the metric on E × E, it follows from ν, µ ∈ W2(E) that
Πν ∈ W2(E × E).

Since µ = λµ1 + (1 − λ)µ2 and 0 < λ < 1, measures µ1, µ2 are absolutely continuous with
respect to µ. For i = 1, 2, denote by gi the density function of µi with respect to µ, i.e., µi = gi ·µ.
In particular, we have λ g1 + (1 − λ)g2 = 1 for µ-almost everywhere. Define Πiν := gi · Πν for
ν ∈ W2(E), where gi · Πν stands for the measure gi(x) · Πν(dx,d y) on E × E as in Lemma 5.1.
Since λΠ1

ν + (1− λ)Π2
ν = [λ g1 + (1− λ)g2]Πν = Πν ∈ W2(E × E), we have Π1

ν ,Π
2
ν ∈ W2(E × E).

For i = 1, 2 and ν ∈ W2(E), define νi as the second marginal of Πiν , which belongs to W2(E) since
µi ∈ W2(E) and Πiν ∈ W2(E × E). It follows from the restriction property of optimal transport
plans [105, Theorem 4.6] that Πiν is an optimal transport plan between µi and νi. Note that by
definition, νi := π2

#[g
i ·Πν ], where π2 : E×E → E is the projection map sending (x, y) ∈ E×E to

y ∈ E. We now show that the push-forward map π2
# : W2(E × E) → W2(E) is continuous. Given

Π1,Π1 ∈ W2(E × E), if σ ∈ W2(E
2 × E2) is an optimal transport plan between Π1 and Π2, then

dW (Π1,Π2)
2 =

∫
E2×E2

d(x1, x2)
2 + d(y1, y2)

2 dσ(x1, y1, x2, y2)

≥
∫
E×E

d(y1, y2)
2 d [π2 × π2]#σ (y1, y2) ≥ dW (π2

#Π1, π
2
#Π2)

2,

which implies the continuity of the push-forward map π2
#. It follows from Lemma 5.1 that F i : ν 7→

νi is a continuous map from W2(E) to W2(E).
Now we assume that µ = µP is a barycenter of P. Observe that∫

W2(E)

dW (µP, ν)
2 dP(ν) =

∫
W2(E)

∫
E×E

d(x, y)2 dΠν(x, y)dP(ν)

=

∫
W2(E)

∫
E×E

d(x, y)2
[
λdΠ1

ν(x, y) + (1− λ)dΠ2
ν(x, y)

]
dP(ν)

=

∫
W2(E)

[
λ dW (µ1, ν1)2 + (1− λ)dW (µ2, ν2)2

]
dP(ν)

≥λ min
η∈W2(E)

∫
W2(E)

dW (η, ν)2 dQ1(ν) + (1− λ) min
η∈W2(E)

∫
W2(E)

dW (η, ν)2 dQ2(ν),
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where we used the fact that Πiν is an optimal transport plan between µi and νi. It follows that
Qi ∈ W2(W2(E)) for i = 1, 2. We claim that the last inequality above must be an equality. Consider
the measure µ := λµQ1 + (1− λ)µQ2 with µQi being a Wasserstein barycenter of Qi. According to
the decomposition ν = λ ν1 + (1 − λ)ν2, if Πi (i = 1, 2) is a transport plan between µQi and νi,
then λΠ1 + (1− λ)Π2 is a transport plan between µ and ν. Hence, it follows from the definitions
of µQi , Qi, νi, and dW (µ, ν)2 that

λ min
η∈W2(E)

∫
W2(E)

dW (η, ν)2 dQ1(ν) + (1− λ) min
η∈W2(E)

∫
W2(E)

dW (η, ν)2 dQ2(ν)

=λ

∫
W2(E)

dW (µQ1 , ν)2 dQ1(ν) + (1− λ)

∫
W2(E)

dW (µQ2 , ν)2 dQ2(ν)

=

∫
W2(E)

[
λ dW (µQ1 , ν1)2 + (1− λ)dW (µQ2 , ν2)2

]
dP(ν)

≥
∫
W2(E)

dW (µ, ν)2 dP(ν).

Hence, if our claim is false, then the expression
∫
W2(E)

dW (·, ν)2 dP(ν) admits strictly smaller value
on the measure µ than on the barycenter measure µ. Our claim is thus proven by contradiction,
which implies the last assertion in the lemma.

Remark 5.3. The proof of Proposition 5.2 is structurally analogous to the proof for the restriction
of optimal transport plans in [105, Theorem 4.6]. Both arguments proceed by contradiction: as-
suming the property fails allows for the construction of a new candidate solution, which violates
the presumed optimality of the original. This analogy becomes an identity in the special case of
the barycenter problem over two measures, ν0, ν1 ∈ W2(E). Recall that the McCann interpolation
{νθ}0≤θ≤1 between ν1 and ν2 is made of barycenters of the measures Pθ = θ δν1 + (1− θ)δν0 . This
interpolation is closely related to the dynamical optimal coupling in [105, Definition 7.20]. Conse-
quently, a decomposition of the dynamical optimal coupling corresponds to decomposing a series
of barycenters µPθ

= νθ.
In the thesis, a key property used frequently in conjunction with Proposition 5.2 is that the

map F i sends a probability measure ν to the measure νi that is absolutely continuous with respect
to ν. The following corollary presents two direct consequences of this property.

Corollary 5.4. Let (E, d) be a proper metric space. Fix a probability measure P ∈ W2(W2(E))
with a barycenter µP ∈ W2(E). Given an equality µP = λµ1 + (1 − λ)µ2 with µi ∈ W2(E) for
i = 1, 2 and λ ∈ (0, 1), there exist two probability measures Q1,Q2 such that µi is a barycenter of
Qi for i = 1, 2 and the following property holds. For any measure η on E,

1. if the measure P gives mass to the set of probability measures that are absolutely continuous
with respect to η, then so do the measures Q1 and Q2;

2. if the measure P assigns full mass to the set of probability measures that are absolutely
continuous with respect to η, then so do the measures Q1 and Q2;

Proof. Proposition 5.2 provides two continuous maps F 1, F 2 : W2(E) → W2(E) such that λF 1(ν)+
(1 − λ)F 2(ν) = ν for ν ∈ W2(E) and µi (i = 1, 2) is a barycenter of Qi := F i#P. It follows that
probability measures F 1(ν), F 2(ν) are absolutely continuous with respect to ν. Hence, given a
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measure η on E, if ν is absolutely continuous with respect it, then so are the measures F 1(ν) and
F 2(ν). The two assertions in the corollary follows directly from the definitions of Q1 and Q2 via
the maps F 1, F 2.
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Chapter 6

Wasserstein barycenters on metric
trees

This chapter investigates the regularity of Wasserstein barycenters in the setting of metric trees,
with a particular focus on characterizing their potential singularities. While the study of absolutely
continuous Wasserstein barycenters on Riemannian manifolds has seen significant progress, the na-
ture of singular barycenters remains less understood. The geometric complexity of general manifolds
motivates our shift to metric trees—a simpler, yet non-trivial class of geodesic spaces that exhibit
rich phenomena. Here, we introduce a novel reduction technique that provides a systematic ap-
proach to characterizing singular Wasserstein barycenters on trees by leveraging the well-developed
theory on the real line.

We begin with a canonical example that illustrates the singularity (see Example 6.25, inspired
by [50]). Consider the tripod in Figure 6.1, formed by three copies of the unit interval [0, 1] joined
at a common origin. Let P := 1

3

∑3
i=1 δνi be a probability measure on the space of probability

ν1ν2

ν3

0

1

1

1

1
2

1
2

1
2

Figure 6.1: P =
∑3
i=1

1
3 δνi on the tripod

measures, where each νi is an absolutely continuous measure supported on the outer half [ 12 , 1] of
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a distinct branch. The unique Wasserstein barycenter of P is the Dirac measure µP = δ0 at the
central vertex. This starkly demonstrates how a collection of regular measures can collapse into a
purely singular barycenter, motivating a deeper investigation into the mechanisms governing such
behavior.

Our setting of a metric tree, a metric graph without cycles, treats edges as continuous intervals
with prescribed lengths, making it a geodesic space. Consistent with our framework of optimal
transport (Section 1.4) in this thesis, we set the squared distance function as the cost function and
thus consider the 2-Wasserstein space. It is important to distinguish our work from the related
literature. For instance, research on the “tree metric” or “tree-Wasserstein distance” typically
considers only the vertices of a tree and benefits from a closed-form expression for the 1-Wasserstein
distance [81, 61, 70, 85]. Similarly, ramified optimal transport studies transport problems between
finitely support measures with branching cost structures [108, 109, 110]. While our metric graph
setting aligns with that of [71], their work focuses on the 1-Wasserstein distance. To our knowledge,
only a few works, such as [15, 34], have studied optimal transport with the squared distance cost
on metric graphs. This highlights that, despite its apparent simplicity, the 2-Wasserstein space
on a metric tree remains largely unexplored compared to its counterparts on the real line or on
Riemannian manifolds.

The cornerstone of our analysis is a reduction technique introduced in Section 6.2. For any
oriented edge ~e :=

#              »

{v0, v1} of a tree Γ, we define a reduction map T~e : Γ → R. As illustrated in

e⃗

T e⃗

0 2 5 7−6

v0 v1

Γ

R

Figure 6.2: Illustrative example of the reduction map T~e.

Figure 6.2, this map effectively “flattens” the tree into the real line by identifying the edge ~e with
an interval and isometrically embedding the rest of the tree relative to ~e. Our key technical result,
Theorem 6.22, states that if the support of a measure µ ∈ W2(Γ) is contained within the edge
~e, the Wasserstein distance between µ and any other measure ν ∈ W2(Γ) is preserved under this
map: dW (µ, ν) = dW (T~e#µ, T

~e
#ν). This powerful result allows us to transform certain optimal

transport problems on a tree into equivalent, and more tractable, problems on the real line.
By combining this reduction technique with the restriction property of Wasserstein barycenters

(Chapter 5), we develop a unified framework for extending results from R to metric trees. The power
of this approach is demonstrated by our proof of the almost absolute continuity of Wasserstein
barycenters on trees (Theorem 6.28). This theorem asserts that if P ∈ W2(W2(Γ)) gives positive
mass to the set of measures that are absolutely continuous (with respect to the one-dimensional
Hausdorff measure H), then any barycenter µP must be absolutely continuous everywhere except,
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possibly, at the vertices of the tree. In other words, singularities of the barycenter are confined to
the vertex set V .

The chapter is structured as follows. We begin in Section 6.1 by formally defining metric
graphs and establishing their properties as proper geodesic spaces. Our core analytical tools, the
reduction technique, is introduced in Section 6.2. To build the necessary foundation, Section 6.4
explores barycenters on R, introducing concepts like the dual measure and the rigid property to
characterize singularity. For instance, we show that if the barycenter of P ∈ W2(W2(R)) is singular,
then P-almost every measure must also be singular (Theorem 6.51). Armed with these tools and
insights, we return to metric trees. In Section 6.5, we apply our framework to rigorously characterize
barycenter singularities at vertices, motivated by the almost absolute continuity theorem. Finally,
Section 6.6 synthesizes our approach through several detailed examples, illustrating the unique and
sometimes counter-intuitive behavior of Wasserstein barycenters on metric trees.

6.1 Definitions and preliminary properties
6.1.1 Metric (measure) graphs
In this subsection, we present a constructive definition of a metric graph in terms of length functions
defined on its edges. This construction induces a canonical measure on the metric graph, which
coincides with the Lebesgue measure when restricted to each edge. A metric graph equipped with
this canonical measure is referred to as a metric measure graph, a basic concept that underlies much
of the subsequent development in this chapter.

Recall that a (undirected, simple and non-trivial) graph is an ordered pair G := (V, E) consisting
of a non-empty set of vertices V and a non-empty set of edges E ⊂ {{x, y} | x, y ∈ V and x 6= y},
which are unordered pairs of vertices. Note that even though our definition excludes more general
graphs containing loops or parallel edges, it is not an essential restriction since we can turn them
into graphs by adding vertices so that our propositions in this chapter are applicable.

We also introduce the following definitions for graphs [18, §1.1, §4.1] [32, §1.1, §1.3]. A vertex
x ∈ V is incident with an edge α ∈ E if x ∈ α, in which case we also say that α is an edge at x. The
two (distinct) vertices incident with an edge are its ends, and an edge joins its ends. The degree of a
vertex is the number of edges at the vertex. Graphs are called finite, infinite or countable according
to the number of their vertices. A path (respectively a cycle) is a finite graph whose vertices can
be arranged in a linear (respectively cyclic) sequence, in such a way that two vertices are joined by
an edge if and only if they are consecutive in the sequence. We denote a path p by p = x0x1 . . . xk
if {x0, x1, . . . , xk} is the set of its vertices and {{x0, x1}, {x1, x2}, . . . , {xk−1, xk}} is the set of its
edges, where x0, x1, . . . , xk are k+1 distinct elements, i.e., xi 6= xj if i 6= j. Moreover, we say that p
is a path from x0 to xk (as well as between x0 and xk). For two graphs G = (V, E) and G′ = (V ′, E ′),
G′ is a sub-graph of G if V ′ ⊂ V and E ′ ⊂ E . When the sub-graph G′ is a path (respectively a
cycle), we also say that G′ is a path (respectively a cycle) of G. A graph is connected if for every
two different vertices, there is a path between them. A tree is a connected graph without cycles.

A graph is locally finite if the degree of each vertex is finite. It is known that a connected, locally
finite and infinite graph is countable [107, Theorem 1.4]. We shall construct metric graphs from
connected locally finite graphs via length functions defined on edges. For convenience, we assume
in the following construction that the set of vertices is a subset of N, which indeed imposes a global
orientation of graphs.
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Definition 6.1 (Metric graphs and simple paths). Let G = (V, E) be a connected and locally finite
graph. Without loss of generality, we assume that its vertices V ⊂ N are natural numbers. For
notational clarity, introduce E[0,1] := E × [0, 1]. Let X := (V ∪ E[0,1])/ ∼ be the set of equivalent
classes generated by the following relation:

∀α = {i, j} ∈ E with i < j, (α, 0) ∼ i and (α, 1) ∼ j. (6.1)

Elements in X are written as [i] and [(α, s)], representing the equivalent classes of i ∈ V and
(α, s) ∈ E[0,1] respectively. We identify V with V := {[i] | i ∈ V} and E with E := {[α] | α ∈ E}
with [α] := {[(α, s)] ∈ X | 0 ≤ s ≤ 1}, which allows us to reuse definitions, such as vertex, edge and
end, for X. For the edge α given in (6.1), we associate it with two oriented edges,

#        »

{i, j} and
#        »

{j, i},
which enumerate points of the set [α] via the parameter s in subscript as follows,

#        »

{i, j}s := [(α, s)],
#        »

{j, i}s := [(α, 1− s)], for s ∈ [0, 1]. (6.2)

In short, an oriented edge ~e is an edge with a given order of its two ends, satisfying ~e =
#               »

{~e0, ~e1}.
A length function of G is a function l : E → R uniformly bounded from below by a strictly

positive number, i.e., infα∈E l(α) > 0. Fix such a length function l of G. Via the identification of E
with E, we also consider l as a function defined for (oriented) edges of X.

Given two points x, y ∈ X, a simple path from x to y (as well as between x and y) is an injective
map γ : [a, b] → X defined on a compact interval [a, b] ⊂ R with the following properties:

1. γ(a) = x, γ(b) = y.

2. If x, y are two different vertices, then there exist a path p = v0v1 . . . vn of G and a partition
a = t0 < t1 < · · · < tn = b such that for k = 0, 1, . . . , n− 1 and 0 ≤ s ≤ 1

tk+1 − tk = l(
#                     »

{vk, vk+1}) and γ((1− s)tk + s tk+1) =
#                     »

{vk, vk+1}s . (6.3)

Otherwise, γ is the restriction of a simple path between two vertices.

For a simple path γ defined on [a, b], we define its length as b − a. We now define the metric dl
on X. For two given points x, y ∈ X, we set dl(x, y) to be the infimum of the lengths of all simple
paths from x to y. The metric space (X, dl) is called a metric graph, and we denote it by the triple
Γ := (V,E, dl). The graph G is called the base graph of Γ. A metric graph Γ is called a metric tree
if its base graph G is a tree.

Remark 6.2. Oriented edges of metric graphs are denoted using arrow notation, for instance, ~e.
A subscript appended to this symbol, such as ~es, designates a point located within the edge ~e,
parameterized by s as detailed in (6.2). Conversely, symbols without arrows but with subscripts,
such as e1, e2, . . ., are employed to denote possibly distinct edges.

We introduce in the following terminologies for simple paths.

Definition 6.3 (Terminologies for simple paths). Consider the space X constructed in Defini-
tion 6.1. Given a simple path γ : [a, b] → X, we say

1. γ begins at an edge e1 and ends at an edge e2 if γ(a) ∈ e1 and γ(b) ∈ e2;

2. γ is a simple path from e1 to e2 if it begins at e1, ends at e2, and its image set contains e1, e2;
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3. γ visits a vertex v if the vertex v is the in the image set of γ;

4. if v0 = γ(t0), v1 = γ(t1), . . . , vn = γ(tn) are all the vertices visited by γ and a ≤ t0 < t1 <
. . . < tn ≤ b, then γ visits the sequence of vertices v0, v1, . . . , vn in this order ;

5. if γ′ : [b, c] → X is another simple path such that γ(b) = γ′(b), the concatenation of γ, γ′ is
the map f : [a, c] → X defined via the relations f |[a,b] = γ and f |[b,c] = γ′.

The preceding construction of metric graphs in Definition 6.1 can also be found in classic ref-
erences such as [22, §1.9] and [23, §3.2.2]. We now state some basic properties, especially the
geometric uniqueness of simple paths, which are used to demonstrate that (X, dl) is a valid metric
space.

Lemma 6.4. Consider the space X, the simple paths, and the map dl introduced in Definition 6.1.
Simple paths are geometrically unique in the following sense: given two simple paths γ1 : [a1, b1] → Γ
and γ2 : [a2, b2] → Γ from x = γ1(a1) = γ2(a2) to y = γ1(b1) = γ2(b2),

if γ1([a1, b1]) = γ2([a2, b2]), then ∀ t ∈ [a1, b1], γ1(t) = γ2(t+ c), where c := a2 − a1 = b2 − b1.

The concatenation of two simple paths results in another simple path if and only if the resulting
map is injective. Simple paths between any two given points in X always exist. The function
dl : X ×X → R defines a metric on X.

Proof. Given an edge e = {v0, v1} ∈ E, the requirement (6.3) forces that any two simple paths from
v0 to v1 with e being their image set can be different at most up to a transition of the definition
domain. To prove the claimed geometric uniqueness, we extend γ1, γ2 to be simple paths between
vertices that still share the same image set, and denote by v0, v1, . . . , vn the sequence of all vertices
visited by them in this order. By comparing consecutively the resections of γ1, γ2 whose images are
exactly the edge {vi, vi+1} (i = 0, 1, . . . , n− 1), we conclude the geometric uniqueness by applying
the preceding property implied by (6.3).

Let f : [a, c] → X be the concatenation of two simple paths γ : [a, b] → X and γ′ : [b, c] → X and
assume that f is injective. Since simple paths are themselves concatenations of their restrictions,
to prove that f is a simple path, it suffices to consider the case where both the images of γ and γ′

are contained in an edge e and a < b < c. Given that γ(b) = γ′(b) and f is injective, the geometric
uniqueness implies that both γ and γ′ are restrictions of the same simple path between the two
ends of e. Hence, f is also a restriction of a simple path, which implies that f is a simple path.

We now prove the claimed existence of simple paths between two given points. Let e1, e2 be
two edges containing them respectively. Note that, for any given path v0v1 . . . vn of the base graph,
we can construct a simple path γ from v0 to vn that visits the vertices v0, v1, . . . , vn in this order.
Since the base graph is connected, we can thus construct simple paths from e1 to e2, which implies
the existence of simple paths beginning at e1 and ending at e2. Hence, the claimed existence is
proven and the map dl is thus well-defined for any two given points.

We now prove that dl is a valid metric on X. Fix three arbitrarily chosen points x, y, z ∈ X, we
aim to show the following three properties,

1. dl(x, y) = 0 ⇐⇒ x = y, 2. dl(x, y) = dl(y, x), 3. dl(x, y) + dl(y, z) ≥ dl(x, z).

Since the length function l is uniformly bounded from below by a positive constant, dl(x, y) = 0
implies that x, y belong to the same edge, which further implies Property 1 by the injectivity of
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simple paths. For Property 2, note that if γ : [a, b] → X is a simple path from x to y, then
γ′ : [a, b] → X defined via γ′(t) = γ(a + b − t) is a simple path from y to x with the same length.
To prove Property 3, consider two arbitrarily chosen simple paths, γ1 : [a1, b1] → X from x to y
and γ2 : [a2, b2] → X from y to z. As their concatenation is not necessarily injective, we define
c1 := inf{t ∈ [a1, b1] | γ1(t) ∈ γ2([a2, b2])} and c2 := sup{t ∈ [a2, b2] | γ2(t) ∈ γ1([a1, b1])}. Since
γ1(b1) = γ2(a2), both c1 and c2 are well-defined. Applying the geometric uniqueness to the two
simple paths t ∈ [0, b1 − a1] → γ1(b1 − t) and t ∈ [0, b2 − a2] → γ1(b2 − t), we conclude that the two
points γ1(c1) = γ2(c2) coincide, and is either one of the three points x, y, z or a common vertex in
the images of γ1 and γ2. Define γ : [0, b2 − c2 + c1 − a1] → X by setting γ|[0,c1−a1] := γ1|[a1,c1] and
γ|[c1−a1,b2−c2+c1−a1] := γ2|[c2,b2]. By our choice of c1 and c2, γ is an injective concatenation of two
simple paths. Hence, γ is a simple path from x to z, which implies dl(x, z) ≤ b2 − a2 + b1 − a1.
Since γ1 and γ2 are arbitrarily chosen, Property 3 is thus proven by our definition of dl.

Remark 6.5 (Explicit formulae for the length of a simple path). Via the simple path defined in
Definition 6.1, (oriented) edges of metric graphs are realized as segments interpolating their ends,
whose length is determined by the given length function. For a simple path between two different
vertices, its length is equal to the sum of the lengths of all edges contained in its image set. For the
typical case where both x and y are not vertices and not located at the same edge, we consider a
simple path γ : [a, b] → X from x to y. Let v0, v1, . . . , vn be the sequence of vertices visited by γ in
this order, and let w0, w1 be the two vertices such that x =

#                »

{w0, v0}s0 and y =
#                »

{vn, w1}s1 , where
0 < s0, s1 < 1. Then the length of γ can be calculated as follows,

length of γ := b− a = t0 − a+

n−1∑
k=0

(tk+1 − tk) + b− tn

= (1− s0) l(
#                »

{w0, v0}) +
n−1∑
k=0

l(
#                     »

{vk, vk+1}) + s1 l(
#                »

{vn, w1}),

where we regard γ as a restriction of the simple path corresponding to the path w0v0v1 . . . vnw1,
and the equalities t0 − a = (1− s0) l(

#                »

{w0, v0}), b− tn = s1 l(
#                »

{vn, w1}) are implied by (6.3).
For metric trees, the distance between two given points can be reduced directly to the length of

a simple path between them.

Lemma 6.6. Let Γ = (V,E, dl) be a metric tree. For two given points x, y ∈ Γ, if γ is a simple
path from x to y, then dl(x, y) is equal to the length of γ.

Proof. It suffices to show the claim that, up to a translation of the domain, γ is the unique simple
path from x to y. We prove this claim by contradiction and assume that there are two simple paths,
γ1 : I1 → Γ and γ2 : I2 → Γ, from x to y that are not a translation of each other. Since Γ is a
tree, the geometric uniqueness in Lemma 6.4 excludes immediately the possibility that x and y are
located at the same edge. Consider the two sequences of vertices visited by these two simple paths
in order. Thanks to the local uniqueness of simple paths, these two sequences must be different,
and we can thus find one vertex v1 present in one sequence but not in the other one. Without loss
of generality, we assume v1 ∈ γ1(I1) while v1 /∈ γ2(I2). Chosen a vertex v2 visited by γ2. Since v1 is
the common end of two different edges, {v1, w} and {v1, w′}, whose interiors intersect with γ1, we
can find two different paths in the base graph from v1 to v2, v1w . . . v2 and v1w

′ . . . v2. The union
of these two paths contains a cycle in the base graph, which is a contradiction.
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Metric properties of metric graphs

Given an oriented edge ~e, for two points ~es and ~et in it, it is not necessarily true that dl(~es, ~et) =
|t − s| l(~e) since there could be simple paths between them that have smaller lengths and visit
vertices other than ~e0, ~e1. Thanks to the requirement of a strictly positive global lower bound
imposed on length functions, (oriented) edges are locally isometric to intervals of equal length.

Lemma 6.7 (Local isometries of oriented edges). Let Γ = (V,E, dl) be a metric graph. For an
oriented edge ~e of Γ, the map I~e : ~e → [0, l(~e)] defined by I~e(~es) := s l(~e) is a local isometry of e,

|I~e(~es)− I~e(~et)| = dl(~es, ~et) = |t− s| l(~e) if t, s ∈ [0, 1] and |t− s| ≤ 1

l(~e)
inf
e∈E

l(e).

Proof. Note that the map I~e is bijective. We denote its inverse map by γ : [0, l(~e)] → ~e, which by
definition is a simple path. If t, s ∈ [0, 1] satisfy

0 ≤ t− s ≤ 1

l(~e)
inf
e∈E

l(e),

then the restriction γ|[s l(~e),t l(~e)] attains the infimum length among all possible simple paths from ~es
to ~et. Indeed, the geometric uniqueness in Lemma 6.6 implies that any other path would necessarily
include an edge other than ~e in its image, and thus have a length of at least infe∈E l(e). Therefore,
dl(~es, ~et) = |t− s| l(~e), which concludes the proof.

As a corollary, we prove that metric graphs are length spaces. For a metric graph Γ = (V,E, dl)
and a curve γ : [a, b] → Γ, recall that its length (Definition 1.1) is defined by

Ldl(γ) := sup
a=t0≤t1≤···≤tN=b

N−1∑
i=0

dl(γ(ti), γ(ti+1)), (6.4)

where the supremum is taken over all possible finite partitions of the compact interval [a, b] using
points a = t0 ≤ t1 ≤ · · · ≤ tN = b.

Corollary 6.8. Let Γ = (V,E, dl) be a metric graph. Simple paths are 1-Lipschitz continuous, and
a continuous map γ : [a, b] → Γ is a simple path if it is injective and locally isometric. For any
two points x, y ∈ Γ, the distance between them satisfies dl(x, y) = infγ Ldl(γ), where the infimum is
taken over all continuous curves γ from x to y. In particular, Γ is a length space.

Proof. By definition, the length of a simple path between x, y ∈ Γ is larger than the distance
dl(x, y). Since restrictions of simple paths are still simple paths, it follows that simple paths are
1-Lipschitz continuous. Assuming that a continuous map γ : [a, b] → Γ is injective and locally
isometric, we prove that it is a simple path. If the restriction γ to (c, d) ⊂ [a, b] is isometric and
its image γ((c, d)) is contained in an oriented edge ~e, then by the local isometry of I~e(~es) := s l(~e)
(Lemma 6.7), the map I~e ◦ γ|(c,d) is simply a transition of intervals, which implies that γ is locally
a simple path. By the compactness of [a, b], γ is a concatenation of finitely many simple paths.
Since γ is injective, Lemma 6.4 implies that γ is a simple path.

We now prove the last part of our proposition. In the infimum infγ Ldl(γ) over all possible
continuous curves γ from x to y, it suffices to consider only injective ones. Thanks to the existence of
natural parameterization [23, Proposition 2.5.9], we can replace a continuous curve with a Lipschitz
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map that is locally isometric without changing the length. Therefore, according to the definition of
dl, it remains to show that for a simple path γ : [a, b] → X, we have the equality Ldl(γ) = b−a. By
Lemma 6.7, there exists a partition a = t0 ≤ t1 ≤ · · · ≤ tN = b of [a, b] such that the restriction of γ
on each interval [ti, ti+1] is isometric. Since

∑N−1
i=0 dl(γ(ti), γ(ti+1)) = b−a, we have Ldl(γ) ≥ b−a.

Note that the sum
∑N−1
i=0 dl(γ(ti), γ(ti+1)) remains unchanged if we add more partition points. By

adding the partition points {ti}0≤i≤N to any given partition, we obtain Ldl(γ) ≤ b − a, which
concludes the proof.

We prove some basic metric properties of metric graphs in the following theorem. Recall that a
length space is geodesic (Definition 1.2) if the distance of two given points is equal to the length of
some rectifiable curve connecting them.

Theorem 6.9. Metric graphs are proper, complete, separable, and geodesic metric spaces.

Proof. We first show that metric graphs are proper metric spaces, i.e., closed and bounded subsets
of metric graphs are compact. Fix a metric graph Γ = (V,E, dl) and let ε > 0 be a uniform lower
bound of the length function l of Γ. For any given vertex v ∈ V , the closed metric ball B(v, ε)
is contained in finitely many edges since the base graph of Γ is required to be locally finite by
Definition 6.1 and any edge intersecting with the ball B(v, ε) must have v as one of its ends. We
now prove by mathematical induction the claim that for any n = 1, 2, . . ., the closed metric ball
B(v, n ε) is contained in finitely many edges. The case for n = 1 is already shown. Assume that the
claim is true for n = k. Consider the set W of all ends of edges that intersect with B(v, k ε), which
by assumption is finite. By the triangle inequality, we have B(v, (k + 1) ε) ⊂ ∪w∈WB(w, ε), which
implies the claim for n = k+1 since each B(w, ε) is shown be contained in finitely many edges and
W is a finite set. Therefore, the claim holds for any n ∈ N∗. Since simple paths are continuous
(Corollary 6.8), each edge of Γ and thus the union of finitely many edges is compact. Moreover, as
Γ is connected, any bounded set must be contained in one of the metric balls B(v, n ε). It follows
that a closed and bounded subset of Γ is compact. In particular, metric graphs are locally compact.

Recall that any proper metric space is complete and separable (Section 1.1). Moreover, a
complete locally compact length space is always geodesic [23, Theorem 2.5.23].

Remark 6.10. The requirement of metric graphs being locally finite is crucial for Theorem 6.9 to
hold. Consider the bouquet with countably many edges, as described in [23, Example 3.1.17]. This
space can be viewed as the product space of countably many copies of the unit interval [0, 1], all
joined at the vertex 0. Since the set of all vertices (the endpoints 1 of each interval plus the shared
endpoint 0) has no convergent subsequence, this space fails to be locally compact.

The canonical reference measure

The canonical measure H on Γ is defined using its edges and vertices, which is indeed the one-
dimensional Hausdorff measure [23, §1.7] on Γ.

Definition 6.11 (Canonical measures on metric graphs). Let Γ = (V,E, dl) be a metric graph.
The canonical measure H is the measure on Γ that gives no mass to the set of vertices V , and for
each oriented edge ~e ∈ E, the image measure I~e#[H|~e] of its restriction H|~e to ~e is the Lebesgue
measure on [0, l(~e)], where I~e : ~e → [0, l(~e)] is the local isometry sending ~es to s l(~e).
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Since a metric graph Γ has at most countably many edges, the above definition uniquely deter-
mines a σ-finite canonical measure H. We always assume that a metric graph is equipped with its
canonical measure, and is thus a metric measure graph. For example, a Borel measure on a metric
graph is said to be absolutely continuous if it is absolutely continuous with respect to the graph’s
canonical measure.

6.1.2 Curvature bounds on metric trees
Our focus in several upcoming sections will be on metric trees. In this subsection, we introduce
the concept of metric spaces with curvature bounded above. This concept provides a basis for
comparing metric trees with Riemannian manifolds, and thus offers a glimpse into how curvature
bounds influence the properties of Wasserstein barycenters (to be illustrated later in Section 6.3).
Our presentation, adapted from [22, Chapter II.1], is for illustration purpose only; these results
will not be used in subsequent proofs. We begin with the definitions of geodesic triangles and their
comparison triangles.

Definition 6.12 (Geodesic triangles, comparison triangles and comparison points). Let (E, d) be
a geodesic space. A geodesic segment connecting two points p, q ∈ E is the image of a Lipschitz
curve of length d(p, q) from p to q. By convention, we denote by [p, q] a definitely chosen geodesic
segment connecting p and q. A geodesic triangle ∆ in E consists of three points p, q, r ∈ E, its
vertices, and a choice of three geodesic segments [p, q], [q, r], [r, p] connecting them, its sides. Such a
geodesic triangle will be denoted by ∆([p, q], [q, r], [r, p]). If a point x ∈ E lies in the union of [p, q],
[q, r] and [r, p], then we write x ∈ ∆.

Given a real number k ∈ R, denote by M2
k the model space of dimension 2 and constant sectional

curvature k. If k = 0, then M2
0 := R2 is the Euclidean plan. For k 6= 0, M2

k is obtained from the
sphere S2 (if k > 0), or the hyperbolic plane H2 (if k < 0), by multiplying the distance function
by the constant 1/

√
|k|. Denote by dk the Riemannian distance function of M2

k . A geodesic
triangle ∆ with vertices p, q, r in M2

k is called a comparison triangle for ∆ = ∆([p, q], [q, r], [r, p]) if
dk(p, q) = d(p, q), dk(q, r) = d(q, r) and dk(p, r) = d(p, r). A point x ∈ [q, r] is called a comparison
point for x ∈ [q, r] if dk(q, x) = d(q, x). Comparison points on the sides [p, q] and [p, r] are defined
in the same way.

We now define metric spaces with curvature bounded above by k [22, Definition 1.2 of Chapter
II.1]. For simplicity, we restrict our attention to the case where k ≤ 0. The definition for k > 0 is
similar, but requires slightly more care because the diameter of the model space M2

k is π/
√
k.

Definition 6.13 (Metric spaces with curvature bounded from above). Let (E, d) be a geodesic
metric space and let k ≤ 0 be a real number. Fix a geodesic triangle ∆ in E and a comparison
triangle ∆ ⊂M2

k for ∆ in the model space (M2
k , dk) of constant sectional curvature k. The triangle

∆ is said to satisfy the CAT(k) inequality if for any two points x, y ∈ ∆ with their comparison
points x, y ∈ ∆,

d(x, y) ≤ dk(x, y).

The metric space E is said to be of curvature ≤ k if for every x ∈ X, there exists a metric ball
centered at x such that any geodesic triangle contained in it satisfies the CAT(k) inequality.

We stress that metric spaces of curvature ≤ k are defined by local satisfaction of the CAT(k)
inequality. By contrast, metric spaces satisfying the CAT(k) inequality globally are referred to as

79



CAT(k) spaces in the literature. The above definition via local CAT(k) inequality, often called
curvature bounds from above in the sense of Alexandrov, generalizes the concept of Riemannian
manifolds with sectional curvature bounded from above. This generalization is justified by the
following theorem [22, 1A.6 of Chapter II.1].
Theorem 6.14. Fix a real number k ≤ 0. A complete Riemannian manifold (M,g) is a metric
space of curvature ≤ k in the sense of Definition 6.13 if and only if the sectional curvature of M is
less than or equal to k.

Observe that for a geodesic triangle in a metric tree, any given side is contained in the union of
the other two sides. Using this observation along with the triangle inequality for distance functions
in model spaces, one can deduce the following curvature property of metric trees [22, (5) of Example
1.15 in Chapter II.1].
Proposition 6.15. A metric tree is of curvature ≤ k for all real number k ≤ 0.
Proof. We fix a real number k ≤ 0 and prove the CAT(k) inequality for geodesic triangles in metric
trees. Fix a geodesic triangle ∆ with vertices p, q, r in a metric tree and consider its comparison
triangle ∆ with vertices p, q, r in the model space M2

k . The CAT(k) inequality holds trivially, as
an equality, for the case that the three vertices p, q, r of ∆ located in the same geodesic segment.

We are left to consider the non-trivial case that the comparison triangle ∆ is not degenerate.
Without loss of generality, it suffices to consider two points x ∈ [p, q] and y ∈ [q, r] and prove

p

q r

p

q
r

x

y

x

y

∆
∆

v

Figure 6.3: Comparison triangle ∆ in M2
k for ∆ in a metric tree

d(x, y) ≤ dk(x, y), where x ∈ [p, q], y ∈ [q, r] are the comparison points for x, y. As in Figure 6.3, let
v be the unique vertex contained in the three sides of ∆. By the definition of comparison points,
we have

dk(x, q) = d(x, q) = d(x, v) + d(v, q), dk(q, y) = d(q, y) = d(q, v)− d(v, y)

It follows from the triangle inequality of dk that

dk(x, y) ≥ dk(x, q)− dk(q, y) = d(x, v) + d(v, q)− d(q, v) + d(v, y) = d(x, v) + d(v, y) = d(x, y),

which is the equality to prove.
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Remark 6.16. In the above proof of Proposition 6.15, the CAT(k) inequality is proven globally.
In particular, each metric tree is a CAT(0) space, which is also alternatively referred to a global
NPC space in [94, Proposition 3.4]. According to [94, Proposition 4.3], barycenters of probability
measures on metric trees are unique. We shall see in Proposition 6.63 an example showing that
Wasserstein barycenters on the Wasserstein space W2(Γ) over a metric tree Γ are not unique, which
in particular implies that W2(Γ) is not a CAT(0) space (c.f. [14, Remark 2.10] [59, remark after
Proposition 1.4] [8, Example 7.3.3]).

6.1.3 Wasserstein barycenters on the real line
Since the real line R can be represented as a metric tree (with integers being its vertices) and any
edge of a metric tree is isometric to a compact interval, it is helpful to first investigate properties
of Wasserstein barycenters on R. As reviewed in (Section 1.4.1), any optimal transport problem
on R admits an explicit solution. This solution underlies the formula of Wasserstein barycenter
presented in Theorem 6.18.

Recall that L2([0, 1]) denotes the Hilbert space of squared integrable functions on [0, 1] with
respect to the Lebesgue measure and f−1

µ denotes the quantile function (Definition 1.28) of a
probability measure µ on R. The Wasserstein space W2(R) inherits the linear structure of L2([0, 1])
via quantile functions, as shown by the following formula in Theorem 1.37,

dW (µ, ν)2 =

∫ 1

0

[f−1
µ (t)− f−1

ν (t)]2 d t. (6.5)

Proposition 6.17. The following subset Q of L2([0, 1]) is convex and closed,

Q := {g ∈ L2([0, 1]) | g coincides with a non-decreasing function on (0, 1) almost everywhere}.

The map F : W2(R) → Q sending µ to f−1
µ is a surjective isometry.

Proof. The convexity of Q follows from its definition. According to Theorem 1.37, µ ∈ W2(R) if
and only if f−1

µ ∈ L2([0, 1]). Moreover, it follows from (6.5) that F is an isometry.
We now prove that F is surjective. Fix an element g ∈ Q. Since any monotone function

has at most countably many points of discontinuity [17, Corollary 5.2.4], we can modify g on a
negligible set such that g is right-continuous and non-decreasing on (0, 1) with g(0) = limt↓0 g(t)
and g(1) = limt↑1 g(t). According to Lemma 1.29, the function f(x) := inft∈(0,1){t | g(t) > x}
defined for x ∈ R is right-continuous and non-decreasing. By definition of f , we also have that
limx→−∞ f(x) = 0 and limx→+∞ f(x) = 1. If follows that there exists exactly one probability
measure µ on R such that fµ = f [29, Proposition 4.4.3]. By Lemma 1.34, g coincides with f−1

µ on
(0, 1), which shows that F is surjective.

Last, since (W2(R), dW ) is a complete metric space, Q is a closed set.

Thanks to the above linear structure, explicit calculations of Wasserstein barycenters on R are
possible.
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Quantile function formula for Wasserstein barycenters on the real line

For a finitely supported probability measure P =
∑n
i=1 λiδνi , the quantile function of its barycenter

µP is given by the formula [79, §3.1.4],

f−1
µP

(t) =

n∑
i=1

λi f
−1
νi (t) =

∫
W2(R)

f−1
ν (t)dP(ν), ∀ t ∈ [0, 1].

Via the isometric embedding F : W2(R) → Q (see Proposition 6.17), this formula neatly translates
to a linear combination in Q:

F (µP) =

n∑
i=1

λi F (νi).

This linearity demonstrates that the Wasserstein barycenter problem on R simplifies significantly
thanks to the linear structure of L2([0, 1]). Building upon this, the following theorem extends this
result to general measures P ∈ W2(W2(R)). Our proof proceeds in two steps: first, we show that
g(t) :=

∫
W2(R) f

−1
ν (t)dP(ν) defines a valid quantile function; second, we prove that g ∈ Q is indeed

the barycenter of F#P, crucially employing the linear structure of Q via Fubini’s theorem.

Theorem 6.18 (Wasserstein barycenters on the real line). Let P ∈ W2(W2(R)) be a probability
measure on the Wasserstein space (W2(R), dW ). Then P has a unique Wasserstein barycenter
µP ∈ W2(R), whose quantile function satisfies

f−1
µP

(t) =

∫
W2(R)

f−1
ν (t)dP(ν), ∀ t ∈ [0, 1]. (6.6)

In particular, the integral in (6.6) is finite for t ∈ (0, 1), and the inequality still holds when it takes
possibly infinite values for the case t = 0, 1.

Proof. By Lemma 1.35, the map ν 7→ f−1
ν (t) is upper semi-continuous for t ∈ [0, 1) and lower semi-

continuous for t = 1, which implies that it is measurable for any t ∈ [0, 1] [29, p.176]. It follows
from Theorem 1.37 and Fubini’s theorem that∫ 1

0

∫
W2(R)

[f−1
ν (t)]2 dP(ν)d t =

∫
W2(R)

∫ 1

0

[f−1
ν (t)]2 d tdP(ν) =

∫
W2(R)

dW (δ0, ν)
2 dP(ν) < +∞,

where we applied the property that the quantile function of δ0 is the constant 0, i.e., f−1
δ0

≡ 0.
If follows from the Cauchy–Schwarz inequality that the function g : [0, 1] → R defined by g(t) :=∫
W2(R) f

−1
ν (t)dP(ν) for t ∈ [0, 1] is an element in L2([0, 1]).

We claim that g is a non-decreasing and right-continuous function on (0, 1) with g(0) = limt↓0 g(t)
and g(1) = limt↑1 g(t). We first show that g must be finite on (0, 1). Indeed, if g(t) = +∞ for some
t ∈ (0, 1), then g(s) = +∞ for any s ∈ [t, 1] since any quantile function f−1

ν is increasing, which
contradicts the fact that g ∈ L2([0, 1]). Due to the same reason, we cannot have g(t) = −∞ for
some t ∈ (0, 1). Hence, g is finite and non-decreasing on (0, 1). Fix t ∈ [0, 1), we show that g is right-
continuous at t. Let {tn}n≥1 ⊂ (t, 1+t2 ) be a decreasing sequence smaller than 1+t

2 that converges
to t. Applying the monotone convergence theorem with measure P to the decreasing sequence of
non-positive functions ν 7→ f−1

ν (tn)− f−1
ν ( 1+t2 ), we obtain limn→∞ g(tn)− g( 1+t2 ) = g(t)− g( 1+t2 ),

which shows that g is right-continuous at t since the decreasing sequence {tn}n≥1 is arbitrarily
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chosen and g is non-decreasing on (0, 1). By a similar application of the monotone convergence
theorem, we see that g(1) = limt↑1 g(t). Hence, our claim on g is proven.

According to Proposition 6.17, since g|(0,1) is non-decreasing and right-continuous, there exists a
unique measure µP ∈ W2(R) such that f−1

µP
= g. It remains to show that µP is the unique barycenter

of P. For any measure η ∈ W2(R), by Theorem 1.37 and Fubini’s theorem, we have∫
W2(R)

dW (η, ν)2 dP(ν) =
∫ 1

0

∫
W2(R)

[f−1
η (t)− f−1

ν (t)]2 dP(ν)d t

=

∫ 1

0

[
f−1
η (t)−

∫
W2(R)

f−1
ν (t)dP(ν)

]2
d t+ I(P), (6.7)

where the abbreviated term I(P) is independent of η,

I(P) :=
∫ 1

0

∫
W2(R)

[f−1
ν (t)]2 dP(ν)−

(∫
W2(R)

f−1
ν (t)dP(ν)

)2

d t.

It follows from (6.7) that the infimum infη∈W2(R)
∫
W2(R) dW (η, ν)2 dP(ν) is reached by η if and only

if f−1
η (t) =

∫
W2(R) f

−1
ν (t) = g(t) = f−1

µP
(t) for almost every t ∈ [0, 1]. Therefore, µP is a barycenter

of P and its uniqueness follows from the injectivity of the embedding in Proposition 6.17.

6.2 A reduction technique for metric trees
Metric graphs, being Polish spaces (Theorem 6.9), fit the general theory framework of optimal
transport and Wasserstein spaces. In this section, we introduce a reduction technique to simplify
optimal transport problems on metric trees. This technique allows us to recover the optimal trans-
port plans for the case where one measure is supported in an edge, by reducing the problem to a
corresponding optimal transport problem on the real line.

On a metric tree Γ = (V,E, dl), each edge e ∈ E is isometric to an interval of length l(e)
(Lemma 6.6). Extending this isometry to the entire tree yields the following reduction map, which
preserves distances for certain simple paths.

Proposition 6.19 (The reduction map associated to an oriented edge). Let Γ = (V,E, dl) be a
metric tree and let ~e =

#              »

{v0, v1} be an oriented edge of Γ. There exists a unique map T~e : Γ → R of
~e defined by the following conditions,

1. T~e(v0) = 0, T~e(v1) = l(~e), and T~e restricted to
#              »

{v0, v1} is an isometry onto [0, l(~e)];

2. given any simple path γ : [a, b] → Γ such that γ(a) or γ(b) is located at the edge
#              »

{v0, v1}, T~e
composed with γ is an isometry,

∀ t, s ∈ [a, b], dl(γ(t), γ(s)) = |T~e(γ(t))− T~e(γ(s))|.

The map T~e is called the reduction map associated to ~e =
#              »

{v0, v1}.
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e⃗

T e⃗

0 2 5 7−6

v0 v1

Γ

R

Proof. We first prove the existence. Fix a point x ∈ Γ. If x ∈ ~e, then set T~e(x) := dl(x, v0). As for
the case that x /∈ ~e, we first claim that dl(x, v0) 6= dl(x, v1). Consider the two geodesics connecting
x and v0, v1 respectively. If dl(x, v0) = dl(x, v1), then by Lemma 6.6 none of them contains the
edge ~e, which contradicts the assumption that Γ is a metric tree since these two geodesics and the
edge ~e produce a cycle. This contradiction proves our claim. With the help of this claim, in the
case that x /∈ ~e, we can define T~e(x) := dl(x, v0) if d(x, v0) > d(x, v1), and T~e(x) := −dl(x, v0) if
dl(x, v0) < d(x, v1).

We now show that the previously defined function T~e satisfies the second property. Recall that
the length of a simple path is equal to the distance between its two endpoints (Lemma 6.6). By our
construction, T~e is a continuous function satisfying |T~e(y)− T~e(z)| = dl(y, z) for y ∈ ~e and z ∈ Γ.
Therefore, if γ : [a, b] → Γ is a simple path such that γ(a) ∈

#              »

{v0, v1}, then

b− a = dl(γ(b), γ(a)) = |T~e(γ(b))− T~e(γ(a))|. (6.8)

Consider the restrictions of γ to the intervals [a, s] for s ∈ (a, b). Since (6.8) also holds for these
restrictions and the composited function T~e ◦ γ : [a, b] → R is continuous, the function T~e ◦ γ −
T~e ◦ γ(a) must be always non-positive or always non-negative, i.e.,

T~e ◦ γ(s)− T~e ◦ γ(a) = s− a for s ∈ (a, b] or T~e ◦ γ(s)− T~e ◦ γ(a) = a− s for s ∈ (a, b],

which further implies that T~e ◦γ is monotone and isometric. Hence, for t, s ∈ [a, b], dl(γ(t), γ(s)) =
|t− s| = |T~e(γ(t))− T~e(γ(s))|.

As for the uniqueness, note that a real number is uniquely determined by its distance to 0 and
l(~e). Hence, for x ∈ Γ, T~e(x) is uniquely determined by the distances dl(x, v0) and dl(x, v1).

The reduction map associated to an edge induces a push-forward map from W2(Γ) to W2(R).
To simplify notation in subsequent development, we use the symbol T to denote this map.

Definition 6.20 (The push-forward map associated to an oriented edge). Let Γ = (V,E, dl) be a
metric tree and let ~e be an oriented edge of Γ. We denote by T ~e, or simply by T (when the oriented
edge ~e is explicitly given in the context), the map

T : W2(Γ) → W2(R)

defined for µ ∈ W2(Γ) by the formula T (µ) := T~e#µ, where T~e is the reduction map associated to
~e (Proposition 6.19). We call T the push-forward map associated to ~e.
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The push-forward map T preserves several properties of probability measures across the Wasser-
stein spaces W2(Γ) and W2(R). Let us start with the absolute continuity. To avoid confusion, we
remark that there is no relation between the symbol ~e (an oriented edge) and e (an edge).

Lemma 6.21. Let Γ = (V,E, dl) be a metric tree. Fix an oriented edge ~e of Γ and let T : W2(Γ) →
W2(R) be the push-forward map associated to ~e (Definition 6.20). Then for any µ ∈ W2(Γ),

µ is absolutely continuous ⇐⇒ T (µ) is absolutely continuous.

Proof. Recall from Definition 6.11 that canonical measure H of Γ gives no mass to the vertices of
Γ, and on each edge e, H|e is the Lebesgue measure after identifying e with an interval of equal
length.

We first prove the case where µ ∈ W2(Γ) is supported in some edge e ∈ E. Consider a simple
path γ from ~e to e. The second property of T~e applied to γ implies that the map T~e|e : e→ T~e(e)
is a metric isomorphism. Since µ is supported in e, µ is absolutely continuous with respect to H|e
if and only if T (µ) is absolutely continuous with respect to T~e#[H|e]. By definition of H, T~e#[H|e]
is the Lebesgue measure restricted to T~e(e), which proves the lemma for the particular case of µ.

Now consider the general case for µ ∈ W2(Γ). As Γ has at most countably many edges, we can
re-write µ as µ :=

∑
j∈J λj µj such that for each index j ∈ J ⊂ N, 0 < λj < 1 and µj ∈ W2(Γ)

is supported in some edge of Γ. Note that, with respect to a given measure, a sum of at most
countably many non-negative measures is absolutely continuous if and only if each measure in the
sum is so. Since T is a push-forward map, T (µ) =

∑
j∈J λj T (µj). Hence, the general case follows

from the previously proven case.

The push-forward map T also helps to reduce an optimal transport problem on Γ to an optimal
transport problem on R, which relies on the following two properties of T~e.

1. T~e preserves the distance of two given points if one of them is contained in the edge ~e;

2. for any edge e ∈ E, T~e is injective on the set ~e ∪ e.

The first property ensures that the push-forward map induced by T~e×T~e : Γ×Γ → R×R preserves
the optimality of couplings thanks to the cyclical monotonicity characterization of optimal transport
plans, as we shall see in (6.9). With the second property, we can show that the push-forward map
is surjective as a map from the couplings of µ and ν to the couplings of T (µ) and T (ν). These
two properties are used, in the following theorem, to demonstrate the following two inequalities
respectively,

dW (µ, ν) ≤ dW (T (µ), T (ν)) and dW (µ, ν) ≥ dW (T (µ), T (ν)).

Note that the symbol dW is employed to denote both the Wasserstein metrics of W2(Γ) and W2(R).

Theorem 6.22. Let Γ = (V,E, dl) be a metric tree. Fix an oriented edge ~e of Γ and let T :
W2(Γ) → W2(R) be the push-forward map T associated to ~e (Definition 6.20). For two given
probability measures µ, ν ∈ W2(Γ), if µ is supported in the edge ~e, then

dW (µ, ν) = dW (T (µ), T (ν)).
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Proof. For any coupling γ of µ and ν, since µ is supported in ~e, Proposition 6.19 implies that∫
Γ×Γ

dl(x, y)
2 d γ(x, y) =

∫
Γ×Γ

|T~e(x)− T~e(y)|2 d γ(x, y)

=

∫
R×R

|x− y|2 d[T~e × T~e]#γ(x, y), (6.9)

which shows dW (T (µ), T (ν)) ≤ dW (µ, ν) since [T~e × T~e]#γ is a coupling of T (µ) and T (ν).
We now prove the inequality dW (µ, ν) ≤ dW (T (µ), T (ν)). Let η be an optimal transport plan

between T (µ) and T (ν). According to (6.9), it suffices to find a coupling of µ and ν such that T~e×T~e
pushes forward it to η. Rewrite ν =

∑
e∈E λe νe+

∑
v∈V λv δv, where λe, λv ∈ [0, 1], δv denotes the

Dirac measure supported at the vertex v ∈ V and νe ∈ W2(Γ) is a probability measure supported in
the edge e that gives no mass to the ends of e. Denote by fe (respectively fv) the density functions
of T (νe) (respectively T (δv)) with respect to T (ν). It follows that

∑
e∈E λe fe +

∑
v∈V λv fv = 1

for T (ν)-almost everywhere. Introduce the probability measures ηe(dx,d y) := fe(y) · η(dx,d y)
and ηv(dx,d y) := fv(y) · η(dx,d y). By our choices of fe and fv, ηe is a coupling of T (µ) and
T (νe) if λe 6= 0 and ηv = T (µ) ⊗ T (δv) is the product measure of its two marginals if λv 6= 0.
Moreover, η =

∑
e∈E λe ηe+

∑
v∈V λv ηv. We are now ready to construct a coupling between µ and

ν as follows.
Fix an edge e ∈ E. We claim that T~e is injective on the set ~e ∪ e. Since the base graph of Γ is

connected, there exists a simple path from ~e to e, and Proposition 6.19 shows that T~e is injective on
its image, which proves our claim. Set Ue := T~e(~e∪e) ⊂ R and denote by Se : Ue → ~e∪e the inverse
map of T~e|~e∪e. Since ~e∪ e contains the support of µ and νe, Ue contains the support of T (νe) and
T (µ). Hence, Ue×Ue contains the support of ηe, which allows us to define the probability measure
γe := [Se×Se]#ηe on Γ×Γ. For e ∈ E such that λe 6= 0, since Se is the inverse map of T~e|~e∪e and
ηe is a coupling of T (µ) and T (νe), γe is a coupling of µ and νe, and ηe = [T~e × T~e]#γe.

For v ∈ V , note that the measure γv := µ ⊗ δv satisfies ηv = [T~e × T~e]#γv if λv 6= 0. As a
sum of at most countably many probability measures on Γ × Γ, γ :=

∑
e∈E λe γe +

∑
v∈V λv γv

is a well-defined probability measure satisfying [T~e × T~e]#γ = η. Moreover, γ is coupling of µ
and ν since γe (respectively γv) is a coupling of µ and νe (respectively δv). Therefore, we have
dW (µ, ν) ≤ dW (T (µ), T (ν)), which implies the equality dW (µ, ν) = dW (T (µ), T (ν)).

Remark 6.23. Note that Theorem 6.22 does not assert the uniqueness of optimal transport plans
between µ and ν even if there is a unique optimal transport plan between T (µ) and T (ν). In
Proposition 6.63, we shall see how the reduction technique is applied and also an example illustrating
the non-uniqueness of Wasserstein barycenters due to the branching structure of metric trees.
Remark 6.24. Our proof of Theorem 6.22 relies on the injectivity of T~e on ~e ∪ e to define γe such
that ηe = [T~e × T~e]#γe. However, the assumption that νe assigns no mass to the endpoints of
e allows us to weaken this requirement: injectivity of T~e on ~e ∪ e̊ (where e̊ is the interior of e)
is sufficient. This assumption, introduced in the decomposition ν =

∑
e∈E λe νe +

∑
v∈V λv δv to

prevent multiple choices for νe when endpoint mass is allowed, unexpectedly also contributes to
this weakening of the injectivity condition on T~e.

According to Theorem 6.9, metric graphs are proper metric spaces, which implies that Wasser-
stein barycenters always exist on metric trees. By combining Theorem 6.22 with the formula of
Wasserstein barycenters on the real line (Theorem 6.18), we shall prove some interesting properties
of Wasserstein barycenters on metric trees.
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6.3 Almost absolute continuity of barycenters
In Chapter 4, it is shown that lower Ricci curvature bounds ensure the absolute continuity of
Wasserstein barycenters. However, metric trees are metric spaces with curvature ≤ k for all k ≤ 0
(Proposition 6.15), and are thus usually considered to have curvature −∞. The following example,
inspired by [50, Example 1], shows that on metric trees, the absolute continuity of Wasserstein
barycenters is no longer guaranteed.

Example 6.25. Consider the metric tree Γ with a tripod shape, which is constructed by attaching
three unit intervals [0, 1] at the endpoint 0. Denote by νi for i = 1, 2, 3 the three probability mea-
sures supported in the three different edges of Γ, such that each of them is the uniform probability
measure on [ 12 , 1]. Then the Dirac measure δ0 at vertex 0 is the unique barycenter of the measure
P :=

∑3
i=1

1
3δνi . To streamline our presentation, we postpone the proof of this property to Propo-

sition 6.59. Therefore, with respect to the canonical measure on Γ, we see that while P gives mass
to absolute continuous measures, its barycenter is not absolutely continuous.

This section is devoted to proving that Wasserstein barycenters on metric trees are almost
absolutely continuous, meaning that the above singularity can only occur at vertices. We start with
the following lemma, which characterizes Wasserstein barycenters when they are supported in an
edge. Its proof relies on the reduction technique (Theorem 6.22) introduced in the previous section.

Lemma 6.26. Let Γ = (V,E, dl) be a metric graph. Fix an oriented edge ~e of Γ and a probability
measure P ∈ W2(W2(Γ)). Suppose that P has a barycenter µP ∈ W2(Γ) that is supported in the edge
~e of Γ. Denote by T : W2(Γ) → W2(R) the push-forward map associated to ~e (Definition 6.20) and
define Q := T#P. Then the quantile function of T (µP) is determined by the quantile function of µQ
as follows: for t ∈ [0, 1],

f−1
T (µP)

(t) =


0 if f−1

µQ
(t) < 0

f−1
µQ

(t) if 0 ≤ f−1
µQ

(t) ≤ l(~e)

l(~e) if f−1
µQ

(t) > l(~e).

Proof. Since µP is a barycenter of P that is supported in the edge ~e, Theorem 6.22 implies that

inf
µ∈W2(~e)

∫
W2(Γ)

dW (T (µ), T (ν))2 dP(ν) = inf
µ∈W2(~e)

∫
W2(Γ)

dW (µ, ν)2 dP(ν)

=

∫
W2(Γ)

dW (µP, ν)
2 dP(ν) =

∫
W2(Γ)

dW (T (µP), T (ν))2 dP(ν). (6.10)

Since the restriction of the reduction map T~e to ~e is an isometry onto [0, l(~e)], T maps W2(~e)
bijectively to W2([0, l(~e)]). Applying the definition Q := T#P to (6.10), we obtain

inf
µ∈W2([0,l(~e)])

∫
W2(R)

dW (µ, ν)2 dQ(ν) =

∫
W2(R)

dW (T (µP), ν)
2 dQ(ν). (6.11)

Denote by µQ the unique Wasserstein barycenter of Q, which satisfies f−1
µQ

=
∫
W2(R) f

−1
ν dQ(ν)

(Theorem 6.18). To further simplify (6.11), we apply Theorem 1.37 with Fubini’s theorem (c.f.
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(6.7) in the proof of Theorem 6.18) and obtain∫
W2(R)

dW (µ, ν)2 dQ(ν) =

∫ 1

0

∫
W2(R)

[f−1
µ (t)− f−1

ν (t)]2 dQ(ν)d t

=

∫ 1

0

[
f−1
µ (t)−

∫
W2(R)

f−1
ν (t)dQ(ν)

]2
d t+ I(Q)

=

∫ 1

0

[f−1
µ − f−1

µQ
]2 dλ+ I(Q),

where the abbreviated term I(Q) is independent of µ,

I(Q) :=

∫ 1

0

∫
W2(R)

[f−1
ν (t)]2 dQ(ν)−

(∫
W2(R)

f−1
ν (t)dQ(ν)

)2

d t.

Hence, (6.11) is equivalent to

inf
µ∈W2([0,l(~e)])

∫ 1

0

[f−1
µ − f−1

µQ
]2 dλ =

∫ 1

0

[f−1
T (µP)

− f−1
µQ

]2 dλ. (6.12)

By Lemma 1.33, a probability measure µ is in the space W2([0, l(~e)]) if and only the image of f−1
µ is

contained in the interval [0, l(~e)]. Hence, a solution µ ∈ W2([0, l(~e)]) of the minimization problem
in the left-hand side of (6.12) must satisfy the requirements

f−1
µ (t) = 0 if f−1

µQ
(t) < 0, f−1

µ (t) = f−1
µQ

(t) if 0 ≤ f−1
µQ

(t) ≤ l(~e), f−1
µ (t) = l(~e) if f−1

µQ
(t) > l(~e).

In particular, the measure T (µP) ∈ W2([0, l(~e)]) satisfies the above requirements, which concludes
the proof.

Lemma 6.26 implies that Wasserstein barycenters on metric trees can be fully reduced to the
real line, provided that they are supported in the interior of an egde.

Corollary 6.27. Let Γ = (V,E, dl) be a metric graph. Fix an oriented edge ~e of Γ and a probability
measure P ∈ W2(W2(Γ)). Suppose that P has a barycenter µP ∈ W2(Γ) that is supported in the edge
~e of Γ and assigns no mass to the ends of ~e. Denote by T : W2(Γ) → W2(R) the push-forward map
associated to ~e (Definition 6.20). Then T (µP) is the unique barycenter of Q := T#P.

Proof. Since µP is assumed to give no mass to the ends of ~e, T (µP) gives no mass to the endpoints
of [0, l(~e)]. Hence, Lemma 1.34 implies

0 = fT (µP)(0) = inf
t∈(0,1)

{t | f−1
T (µP)

(t) > 0}, 1 = lim
s↑l(~e)

fT (µP)(s) = lim
s↑l(~e)

inf
t∈(0,1)

{t | f−1
T (µP)

(t) > s}.

It follows from these two equalities that for 0 < t < 1, f−1
T (µP)

(t) 6= 0 and f−1
T (µP)

(t) 6= l(~e). According
to the requirements satisfied by T (µP) in Lemma 6.26, we must have 0 ≤ f−1

µQ
(t) ≤ l(~e) and

f−1
T (µP)

(t) = f−1
µQ

(t) for t ∈ (0, 1). Hence, T (µP) = µQ is the unique barycenter of Q.
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At first glance, the assumption in Lemma 6.26 (and thus in Corollary 6.27), that P has a barycen-
ter µP ∈ W2(Γ) supported in the edge ~e, might appear limited. However, this assumption becomes
useful when combined with the restriction property of Wasserstein barycenters (Proposition 5.2).
The proof below, demonstrating the almost absolute continuity of Wasserstein barycenters, provides
a concrete example of this idea.

Theorem 6.28 (Almost absolute continuity of Wasserstein barycenters on metric trees). Let Γ =
(V,E, dl) be a metric graph. Fix a measure P ∈ W2(W2(Γ)) that gives mass to absolutely continuous
measures on Γ. If µP is a barycenter of P, then the restriction of µP to the interior of any given
edge is absolutely continuous. Therefore, if µP is not absolutely continuous, then its singular part
is a sum of Dirac measures at the vertices of Γ.

Proof. Fix an oriented edge ~e of Γ. Denote by e̊ the interior of ~e. If µ gives no mass to the set e̊,
then its restriction on e̊ is null, and thus absolutely continuous.

Consider now the case that µP(̊e) > 0 and denote by µe̊ ∈ W2(Γ) the normalized probability
measures of the restriction of µP to e̊. Let T : W2(Γ) → W2(R) be the push-forward map associated
to ~e (Definition 6.20). According to Lemma 6.21, for η ∈ W2(Γ), T (η) is absolutely continuous if
and only if η is absolutely continuous. We prove the absolute continuity of µe̊ by discussing two
different cases.

If µe̊ = µP, then T (µe̊) is the unique barycenter of Q := T#P according to Corollary 6.27, which
is absolutely continuous since Q gives mass to absolutely continuous measures on R (Theorem 4.5).
It follows that µP is absolutely continuous when µe̊ = µP. We now prove that µe̊ is absolutely
continuous when µe̊ 6= µP. For the division µP = λµe̊ + (1 − λ)ν with λ := µP(̊e) ∈ (0, 1) and
ν ∈ W2(Γ), Corollary 5.4 provides two measures P1,P2 ∈ W2(W2(Γ)) such that µe̊ is a barycenter
of P1 and ν is a barycenter of P2. Moreover, Corollary 5.4 implies that both P1 and P2 give mass
to absolutely continuous measures since P does so. We then have µe̊ = µP1 is absolutely continuous
as proven in the previous case.

Since the directed edge ~e is arbitrarily chosen, our theorem is proven.

6.4 New results of Wasserstein barycenters on R
Theorem 6.28 shows how properties of barycenters supported in an edge can be extended, via the
restriction property of Wasserstein barycenters, to general barycenters (with appropriate modifica-
tions) on metric trees. This motivates our study of Wasserstein barycenters on the real line with
compact support, since their properties can then be translated to barycenters on metric trees that
assign full mass to the interior of some edge (Corollary 6.27). Our investigation proceeds as follows:
given a probability measure P ∈ W2(W2(R)) with its unique barycenter possessing certain prop-
erties, we aim to identify necessary properties satisfied by P-almost every measure. The following
proposition concerning compact support illustrates this paradigm.

Proposition 6.29. If the unique barycenter µP of P ∈ W2(W2(R)) has compact support, then for
P-almost every measure ν ∈ W2(R), ν has compact support. Moreover, if µP is a Dirac measure,
then for P-almost every measure ν ∈ W2(R), ν is a Dirac measure.

Proof. Lemma 1.33 shows that a probability measure µ on R has compact support if and only if its
quantile function is finite on the unit interval [0, 1]. By the formula of Wasserstein barycenters on
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R (Theorem 6.18), we have

f−1
µP

(0) =

∫
W2(R)

f−1
ν (0)dP(ν), f−1

µP
(1) =

∫
W2(R)

f−1
ν (1)dP(ν).

We remind the reader that the existence of the above integrals is part of the conclusions of Theo-
rem 6.18. Since both f−1

µP
(0) and f−1

µP
(1) are finite by our assumption, the above equalities imply

that for P-almost every measure ν ∈ W2(R)), both f−1
ν (0) and f−1

ν (1) are finite, which further
implies that ν has compact support.

Now consider the special case that µP = δx is a Dirac measure. Since f−1
µP

is the constant
function on [0, 1] with value x, Theorem 6.18 implies

0 ≤
∫
W2(R)

f−1
ν (1)− f−1

ν (0)dP(ν) = f−1
µP

(1)− f−1
µP

(0) = x− x = 0.

Hence, for P-almost every ν, f−1
ν (1) = f−1

ν (0), and the last part of our proposition follows from
Lemma 1.33.

The preceding proof relies on the key idea of expressing the properties of a probability measure
through its quantile function. To further develop this idea, we introduce dual measures in the
following subsection.

6.4.1 Dual measures
Lemma 1.30 states that a quantile function is uniquely determined by its values on the open interval
(0, 1), where it is also right-continuous. This property is shared by the distribution function of a
probability measure on [0, 1]. Based on this, we define dual measures as follows.

Definition 6.30 (Dual measures). Let µ, µ̃ be two probability measures on the real line that are
supported in the unit interval [0, 1]. Denote by f−1

µ the quantile function of µ and by fµ̃ the
distribution function of µ̃. The measure µ̃ is the dual measure of µ if

fµ̃(t) = f−1
µ (t), ∀ 0 < t < 1.

Our definition of dual measures is justified by the following lemma.

Lemma 6.31. Let µ be a probability measure supported in the unit interval [0, 1]. Its dual measure
µ̃ always exists and is unique. Moreover, µ is the dual measure of µ̃, i.e., ˜̃µ = µ.

Proof. Consider the following function f : R → [0, 1] defined by setting

f(x) := f−1
µ (x) for 0 ≤ x < 1, f(x) := 0 for x < 0, f(x) := 1 for x ≥ 1.

Since µ is supported in the unit interval [0, 1], Lemma 1.33 implies f−1
µ (x) ∈ [0, 1] for x ∈ [0, 1).

It follows that the function f defined above is non-decreasing and right-continuous. Hence, there
exists a unique probability measure µ̃ on R such that f = fµ̃ is the distribution function of µ̃
[29, Proposition 4.4.3]. Given that the distribution function of a probability measure supported
in [0, 1] is uniquely determined by its values on the open interval (0, 1), we conclude that f is
the sole distribution function of this kind that matches f−1

µ on (0, 1). Consequently, according to
Definition 6.30, µ̃ is the unique dual measure of µ.
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It remains to that µ is the dual measure of µ̃. Since fµ̃(t) = f−1
µ (t) for 0 < t < 1, Lemma 1.34

implies that fµ(x) = inft∈(0,1){t ∈ (0, 1) | fµ̃(t) > x} for x ∈ R. We now re-write the infimum part
of this formula of fµ(x). Since fµ̃(t) = 1 for t ≥ 1, if the set {t ∈ (0, 1) | fµ̃(t) > x} is empty for
some 0 < x < 1, then by convention (1.15),

inf
t∈(0,1)

{t ∈ (0, 1) | fµ̃(t) > x} = 1 = inf
t
{t ∈ R | fµ̃(t) > x}. (6.13)

As fµ̃(t) = 0 for t < 0, by considering two different cases according to whether the set {t ∈ (0, 1) |
fµ̃(t) > x} is empty, the established eqaulity (6.13) implies that, for 0 < x < 1,

fµ(x) = inf
t∈(0,1)

{t ∈ (0, 1) | fµ̃(t) > x} = inf
t
{t ∈ R | fµ̃(t) > x} =: f−1

µ̃ (x),

which shows that µ is the dual measure of µ̃ according to Definition 6.30.

Remark 6.32. In the proof of Lemma 6.31, we see that fµ̃ and f−1
µ coincide on [0, 1), with the

possibility of being distinct at the point 1. For example, if the point 1 is not in the support of µ,
then f−1

µ (1) < 1 by Lemma 1.33, while fµ̃(1) = µ̃([0, 1]) = 1 by the assumption µ̃ ∈ W2([0, 1]).
Now we are ready to investigate some basic properties of dual measures. In the following

proposition, we characterize atoms of a probability measure using its dual measure. By discrete
measure, we mean a σ-finite measure that is a weighted sum of (at most countably many) Dirac
measures. For example, we can assign non-zero mass properly to the rational numbers in [0, 1] to
construct a discrete probability measure. Note that the support of this example is the closure of
all rational numbers in [0, 1], which is exactly the interval [0, 1].

Proposition 6.33 (Atoms and dual measures). Fix two probability measures µ, µ̃ supported in [0, 1]
such that µ̃ is the dual measure of µ. We have the following characterizations of µ,

1. µ is a discrete measure if and only if the support of µ̃ is negligible with respect to the Lebesgue
measure on R;

2. µ is atomless, i.e., µ({x}) = 0 for all x ∈ R if and only if [0, 1] is the support of µ̃;

3. the support of µ consists of finitely many points if and only if the support of µ̃ consists of
finitely many points;

4. the support of µ consists of countably many points if and only if the support of µ̃ consists of
countably many points.

Proof. Recall from Lemma 1.33 that if a measure ν has compact support, then [f−1
ν (0), f−1

ν (1)]
is the convex hall of supp(ν). Hence, the intervals (−∞, f−1

µ̃ (0)) and (f−1
µ̃ (1),+∞) are the two

unbounded connected components of R \ supp(µ̃). Moreover, atoms of µ are characterized by
connected components of R \ supp(µ̃) as follows.

1. Since µ({0}) = fµ(0)− lims↑0 fµ(s) = f−1
µ̃ (0), Lemma 1.33 implies that µ({0}) = x > 0 if and

only if the interval (−∞, x) is a connected component of R \ supp(µ̃).

2. For 0 < t < 1, since µ({t}) = fµ(t)−lims↑t fµ(s) = f−1
µ̃ (t)−lims↑t f

−1
µ̃ (s), Lemma 1.32 implies

that µ({t}) = x > 0 if and only if the interval (f−1
µ̃ (t) − x, f−1

µ̃ (t)) ⊂ (0, 1) is a connected
component of R \ supp(µ̃).
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3. Since µ({1}) = 1− lims↑1 fµ(s) = 1− f−1
µ̃ (1), Lemma 1.33 implies that µ({1}) = x > 0 if and

only if the interval (1− x,+∞) is a connected component of R \ supp(µ̃).

Note that the open set R\supp(µ̃) is a disjoint union of at most countably many intervals, which are
connected components of R \ supp(µ̃). The above characterizations associate each of the intervals
with an atom of µ. It is also shown that, for each interval, the length of its intersection with (0, 1)
is equal to the jump of fµ at the associated atom. Consequently, the sum of all jumps of fµ, given
by
∑
t∈[0,1]{fµ(t)− lims↑t fµ(s)}, is equal to the Lebesgue measure of the open set (0, 1) \ supp(µ̃).

Recall that a probability measure µ on R is discrete if and only if the sum of all jumps of fµ is 1,
and it is atomless if and only if fµ is continuous. Hence, Property 1 and Property 2 follow from
the previously established equality

∑
t∈[0,1]{fµ(t)− lims↑t fµ(s)} = 1− L1(supp(µ̃)).

For Property 3, we first prove the claim that a probability measure ν on R is a weighted sum
of finitely many Dirac measures if and only if both fν and f−1

ν admit only finitely many values. If
ν =

∑N
j=1 λj δxj

, then the image set fµ([0, 1]) is contained in the set {0, λ1, λ2, . . . ,
∑N
j=1 λj = 1},

and the image set f−1
µ ([0, 1]) is contained in the set {x1, x2, . . . , xN}. Conversely, as fµ is non-

decreasing, if fµ admits only finitely many values, then [0, 1] is a union of finitely intervals such
that fµ is constant on each of them, which implies that ν is a weighted sum of finitely many Dirac
measures. Therefore, the claim is proven. Since f−1

µ and fµ̃ can only differ at 1 (Definition 6.30
and Remark 6.32), Property 3 follows from the preceding claim.

For Property 4, we assume that the support of µ consists of countably many points and prove
that so does the support of µ̃. We claim that the closure of the image of fµ, i.e., the set fµ(R), is
countable. Denote by A ⊂ [0, 1] the set of discontinuity points of fµ, which is a countable set since
fµ : R → [0, 1] is a monotone function. For our claim, it suffices to prove

fµ(R) = fµ(supp(µ))
⋃

{0, 1}
⋃
fµ(A−), where fµ(A−) :=

⋃
x∈A

lim
y↑x

fµ(y). (6.14)

For x ∈ R \ supp(µ) such that fµ(x) /∈ {0, 1}, there exist two points a, b ∈ supp(µ) such that
x ∈ (a, b) ⊂ R \ supp(µ) since supp(µ) is a closed set. It follows from the right-continuity of
fµ that f(x) = f(a), which implies fµ(R) ⊂ fµ(supp(µ)) ∪ {0, 1}. Therefore, for a fixed point
t ∈ fµ(R) \ fµ(supp(µ)) in the open interval (0, 1), there exists a sequence {xi}i∈N ⊂ supp(µ) such
that t = limi→+∞ f(xi). By passing to a subsequence, we can assume without loss of generality
that {xi}i∈N is monotone and limi→+∞ xi =: x ∈ supp(µ). Since t 6= f(x) ∈ f(supp(µ)) and
fµ is right-continuous, the sequence {xi} must be non-decreasing. Hence, t = limi→+∞ f(xi) =
limy↑x f(x) ∈ fµ(A−), which proves (6.14) by our previous choice of t. Our claim is thus proven,
which implies that the closure set f−1

µ̃ ([0, 1]) is countable. By Lemma 1.32 and Lemma 1.33, µ̃ gives
no mass to the complement of f−1

µ̃ ([0, 1]). It follows that supp(µ̃) consists of at most countably
many points. By Property 3, supp(µ̃) is necessarily a countable set since supp(µ) is not a finite set.
Property 4 follows from the duality µ = ˜̃µ.

Recall that the Cantor measure c on [0, 1] is an atomless probability measure whose support
is the Cantor set [29, Example 2.1.10, Exercies 7 of §2.1]. Hence, its dual measure c̃ is a discrete
measure with support [0, 1] according to Proposition 6.33. This result might initially appear counter-
intuitive, as one might expect that for a discrete probability measure µ, both its distribution function
fµ and its quantile function f−1

µ would admit at most countably many values. This expectation
seems to contradict the fact that f−1

c̃
coincides the distribution function fc of c on (0, 1). However,
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a closer look at the proof of Proposition 6.33 reveals that fµ admits countably many values if and
only if the support of µ consists of countably many points. To further clarify the subtle distinction
between discrete measures and measures with countable support, we present the following example.

Example 6.34 (A discrete measure whose distribution function admits uncountably many values).
Denote by A ⊂ (0, 1) the set of all rational numbers between 0 and 1 of the form (2k − 1)/2m,
where k,m ∈ N∗ are strictly positive integers such that k ≤ 2m−1. We define a discrete probability
measure µ by setting µ({a}) = 1/3m for a = (2k− 1)/2m ∈ A. Note that µ assigns full mass to the
set A since

µ(A) = 1 · 1
3
+ 2 · 1

32
+ 22 · 1

33
+ · · · =

∞∑
m=1

1

3
(
2

3
)m−1 = 1,

which implies that µ is a well-defined probability measure. We now calculate the distribution
function fµ of µ. For x ∈ (0, 1), since y ∈ A ∩ (0, x2 ] ⇐⇒ 2y ∈ A ∩ (0, x], we have µ((0, x2 ]) =
1
3µ((0, x]). Hence,

∀x ∈ (0, 1), fµ(
1

2
x) =

1

3
fµ(x), (6.15)

which implies that fµ( 12 ) = µ({ 1
2}) + limy↑1 fµ(

y
2 ) = 1

3 + 1
3 limy↑1 fµ(y) = 2

3 . For x ∈ (0, 1) and
y ∈ A ∩ (0, x2 ], µ assigns the same mass to the point y as to the point y + 1

2 ∈ A ∩ ( 12 ,
1+x
2 ]. Hence,

µ((0, x2 ]) = µ(( 12 ,
1+x
2 ]). It follows that, by (6.15),

∀x ∈ (0, 1), fµ(
1 + x

2
) = fµ(

1

2
) + µ((

1

2
,
1 + x

2
]) =

2

3
+ fµ(

x

2
) =

1

3
[2 + fµ(x)]. (6.16)

We now prove by mathematical induction the claim that, for m ∈ N∗ and t =
∑m
i=1

ai
2i with

ai ∈ {0, 1}, fµ(t) =
∑m
i=1

2 ai
3i . For the case m = 1, the equality fµ(0) = 0 is trivial and the equality

fµ(
1
2 ) =

2
3 is already shown. Assume that the claim is true for m = k (k ∈ N∗). For t =

∑k+1
i=1

ai
2i ,

we write t = a1
2 + 1

2

∑k
i=1

ai+1

2i . If a1 = 0, then (6.15) implies that f(t) = 1
3

∑k
i=1

2ai+1

3 . If a1 = 1,
then (6.16) implies that f(t) = 2

3 + 1
3

∑k
i=1

2ai+1

3 . Therefore, the claim for m = k + 1 is shown,
which proves the claim for any m ∈ N∗. Note that any real number s ∈ [0, 1] can be represented as a
sum s =

∑∞
i=1

ai
2i with ai ∈ {0, 1} such that the sequence {ai}i≥1 is not asymptotically identical to

1. Denote by N(j) the j-th index such that aN(j) = 0. Then, one can approximate s from above by
tj =

∑N(j)−1
i=1

ai
2i +

1
2N(j) as j → ∞. It follows from the right-continuity of fµ that fµ(s) =

∑∞
i=1

2 ai
3i .

Hence, fµ([0, 1]) is the Cantor set, which is uncountable.

Remark 6.35. In the literature, the properties of the distribution functions of discrete measures are
investigated under the name of saltus function or jump function. See references such as [40, 226B],
[99, Definition 1.6.30], [11, §13.2 of Chapter 1], [54, Definition 1.1.5], [84, §7 of Chapter I], and [75,
§1 of Chapter VIII].

Proposition 6.33 shows that the dual measures of various types of singular measures (with
respect to the Lebesgue measure) retain singularity. To generalize this observation, we begin with
some technical preparations.

For a specific class of complex measures, which will suffice for our subsequent development, we
introduce the total variation norm as defined in [10, Definition 5.1.11, Definition 5.1.13].
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Definition 6.36 (Total variation norm of complex measures). Let µ and ν be two finite measures
on [0, 1]. The total variation norm of the complex measure µ+ i ν is

‖µ+ i ν‖TV := sup
π

∑
A∈π

|µ(A) + i ν(A)|,

where the supremum is taken over all possible partitions π = {A1, A2, . . . , Ak} of the unit interval
[0, 1] = ∪kj=1Aj into finitely many pairwise disjoint measurable sets {Aj}1≤j≤k, and |x + i y| :=√
x2 + y2 denotes the modulus of the complex number x+ i y with x, y ∈ R.

As shown in the following lemma [10, Theorem 5.3.5], the total variation norm can be calculated
with the aid of Radon-Nikodym derivatives.

Lemma 6.37. Let µ be a finite measure on [0, 1]. For two given squared integrable functions
f, g ∈ L2(µ) with respect to µ, we have

‖f · µ+ i g · µ‖TV =

∫
[0,1]

|f + i g|dµ =

∫
[0,1]

√
f2 + g2 dµ.

To prove that a measure is singular, we shall use the following proposition showing that certain
sets are negligible with respect to the Lebesgue measure, whose proof and generalizations can be
found in [111, Theorem 7.29], [82, Theorem 4.1.4], [67, Corollary 3.37], [49, Corollary 6.2.2], and [89,
Theorem (4.5) of Chapter IX]. For completeness, we provide a proof using Vitali covering theorem.

Proposition 6.38. Let f : [0, 1] → R be a real function on [0, 1]. Define

Af := {x ∈ (0, 1) | the derivative of f exists at x and f ′(x) = 0}.

The image set f(Af ) is contained in a Borel set with Lebesgue measure 0.

Proof. We first recall the following Vitali covering theorem stated for R [17, Theorem 5.5.1]. Let
E ⊂ R be an arbitrary set. A fine covering of E is a collection F of compact intervals such that
for every x ∈ E and ε > 0, the exists an interval I ∈ F in the collection that contains x and has
length less than ε. The Vitali covering theorem asserts that we can extract from any fine covering
of E a sub-collection of at most countably many intervals F ′ = {Ij , j ∈ J} ⊂ F (J ⊂ N) such that
Im ∩ In = ∅ if m 6= n ∈ J and L1(E \ ∪j∈JIj) = 0.

Fix an ε > 0. For x ∈ Af , there exists a positive number δx > 0 such that 0 < x−δx < x+δx < 1
and |f(x + h) − f(x)| ≤ ε|h| if |h| ≤ δx. Consider the following fine covering F of f(Af (E)). To
define F , we associate x with the intervals [f(x)− ε h, f(x) + ε h] for all 0 < h < δx, i.e.,

F :=
⋃
x∈Af

{[f(x)− ε h, f(x) + ε h] ⊂ R | 0 < h < δx}.

By the Vitali covering theorem, there exists an at most countable subfamily of pairwise disjoint
closed intervals, F ′ := {Ij := [f(xj) − ε hj , f(xj) + ε hj ], j ∈ J} ⊂ F , that covers the set f(Af )
up to a negligible set. For j ∈ J , define ∆j := [xj − hj , xj + hj ]. We claim that for k 6= l ∈ J ,
the two intervals ∆k and ∆l are disjoint. Indeed, if y ∈ ∆k ∩∆l, then |f(y) − f(xk)| ≤ ε hk and
|f(y)− f(xl)| ≤ ε hl, and thus

f(y) ∈ [f(xk)− ε hk, f(xk) + ε hk] ∩ [f(xl)− ε hl, f(xl) + ε hl],
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which contradicts the property that F ′ is a family of pairwise disjoint closed intervals. Therefore,
our claim is proven. Since ∆j ⊂ [0, 1] for j ∈ J , we have

∑
j∈J λ(∆j) ≤ λ([0, 1]) = 1, which implies

L∗(f(Af )) ≤ λ(
⋃
j∈J

Ij) = ε
∑
j∈J

2hj = ε
∑
j∈J

L1(∆j) ≤ ε,

where L∗ denotes the outer measure of the Lebesgue measure L1 on R. Since ε > 0 is arbitrarily
chosen, we have L1(f(Af )) = 0, which concludes the proof.

The symmetry between a probability measure and its dual is not yet fully exploited, partially
due to the discontinuity of distribution functions. To overcome this, we employ the Minty param-
eterization, introduced in [74, §3] and further explained in [86, B of Chapter 12], which transforms
monotone (possibly multivalued) mappings into 1-Lipschitz functions. This allows us to express the
symmetry between dual measures in terms of Wasserstein barycenters, which will be illustrated by
figures later (Remark 6.41).

Proposition 6.39 (Symmetry between dual measures). Let µ be a probability measure supported
in the unit interval [0, 1]. Denote by u := L1|[0,1] the uniform probability measure on [0, 1] and by bµ̃
the unique barycenter of 1

2δu+ 1
2δµ̃. The probability measure bµ := 2u−bµ̃ is the unique barycenter

of 1
2δu + 1

2δµ, and the distribution function fbµ̃
of bµ̃ is the optimal transport map pushing forward

bµ to µ,

Proof. Note that the barycenter measure bµ̃ is absolutely continuous since so is the measure u.
Since the distribution function fu of u coincides with the identity function on [0, 1], we have ũ = u.
It follows from the formula of Wasserstein barycenters on R (Theorem 6.18) that f

b̃µ̃
= 1

2fu + 1
2fµ.

We first show that bµ := 2u− bµ̃ is a probability measure, which is equivalent, after passing to the
distribution functions, to prove that, for any 0 ≤ x < y ≤ 1,

fbµ̃
(y)− fbµ̃

(x) ≤ 2y − 2x. (6.17)

Fix x, y ∈ [0, 1] such that x < y. Define B := {t ∈ [0, 1] | x < f
b̃µ̃
(t) ≤ y}. By Lemma 1.38,

bµ̃ = [f−1
bµ̃

]#u, which further implies bµ̃ = [f
b̃µ̃
]#u and thus fbµ̃

(y)− fbµ̃
(x) = u(B). If B is empty,

then (6.17) holds trivially. It remains to consider the case that B is non-empty, which implies

fbµ̃
(y)− fbµ̃

(x) = supB − infB. (6.18)

By definition of B and the right-continuity of f
b̃µ̃

= 1
2fu + 1

2fµ,

x ≤ f
b̃µ̃
(infB) =

1

2
infB +

1

2
fµ(infB).

Moreover, for any t ∈ B, since fµ is non-decreasing,

1

2
t+

1

2
fµ(infB) ≤ 1

2
t+

1

2
fµ(t) = f

b̃µ̃
(t) ≤ y,

which implies 1
2 supB + 1

2fµ(infB) ≤ y. Therefore, (6.18) implies

fbµ̃
(y)− fbµ̃

(x) = supB − infB ≤ 2y − fµ(infB)− 2x+ fµ(infB) ≤ 2y − 2x.
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Since x, y is arbitrarily chosen and (6.17) is proven, bµ = 2u − bµ̃ is a probability measure. Note
that bµ is absolutely continuous since bµ̃ is so.

We now show that dW (u, bµ) = dW (bµ, µ). Since bµ̃ is atomless, [fbµ̃
]#bµ̃ = u according to

Lemma 1.38. As fbµ̃
= f−1

b̃µ̃

for u-almost everywhere, Lemma 1.38 also implies that [fbµ̃
]#u =

[f−1

b̃µ̃

]#u = b̃µ̃. Hence, [fbµ̃
]#(bµ) = [fbµ̃

]#(2u − bµ̃) = 2b̃µ̃ − u = µ thanks to the equality
f
b̃µ̃

= 1
2fu + 1

2fµ. As bµ is also an atomless measure and its distribution function is 2fu − fbµ̃
,

[2fu − fbµ̃
]#(bµ) = u by Lemma 1.38. Since both fbµ̃

and 2fu − fbµ̃
are non-decreasing functions,

they are optimal transport maps pushing forward the measure bµ to measures µ and u respectively.
Therefore,

dW (u, bµ)
2 =

∫ 1

0

|2fu(x)− fbµ̃
(x)− x|2 d bµ(x) =

∫ 1

0

|fu − fbµ̃
|2 d bµ and

dW (bµ, µ)
2 =

∫ 1

0

|x− fbµ̃
(x)|2 d bµ(x) =

∫ 1

0

|fu − fbµ̃
|2 d bµ,

which implies dW (u, bµ) = dW (bµ, µ).
Consider the map g := fbµ̃

◦ f−1
bµ

. Since g is non-decreasing and g#u = [fbµ̃
]#(bµ) = µ, g is

the optimal transport map pushing forward u to µ. Since bµ is atomless, fbµ ◦ f−1
bµ

is the identity
function on (0, 1) by Corollary 1.39. Hence,

(Id, g)#u = (fbµ
◦ f−1

bµ
, fbµ̃

◦ f−1
bµ

)#u = (fbµ
, fbµ̃

)#(bµ)

is the optimal transport plan between u and µ. Since bµ = 2u− bµ̃, we have fbµ = 2fu − fbµ̃
and

thus

dW (u, µ)2 =

∫ 1

0

|2fu(x)− fbµ̃
(x)− fbµ̃

(x)|2 d bµ(x) = 4

∫ 1

0

|fu − fbµ̃
|2 d bµ = 4 dW (u, bµ)

2.

Note that for any η ∈ W2(R),

1

2
dW (u, η)2 +

1

2
dW (η, µ)2 ≥ [

1

2
dW (u, η) +

1

2
dW (η, µ)]2 ≥ dW (u, µ)2,

which becomes an equality if η = bµ since dW (u, bµ) = dW (bµ, µ) =
1
2dW (u, µ). It follows that bµ

is the unique barycenter of 1
2δu + 1

2δµ.

Having established the necessary background, we are now in a position to prove the following
characterizations of singular measures.

Theorem 6.40. Fix a probability measure µ supported in the unit interval [0, 1]. Let u := L1|[0,1]
be the uniform probability measure on [0, 1]. Denote by µ̃ the dual measure of µ and by bµ̃ the
unique barycenter of 1

2δu + 1
2δµ̃. The following statements are equivalent.

1. The measure µ is singular, i.e., µ and u are mutually singular.

2. The total variation norm of the complex measure u+ i µ is 2.

3. The function Vbµ̃
: [0, 1] → R that sends x ∈ [0, 1] to Vbµ̃

(x) := x − fbµ̃
(x) is a 1-Lipschitz

function and the length of its graph is
√
2.
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4. bµ̃ is the restriction of 2u on some measurable subset of [0, 1] of Lebesgue measure 1/2.

5. The dual measure µ̃ is singular.

Proof. The equivalence between Statement 1 and Statement 2 is proven in [10, Proposition 5.4.4
(a)]. For completeness, we repeat the part of their proof demonstrating that Statement 1 implies
Statement 2. If µ and u are mutually singular, then by definition [17, Definition 3.2.1] there
exists a measurable set Ω ⊂ [0, 1] such that u(Ω) = 1 and µ([0, 1] \ Ω) = 1. By refining any
finite partition π of [0, 1] such that for A ∈ π, either A ⊂ Ω or A ⊂ [0, 1] \ Ω, we obtain that
‖u+ i µ‖TV = |u(Ω)|+ |i µ([0, 1] \ Ω)| = 1 + 1 = 2.

For Statement 3, before proving its relations with other statements, we exhibit the following
properties of bµ̃ and Vbµ̃

. Since bµ := 2u−bµ̃ is a probability measure according to Proposition 6.39,
fbµ̃

is a 2-Lipschitz function (c.f. (6.17)). It follows by direct calculation that Vbµ̃
= fu − fbµ̃

is a
1-Lipschitz function. Note that the barycenter measure bµ̃ is absolutely continuous since u is so.
Denote by h the density function of bµ̃, i.e., bµ̃ = h · u. The length of the graph of Vbµ̃

is∫ 1

0

√
1 + (V ′

bµ̃
)2 du =

∫ 1

0

√
1 + (1− h)2 du =

1√
2

∫ 1

0

√
h2 + (2− h)2 du

=
1√
2

∫ 1

0

|h+ i(2− h)|du =
1√
2
‖bµ̃ + i bµ‖TV ,

where for the last equality, we applied Lemma 6.37 to the equality bµ̃+i bµ = (h+i (2−h))·u. Since
bµ̃ is atomless, [fbµ̃

]#bµ̃ = u by Lemma 1.38. Moreover, Proposition 6.39 implies [fbµ̃
]#(bµ) = µ.

We prove that Statement 2 implies Statement 3. To avoid confusion, for a subset A ⊂ [0, 1],
we denote by [fbµ̃

]−1(A) the pre-image of A under the map fbµ̃
, which is not necessarily the image

set f−1
bµ̃

(A) of A under the map f−1
bµ̃

. Recall that for any two subsets A,B ⊂ [0, 1], [fbµ̃
]−1(A) ∩

[fbµ̃
]−1(B) = [fbµ̃

]−1(A ∩ B) and [fbµ̃
]−1(A) ∪ [fbµ̃

]−1(B) = [fbµ̃
]−1(A ∪ B). Hence, for a given

disjoint partition π = {A1, A2, . . . , Ak} of [0, 1] with finitely many measurable sets {Aj}1≤j≤k,
π′ := {[fbµ̃

]−1(A1), [fbµ̃
]−1(A2), . . . , [fbµ̃

]−1(Ak)} is also a disjoint partition of [0, 1]. It follows
from [fbµ̃

]#bµ̃ = u and [fbµ̃
]#(bµ) = µ that∑

A∈π
|u(A) + i µ(A)| =

∑
A′∈π′

|bµ̃(A′) + i bµ(A
′)|. (6.19)

Since (6.19) holds for arbitrarily chosen partition π and |V ′
bµ̃
| ≤ 1, if Statement 2 is true, then

√
2 =

1√
2
‖u+ i µ‖TV ≤ 1√

2
‖bµ̃ + i bµ‖TV =

∫ 1

0

√
1 + (V ′

bµ̃
)2 du ≤

√
2,

which implies Statement 3.
Assuming that Statement 3 is true, we prove Statement 4 as follows. Since Vbµ̃

is a 1-Lipschitz
function, Statement 3 implies that |V ′

bµ̃
| = |1− h| = 1 for u-almost everywhere. Hence, the density

function h of bµ̃ satisfies that for u-almost every x ∈ [0, 1], h(x) is either 0 or 2, which implies
Statement 4.

Assume that Statement 4 is true. Consider the distribution function fbµ̃
and define A0 := {x ∈

(0, 1) | f ′bµ̃
(x) = 0}, A2 := {x ∈ (0, 1) | f ′bµ̃

(x) = 2} and Ω := [0, 1] \ (A0 ∪ A2). Statement 4

implies that u(A0) = u(A2) =
1
2 , u(Ω) = 0 and bµ̃ = 2u|A2 . Consider the measure bµ := 2u− bµ̃.
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According to Proposition 6.39, bµ is the barycenter of 1
2δu + 1

2δµ. Moreover, since µ is the dual
measure of µ̃ and bµ̃ = 2u − bµ, applying Proposition 6.39 again, we obtain [fbµ ]#bµ̃ = µ̃. Since
the derivative of fbµ

= 2fu − fbµ̃
exists at points in A2 with value 0, Proposition 6.38 implies that

there is a (Borel) measurable set X ⊂ [0, 1] such that fbµ
(A2) ⊂ X and u(X) = 0. As bµ̃ = 2u|A2

and A2 ⊂ [fbµ
]−1(X),

µ̃(X) = bµ̃([fbµ ]
−1(X)) ≥ [2u|A2 ](A2) = 1,

which implies µ̃ and u are mutually singular, i.e., Statement 5.
We have now shown that

Statement 1 =⇒ Statement 2 =⇒ Statement 3 =⇒ Statement 4 =⇒ Statement 5.

Since µ is the dual measure of µ̃, by applying the above statements to the measure µ̃ in place of µ,
it follows that Statement 5 implies Statement 1.

Remark 6.41. To explain the relation between measures µ and bµ̃ in Proposition 6.39 and Theo-
rem 6.40, we illustrate some geometric operations in Figure 6.4.

1

1

fµ

Vbµ̃
:= fh − fbµ̃

(a) Rotate and scale fµ to obtain Vbµ̃

1

1

fµ̃

Vbµ := fbµ̃
− fh

(b) Rotate and scale fµ̃ to obtain Vbµ

Figure 6.4: Geometric interpretations for µ and bµ̃

For measure µ, we represent the graph of its distribution fµ using the image of the complex
curve Γµ = fu + i fµ : t ∈ [0, 1] → t + i fµ(t). By rotating Γµ with degree −π

4 and then scaling it
with factor

√
2
2 , we obtain

√
2

2
· e− i π

4 · Γµ : t 7→ 1

2
t+

1

2
fµ(t) + i [(

1

2
t+

1

2
fµ(t))− t]. (6.20)

The measure bµ̃, denoting the barycenter of 1
2δu+

1
2δµ̃, is introduced to simplify the term 1

2 t+
1
2fµ(t).

Since f
b̃µ̃

= 1
2 t+

1
2fµ(t), (6.20) can be equivalently written as s 7→ f

b̃µ̃
(s)+ i (f

b̃µ̃
(s)− s). With the
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intuition that fbµ̃
is approximately the inverse of f

b̃µ̃
in mind (c.f. Corollary 1.39), we apply the “re-

parameterization” (not bijective in general, and thus not rigorous) that replaces the pair (s, f
b̃µ̃
(s))

with (fbµ̃
(t), t). With the new parameterization, (6.20) becomes t ∈ [0, 1] 7→ t+ i (t−fbµ̃

(t)), which
also represents the graph of Vbµ̃

: t → t − fbµ̃
(t). Therefore, approximately speaking, Vbµ̃

can be
obtained by rotating and scaling fµ.

To explain the geometric meaning of Proposition 6.39, we consider the function Vbµ
: t 7→

t − fbµ(t) = fbµ̃
(t) − t, where bµ := 2u − bµ̃. With the preceding re-parameterization, its graph

becomes
s 7→ 1

2
s+

1

2
fµ(s) + i [s− (

1

2
s+

1

2
fµ(s))].

Applying the “re-parameterization” that replaces (s, fµ(s)) with (fµ̃(t), t), we obtain

t 7→ 1

2
t+

1

2
fµ̃(t) + i [(

1

2
t+

1

2
fµ̃(t))− t],

which is
√
2
2 · e− i π

4 · Γµ̃. Therefore, bµ is the barycenter of 1
2δu + 1

2δµ according to the relation
between fµ and Vbµ̃

that we deduced in the preceding paragraph. Using the rotation of angle −π
4 ,

Proposition 6.39 translates the symmetry between fµ and fµ̃ with respect to the line y = x into
the symmetry between Vbµ̃

and Vbµ
with respect to the x-axis.

As for Theorem 6.40, the equivalence between Statement 1 and Statement 2 relies on the fol-
lowing idea: the length of the plane curve, obtained from the map t 7→ (t, fµ(t)) by connecting
discontinuity points of fµ(t) with segments, is equal to the total variation norm ‖u+ i µ‖TV , which
can reach the maximum value 2 if and only if u, µ are mutually singular. The equivalence between
Statement 2 and Statement 3 follows directly from the geometric relation between the graphs of fµ
and Vbµ̃

.

6.4.2 Rigid properties
Let µP be the unique barycenter of some probability measure P ∈ W2(W2(R)). A measure property
Q of µP is a rigid property of Wasserstein barycenters on R if µP possessing the property Q implies
that for P-almost every ν, ν also has property Q. For example, Proposition 6.29 shows that having
compact support and being a Dirac measure are two of the rigid properties. In this subsection, we
prove some rigid properties of barycenter measures related to singularity, applying the theory of
dual measures.

Some results proven in the preceding subsection 6.4, though stated for dual measures, can be
applied in a wider context via the Lebesgue decomposition theorem. Let us first clarify the definition
of singular functions.

Definition 6.42 (Singular functions and jump functions). Let F : I → R be a real function
defined on an interval I ⊂ R. F is a singular function if its derivative exists and is equal to 0 almost
everywhere (with respect to the Lebesgue measure L1|I). F is a jump function if it coincides with
the distribution function of a discrete measure µ on R up to a constant, i.e., F − fµ|I is a constant
function on I, where µ is not necessarily a probability measure while fµ(t) = µ((−∞, t]).

We now state a particular case of the Lebesgue decomposition theorem for monotone functions
[17, Theorem 5.4.5], which is particularly applicable to quantile functions restricted to (0, 1).
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Lemma 6.43. Let g : (0, 1) → R be a right-continuous and non-decreasing function. It can be
uniquely written as follows,

g = gac + gsc + gj , (6.21)

such that gac, gsc, gsa are three non-decreasing functions defined on (0, 1) satisfying

1. gac is absolutely continuous with gac(t) =
∫ t
0
g′(s)d s;

2. gsc is singular and continuous;

3. gj is a right-continuous jump function with limt↓0 g
j(t) = 0.

Alternatively, we can also uniquely decompose g as the sum of two non-decreasing functions,

g = gc + gj , (6.22)

such that gc is a continuous function and gj satisfies the previous requirement.

Proof. The existence of the decomposition (6.21) is explicitly constructed in [63, Corollary to The-
orem 5.7.1] or [10, Theorem 5.4.1, Theorem 5.4.3]. In particular, gj is defined as follows,

gj(t) :=
∑

0<s≤t

[
g(s)− lim

q↑s
g(q)

]
, ∀ t ∈ (0, 1). (6.23)

For the existence of (6.22), it suffices to set gc := gac + gsc.
As for the uniqueness of (6.21), we assume that g = hac + hsc + hj is another decomposition

satisfying the same requirements. The equality hac = gac is trivial. By Definition 6.42, hj − gj

is the difference of two distribution functions of discrete measures up to a constant. Hence, being
continuous, hj − gj = gsc − hsc is forced to be a constant function. It follows from limt↓0 h

j(t) =
limt↓0 g

j(t) = 0 that hj = gj , which furthers implies hsc = gsc. The uniqueness of the decomposition
(6.22) can be proven similarly.

With the help of Lemma 6.43, we characterize singular measures on R as follows.

Proposition 6.44 (Characterization of singular measures on R). Let µ be a probability measure
on R. Denote by f−1

µ |(0,1) = gac + gsc + gj = gc + gj the decomposition of its quantile function as
in Lemma 6.43. The measure µ is singular if and only if f−1

µ |(0,1) is a singular function, i.e., gac
is a zero function. The support of µ is negligible if and only if f−1

µ |(0,1) is a jump function, i.e., gc
is a constant function.

Proof. By Lemma 1.30, f−1
µ |(0,1) is a real-valued right-continuous and non-decreasing function,

which allows us to apply Lemma 6.43.
To prove the proposition, we first consider the case when µ is supported in [0, 1]. Theorem 6.40

states that µ is singular if and only if µ̃ is singular, which is also equivalent to that f−1
µ |(0,1) is

singular by Definition 6.42. By the same arguments, Proposition 6.33 implies that µ has negligible
support if and only if f−1

µ |(0,1) is a jump function.
We now consider the general case that µ is a probability measure on R. Fix an interval I := (a, b]

such that µ(I) > 0. Consider the map QI : (a, b] → [0, 1] defined by QI(x) := x−a
b−a . Define the

measure
νI :=

1

µ(I)
QI#[µ|(a,b]],
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which is obtained by first transforming µ|(a,b] into the measure QI#[µ|(a,b]] on [0, 1] and then
normalizing it as a probability measure. Note that νI is singular if and only if µ|(a,b] is so; and νI
has negligible support if and only if µ|(a,b] does so. By definition of νI , for x ∈ [0, 1],

fνI (x) =
1

µ(I)
[fµ(x(b− a) + a)− fµ(a)] .

According to the definition f−1
νI (t) := infx{x ∈ R | fνI (x) > t} for t ∈ (0, 1), we have

f−1
νI (t) =

1

b− a

[
f−1
µ (tµ(I) + fµ(a))− a

]
, ∀ t ∈ (0, 1).

In particular, f−1
νI is singular if and only if f−1

µ |(fµ(a),fµ(b)] is singular; f−1
νI is a jump function if

and only if f−1
µ |(fµ(a),fµ(b)] is a jump function. Since νI is a probability measure supported in [0, 1],

it follows from the previously proven case that µ|(a,b] is singular if and only if f−1
µ |(fµ(a),fµ(b)] is

singular; the support of µ|(a,b] is negligible if and only if f−1
µ |(fµ(a),fµ(b)] is a jump function.

Since the interval I = (a, b] satisfying µ(I) > 0 is arbitrarily chosen, our proposition is proven
after choosing a collection of such intervals covering the support of µ.

Measurability related to quantile functions

Giving P ∈ W2(W2(R)), Proposition 6.44 inspires us to analyze the singularity of barycenters µP
and measures ν ∈ supp(P) via the decomposition of quantile functions. For example, with the
decomposition f−1

ν |(0,1) = gcν + gjν given by (6.22), it is natural to deduce for t ∈ (0, 1) that

f−1
µP

(t) =

∫
W2(R)

f−1
ν (t)dP(ν) =

∫
W2(R)

gcν(t)dP(ν) +
∫
W2(R)

gjν(t)dP(ν). (6.24)

However, to rigorously justify (6.24), we must show that the function ν 7→ gcν(t) is measurable so
that its integral against P is well-defined. In this subsection, we shall prove some measurability
properties related to quantile functions.

While the measurability of ν 7→ f−1
ν (t) is already proven in Lemma 1.35, the measurability

of ν 7→ gcν(t) is still non-trivial. In the following proposition, we use notation from the domain of
stochastic processes, since its proof is extracted from the related literature. We refer to[28, Theorem
8.1.23], [33, Theorem 3], [48, Theorem 3.42 of Chapter III] or [53, Theorem 2.1.37] for the standard
statement of this proposition, which is proved for adapted stochastic processes with finite variation.
For simplicity, some technical details are left out to the classic reference [51].

Proposition 6.45. Let (Ω,F) be a measurable space. For each ω ∈ Ω, we associate it with
a non-decreasing and right-continuous function gω : (0, 1) → R. Denote by gω = gcω + gjω the
decomposition of gω as in Lemma 6.43. For t ∈ (0, 1), we define two functions Xt : (Ω,F) → R
and Yt : (Ω,F) → R by setting

Xt(ω) := gw(t) and Yt(ω) := gjw(t).

If Xt is F-measurable for all t ∈ (0, 1), then Yt is F-measurable for all t ∈ (0, 1).

Proof. We say a function defined on (Ω,F) is measurable if it is F-measurable. To fit our proposition
correctly into the settings of stochastic processes, we choose an arbitrary interval [a, b) satisfying
0 < a < b < 1 and re-define

Xt := Xa, Yt := Ya for t ∈ [0, a] and Xs := Xb, Ys := Yb for s ∈ [b,+∞),
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which allows us to regardXt and Yt as functions on (Ω,F) indexed by R+. Moreover, we consider the
constant filtration {Ft}t≥0 with Ft := F . In the following arguments, by deducing the measurability
of {Yt}t>0 from the measurability of {Xt}t≥0, our proposition is also proven since the preceding
interval [a, b) is arbitrarily chosen.

For t > 0, define functions Xt− : (Ω,F) → R and ∆Xt : (Ω,F) → R by setting

Xt−(ω) := lim
s↑t

Xs(ω) and ∆Xt(w) := Xt(ω)−Xt−(ω).

Moreover, we further define X0− := X0 and ∆X0 := X0 − X0− = 0. According to the definition
(6.23) of gjw, Yt =

∑
0<s≤t∆Xs for any t > 0.

Fix t > 0. The measurability of Yt is proven by constructing a sequence of measurable functions
Sn : (Ω,F) → (0, 1), n ∈ N∗, such that their graphs graph(Sn) := {(ω, s) ∈ Ω× (0, 1) | s = Sn(ω)}
are pairwise disjoint and cover the set {∆X 6= 0}, i.e.,

{(ω, s) ∈ Ω× (0, 1) | ∆Xs(w) 6= 0} ⊂
⋃
n≥1

graph(Sn). (6.25)

The explicit construction of {Sn}n∈N∗ can be found in [51, Proposition 1.32 of Chapter I], and we
skip it for simplicity. Since a non-zero term in the sum

∑
0<s≤t∆Xs(ω) must be one of ∆XSn(ω)(ω)

according to (6.25), it follows from the relation Si(ω) 6= Sj(ω) for i 6= j that

∑
0<s≤t

∆Xs(ω) = Yt(ω) =

∞∑
n=1

∆XSn(ω)(ω)1{Sn≤t}(w).

Hence, we are left to show that ω 7→ ∆XSn(ω)(ω)1{Sn≤t}(w) is measurable. In the context of
stochastic process, it is equivalent to show that the stopped process ∆XSn is adapted, which holds
[51, Definition 1.20, Proposition 1.21 and Corollary 1.25 of Chapter I] thanks to our assumption
that functions fω for w ∈ Ω, are non-decreasing and right-continuous.

We also need to deal with the measurability involving total variation.

Definition 6.46 (Total variations of functions). Let [a, b] ⊂ R be a compact interval and let
f : [a, b] → R be a function defined on it. We define the total variation of f on [a, b] as

V ba (f) := sup
a=t0<t1<···<tN=b

N−1∑
i=0

|f(ti+1)− f(ti)|, (6.26)

where the supremum is taken over all partitions a = t0 < t1 < · · · < tN = b of the interval [a, b].
We say that f is of bounded variation on [a, b] if V ba (f) < +∞ is finite.

Note that uncountably many partitions are compared in the supremum (6.26), and thus pose the
problem of measurability when we consider the total variations of a family of functions. However,
for right-continuous functions, it suffices to consider only countably many partitions, a widely used
conclusion when we consider the variation of stochastic processes [51, Proposition 3.3 of Chapter I]
[33, Proof of Theorem 4] [48, Proof of Theorem 3.44] [28, Remark 8.1.10]. We prove it for the case
[a, b] = [0, 1] in the following lemma to clarify the details.
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Lemma 6.47. Let f : [0, 1] → R be a right-continuous function with bounded variation. For
n ∈ N∗, define

Qn(f) :=

2n−1∑
k=0

|f(k + 1

2n
)− f(

k

2n
)|.

Then limn→∞Qn(f) = V 1
0 (f).

Proof. By triangle inequality, Qn(f) is increasing in n. Since Qn(f) ≤ V 1
0 (f) by definition (6.26),

the limit limn→∞Qn(f) exists and limn→∞Qn(f) ≤ V 1
0 (f). Therefore, it suffices to show that

given any partitions 0 = t0 < t1 < · · · < tN = 1 and ε > 0, there exists m ∈ N∗, such that

N−1∑
i=0

|f(ti+1)− f(ti)| < Qm(f) + ε,

as the right-hand side is always dominated by limn→∞Qn(f) + ε. Since f is right-continuous, we
may choose m sufficiently large such that for any i = 1, 2, . . . , N − 1, there exists ki ∈ N∗ such that
ti < ki/2

m < ti+1 and |f(ki/2m)− f(ti)| < ε
2N+1 . By further setting kN := 1, we obtain from the

triangle inequality that

|f(ti+1)− f(ti)| ≤ |f(ki+1

2m
)− f(ti+1)|+ |f(ki+1

2m
)− f(

ki
2m

)|+ |f( ki
2m

)− f(ti)|

= |f(ki+1

2m
)− f(

ki
2m

)|+ 2ε

2N + 1
.

It follows that
N−1∑
i=0

|f(ti+1)− f(ti)| <
N−1∑
i=0

|f(ki+1

2m
)− f(

ki
2m

)|+ 2Nε

2N + 1
< Qm(f) + ε,

which concludes the proof.

We are now ready to prove the following two rigid properties.

Barycenter measures with negligible support

In the following proposition, we prove that having negligible support is a rigid property, and Propo-
sition 6.45 is employed to ensure the measurability for the equality (6.24).

Theorem 6.48. Let P ∈ W2(W2(R)) be a probability measure on W2(R). If the support of its
barycenter µP is negligible, then for P-almost every ν, the support of ν is negligible.

Proof. For each ν ∈ W2(R), we apply the decomposition (6.22) to its quantile function fν , and
obtain f−1

ν |(0,1) = gcν + gjν . For each t ∈ (0, 1), Since ν 7→ f−1
ν (t) is measurable for each t ∈ (0, 1),

Proposition 6.45 guarantees that the functions ν 7→ gjν(t) and thus ν 7→ gcν(t) are measurable. It
follows from the barycenter formula (6.6) that

f−1
µP

(t) =

∫
W2(R)

gcν(t)dP(ν) +
∫
W2(R)

gjν(t)dP(ν), ∀ t ∈ (0, 1). (6.27)
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We remark that in the above equality, both sides are finite thanks to Lemma 1.30. We claim that the
function F c : (0, 1) → R defined by F c(t) :=

∫
W2(R) g

c
ν(t)dP(ν) is a constant function. Since gcν is

continuous and non-decreasing, F c is also continuous and non-decreasing according to the monotone
convergence theorem (c.f. proof of Theorem 6.18). Consider the function F j :=

∫
W2(R) g

j
ν(t)dP(ν)

defined on (0, 1). Since F j is non-decreasing and right-continuous, (6.22) implies the decomposition
F j = hc+ hj . Hence, f−1

µP
|(0,1) = (F c+ hc) + hj , which is a valid decomposition of the form (6.22).

According to Proposition 6.44, F c+hc must be a constant function, which further implies that both
F c and hc are constant functions since they are non-decreasing. Therefore, our claim is proven.

Since the integral of non-decreasing functions, F c(t) =
∫
W2(R) g

c
ν(t)dP(ν), is constant, gcν is a

constant function for P-almost every ν. Hence, our proposition follows from Proposition 6.44.

Singular barycenter measure

As stated in Proposition 6.44, a probability measure on R is singular if and only if its quantile
function is singular on (0, 1). Hence, we begin with a criterion for singular functions via total
variation. In this subsection, the map Id refers to the identity function on (0, 1).

Lemma 6.49. Let f : (0, 1) → R be a right-continuous and non-decreasing function. The function
f is singular if and only if for any compact intervals [a, b] ⊂ (0, 1),

V ba (f − Id) = V ba (f + Id) = f(b)− f(a) + b− a.

Proof. The equality V ba (f + Id) = f(b)− f(a) + b− a follows directly from Definition 6.46 since f
is non-decreasing. Denote by f = gac + gsc + gj the decomposition (6.21) of f . Hence, we obtain
the following re-writings,

f + Id = (gac + Id) + gsc + gj and f − Id = (gac − Id) + gsc + gj ,

whose restrictions to [a, b] correspond to the decomposition of a function of bounded variations as a
sum of an absolutely continuous function, a singular and continuous function and a jump function.
A classic result on total variation [67, Corollary 3.90], which can be deduced from the corresponding
decomposition of signed measures [10, Theorem 5.3.6, Theorem 7.5.10], implies that

V ba (f + Id) =
∫ b

a

|f ′(x) + 1|dx+ V ba (g
sc) + V ba (g

j),

V ba (f − Id) =
∫ b

a

|f ′(x)− 1|dx+ V ba (g
sc) + V ba (g

j).

Therefore, V ba (f + Id) = V ba (f − Id) is equivalent to |f ′(x) − 1| = |f ′(x) + 1| for L1-almost every
x ∈ [a, b], which is further equivalent to f ′(x) = 0 almost everywhere.

One advantage of Lemma 6.49 is its compatibility with integrals as illustrated by the following
lemma, allowing us to apply it with the formula of Wasserstein barycenters on R,

Lemma 6.50. Let (Ω,F , µ) be a probability space. Let f : Ω× (0, 1) → R be a function such that
for each ω ∈ Ω, the function fω : t 7→ f(ω, t) is right-continuous on (0, 1), and for each t ∈ (0, 1),
the function ω 7→ f(ω, t) is F-measurable. Then, for any sub-interval [a, b] ⊂ (0, 1),

V ba

(∫
Ω

fω dµ(ω)
)

≤
∫
Ω

V ba (fω)dµ(ω). (6.28)
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Proof. The measurability of the function ω 7→ V ba (fω) is guaranteed by Lemma 6.47. We are
left to show the inequality (6.28) for the case that the right-hand is finite. Given a partition
a = t0 < t1 < · · · < tN = b, since

N−1∑
i=0

∣∣∣∣∫
Ω

fω(ti+1)dµ(ω)−
∫
Ω

fω(ti)dµ(ω)
∣∣∣∣ ≤ N−1∑

i=0

∫
Ω

|fω(ti+1)− fω(ti)|dµ(ω)

≤
∫
Ω

V ba (fω)dµ(ω),

(6.28) follows directly from Definition 6.46.

With the above technical preparations, we are ready to show that being singular is a rigid
property of Wasserstein barycenters.

Theorem 6.51. Let P ∈ W2(W2(R)) be a probability measure on W2(R). If its barycenter µP is
singular (with respect to L1), then for P-almost every ν, ν is also singular.

Proof. Proposition 6.44 reduces our task to showing that f−1
ν |(0,1) is singular for P-almost every ν.

Thanks to Lemma 6.49, it suffices to fix an arbitrarily chosen compact interval [a, b] ⊂ (0, 1), and
then prove that

V ba (f
−1
ν − Id) = V ba (f

−1
ν + Id) for P-almost every ν. (6.29)

Applying Lemma 6.50 with the formula of Wasserstein barycenter on R (Theorem 6.18), we
obtain

V ba (f
−1
µP

− Id) = V ba

(∫
W2(R)

f−1
ν dP(ν)− Id

)

≤
∫
W2(R)

V ba (f
−1
ν − Id)dP(ν) ≤

∫
W2(R)

V ba (f
−1
ν ) + V ba (Id)dP(ν) (6.30)

=

∫
W2(R)

[
f−1
ν (b)− f−1

ν (a) + b− a
]

dP(ν) = f−1
µP

(b)− f−1
µP

(a) + b− a

= V ba (f
−1
µP

+ Id),

where we used that quantile functions are right-continuous (for the right-continuity of fν − Id) and
non-decreasing (for the calculations of total variation). Since µP is singular, Lemma 6.49 implies
V ba (f

−1
µP

− Id) = V ba (f
−1
µP

+ Id), i.e., the inequalities (6.30) must be equalities, which proves the
statement (6.29) and thus the theorem.

6.5 Singularity at vertices
For Wasserstein barycenters on metric trees, Theorem 6.28 proves their almost absolute continuity,
drawing our attention to their singularity at vertices, a feature that marks a fundamental difference
from the real line R. The aim of this subsection is to deepen our comprehension of how the distinct
branching structure of metric trees shapes barycenter properties, and to illuminate the potential for
extending established results from R to this setting. Recall that R+ = [0,+∞) and R− = (−∞, 0]
are two half axes containing the origin point.
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Necessary conditions for singularity at vertices

We begin with a necessary condition for barycenters to be Dirac measures on vertices.

Lemma 6.52. Let Γ = (V,E, dl) be a metric tree. Fix a vertex v ∈ V and an oriented edge
~e =

#           »

{v, w}. Let P ∈ W2(W2(Γ)) be a probability measure such that µP = δv is a barycenter of P.
Denote by T : W2(Γ) → W2(R) the push-forward map associated to ~e (Definition 6.20). Then the
unique barycenter µQ of Q := T#P is supported in the half axis R−.

Proof. Since µP is supported in ~e, Lemma 6.26 is applicable. As f−1
T (µP)

is the constant function
with value 0, Lemma 6.26 implies fµQ ≤ 0, which concludes the proof by Lemma 1.33.

We can generalize Lemma 6.52 via the restriction property of Wasserstein barycenters (Propo-
sition 5.2). Let us first prove the following property.

Proposition 6.53. Let Γ = (V,E, dl) be a metric tree. Fix an oriented edge ~e of Γ and a probability
measure P ∈ W2(W2(Γ)). Denote by T : W2(Γ) → W2(R) the push-forward map associated to ~e
(Definition 6.20). Let F : W2(Γ) → W2(Γ) be a measurable map such that F (ν) is absolutely
continuous with respect to ν. Then the barycenters of Q1 := T#P and Q2 := [T ◦ F ]#P satisfy

Conv (supp(µQ2
)) ⊂ Conv (supp(µQ1

)) ,

where Conv(A) for A ⊂ R denotes the convex hull of A.

Proof. We first prove the claim that for ν ∈ W2(Γ), T ◦F (ν) is absolutely continuous with respect
to T (ν). Recall that T is indeed a push-forward map. Denote by T~e : Γ → R the reduction
map associated to ~e (Proposition 6.19). For A ∈ B(R), if T (ν)(A) := ν([T~e]−1(A)) = 0, then
T ◦F (ν)(A) := F (ν)([T~e]−1(A)) = 0 since F (ν) is absolutely continuous with respect to ν. Hence,
the claim is proven, which implies supp(T ◦ F (ν)) ⊂ supp(T (ν)).

We now prove our proposition for the case that µQ1
has compact support, which is reduced to

the following inequalities according to Lemma 1.33,

f−1
µQ2

(0) ≥ f−1
µQ1

(0) > −∞ and f−1
µQ2

(1) ≤ f−1
µQ1

(1) < +∞ (6.31)

By Proposition 6.29, for P-almost every ν, F (ν) has compact support since the barycenter of
Q1 = F#P does so, which further implies

f−1
T ◦F (ν)(0) ≥ f−1

T (ν)(0) > −∞ and f−1
T ◦F (ν)(1) ≤ f−1

T (ν)(1) < +∞, (6.32)

thanks to the inclusion supp(T ◦ F (ν)) ⊂ supp(T (ν)) and Lemma 1.33. By Theorem 6.18, for
t ∈ [0, 1],

f−1
µQ2

(t) =

∫
W2(Γ)

f−1
T ◦F (ν)(t)dP(ν) and f−1

µQ1
(t) =

∫
W2(Γ)

f−1
T (ν)(t)dP(ν).

Hence, (6.31) follows from the inequalities (6.32). As for the case that supp(µQ1) is not compact,
either we have Conv (supp(µQ1

)) = R and the proposition is trivial, or it suffices to prove one
inequality in (6.31) according to Lemma 1.33, which can be done via similar arguments as above.

The map F : W2(Γ) → W2(Γ) in Proposition 6.53 is provided by Proposition 5.2. In the
following proposition, we also demonstrate how to leverage the explicit construction of F .
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Theorem 6.54. Let Γ = (V,E, dl) be a metric tree. Fix a vertex v ∈ V and an oriented edge
~e =

#           »

{v, w}. Let P ∈ W2(W2(Γ)) be a probability measure such that it has a barycenter µP satisfying
µP({v}) > 0. Denote by T : W2(Γ) → W2(R) the push-forward map associated to ~e (Definition 6.20)
and define Q := T#P. Then the unique barycenter µQ of Q satisfies

µQ(R−) > 0.

Proof. The case that µP({v}) = 1 follows directly from Lemma 6.52. Define λ := µP({v}). We are
left to prove our proposition for the case 0 < λ < 1. Consider the decomposition µP = λµ1+(1−λ)µ2

with µ1 := δv and µ2 ∈ W2(Γ). Proposition 5.2 provides a measurable map F : W2(Γ) → W2(Γ)
such that δv = µ1 is a barycenter of F#P and

∀ ν ∈ W2(Γ), ν = λF (ν) + (1− λ)ν2 with ν2 ∈ W2(Γ). (6.33)

According to Proposition 6.53, the barycenters of Q = T#P and Q′ := [T ◦ F ]#P satisfy

Conv (supp(µQ′)) ⊂ Conv (supp(µQ)) . (6.34)

Since δv is a barycenter of F#P, Lemma 6.52 implies that

supp(µQ′) ⊂ R−.

We prove by contradiction that µQ(R−) > 0 and assume now that µQ(R−) = 0. Denote by
T~e : Γ → R the reduction map associated to ~e (Proposition 6.19). Since supp(µQ) ⊂ R+, (6.34)
implies that supp(µQ′) ⊂ R− ∩ R+ = {0} and thus µQ′ = δ0. Moreover, according to Lemma 1.33,
µQ(R−) = 0 and the inclusion (6.34), i.e., {0} ⊂ Conv (supp(µQ)), imply that f−1

µQ
(0) = 0. Since

µQ′ = δ0 is a barycenter of Q′ = [T ◦ F ]#P, Proposition 6.29 implies that Q′ is supported in Dirac
measures. Hence, for P-almost every ν, qν := f−1

T ◦F (ν)(0) ∈ R is finite and T ◦F (ν) = δqν is a Dirac
measure, which further implies

T (ν)({qν}) = ν
(
[T~e]−1(qν)

)
≥ λF (ν)

(
[T~e]−1(qν)

)
= λ T ◦ F (ν)({qν}) = λ, (6.35)

where we applied (6.33) for the above inequality. Since f−1
µQ′ (0) = 0 = f−1

µQ
(0), Theorem 6.18 implies∫

W2(Γ)

f−1
T ◦F (ν)(0)dP(ν) =

∫
W2(Γ)

qν dP(ν) = 0 =

∫
W2(Γ)

f−1
T (ν)(0)dP(ν). (6.36)

According to (6.35) and Lemma 1.33, for P-almost every ν, f−1
T (ν)(0) ≤ qν , which further implies

f−1
T (ν)(0) = qν thanks to (6.36). Therefore, for P-almost every ν, T (ν) is supported in [qν ,+∞)

with T (ν)({qν}) ≥ λ > 0, which implies f−1
T (ν)(

λ
2 ) = qν by definition of quantile function. Hence,

by Theorem 6.18,

0 = f−1
µQ

(0) =

∫
W2(Γ)

qν dP(ν) =
∫
W2(Γ)

f−1
T (ν)(

λ

2
)dP(ν) = f−1

µQ
(
λ

2
),

which implies µQ({0}) ≥ λ
2 > 0, a contradiction to the assumption that µQ(R−) = 0.
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Dirac measures at vertices as barycenters

The reduction technique for Wasserstein barycenter problems on metric trees might seem to offer
only an edge-dependent perspective. However, by comparing the barycenter problems reduced to
R by different push-forward maps (Definition 6.20), we gain significant insight into the original
problem. The following technical but crucial proposition provides such an example, where we
consider two edges with opposite orientations. To impose opposite orientations on two edges (see
Figure 6.5), we label vertices via simple paths. Recall that the simple path from one given vertex
to another one is unique up to transitions of its domain (c.f. proof of Lemma 6.6).

Proposition 6.55. Let Γ = (V,E, dl) be a metric tree. Let e1 = {v1, w1}, e2 = {v2, w2} be
two different edges of Γ. We label the vertices of e1, e2 such that by restricting a simple path
from w1 to w2, we can obtain a simple path from v1 to v2. Denote by T1, T2 : W2(Γ) → W2(R)
respectively the push-forward maps associated to

#                »

{v1, w1} and
#                »

{v2, w2} (Definition 6.20). Fix a
measure P ∈ W2(W2(Γ)), denote by µQ1

, µQ2
respectively the unique barycenters of Q1 := T1#P and

Q2 := T2#P.
Assume supp(µQ1

) ⊂ R+ and supp(µQ2
) ⊂ R+. Then µQ1

= µQ2
= δ0, and the edges e1 and e2

share a common vertex v1 = v2.

Proof. Thanks to the way how we label the vertices v1, v2, w1, w2, we can divide measures in the
support of P into three groups. The first group corresponds to measures, excluding δv1 , whose
images under T1 are supported in R+. The second group corresponds to measures, excluding δv2 ,
whose images under T2 are supported in R+. The third group collects all measures not included in
the preceding two groups. In other words, we write

P = λ1 P1 + λ2 P2 + λ3 P3, (6.37)

where P1 is supported in A1 := T −1
1 [W2(R+) \ δ0], P2 is supported in A2 := T −1

2 [W2(R+) \ δ0],
λ1 := P(A1), λ2 := P(A2), and λ3 := 1− λ1 − λ2. To uniquely determine (6.37), we further require
that P1 = δw1 if λ1 = 0, P2 = δw2 if λ2 = 0, and P3 = 1

2δv1 + 1
2δv2 if λ3 = 0. To show that

A1 and A2 are disjoint, we note that if a measure µ ∈ W2(Γ) satisfies supp(T1(µ)) ⊂ R+ and
supp(T2(µ)) ⊂ R+, then µ = δν1 = δν2 by our labelling of the vertices, which implies A1 ∩ A2 = ∅.
According to Lemma 1.33,

A1 : = {µ ∈ W2(Γ) | f−1
T1(µ)

(0) ≥ 0 and f−1
T1(µ)

(1) 6= 0},

A2 : = {µ ∈ W2(Γ) | f−1
T2(µ)

(0) ≥ 0 and f−1
T2(µ)

(1) 6= 0}.

In particular,
µ ∈ supp(P3) =⇒ f−1

T1(µ)
(0) ≤ 0 and f−1

T2(µ)
(0) ≤ 0. (6.38)

Define T1 := T1#P1 and T2 := T2#P2. Denote by C := dl(v1, v2) ≥ 0 the distance between v1
and v2. We now deduce the relation between f−1

T1(ν)
and f−1

T2(ν)
for ν ∈ A1 ∪A2, using the fact that

#                »

{v1, w1} and
#                »

{v2, w2} are pointing toward different directions of the simple path from w1 to w2. By
definition of reduction maps, if ν ∈ A1 or ν ∈ A2, then T1(ν)({x}) = T2(ν)({−x − C}) for x ∈ R.
Hence, by Lemma 1.33, for ν ∈ A1,

f−1
T2(ν)

(0) = −f−1
T1(ν)

(1)− C (both sides can be −∞)

f−1
T2(ν)

(1) = −f−1
T1(ν)

(0)− C (both sides are finite as ν ∈ A1).
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Figure 6.5: Reduction maps associated to
#                »

{v1, w1} and
#                »

{v2, w2}

Similarly, if ν ∈ A2, then f−1
T1(ν)

(0) = −f−1
T2(ν)

(1) − C (both sides can be −∞) and f−1
T1(ν)

(1) =

−f−1
T2(ν)

(0)− C (both sides are finite as ν ∈ A2).
Applying the formula of Wasserstein barycenter on R (Theorem 6.18) with (6.37), we obtain

f−1
µQ1

(0) =

∫
W2(Γ)

f−1
T1(ν)

(0)dP(ν)

= λ1

∫
A1

f−1
T1(ν)

(0)dP1(ν) + λ2

∫
A2

f−1
T1(ν)

(0)dP2(ν) + λ3

∫
W2(Γ)

f−1
T1(ν)

(0)dP3(ν)

= λ1 f
−1
µT1

(0) + λ2

[
−f−1

µT2
(1)− C

]
+ λ3

∫
W2(Γ)

f−1
T1(ν)

(0)dP3(ν),

where we used f−1
T1(ν)

(0) = −f−1
T2(ν)

(1) − C for ν ∈ A2. We have f−1
µQ1

(0) ≥ 0 by assumption, and
λ3
∫
W2(Γ)

f−1
T1(ν)

(0)dP3(ν) ≤ 0 by (6.38). Hence,

λ1 f
−1
µT1

(0) ≥ λ2

[
f−1
µT2

(1) + C
]
. (6.39)

By the same arguments,

f−1
µQ2

(0) = λ1

[
−f−1

µT1
(1)− C

]
+ λ2 f

−1
µT2

(0) + λ3

∫
W2(Γ)

f−1
T2(ν)

(0)dP3(ν),

where we used f−1
T2(ν)

(0) = −f−1
T1(ν)

(1)− C for ν ∈ A1. And we also have

λ2 f
−1
µT2

(0) ≥ λ1

[
f−1
µT1

(1) + C
]
. (6.40)

According to (6.39), the inequality f−1
µT2

(1) ≥ f−1
µT2

(0), and (6.40),

λ1 f
−1
µT1

(0) ≥ λ2

[
f−1
µT2

(1) + C
]
≥ λ2

[
f−1
µT2

(0) + C
]
≥ (λ1 + λ2)C + λ1 f

−1
µT1

(1). (6.41)

It follows from f−1
µT1

(1) ≥ f−1
µT1

(0) that (λ1 + λ2)C = 0, λ1 f−1
µT1

(0) = λ1 f
−1
µT1

(1), λ2 f−1
µT2

(0) =

λ2 f
−1
µT2

(1), which further implies, by the previous expressions of f−1
µQ1

(0) and f−1
µQ2

(0),

f−1
µQ1

(0) = λ3

∫
W2(Γ)

f−1
T1(ν)

(0)dP3(ν) = λ3

∫
W2(Γ)

f−1
T2(ν)

(0)dP3(ν) = f−1
µQ2

(0) = 0. (6.42)
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We now prove that µQ1 = µQ2 = δ0. Since f−1
µT1

=
∫
W2(Γ)

f−1
T1(ν)

dP1(ν), it follows from
λ1 f

−1
µT1

(0) = λ1 f
−1
µT1

(1) that λ1 fT1(ν) is a constant function for P1-almost every ν (c.f. proof of
Proposition 6.29). Thanks to the relation between fT1(ν) and fT2(ν) for ν ∈ A1, λ1 fT2(ν) is also a
constant function for P1-almost every ν. Similarly, λ2 f−1

µT2
(0) = λ2 f

−1
µT2

(1) implies that λ2 fT2(ν)

and λ2 fT1(ν) are both constant functions for P2-almost every ν. Let us prove the claim that
λ3 fT1(ν) and λ3 fT2(ν) are both constant functions for P3-almost every ν. Since the case λ3 = 0
is trivial, we are left to prove the claim for the case λ3 6= 0. In this case, (6.38) and (6.42) imply
that for ν ∈ supp(P3), f−1

T1(ν)
(0) = f−1

T2(ν)
(0) = 0, which further imply f−1

T1(ν)
(1) = f−1

T2(ν)
(1) = 0

as ν /∈ A1 ∪ A2. Hence, the claim is proven. Therefore, according to the following equalities for
t ∈ [0, 1]

f−1
µQ1

(t) = λ1

∫
A1

f−1
T1(ν)

(t)dP1(ν) + λ2

∫
A2

f−1
T1(ν)

(t)dP2(ν) + λ3

∫
W2(Γ)

f−1
T1(ν)

(t)dP3(ν),

f−1
µQ2

(t) = λ1

∫
A1

f−1
T2(ν)

(t)dP1(ν) + λ2

∫
A2

f−1
T2(ν)

(t)dP2(ν) + λ3

∫
W2(Γ)

f−1
T2(ν)

(t)dP3(ν),

both functions f−1
µQ1

and f−1
µQ2

are constant. Since f−1
µQ1

(0) = f−1
µQ2

(0) = 0 by (6.42), we have µQ1
=

µQ2
= δ0.

We are left to prove that v1 = v2, i.e., C = 0. Since (λ1+λ2)C = 0, the case λ1+λ2 > 0 is trivial.
If λ1+λ2 = 0, then λ3 > 0 and we have shown in the preceding paragraph that T1(ν) = T2(ν) = δ0
for P3-almost every ν. In particular, P3 = δδv1 = δδv2 , which concludes the proof.

By properly choosing two oriented edges to compare their reduction maps, we prove the following
powerful proposition that helps us to determine the support of a Wasserstein barycenter on metric
trees.

Proposition 6.56. Let Γ = (V,E, dl) be a metric tree. Fix an oriented edge ~e of Γ. Denote by
T : W2(Γ) → W2(R) the push-forward map associated to ~e (Definition 6.20). Let P ∈ W2(W2(Γ))
be a probability measure. Assume that the unique barycenter µQ of Q := T#P is supported in R−.
Then for any barycenter µP of P, its image T (µP) under T is supported in R−.

Proof. We prove the proposition by contradiction. Denote by T~e : Γ → R the reduction map associ-
ated to ~e (Proposition 6.19). Assume that there exists a barycenter µP such that µP((0,+∞)) > 0.
Since (0,+∞) = ∪x>0(x,+∞), there exists a real number 0 < x ≤ l(~e) such that µP((x,+∞)) > 0.
Denote by v1 := ~ex/l(~e) ∈ Γ the pre-image of x under T~e. If x < l(~e), then we consider the following
modification of the vertices and edges of Γ. We add v1 to V as a vertex, and replace the edge
{~e0, ~e1} ∈ E with two edges {~e0, v1} and {v1, ~e1} of lengths x and l(~e) − x respectively. Such a
modification does not change the metric structure of Γ. Moreover, the reduction map associated to
#              »

{~e0, v1} coincides with T~e. Therefore, by possibly replacing ~e with
#              »

{~e0, v1}, we can assume without
loss of generality that x = l(~e) and v1 = ~e1.

Since µP((l(~e),+∞)) > 0, there exists an edge e2 = {v2, w2} ∈ E such that l(~e) ≤ T~e(v2) <
T~e(w2) and we can write

µP = λµ1 + (1− λ)µ2,

where 0 < λ < 1, µ1 ∈ W2(Γ), µ2 ∈ W2(Γ), and µ1(e2 \ {v2}) = 1. According to Proposition 5.2,
there exists a measurable map F : W2(Γ) → W2(Γ) such that µ1 is a barycenter of F#P. By
Proposition 6.53, the barycenter µQ′ of Q′ := [T ◦ F ]#P is supported in R− since by assumption,
the barycenter µQ of Q = T#P is supported in R−.
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We shall derive a contradiction using Proposition 6.55. Define w1 := ~e0. Denote by T1 and T2
respectively the push-forward maps associated to

#                »

{v1, w1} and
#                »

{v2, w2}. Since ~e =
#                »

{w1, v1} and
the barycenter µQ′ of Q′ = [T ◦F ]#P is supported in R−, the barycenter µQ1

of Q1 := [T1 ◦F ]#P is
supported in [l(~e),+∞). Consider the barycenter µQ2

of Q2 := [T2 ◦F ]#P. Since µ1(e2 \ {v2}) = 1,
T2(µ1)((0, l(e2)]) = 1, which implies f−1

T2(µ1)(t) > 0 for t ∈ (0, 1). As µ1 is a barycenter of F#P,
Lemma 6.26 implies that f−1

µQ2
≥ 0. Hence, supp(µQ2) ⊂ R+. Applying Proposition 6.55 to µQ1 and

µQ2 , we obtain that µQ1 = µQ2 = δ0, which is contradiction since supp(µQ1) ⊂ [l(~e),+∞).

As a corollary to Lemma 6.52 and Proposition 6.56, we get a sufficient and necessary condition
for a Dirac measure at some vertex to be a barycenter.

Theorem 6.57. Let Γ = (V,E, dl) be a metric tree. Fix a vertex v ∈ V and a probability measure
P ∈ W2(W2(Γ)). We enumerate all the edges ek := {v, wk} ∈ E, k = 1, 2, . . . , n, such that v is an
end of each ek. For each edge ek, denote by Tk : W2(Γ) → W2(R) the push-forward map associated
to

#              »

{v, wk} (Definition 6.20), define Qk := Tk#P, and denote by µQk
the unique barycenter of Qk.

Then δv is a barycenter of P if and only if

supp(µQk
) ⊂ (−∞, 0], for k = 1, 2, . . . , n. (6.43)

Moreover, if (6.43) holds, then δv is the unique barycenter of P.

Proof. If δv is a barycenter of P, then (6.43) follows directly from Lemma 6.52.
Assuming that (6.43) holds, we prove that δv is the unique barycenter of P. Let µP be a

barycenter of P. Denote by Tk the reduction map associated to
#              »

{v, wk} (Proposition 6.19). By
Proposition 6.56, (6.43) implies that

supp(Tk(µP)) ⊂ R− for k = 1, 2, . . . , n.

Since {ek}1≤k≤n is the set of all edges at v,

µP(Γ \ {v}) = µP(∪nk=1T
−1
k ((0,+∞)) ≤

n∑
k=1

µP(T
−1
k ((0,+∞))) = 0,

which implies µP = δv.

Remark 6.58. Inspired by Theorem 6.54 and Theorem 6.57, one may wonder if the condition

µQk
(R−) > 0, for k = 1, 2, . . . , n, (6.44)

implies that µP({v}) > 0. We shall see in Proposition 6.64 a counter-example for this implication.

6.6 Summary and examples of barycenters
The preceding subsections established several key results and, in doing so, identified a systematic
approach for studying Wasserstein barycenters on metric trees. This approach is built upon the
reduction technique for metric trees and the restriction property of Wasserstein barycenters.
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Our systematic approach for Wasserstein barycenters on metric trees

To fix the notation, let Γ = (E, V, dl) be a metric tree and let P ∈ W2(W2(Γ)) be a probability
measure. Fix an oriented edge ~e :=

#           »

{v, w} of Γ. Denote by T~e : Γ → R and T : W2(Γ) → W2(R)
respectively the reduction map (Proposition 6.19) and the push-forward map (Definition 6.20)
associated to ~e. Applying this reduction technique to P yields the measure Q := T#P ∈ W2(W2(R)),
whose unique barycenter is denoted by µQ.

The first step of our approach focuses on the potential mass concentration of µP at vertices,
specifically, determining if µP({v}) > 0. As detailed in Section 6.5, this involves examining the
support of µQ by calculating f−1

µQ
(0) and f−1

µQ
(1), which in turn relies solely on the supports of

measures in supp(P). Key results underpinning this step include:

1. Theorem 6.54 establishes that if µQ(R−) = 0, then µP({v}) = 0.

2. Conversely, if µQ(R−) = 1, then Proposition 6.56 excludes the edges and vertices contained
in [T~e]−1(R+ \ {0}) out of supp(µP). This same proposition (Proposition 6.56) also enables
the exclusion of parts of an edge from supp(µP) by strategically adding a new vertex to that
edge, a technique demonstrated in its proof.

3. Finally, Theorem 6.57 provides a fast and intuitive criterion for δv to be a (and thus the
unique one) barycenter of P.

The second step shifts focus to the behavior of µP on the edges of Γ, i.e., analyzing its restriction
µP|~e. If µP is supported in the edge ~e, then Lemma 6.26 illustrates how µP is fully determined by
µQ. This connection allows us to extend several properties of Wasserstein barycenters from the real
line to metric trees. For instance:

1. Proposition 6.29 contributes to the understanding of the (almost) absolute continuity of
barycenters on metric trees. It implies that singularities of µP are confined to vertices, pro-
vided that P assigns positive mass to absolutely continuous measures.

2. The concept of rigid property is proposed and explored in Section 6.4.2, with particular atten-
tion to various types of singularity. After a careful examination of the properties of T , estab-
lished rigid properties of barycenters on the real line, such as being a Dirac measure (Propo-
sition 6.29), having negligible support (Theorem 6.48), and being singular (Theorem 6.51),
can be effectively translated to criteria of certain singularities of µP.

We point out a crucial aspect woven throughout our approach, which deserves special emphasis
due to its subtle power. That is the flexible application of the restriction property of Wasserstein
barycenters to gain deeper insights into µP. Recall that in Proposition 5.2, corresponding to a
decomposition µP = λµ1 + (1− λ)µ2, the construction of F i : W2(Γ) → W2(Γ) (i = 1, 2) such that
µi is a barycenter of Qi := F i#P is not completely obscure. While a comprehensive understanding of
optimal transport on metric trees would undoubtedly unlock the full potential of this construction,
we can still derive valuable conclusions even with partial information, a strength demonstrated in
the proof of Theorem 6.54.

To solidify the ideas discussed above, the remainder of this subsection presents several concrete
examples. These examples have been carefully selected to illustrate the application of our approach
and to showcase the distinguished properties of Wasserstein barycenters on metric trees.
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Concrete examples

The following proposition presents the essential difference between the behaviors of Wasserstein
barycenters on metric trees and on the real line. To achieve a comprehensive understanding of this
difference, we provide two proofs with one based on direct calculations and the other one based on
our results in section 6.5.

Proposition 6.59. Let Γ = (V,E, dl) be the metric tree representing a tripod, where E is the union
of three identical copies of the unit interval [0, 1] and V consists of four points with one of them
being the common end 0 ∈ V shared by all the three edges e1, e2, e3 ∈ E. For i = 1, 2, 3, let νi be a
probability measure supported in the interval [ 12 , 1] of edge ei. The Dirac measure δ0 at the vertex
0 ∈ V is the unique barycenter of the probability measure P :=

∑n
i=1

1
3δνi ∈ W2(W2(Γ)).

ν1ν2

ν3

0

1

1

1

1
2

1
2

1
2

e3

e1e2

x2

x1

x3

y

Proof. For three given points x1, x2, x3 ∈ [ 12 , 1] in the supports of ν1, ν2, ν3 respectively, we claim
that the vertex 0 is the unique barycenter of the measure µ :=

∑n
i=1

1
3δxi

. Fix a point y ∈ Γ.
Without loss of generality, we assume that y ∈ [0, 1] is on the edge e3. Since x1 + x2 ≥ 1 ≥ x3, we
have the inequality∫

Γ

dl(x, y)
2 dµ(x) = 1

3
[dl(x1, 0) + dl(0, y)]

2 +
1

3
[dl(x2, 0) + dl(0, y)]

2 +
1

3
[dl(x3, 0)− dl(0, y)]

2

=

3∑
i=1

1

3
x2i + y2 +

2

3
y(x1 + x2 − x3) ≥

3∑
i=1

1

3
x2i =

∫
Γ

dl(x, 0)
2 dµ(x), (6.45)

which is an equality if and only if y = 0. Hence, our claim is proven.
Let µP be a barycenter of P. Thanks to the gluing lemma [64, Lemma 7.1], there are random

variables X,X1, X2, X3 with laws µP, ν1, ν2, ν3 respectively such that E dl(X,Xi)
2 = dW (µP, µi)

2

for i = 1, 2, 3. By the claim proven in the previous paragraph,∫
W2(Γ)

dW (µP, ν)
2 dP(ν) = E

[
3∑
i=1

1

3
dl(X,Xi)

2

]
≥ E

[
3∑
i=1

1

3
dl(0, Xi)

2

]
=

∫
W2(Γ)

dW (δ0, ν)
2 dP(ν),

which must be an equality as µP is a barycenter of P. Hence, we have X = 0 almost everywhere
and thus µP = δ0, which concludes the proof since µP is arbitrarily chosen.
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We can also prove Proposition 6.59 using reduction maps.

Alternative proof of Proposition 6.59. Consider the order 0, 1 for the two ends of the edge e1, and
denote by ~e =

#         »

{0, 1} this oriented edge. Denote by T : W2(Γ) → W2(R) the push-forward map

Γ
e⃗

T e⃗

ν1

µ1

ν2

ν3

µ2

µ3

1

1

1

−1 10
1
2− 1

2

0

R

associated to ~e (Definition 6.20), and define µi := T (νi) for i = 1, 2, 3. We claim that the barycenter
µQ of Q :=

∑3
i=1

1
3δµi

is supported in the interval [− 1
2 , 0]. Indeed, by assumptions, Lemma 1.33

implies f−1
µ1

(1), f−1
µ1

(0) ∈ [ 12 , 1] and f−1
µi

(1), f−1
µi

(0) ∈ [−1,− 1
2 ] for i = 2, 3. It follows from the

formula of Wasserstein barycenters on R (Theorem 6.18) that

f−1
µQ

(1) =
1

3
(f−1
µ1

(1) + f−1
µ2

(1) + f−1
µ3

(1)) ≤ 1

3
(1− 1

2
− 1

2
) ≤ 0, and

f−1
µQ

(0) =
1

3
(f−1
µ1

(0) + f−1
µ2

(0) + f−1
µ3

(0)) ≥ 1

3
(
1

2
− 1− 1) ≥ −1

2
,

which implies our claim according to Lemma 1.33. Since the assumptions of Proposition 6.59 are
symmetric with respect to the three edges of Γ, our claim remains valid for all oriented edges
corresponding to ei with i = 1, 2, 3. Hence, Proposition 6.59 follows from Theorem 6.57.

The endpoint 1
2 for the interval [ 12 , 1] is optimal in the assumptions of Proposition 6.59. We now

modify ν3 to violate the assumptions, demonstrating how it forces a change of the barycenter µP.

Proposition 6.60. Let Γ = (V,E, dl) be the tripod with three edges identified with the unit interval
[0, 1] such that 0 ∈ V is the common end shared by all the three edges e1, e2, e3 ∈ E. Fix a positive
number 0 < θ < 1

2 . Consider three points x1 := 1 ∈ e1, x2 := 1
2 ∈ e2, x3 := 1

2 − θ ∈ e3 located at
three different edges respectively, and define Dirac measures νi = δxi for i = 1, 2, 3. The barycenter
of P :=

∑n
i=1

1
3δνi is unique, and it is the Dirac measure at point θ

3 ∈ e1.

Proof. Define µ :=
∑3
i=1

1
3νi =

∑3
i=1

1
3δxi

. We claim that the point zµ := θ
3 ∈ e1 located at edge

e1 is the unique barycenter of µ. To minimize the integral I(y) := dW (δy, µ)
2 =

∫
Γ
dl(y, x)

2 dµ(x)
for y ∈ Γ, we discuss the possibilities of y locating at different edges. For the case y ∈ e1, with the
same calculation as (6.45), the integral

I(y) =

3∑
i=1

1

3
x2i + y2 +

2

3
y(x2 + x3 − x1)

has a unique local minimizer y = − 1
3 (x2 + x3 − x1) =

θ
3 = zµ ∈ e1. As for the cases that y ∈ e2 or

y ∈ e3, since x1 + x3 > x2 and x1 + x2 > x3, I(y) is locally minimized at y = 0 ∈ e2 ∩ e3 according

114



to similar calculations. Since 0 is a common vertex of all three edges, we conclude that y = zµ is
the unique global minimizer of I(y) over y ∈ Γ, which proves our claim.

To show that µP := δzµ is the unique barycenter of P, observe that for η ∈ W2(Γ),∫
W2(Γ)

dW (η, ν)2 dP(ν) =
3∑
i=1

1

3

∫
Γ

dl(y, xi)
2 d η(y) =

∫
Γ

∫
Γ

dl(y, x)
2 dµ(x)d η(y)

≥
∫
Γ

dl(zµ, x)
2 dµ(x) =

∫
W2(Γ)

dW (δzµ , ν)
2 dP(ν),

where the equality is reached if and only if y = zµ for η-almost every y, i.e., η = δzµ .

Regarding the singularity of Wasserstein barycenters, the rigid properties proven for the case of
real line can be naturally extended to the general case of metric trees. For simplicity, in the following
proposition, we only apply the restriction property of Wasserstein barycenters (Proposition 5.2) for
finitely many times.

Proposition 6.61. Let Γ = (V,E, dl) be a metric tree. Let P ∈ W2(W2(Γ)) be a probability
measure. Assume that P has a barycenter µP such that µP has compact support, µP gives no mass
to the set of vertices (i.e., µ(V ) = 0), and µP is singular with respect to the canonical reference
measure H on Γ. Then for P-almost every ν, supp(ν) is compact and ν is singular with respect to
H.

Proof. Since the set supp(µP) is bounded and infe∈E l(e) > 0, there exists at almost finitely many
edges ek, k = 1, 2, 3, . . . , n, such that µP(ek) > 0. As µP(V ) = 0, we obtain the following decompo-
sition,

µP = λ1 µ
1 + λ2 µ

2 + · · ·+ λn µ
n,

where for 1 ≤ k ≤ n, 0 < λk := µP(ek) ≤ 1, µk ∈ W2(Γ) assigns full mass to the interior of the edge
ek. We shall first show how to reduce our proposition to the case n = 1. Assume now n > 1.

By applying the restriction property (Proposition 5.2) for n−1 times, we construct n measurable
maps F k : W2(Γ) → W2(Γ) such that µk is a barycenter of Qk := F k#P and for ν ∈ W2(Γ),

ν = λ1 F
1(ν) + λ2 F

2(ν) + · · ·+ λn F
n(ν). (6.46)

The construction of F k, 1 ≤ k ≤ n, is done as follows. We first apply Proposition 5.2 to the
decomposition µP = λ1 µ

1 + (1 − λ1)η
1 with η1 := 1

1−λ1

∑n
k=2 λk µ

k, and thus obtain two maps
A1, B1 : W2(Γ) → W2(Γ) such that µ1 is a barycenter of Q1 := A1

#P and η1 is a barycenter of
T1 := B1

#P. Moreover, for ν ∈ W2(Γ), we have ν = λ1A
1(ν) + (1 − λ1)B

1(ν). Then we apply
Proposition 5.2 to the decomposition η1 = λ2

1−λ1
µ2 + (1− λ2

1−λ1
)η2 with η2 := 1

1−λ1−λ2

∑n
k=3 λk µ

k.
Hence, we obtain two measurable maps A2, B2 : W2(Γ) → W2(Γ) such that µ2 is a barycenter of
Q2 := A2

#T1 = [A2 ◦B1]#P and η2 is a barycenter of T2 := B2
#T1. Moreover, for ν ∈ W2(Γ),

ν = λ1A
1(ν) + (1− λ1)B

1(ν)

= λ1A
1(ν) + (1− λ1)

[
λ2

1− λ1
A2(B1(ν)) + (1− λ2

1− λ1
)B2(B1(ν))

]
= λ1A

1(ν) + λ2A
2 ◦B1(ν) + (1− λ1 − λ2)B

2 ◦B1(ν).
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By repeating the above application of Proposition 5.2 for n − 1 times, we obtain maps Ak, Bk :
W2(Γ) → W2(Γ) for 1 ≤ k ≤ n − 1. To complete the construction, it suffices to set Fn :=
Bn−1 ◦Bn−2 ◦ · · ·B1 and F k := Ak ◦Bk−1 ◦ · · · ◦B1 for 1 ≤ k ≤ n− 1.

Thanks to the decomposition (6.46), for the proof of our proposition, it suffices to show that
the following statement holds for any 1 ≤ k ≤ n: for Qk-almost every ν, supp(ν) is compact and ν
is singular with respect to H. Hence, the proposition can be reduced the case that µP assigns full
mass to the interior of some edge.

Fix an oriented edge ~e of Γ and denote by e̊ its interior. We now prove the proposition under
the assumption that µP(̊e) = 0. Denote by T~e : Γ → R and T : W2(Γ) → W2(R) respectively
the reduction map (Proposition 6.19) and the push-forward map (Definition 6.20) associated to
~e. Define Q := T#P and denote by µQ the unique barycenter of Q. According to Corollary 6.27,
µQ = T (µP). By definition of H, since T~e|~e : ~e → [0, l(~e)] is an isometry and supp(µP) ⊂ ~e, µP is
singular if and only if µQ = T~e#µP is singular. Since µQ is singular, Theorem 6.51 implies that for
Q-almost every ν ∈ W2(R), ν is singular. That is to say, for P-almost every ν ∈ W2(Γ), T (ν) is
singular. We claim that

T (ν) ∈ W2(R) is singular =⇒ ν ∈ W2(Γ) is singular .

We prove the claim by contradiction and assume that ν ∈ W2(Γ) is not singular. Then we can write
ν = θ ν1 + (1 − θ)ν2 with 0 < θ < 1, ν1, ν2 ∈ W2(Γ) such that ν1 is absolutely continuous. As T
is a push-forward map, T (ν) = T~e#ν = θ T (ν1) + (1− θ)T (ν2). According to Lemma 6.21, T (ν1)
is absolutely continuous, which implies that T (ν) is not singular, contradicting the assumption.
Hence, the claim is proven, and for P-almost every ν ∈ W2(Γ), ν is singular with respect to H.

We are left to prove the conclusion concerning the compactness of supp(ν). According to
Proposition 6.29, since µQ has compact support, for P-almost every ν, T (ν) has compact support.
Note that T~e maps the metric ball B(~e0, r) ⊂ Γ centered at ~e0 with radius r > 0 to the metric ball
B(0, r) ⊂ R centered at 0 with the same radius r. Hence, T (ν) ∈ W2(R) has compact support if
and only if ν ∈ W2(Γ) has compact support, which concludes the proof.

We can readily demonstrate that absolute continuity is not a rigid property of Wasserstein
barycenters on R. For instance, if we consider P := 1

2δν +
1
2δδx ∈ W2(W2(R)), where ν is an ab-

solutely continuous measure, then its barycenter µP is absolutely continuous, while δx, a singular
measure also in supp(P), is not. Nevertheless, it is particularly interesting to construct an abso-
lutely continuous barycenter µP with supp(P) being a subset of singular measures, such as those
supported on merely two fixed points. This construction, which also helps to further illuminate
Proposition 6.61, is presented in the following proposition. To build this example, it will suffice to
set µ := L1|[0,1].

Proposition 6.62. Let µ be a probability measure supported in the unit interval [0, 1]. Denote by
µ̃ its dual measure (Definition 6.30). Consider the map F : [0, 1] → W2(R) defined by

F (x) := x δ0 + (1− x)δ1.

Then µ = µP is the unique barycenter of P := F#µ̃.

Proof. As a result of direct calculations, we observe that the dual measure of F (x) = x δ0+(1−x)δ1
is the Dirac measure δx at x. According to Theorem 6.18, the unique barycenter µP of P satisfies
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that, for t ∈ (0, 1),

f−1
µP

(t) =

∫
W2(R)

f−1
ν (t)dP(ν) =

∫ 1

0

f−1
F (x)(t)d µ̃(x) =

∫ 1

0

fδx(t)d µ̃(x)

=

∫ 1

0

1[0,t](x)d µ̃(x) = µ̃([0, t]) = fµ̃(t).

It follows that 0 ≤ f−1
µP

≤ 1, which further implies supp(µP) ⊂ [0, 1] according to Lemma 1.33.
Therefore, the above equality shows that µP is the dual measure of µ̃, which implies our conclusion
µ = µP by Lemma 6.31.

The uniqueness of Wasserstein barycenters on the real line is guaranteed by Theorem 6.18.
Moreover, given a Riemannian manifold (M,dg), the barycenter of P ∈ W2(W2(M)) is unique if
P assigns positive mass to the set of absolutely continuous measures (Section 2.3). However, as
illustrated by the following example, such uniqueness fails to hold on metric trees due to their
inherent branching structure.

Proposition 6.63. Let Γ = (V,E, dl) be the tripod with three edges of unit length, i.e., V =
{v0, v1, v2, v3}, E = {e1, e2, e3} with ei = {v0, vi} and l(ei) = 1 for i = 1, 2, 3. Let ν1 be the uniform
probability measure on e1 and ν2 = 1

2δv2 + 1
2δv3 be the averaged sum of two Dirac measures at

vertices v2 and v3. Define P := 1
2δν1 + 1

2δν2 . Then P has infinitely many absolutely continuous
barycenters, and optimal transport maps pushing forward ν1 to ν2 are not unique.

ν1 = H|e1
e⃗v1

v2

v3

e2

e3

v0
ν2 = 1

2δv1 +
1
2δv2

µP

0 1 2

µ1 = L1|[0,1] µ2 = δ2µQ = 2L1|[1, 32 ]

T e⃗

Γ

R

P = 1
2δν1

+ 1
2δν2

Q = 1
2δµ1

+ 1
2δµ2

3
2

1
2

Proof. Consider the oriented edge ~e =
#              »

{v1, v0} and let T : W2(Γ) → W2(R) be the push-forward
map associated to ~e (Definition 6.20). Define µ1 := T (ν1) = L1|[0,1], µ2 := T (ν2) = δ2 and
Q := T#P = 1

2δµ1
+ 1

2δµ2
. According to the formula of Wasserstein barycenters on R (Theorem 6.18),

µQ := 2L1|[1, 32 ] is the barycenter of Q.
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By direct calculation using Theorem 1.37, we obtain dW (µ1, µQ) = dW (µQ, µ2) =
1
2dW (µ1, µ2) =√

7/(2
√
3). Since ν1 is supported in the oriented edge ~e, Proposition 6.19 implies that for any

measure ν ∈ W2(Γ), dW (ν1, ν) = dW (µ1, T (ν)). We prove that any measure µP constructed as
follows is a barycenter of P. Define µP := 1

2η2 +
1
2η3 with η2 (respectively η3) being a probability

measure supported in the edge e2 (respectively e3) such that

T (µP) =
1

2
T (η2) +

1

2
T (η3) = 2L1|[1, 32 ] = µQ.

Since µQ = T (µP) is the barycenter of Q, we have

dW (ν1, µP) = dW (µ1, T (µP)) = dW (µ1, µQ) =
1

2
dW (µ1, µ2) =

1

2
dW (ν1, ν2).

Since e2 ∪ e3 is isometric to a segment of length 2, we can deduce from Theorem 1.37 the following
optimal transport plan γ between µP = 1

2η2 +
1
2η3 and ν2,

γ :=
1

2
η2 ⊗ δv2 +

1

2
η3 ⊗ δv3 .

Using the fact that both the restrictions T~e|e2 and T~e|e3 are isometric, we obtain

dW (µP, ν2)
2 =

∫
Γ

dl(x, y)
2 d γ(x, y)

=
1

2

∫
e2

dl(x, v2)
2 d η2(x) +

1

2

∫
e3

dl(x, v3)
2 d η3(x)

=
1

2
dW (T (η2), µ2)

2 +
1

2
dW (T (η3), µ2)

2

= dW (
1

2
T (η2) +

1

2
T (η3), µ2)

2 = dW (T (µP), µ2)
2

= dW (µQ, µ2)
2 =

[
1

2
dW (µ1, µ2)

]2
=

1

4
dW (ν1, ν2)

2.

Therefore, dW (ν1, µP) = dW (µP, ν2) = 1
2dW (ν1, ν2), which implies that µP is a barycenter of P =

1
2δν1 +

1
2δν2 according to Lemma 2.7 (c.f. proof of Proposition 6.39). From our construction of µP,

there are infinitely many possible choices and all of them are absolutely continuous.
As for the optimal transport maps pushing forward ν1 to ν2, we can find multiple of them by

dividing the edge e1 into two parts with equal lengths. For example, set I1 := [T~e]−1([0, 12 ]) to be
the pre-image of [0, 12 ] under the map T~e and set I2 := e1\I1. Define two maps F1, F2 : e1 → {v2, v3}
as follows: F1 sends points of I1 to v2 and sends points of I2 to v3; F2 sends points of I1 to v3 and
sends points of I2 to v2. Since ν1(I1) = ν1(I2) = 1

2 , both F1 and F2 push forward ν1 to ν2. By
direct calculation, we have∫

e1

dl(F1(x), x)
2 d ν1(x) =

∫
e2

dl(F2(x), x)
2 d ν1(x) =

∫
[0, 12 ]∪( 1

2 ,1]

|1− x+ 1|2 dx =
7

3
,

which shows that F1 and F2 are both optimal transport maps since dW (ν1, ν2)
2 = dW (µ1, µ2)

2 =
7/3.
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While Proposition 6.63 demonstrates that P can have infinitely many barycenters, a key question
remains: does any barycenter µP assigns positive mass to the common vertex v0? To address this,
we can, as noted earlier in this subsection, apply results from Section 6.5. The upcoming example
highlights a situation where Theorem 6.54 alone is insufficient to conclude that µP({v0}) = 0. This
therefore serves as an ideal example to illustrate a flexible application of the restriction property of
Wasserstein barycenters.

Proposition 6.64. Let Γ = (V,E, dl) be the tripod with three edges of unit length, i.e., V =
{v0, v1, v2, v3}, E = {e1, e2, e3} with v0, vi being the two ends of ei and l(ei) = 1 for i = 1, 2, 3.
Consider two probability measures ν1, ν2 ∈ W2(Γ) such that ν1 is supported in e1, ν1({v1}) = 0,
and ν2 = θ δv2 + (1 − θ)δv3 with θ ∈ [0, 1]. Define P := 1

2δν1 +
1
2δν2 . Then any barycenter µP of P

gives no mass to the vertices of Γ, i.e., µP(V ) = 0.
Moreover, if ν1 is absolutely continuous (with respect to H), then all barycenters of P are

absolutely continuous.

Proof. We first prove the claim that δvi is not a barycenter of P for any i = 0, 1, 2, 3.
We begin with the case for v0 since it is more complicated than others. Assume without loss of

generality that ν2({v2}) > 0, i.e., 0 < θ ≤ 1. Consider the oriented edge ~e =
#              »

{v0, v2} and denote by
T : W2(Γ) → W2(R) the push-forward map associated to ~e (Definition 6.20). Define µ1 := T (ν1),

Γ
e⃗

T e⃗ ν2 = θ δv2 + (1− θ)δv3

ν1

µ1

µ2 = θ δ1 + (1− θ)δ−1

v2

v1

v3

−1 10

v0

R

µ2 := T (ν2) = θ δ1 + (1 − θ)δ−1, and Q := T#P = 1
2δµ1

+ 1
2δµ2

. By Lemma 1.33, f−1
µ1

(1) > −1
since ν1({v1}) = 0, and f−1

µ2
(1) = 1 as θ = ν2({v2}) > 0. Therefore, according to Theorem 6.18,

the unique barycenter µQ of Q satisfies

f−1
µQ

(1) =
1

2
f−1
µ1

(1) +
1

2
f−1
µ2

(1) > 0.

Hence, by Lemma 1.33, µQ is not supported in R−. It follows from Lemma 6.52 that δv0 is not a
barycenter of P.

As for the case vi with i = 1, 2, 3, we consider the oriented edge
#              »

{vi, v0} and the corresponding
reduced Wasserstein barycenter problem on R as above. Note that the whole graph is mapped to
a subset of R+ by the reduction map associated to

#              »

{vi, v0} (Proposition 6.19). Hence, if δvi is a
barycenter of P, then ν1 = ν2 = δvi by Lemma 6.52, which is impossible under our assumptions.
This concludes the proof of our previous claim.

We prove by contradiction µP(V ) = 0. Otherwise, we can decompose a barycenter µP as follows,

µP = λ δvi + (1− λ)µ2,
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where i is one of the indices 0, 1, 2, 3, 0 < λ < 1 and µ2 ∈ W2(Γ). By Proposition 5.2, there exists
a measurable map F 1 : W2(Γ) → W2(Γ) such that F 1(ν) is absolutely continuous with respect to
ν and δvi is a barycenter of Q1 := F 1

#P. However, Q1 = 1
2δF 1(ν1) +

1
2δF 1(ν2) satisfies the same

assumption as P, which leads to a contradiction due to the previous claim.
If ν1 is absolutely continuous, Proposition 6.29 implies that any µP is absolutely continuous

when restricted to the interior of each edge. It follows from µP(V ) = 0 that v1 is absolutely
continuous.
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Titre : Régularité des barycentres de Wasserstein

Mots clés : barycentre Wasserstein, théorie du transport, géométrie riemannienne, arbre métrique

Résumé : Cette thèse porte sur l’étude des conditions géométriques qui gouvernent la régularité des barycentres de Wasserstein.
L’objectif central est de comprendre comment la géométrie sous-jacente d’un espace métrique — en particulier, la présence ou
l’absence d’une minoration de la courbure de Ricci — détermine si un barycentre est absolument continu ou singulier. La recherche
aboutit à deux contributions principales, l’une concernant les espaces lisses et non-branchants (variétés riemanniennes) et l’autre
les espaces singuliers et branchants (arbres métriques).

La première contribution majeure établit la continuité absolue des barycentres de Wasserstein sur les variétés riemanniennes sous
des hypothèses significativement plus faibles que celles connues auparavant. Cette thèse montre que sur toute variété rieman-
nienne complète dotée d’une courbure de Ricci minorée, le barycentre de Wasserstein µP est garanti d’être absolument continu,
à condition que sa mesure de probabilité définissante P sur l’espace de Wasserstein assigne une masse positive à l’ensemble des
mesures absolument continues. Ce résultat assouplit considérablement les conditions des travaux antérieurs, qui exigeaient à la
fois la compacité de la variété et que la mesure P assigne une masse positive à l’ensemble des mesures dont les densités sont
uniformément bornées. La preuve introduit une approche novatrice reposant sur plusieurs nouveaux outils analytiques. Nous
développons un nouveau type de fonctionnelles de déplacement, dont les propriétés découlent d’une nouvelle égalité hessienne
pour les barycentres. Ces fonctionnelles permettent d’établir une estimation cruciale garantissant la régularité. De plus, la preuve
intègre des outils de la théorie des espaces sousliniens pour lier l’hypothèse générale sur P aux conditions topologiques spécifiques
requises par nos estimations fonctionnelles.

La seconde contribution majeure est le développement d’un cadre systématique pour analyser et caractériser les barycentres
de Wasserstein sur les arbres métriques, où l’absence d’une minoration synthétique de la courbure de Ricci peut engendrer un
comportement complexe. Ce cadre, qui combine un principe de localisation novateur (la “propriété de restriction”) avec des
techniques qui ramènent les problèmes de transport sur les arbres au cadre plus simple de la droite réelle, fournit les outils
nécessaires pour étudier en détail la structure de ces barycentres. Il permet une investigation méthodique de la manière dont la
topologie de branchement de l’arbre génère des phénomènes tels que la singularité et la non-unicité, qui distinguent ces espaces
des variétés.

En résumé, cette thèse fait progresser notre compréhension des barycentres de Wasserstein en :

1. Prouvant un résultat définitif sur leur continuité absolue sur les variétés à courbure de Ricci minorée, étayé par de nou-
veaux outils analytiques incluant des fonctionnelles de déplacement novatrices et l’application de la théorie des espaces
sousliniens.

2. Développant un cadre systématique pour caractériser les barycentres sur les arbres métriques, fournissant les outils pour
analyser leur structure et leur singularité.

Title: Regularity of Wasserstein barycenters

Key words: Wasserstein barycenter, optimal transport, Riemannian geometry, metric tree

Abstract: This thesis investigates the geometric conditions that govern the regularity of Wasserstein barycenters. The central goal
is to understand how the underlying geometry of a metric space—specifically, the presence or absence of a lower Ricci curvature
bound—determines whether a barycenter is absolutely continuous or singular. The research yields two main contributions, one
concerning smooth, non-branching spaces (Riemannian manifolds) and the other concerning singular, branching spaces (metric
trees).

The first key contribution establishes the absolute continuity of Wasserstein barycenters on Riemannian manifolds under signif-
icantly weaker assumptions than previously known. This thesis shows that on any complete Riemannian manifold with a lower
Ricci curvature bound, the Wasserstein barycenter µP is guaranteed to be absolutely continuous, provided its defining probability
measure P on the Wasserstein space assigns positive mass to the set of absolutely continuous measures. This result significantly
relaxes the conditions of previous work, which required both the manifold to be compact and the measure P to assign positive
mass to the set of measures with uniformly bounded densities. The proof introduces a novel approach built on several new an-
alytical tools. We develop a new class of displacement functionals, whose properties are derived from a novel Hessian equality
for barycenters. These functionals allow us to establish a crucial regularity-enforcing estimate. Furthermore, the proof integrates
tools from Souslin space theory to bridge the gap between the general assumption on P and the specific topological conditions
required by our functional estimates.

The second key contribution is the development of a systematic framework to analyze and characterize Wasserstein barycenters
on metric trees, where the lack of a lower synthetic Ricci curvature bound can lead to complex behavior. This framework, which
combines a novel localization principle (the “restriction property”) with techniques that relate transport problems on trees to the
simpler setting of the real line, provides the necessary tools to study the structure of these barycenters in detail. It allows for
a methodical investigation of how the tree’s branching topology generates phenomena such as singularity and non-uniqueness,
which distinguish these spaces from manifolds.

In summary, this thesis advances our understanding of Wasserstein barycenters by:

1. Proving a definitive result on their absolute continuity on manifolds with a lower Ricci curvature bound, supported by new
analytical tools including novel displacement functionals and the application of Souslin space theory.

2. Developing a systematic framework to characterize barycenters on metric trees, providing the tools to analyze their structure
and singularity.


	List of Symbols
	Introduction
	Prerequisites and notation
	Length spaces and Riemannian manifolds
	Tools from measure theory
	Analysis on manifolds
	Approximate differentiability
	Approximate Hessian of locally semi-concave functions

	Optimal transport and Wasserstein spaces
	Optimal transport on the real line
	Differentiating optimal transport maps


	General framework for barycenters
	Barycenters on proper metric spaces
	Measurable selection of barycenters
	Barycenters and cut-loci

	Counter-examples of barycenter's existence
	Known properties of Wasserstein barycenters

	Absolutely continuous barycenters of finitely many measures
	Lipschitz continuity of optimal transport maps
	Divide-and-conquer via conditional measures
	Absolute continuity implied by compactness
	Absolute continuity without compactness

	Absolute continuity via lower Ricci curvature bounds
	Hessian equality of Wasserstein barycenters
	Displacement functionals for Wasserstein barycenters
	Proof of absolute continuity
	Preserving absolute continuity along approximating sequences
	Compactness via Souslin space theory
	Final step of the proof


	Restriction property of Wasserstein barycenters
	Wasserstein barycenters on metric trees
	Definitions and preliminary properties
	Metric (measure) graphs
	Curvature bounds on metric trees
	Wasserstein barycenters on the real line

	A reduction technique for metric trees
	Almost absolute continuity of barycenters
	New results of Wasserstein barycenters on R
	Dual measures
	Rigid properties

	Singularity at vertices
	Summary and examples of barycenters

	Bibliography

