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My formula for greatness in a human being is amor fati: that one wants
nothing to be different, not forward, not backward, not in all eternity. Not
merely bear what is necessary, still less conceal it—all idealism is
mendacity in the face of what is necessary—but love it.

— Friedrich Nietzsche

bz g4, SN AE.

— «% %> (Li Sao)

#HEdéd, 2AALELA; FHhaA, LEsdE,

— The Author

1For that which my heart affirms as true, I would have no regrets, even if I were to die nine times for it.
2Will this life passionately, and cultivate a boundless being; hold aloft your sun and moon, and affirm your destiny
steadfast.
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List of symbols

integers, natural numbers (0,1,2,...), N* =N\ {0}
real numbers, Ry = [0, +00), R_ = (=00, 0], complex numbers

infinite-dimensional real Hilbert space, whose elements are sequences
of real numbers with finite square sum

connected Riemannian manifold M without boundary equipped with
the distance function dgy induced by a C? smooth metric tensor g

differential operator for maps (at point x)

(approximate) Hessian of some function f at given point x
metric space E with distance function d

closed metric ball centered at x with radius r

Lebesgue measure on R™

uniform probability measure on [0, 1]

push-forward of some measure p by a measurable function f
Wasserstein space over some metric space E

Wasserstein space over some Wasserstein space Wa(E)
probability measures on the Wasserstein spaces Wa(Wa(E))
a definitely chosen barycenter of some probability measure P

distribution function of probability measure u, which is defined to be
non-decreasing and right-continuous

the right-continuous inverse function of the distribution function of
probability measure p, also known as the quantile function of p

space of functions f such that |f|? is integrable w.r.t u on [0, 1] or the
given measure pu, p € [1, +00]

oriented edge with two ends vg, vy in this given order

dual measure of some probability measure p € Ws([0,1]), ie., fz
coincides with f;* on the interval (0,1)



Introduction

This thesis investigates the regularity of Wasserstein barycenters, approached from a geometric
perspective. Building upon the geometric study of optimal transport, this research explores how
the geometric properties of the underlying space influence whether Wasserstein barycenters are
absolutely continuous or singular with respect to a reference measure.

Key contributions of this work include: first, establishing the absolute continuity of Wasserstein
barycenters on Riemannian manifolds with a lower Ricci curvature bound under weaker assumptions
than previously known; and second, characterizing the nature of singular Wasserstein barycenters
in the specific setting of metric trees, linking singularity to the tree’s branching structure.

We begin by introducing the concept of Wasserstein barycenters and the motivation for our
research project.

Background and motivations

The concept of a barycenter, or Fréchet mean, extends the familiar notion of the mean (expected
value) from Euclidean spaces to general metric spaces. For a metric space (F,d), a barycenter
2, € E of a probability measure p on (E, d) is defined as a minimizer of the mean squared distance:

[ e dnta) = inf [ dto) o)

This definition provides a natural generalization; if (F,d) is a Euclidean space and p is the law of
a random variable, z, is its standard mean.

Wasserstein barycenters are barycenters defined for Wasserstein spaces, the metric spaces ex-
tensively studied in optimal transport theory. Throughout the subsequent discussion, we consider
(E,d) a proper metric space, meaning that bounded closed subsets of E are compact. Barycenters
are known to exist on such spaces; furthermore, proper metric spaces are Polish (i.e., complete and
separable). The Wasserstein space (of order 2) over (E,d), denoted by (Wa(E),dw), comprises
probability measures p on (E,d) with finite second moments, i.c., [, d(zo,2)*d pu(x) is finite for
some point (and thus any) zg € E. The Wasserstein metric dy quantifies the distance of two
measures p, v € Wo(E) via the optimal transport plans between them,

7 JExXE

dw (p,v) = \/inf d(z,y)? dy(z,y), (1)

where the infimum is taken over all transport plans -, i.e., probability measures v on E x E with
marginals ¢ and v. This infimum is attained because (F,d) is Polish. Crucially, Ws(E), dw) is



itself a Polish space, which allows for the definition of a Wasserstein space over it, denoted by
Wa(Wa(E)),dw). A Wasserstein barycenter up € Wa(E) is a barycenter of a probability measure
P € Wo(Ws(E)), meaning P is a measure on measures in Wa(E). Such a barycenter pp is thus
a probability measure on E. This thesis focuses on establishing regularity properties of up, such
as its absolute continuity or singularity with respect to a reference measure on E, by leveraging
geometric properties of the underlying space (E, d).

A primary motivation for studying Wasserstein barycenters is their remarkable ability to pre-
serve certain geometric features when averaging data represented as probability distributions. This
geometric fidelity is well-illustrated by the following example: the barycenter up of a finite collection
of centered Gaussian measures {y;}?; on R™, with P = " | X;§,, for non-negative weights \;
summing to one, is itself a unique centered Gaussian measure |1, Theorem 6.1]. This property, cap-
turing structural elements during averaging, has fueled increasing interest in applying Wasserstein
barycenters across diverse fields such as image processing, machine learning, and statistics; see [78]
for a survey of such applications. Although this thesis focuses on theoretical aspects, understanding
the geometric properties of Wasserstein barycenters, including their regularity, is crucial to under-
pinning their effective and reliable use in practical settings. Moreover, investigating barycenter
regularity aligns with the broader program of exploring the rich geometric structures inherent in
optimal transport theory. This field has produced powerful concepts, notably the synthetic theory
of Ricci curvature bounds for metric measure spaces [105, Part III]. This thesis utilizes tools de-
veloped from the geometric study of optimal transport, such as displacement convexity and related
variational techniques. Conversely, we anticipate that our findings and the methodologies employed
will offer further insights into the geometric analysis of Wasserstein spaces and the behavior of their
barycenters.

Absolutely continuous Wasserstein barycenters on manifolds

Early investigations in optimal transport concerning the regularity of Wasserstein barycenters often
focused on displacement interpolations. Namely, given two probability measures p, v in the Wasser-
stein space W, (M) over a complete Riemannian manifold (M, dg), any minimal geodesic from p
to v consists of points py, which are barycenters of the measure (1 — A\)J,, + Ad, € Wa(Wa(M))
as A varying in [0,1]. These barycenters p are termed displacement interpolations (or McCann
interpolants), and their absolute continuity, under various (and sometimes generalized) conditions,
have been extensively studied [72, 12, 36, 38, 105].

Agueh and Carlier [1] initiated the study of Wasserstein barycenters for finite collections of
probability measures on Euclidean spaces. These barycenters are solutions to the minimization
problem:

n

Veyr\r}gi(rﬁ{”YL) lzzl N dw (v, 13)%,  where p; € Wo(R™). (2)
They established the existence of such barycenters constructively via a dual formulation and demon-
strated that if at least one of the input measures p; is absolutely continuous with a bounded density
function, then the unique barycenter inherits this absolute continuity. Kim and Pass [58] extended
this line of inquiry to Wasserstein barycenters on compact Riemannian manifolds M, reaching
similar conclusions. Their framework accommodates general probability measures P on Wh(M),
provided P assigns positive mass to the set of absolutely continuous measures whose densities are
uniformly bounded from above. The absolute continuity of Wasserstein barycenters was indispens-



able for their subsequent study of Jensen-type inequalities. Agueh and Carlier’s results were later
generalized by Jiang [52] to compact Alexandrov spaces with curvature bounded from below.

To contextualize our contributions to the geometric investigation of absolute continuity, we
first outline some pertinent known properties of Wasserstein barycenters. For a proper metric
space (E,d), the existence of a Wasserstein barycenter up for a finitely supported measure P =
i Ai 6y, (c.f. formulation (2)) is closely related to a multi-marginal optimal transport problem
(see Definition 2.11 for more details). Specifically, an optimal multi-marginal plan + is a minimizer
for

n n
in Y Ad(y,z;)*d = mi in Y Ad(y,z;)*d6(zq,. ..
/En min 2N (4 z:)*dy(1, ..., 20) = min /E min 2N (y,2:)"dO(x1,. .. an),
where © denotes the set of all multi-marginal transport plans (probability measures on E™) with
prescribed marginals piq, ..., f, in this given order. A barycenter selection map is a measurable
map B : E" — E sending (z1,...,,) to a barycenter of >_"" | \; 0, i.e.,

n n

Z)\i d(B(z1,...,2,),7;)*> = min i d(y, ;)2

i=1 ver i
If v is a multi-marginal optimal transport plan and B is a barycenter selection map, then the
push-forward measure pp := By~ is a barycenter of P. For a general measure P € Wh(Ws(E)),
the existence of its barycenter up is typically established by approximating P with a sequence of
finitely supported measures {IP;}, leveraging the guaranteed existence of a barycenter of P;, which in
turn follows from the existence of multi-marginal optimal transport plans and barycenter selection
maps. Thanks to the consistency of Wasserstein barycenters [62], if dw(P;,?) — 0 and pp, are
corresponding barycenters, then there exists a converging subsequence of {up,}, and its limit is a
barycenter of P. Moreover, on a Riemannian manifold (M, dg), if P assigns positive mass to the set
of absolutely continuous measures, the functional p — sz () dw (p, )2 dP(v) is strictly convex
[90, Theorem 7.19]. This strict convexity implies the uniqueness of its minimizer up, the Wasserstein
barycenter. With these preliminaries, we state a key result by Kim and Pass [58, Theorem 6.2] that
serves as a crucial reference point for our work:

Theorem 0.1 (Kim and Pass’ result on absolute continuity). Let (M, dg) be a compact Riemannian
manifold. For a positive number L > 0, denote by Ap the set of absolutely continuous probability
measures (with respect to the volume measure Vol) on M whose density functions are bounded
from above by L. If a measure P € Wo(Wa(M)) satisfies P(Ay) > 0 for some L > 0, then P has a
unique barycenter up, which is itself absolutely continuous with a bounded density function.

The proof of Theorem 0.1 by Kim and Pass involves applying their prior results on multi-
marginal optimal transport [57] to finitely supported measures. They subsequently establish a
uniform upper bound on the densities of barycenters for the approximating sequence, a step where
both the compactness of M and a lower Ricci curvature bound are utilized. While Theorem 0.1
marks a significant advance, its reliance on the compactness of M and the strong assumption that
P assigns positive mass to measures with uniformly bounded densities (P(Ar) > 0) motivates our
objective: to establish a more direct link between lower Ricci curvature bounds and the absolute
continuity of Wasserstein barycenters, potentially under relaxed assumptions.



To address these limitations, this thesis introduces a novel approach centered on displacement
functionals. These functionals assign to an absolutely continuous probability measure u = f - Vol
the quantity G(u) := [,, G(f)dVol. The utility of G is tied to the properties of the function
G : Rt — R, particularly its convexity or growth conditions. Prominent examples, such as those
with G(p) = plogp or G(p) = —np'~Y/" (n € N*), are intrinsically linked to lower Ricci curvature
bounds; indeed, synthetic definitions of these bounds on metric measure spaces often rely on the
convexity properties of such functionals along Wasserstein geodesics [69, 96, 97]. Drawing inspi-
ration from their role in encoding geometric information like lower Ricci curvature bounds, our
strategy involves choosing a specific class of functions G. Since a finite value of G(u) implies the
absolute continuity of i, the core element of our method is to establish an effective upper bound for
G(up), the functional evaluated at the Wasserstein barycenter pp. Precisely, for a finitely supported
measure P = >"" | \; §,, where each y; has compact support and only a subset (say, the first k) are
absolutely continuous, our approach yields an upper bound for G(up) in terms of the convex com-
bination Zle Ai G(u;) plus some additional, well-controlled terms (Proposition 4.3). This result is
notably different from a similar inequality by Kim and Pass [58, Theorem 7.11], where a finite upper
bound requires all measures p; in the support of P to be absolutely continuous. Consequently, our
capacity to handle mixtures that include potentially singular measures significantly expands the
applicability of using such functionals to deduce barycenter regularity. This refined control is vital
for establishing the absolute continuity of Wasserstein barycenters, since it ensures G(up) remains
bounded when transitioning from finitely supported P to general measures via approximation ar-
guments. Achieving this bound relies on two of our key technical contributions: the derivation of
a Hessian equality for Wasserstein barycenters (Theorem 4.1) and the application of new estimates
in proving the aforementioned upper bounds of G(up).

These considerations lead to the following intermediate proposition (Proposition 4.9). Here, the
set B(G, L) comprises absolutely continuous measures p = f - Vol such that G(u) < L, for some
L > 0 and a function G specified by Definition 4.7.

Proposition 0.2. Let (M,dy) be a complete Riemannian manifold with a lower Ricci curvature
bound. If P € Wa(Wa(M)) gives mass to some closed set B(G,L) defined in Definition 4.7 with
respect to the volume measure on M, then the unique barycenter of P is absolutely continuous.

To refine this result further, we leverage tools from functional analysis and Souslin space the-
ory. We revisit a modified de la Vallée Poussin criterion (Theorem 4.13) to connect the condition
P(B(G, L)) > 0 with conditions involving the o(L', L>) weak topology on the densities of abso-
lutely continuous measures. Precisely, the closed set B(G, L) in Proposition 0.2 can be replaced by
a compact set with respect to the weak topology. This shift towards topological properties of sets
of absolutely continuous measures (or their densities) leads us to employ the Souslin space theory.
Though not commonly seen in the literature of optimal transport, the Souslin space theory provides
helpful tools to find connections between different topologies from a measure theoretical viewpoint.
Note that, since P is a Radon measure on the Polish space Wa(M), if P assigns positive mass to the
(Borel) set of absolutely continuous measures, it must assign positive mass to some compact subset
of these absolutely continuous measures (in the W,(M) topology). The aforementioned tools help
demonstrate that such a compactness result also holds for the weak topology. This line of argument
culminates in the first main result of this thesis:

Theorem 0.3. Let (M, dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a measure P € Wo(Wh(M)) assigns positive mass to the set of absolutely continuous probability



measures with respect to the volume measure on M, then the unique barycenter of P is absolutely
continuous.

This result significantly extends Theorem 0.1 in two key aspects. Firstly, it establishes the abso-
lute continuity of the barycenter pup under the considerably weaker condition that P merely assigns
positive mass to the set of absolutely continuous measures. This requirement, often a natural one
for ensuring the uniqueness of up, represents a crucial relaxation from Theorem 0.1, which demands
that P gives mass to measures with uniformly bounded densities (i.e., P(Ar) > 0). Secondly, our
result holds for general complete manifolds with a lower Ricci curvature bound, thereby relaxing
the compactness assumption of the prior theorem. Consequently, even when applied to the com-
pact setting originally considered by Kim and Pass (as compact manifolds are indeed complete and
possess a lower Ricci curvature bound), our proposition provides a stronger statement due to this
less restrictive condition on P.

Singular Wasserstein barycenters on metric trees

Having established that a lower Ricci curvature bound ensures the absolute continuity of Wasserstein
barycenters, a natural subsequent inquiry concerns how their singularity relates to other geometric
structures. Inspired by [50], we begin with a concrete example on the tripod formed by attaching
three copies of the unit interval [0,1] at a common endpoint 0 (Figure 1). Let vy, 15,3 be three

1e
Figure 1: P = Z§:1 %5,,1. on the tripod

probability measures, each supported in the sub-interval [%, 1] of a distinct branch of this tripod.
As detailed in Proposition 6.59, a calculation involving the barycenter selection map reveals that
the unique Wasserstein barycenter of P := 2?21 %6,,1. is up = dp, a Dirac measure concentrated at
the central vertex 0.

To contextualize this example and relate it to our previous findings on absolute continuity, we
briefly introduce the setting of metric trees. A metric tree is a geodesic metric space I' = (V| E, d;),
where V is the set of vertices, F is the set of edges, and d;(z,y) is the length of the unique
shortest path connecting any two points z,y € I'. The canonical reference measure on I' is the
one-dimensional Hausdorff measure H, which coincides with the Lebesgue measure on each edge
and assigns zero measure to the vertices V. The tripod in our example is a metric tree with three
edges of length 1 and four vertices.



Consider the specific case where each v; in the tripod example is the uniform probability measure
on the interval [%, 1] of its respective branch. Each v; is then absolutely continuous with respect to
H. Consequently, the measure P = % >4, is supported entirely on absolutely continuous measures.
Nevertheless, its barycenter up = &g is singular with respect to . While a tripod is not a smooth
manifold, we can still infer from various generalized notions of curvature bounds that around the
common vertex 0, the curvature of the tripod is not bounded from below. This observation suggests
a link between the failure of such curvature bounds and the emergence of singular barycenters. The
flexibility in choosing the measures v; further hints at a rich, yet potentially tractable, structure
for singular Wasserstein barycenters on metric trees, motivating our focused study in this setting.

Auxiliary techniques for metric trees

To systematically investigate this phenomenon, we develop and utilize two key auxiliary tools.
The first one is a localization principle for Wasserstein barycenters, which we term the restriction
property (Corollary 5.4):

Theorem 0.4 (Restriction property of Wasserstein barycenters). Let (E,d) be a proper metric
space, and let up be a Wasserstein barycenter of a probability measure P € Wo(Wh(E)). Given an
equality pp = A pt+ (1 =N p? with u* € Wa(E) fori=1,2 and X € (0,1), there exist two probability
measures Q', Q2 such that p' is a barycenter of Q' for i = 1,2. Furthermore, Q; and Qo inherit
the following properties from P concerning absolute continuity with respect to any given reference
measure n on E:

1. If P assigns positive mass to the set of measures absolutely continuous with respect to m, then
Q1 and Q2 also assign positive mass to this set.

2. If P is supported entirely in the set of measures absolutely continuous with respect to n, then
Q1 and Q2 are also supported entirely on this set.

This restriction property (Theorem 0.4), particularly when 7 is a canonical reference measure
(e.g., the volume measure on a Riemannian manifold or H on a metric tree), provides a foundation
for local-to-global arguments, facilitating the extension of results like Theorem 0.3 to more complex
scenarios.

The second auxiliary tool is a reduction technique specifically designed for optimal transport
problems on metric trees. For any oriented edge € of the metric tree I', we define a reduction map
T¢ : T' — R. This map effectively “flattens” the tree into the real line by identifying € with an
interval and mapping the rest of I accordingly (see Figure 2 and Definition 6.20).

Thanks to the c-cyclical monotonicity characterization of optimal transport plans, we establish
that these reduction maps preserve Wasserstein distances under certain conditions:

Theorem 0.5 (Reduction property of optimal transport on metric trees). Let ' = (V, E,d;) be a
metric tree. Fix an oriented edge € of I' and let T¢ : T' — R be the reduction map associated to €
(Definition 6.20). For two given probability measures p,v € Wh(T'), if 1 is supported in the edge €,
then

dw (1, v) = dw (T, T¢ pv),

where dyy denotes both the Wasserstein metrics on Wa(I') and on Wh(R).
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Figure 2: Tllustrative example of the reduction map T°€.

Wasserstein barycenters on the real line

The combination of the reduction technique (Theorem 0.5) and the restriction property (Theorem
0.4) guides our strategy: first, investigate properties of Wasserstein barycenters on the real line R,
and then apply the auxiliary techniques to extend the findings to metric trees.

On the real line, the Wasserstein space (Wa(R), dw ) possesses a well-known linear structure. It
can be isometrically embedded into the Hilbert space L?([0,1]) by mapping a measure u € Ws(R)
to its quantile function f, 1. 00,1 — R. The quantile function here is the (generalized) right-
continuous inverse of the distribution function f,(t) := p((—o0,t]). This linear structure leads to
an explicit formula for the Wasserstein barycenter pp of any P € W (W2 (R)): its quantile function
is the P-average of the quantile functions of the measures in its support:

[l = / [ dBWw), Ve (0,1], 3)
He Wa(R)

To analyze singularity properties using this formula, particularly for measures supported in [0, 1],
we introduce the concept of dual measure p.

Definition 0.6. Let u be a probability measure supported in [0,1]. Its dual measure i is the
probability measure whose distribution function f3 is given by the quantile function of u:

fa(t) = f'(t), forte(0,1). (4)

Dual measures share many regularity and singularity properties. It can be verified that p
is also supported in [0,1] and that the duality is involutive, i.e., i = u. Crucially, as shown
in Proposition 6.33 and Theorem 6.40, i exhibits certain types of singularities if and only if g
does. These include being finitely supported, countably supported, or singular with respect to the
Lebesgue measure £'. By combining the properties of dual measures with the barycenter formula
(3), we derive the following rigidity properties for Wasserstein barycenters on R.

Theorem 0.7 (Rigid Properties of Wasserstein Barycenters on R). Let P € Wa(Wa(R)) be a
probability measure, and let up be its Wasserstein barycenter. We say a property Q is a Tigid
property of up if the following implication holds,

up satisfies property Q@ = v satisfies property Q for P-almost every v.



The following properties of up are rigid:
1. Being a Dirac measure.
2. Having compact support.
3. Being singular (with respect to the Lebesgue measure).
4. Having support of Lebesque measure zero (i.e., being supported in a negligible set).
5. Being not absolutely continuous.

These rigid properties mean that if the barycenter pp is, for example, singular, then almost all
measures v in the support of P must also be singular. This is a powerful constraint on the measures
being averaged.

Characterizing singular Wasserstein barycenters on metric trees

Equipped with these tools, we can now describe the nature of singular Wasserstein barycenters on
metric trees. As an illustration of how properties of Wasserstein barycenters are extended from
R to trees, recall that Theorem 0.3, when applied to R (which has zero Ricci curvature), states
that if Q@ € Wo(Wa(R)) gives mass to absolutely continuous measures, then its barycenter ug is
also absolutely continuous. By applying the restriction property and the reduction technique, we
generalize this to obtain the following partial regularity result on metric trees (Theorem 6.28):

Proposition 0.8. Let I' = (V, E,d;) be a metric tree. Let P € Wo(Wa(T')) be a measure that
assigns positive mass to the set of measures on T’ that are absolutely continuous (with respect to H).
If pp is a barycenter of P, then the restriction of up to the interior of any edge e € E is absolutely
continuous. Consequently, if up is not absolutely continuous, its singular part must be supported in
the set of vertices V', which is a weighted sum of Dirac measures at these vertices.

Proposition 0.8 reveals a general principle for characterizing Wasserstein barycenters pp on
metric trees: the behavior of up on the interior of edges often mirrors that of barycenters on R,
while its behavior at vertices requires separate analysis, confirming the observation from the tripod
example. In Section 6.5, we present a method for determining the mass of up at vertices, which
involves applying the reduction technique to all edges incident to a given vertex.

Our general strategy for describing Wasserstein barycenters on metric trees then follows two
steps:

1. Analyze the mass distribution at vertices using reduction techniques applied to edges incident

to each vertex (Section 6.5).

2. Analyze the barycenter’s restriction to the interior of each edge by reducing the problem to
the real line, utilizing formula (3) and the rigid properties (Theorem 0.7) to characterize the
possible types of measures.

Several examples illustrating distinctive features of Wasserstein barycenters on metric trees,
derived using this approach, are presented in Section 6.6.



Summary and future research directions

This thesis advances the geometric study of optimal transport and Wasserstein barycenters through
several key contributions.

1. Hessian Equality for Wasserstein Barycenters: In Theorem 4.1, we establish a novel Hessian
equality for Wasserstein barycenters of finitely supported measures. This result provides a
rigorous geometric underpinning for the intuition that the weighted sum of “tangent vec-
tors” from the barycenter to the supporting measures vanishes, reinforcing the analogy of
Wasserstein spaces as infinite-dimensional Riemannian manifolds. The introduction of the
“approximate Hessian” (Section 1.3.2) in its derivation also offers a versatile tool for future
differential investigations of Wasserstein barycenters.

2. Absolute Continuity of Wasserstein Barycenters under Relaxed Assumptions: Our main result
on absolute continuity, Theorem 4.5 (restated as Theorem 0.3), significantly extends the work
of Kim and Pass (Theorem 0.1). It demonstrates that a lower Ricci curvature bound is suffi-
cient for the absolute continuity of the barycenter up if the measure P merely assigns positive
mass to the set of absolutely continuous measures. This clarifies the crucial role of Ricci cur-
vature, independent of the assumptions regarding compactness or the uniform boundedness of
densities. The proof introduces innovative displacement functionals and incorporates Souslin
space theory, enriching the analytical toolkit for optimal transport research.

3. Restriction Property for Wasserstein Barycenters: The restriction property (Proposition 5.2
and Corollary 5.4, summarized in Theorem 0.4) establishes a powerful localization principle
for Wasserstein barycenters on proper metric spaces. As demonstrated by its application in
various proofs (e.g., Theorem 6.28), this technique enables local-to-global arguments, offering
a way to tackle problems in singular settings like metric trees by breaking them down into
more manageable components.

4. Systematic Study of Wasserstein Barycenters on Metric Trees: This work initiates a system-
atic investigation into singular Wasserstein barycenters on metric trees (Chapter 6). For the
real line, we introduce concepts such as dual measures and rigid properties, shedding new light
on the fine structure of barycenters in this fundamental setting. Our novel reduction tech-
nique provides an intuitive and effective approach to optimal transport on metric trees, with
promising implications for extensions to general metric graphs. The illustrative examples in
Section 6.6 reveal intricate behaviors, including the non-uniqueness of Wasserstein barycen-
ters. This phenomenon sharply distinguishes metric trees from smoother settings, where
uniqueness is guaranteed under analogous conditions, thereby paving the way for deeper ex-
plorations.

The research presented in this thesis naturally opens up several promising avenues for future
investigation.

Extending displacement functional arguments to metric measure spaces

Our proof of Theorem 0.3 introduces a novel approach using displacement functionals that en-
capsulate the lower Ricci curvature bound within an inequality for Wasserstein barycenters. This
mirrors the standard definition of lower Ricci curvature bounds for metric measure spaces (MMS),



which often involves analogous inequalities (e.g., convexity of entropy functionals) along Wasser-
stein geodesics. This structural parallel suggests that many of our arguments could be adapted
to the general MMS setting. Recent advancements have indeed seen the proposal and study of
barycenter curvature-dimension conditions for MMS [46, 47]. However, these developments are pri-
marily based on the Wasserstein Jensen’s inequality from [58, Theorem 7.11], which, as discussed,
essentially requires all measures in the support to be absolutely continuous. Our approach, which
circumvents this limitation, could therefore offer a valuable alternative. Given that the measure-
theoretic components of our arguments, particularly those involving Souslin space theory, readily
apply to general Polish spaces (the underlying framework for many MMS), the principal hurdle in
such an extension appears to be the establishment of our core displacement functional inequality
(Proposition 4.3) for barycenters of finitely supported measures P on an MMS.

In Chapter 3, we reformulate Kim and Pass’ proof that up is absolutely continuous if P =
> oii Ai 6y, with py being absolutely continuous, to clarify its validity for non-compact manifolds
and its dependence on Riemannian structure. This proof relies significantly on the Brenier—-McCann
theorem, which characterizes optimal transport maps via gradients of c-concave potentials ¢ (e.g.,
as exp(—V¢), c.f. Theorem 1.27). In particular, the Hessian equality for Wasserstein barycenters
(Theorem 4.1), expressed in terms of ¢, is vital for deriving our displacement functional inequality.
A significant challenge, therefore, is to extend these arguments to MMS that lack such smooth
Riemannian structures and direct analogues of these tools.

Quantitative estimates for barycenter densities

The framework of displacement functionals offers the potential to derive qualitative estimates for
the density functions of absolutely continuous Wasserstein barycenters. By selecting appropri-
ate functionals, one might obtain bounds on these densities, thus providing information beyond
mere absolute continuity. This approach is exemplified by results such as the L™ density bound
for displacement interpolations in CD(0, N) spaces (c.f. [105, Theorem 30.20]), suggesting similar
estimates could be attainable for general barycenters under suitable curvature conditions.

Necessity of curvature bounds and the role of branching

While this thesis establishes that a lower Ricci curvature bound is a sufficient condition for the
absolute continuity of Wasserstein barycenters on Riemannian manifolds, its necessity remains an
open question. Despite efforts, we have not identified a Riemannian manifold lacking a global lower
Ricci curvature bound where barycenters of absolutely continuous measures exhibit singularity.
This raises the possibility that a weaker condition, perhaps related to the non-branching property
of manifolds, might suffice.

Specifically, we conjecture that on non-branching metric spaces, the absolute continuity of up
might hold even without a global lower Ricci curvature bound, potentially provable by contradiction
using an enhanced version of our restriction property (Theorem 0.4). If true, this would imply that
the emergence of singular Wasserstein barycenters on metric trees is fundamentally linked to their
branching structure, distinguishing them from (non-branching) Riemannian manifolds.

Generalizing reduction techniques to metric graphs

Optimal transport problems rarely admit explicit solutions, rendering techniques that simplify
them highly valuable. Our reduction technique for metric trees (Theorem 0.5) proved effective. A
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promising avenue for future work is to generalize this technique to broader classes of spaces, such
as general metric graphs (which may contain cycles). Developing such a generalization would not
only provide tools for solving concrete optimal transport problems on graphs in practice, but would
also deepen our understanding of optimal transport by expanding the repertoire of settings where
(at least partial) computations are feasible. Our detailed exposition of the reduction map T¢ and
its properties in Section 6.2 was intentionally presented to aid such future extensions.

11



Chapter 1

Prerequisites and notation

Due to varying implicit assumptions in different references, concepts in metric geometry and mea-
sure theory are often defined with subtle differences. In this chapter, we aim to clarify the usage
of these terminologies and establish the notational conventions that will be consistently followed in
this document.

We begin with some definitions in set theory. Symbols Z,N,N* R, C are reserved to denote
respectively the set of integers, natural numbers with 0 included, natural numbers with 0 excluded,
real numbers and complex numbers. A map f from a set X to a set Y is an assignment of one
element f(z) of Y to each element = of X. The set X is called the domain of f, the set Y is called
the codomain of f, and f(X) := Uzex f(z) CY is called the image of f. We shall use Id : X — X
to denote the identity map. When the codomain Y of f is a subset of the Euclidean spaces R™
(m € N*), we also call f a function. In certain instances, which will be clearly indicated, functions
are permitted to take the values 400 and —oc.

For a real number x € R, we define x as positive if x > 0 and negative if x < 0. To explicitly stress
that  is not equal to 0, we also use the terms strictly positive or strictly negative. Ry := [0, +00) is
the set of non-negative numbers, R_ := (—o0, 0] is the set of non-positive numbers. Given two real
numbers z,y € R, we say x is smaller than or less than y if x < y, and z is bigger than or larger than
y if x > y. For a real-valued function f defined on a subset X C R of the real numbers, f is defined
as increasing (or non-decreasing) if x1,x9 € X with 1 < zo implies f(z1) < f(x2). Similarly,
f is decreasing (or non-increasing) if 1 < xo implies f(x1) > f(z2). The definitions of strictly
increasing and strictly decreasing functions are obtained by replacing the non-strict inequalities
with their corresponding strict counterparts.

For a function f defined on a subset A C R of the real line, its right limit at some point z € R,
denoted by lim,, f(y), is defined as the limit of f(y) as y converges to x through values in A that
are strictly greater than x. Such limits are only defined for x in the set {x € R | Jy; € A,y; >
x, for i € N* s.t. lim;,o0 y; = x}. The left limit limyy, f(y) of f at « is defined analogously.

A set is countable if it can be mapped bijectively to N, and is thus always infinite. A set is
uncountable if it is infinite but not countable. For a given set X, we denote by 2% := {4 | A C X}
the set of all subsets of X.

For clarity of notation, we employ brackets [] and parentheses () to divide cluster of symbols
into meaningful sub-groups. Unless explicitly stated otherwise, these symbols carry no additional
semantic meaning.
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1.1 Length spaces and Riemannian manifolds

Given a set F, a metric d on E is a function d : Ex E — R satisfying the following three conditions
for all points z,y,z € E: a) positiveness: d(z,y) > 0 if z # y, and d(z,z) = 0; b) symmetry:
d(x,y) = d(y,x); c) triangle inequality: d(z,z) < d(y,x) + d(y, z). For x,y € E, the non-negative
number d(z,y) is the called distance between x and y. The ordered pair (E,d) is referred to as a
metric space. For a point € E and a non-empty subset A C E, we define d(z, A) := inf,c 4 d(z,y).
Denote by B(z,7) := {y € E | d(z,y) < r} the closed metric ball center at x with radius r.

Consider a metric space (E,d). We recall that E is proper if every closed and bounded subset
of F is compact, separable if it contains a countable dense subset, and complete if every Cauchy
sequence in E converges to a point within E. Since compact metric spaces are complete and
separable [20, Theorem 9.4], proper metric spaces inherit these properties [93, Corollary 2.3.32]. A
Polish space is defined as a topological space that is homeomorphic to a complete and separable
metric space. When we write (for example, in assumptions) that (E,d) is a Polish metric space
we specifically mean that the metric d on E makes E a complete and separable metric space. In
particular, proper metric spaces are Polish metric spaces.

Length spaces

Let (E,d) be a metric space. A curve in F is a continuous map - from a compact interval [a,b] C R
to E. We say that « joins (or connects) its endpoints v(a),y(b) € E, or «y is a curve from y(a) to

v(b).

Definition 1.1 (Length of curves in metric spaces). Let (E, d) be a metric space. The length Lg(7)
of a curve 7 : [a,b] — E is

Lav) = s S d(y(tioa), (), (L1)

a=to<t1<--<tp=b i=1

where the supremum is taken over all possible partitions (no bound on n) with a =tg <t; <--- <
t, =D.

The length of « is either a non-negative number or it is infinite. The curve  is said to be
rectifiable if its length is finite. Length spaces and geodesic spaces are defined via the intrinsic
metric, which associates two points with the infimum of the lengths of all curves joining them.

Definition 1.2 (Length spaces and geodesic spaces). Let (E,d) be a metric space. E is a length
space (or an intrinsic metric space) if for any two points z,y € E,

d(z,y) = inf La(v), (1.2)
7 from x to y
where the infimum is taking over all curves v joining z,y, and L4(7y) denotes the length of 7. E is
a geodesic space (or a strictly intrinsic metric space) if the infimum in (1.2) is always reached by
some rectifiable curve joining x and y.

For length spaces, we recall the following two notable properties: a) a complete locally compact
length space is geodesic [23, Theorem 2.5.23]; b) given a locally compact length space, the Hopf-Ri-
now—Cohn-Vossen theorem states that it is complete if and only if it is proper [23, Theorem 2.5.28].
Moreover, we distinguish shortest paths and geodesics.
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Definition 1.3 (Shortest paths and geodesics). Let (F, d) be a length space. A curve v : [a,b] = F
is a shortest path if its length is equal to the distance d(vy(a),~(b)) between its endpoints. The
curve v is a geodesic if it is a locally a shortest path, i.e., for any t € [a, b], there exists an interval
J :=[¢,d] C [a,b] such that ¢ < t < d and the restricted map | is a shortest path.

Riemannian Manifolds

A Riemannian manifold, denoted by (M, g), is composed of a smooth manifold M, which is Haus-
dorff and second-countable (as defined in [65, Chapter 1]), and a Euclidean inner product g, defined
on each tangent space T,,M at every point € M. In accordance with McCann’s work [73] of opti-
mal transport on manifolds, we shall adhere to the following assumption throughout this document.

Assumption. All Riemannian manifolds (M, g) are assumed to satisfy the following properties:

1. M is an m-dimensional (m € N*), connected and smooth manifold without boundary;
2. given a local coordinate system {xi}izl,gw,m, the metric tensor components g;; := g(%, %)
are C* smooth (differentiable for all degrees of differentiation) functions of local coordinates.

Assumptions related to compactness and completeness will be explicitly stated.

For a Riemannian manifold (M, g), we introduce the following notation. Denote by dg the
Riemannian distance function of M determined by g [30, §5.3]. As the Riemannian metric tensor g
can be reconstructed from the Riemannian distance dg [80, §5.6.3], we can alternatively denote the
Riemannian manifold as (M, dg), thus highlighting its metric structure. The metric space (M, dg)
is always a locally compact length space. For x € M, we introduce the squared distance function
d2: M =R, ie., d2(y) = dg(z, y)?.

Denote by Vol the volume measure of M. Given a local chart (p,U) with coordinate system
{x'}i12....m, the integral of a Vol-integrable function f : U — R is defined as [35, §5 of Chapter
1],

[ ravel= [ fopt factgyoptacn,
U e (U)

where (g;;) denotes the m x m matrix with components g;; as previously introduced, and £™
denotes the Lebesgue measure on R”. The volume measure Vol coincides with the m-dimensional
Hausdorff measure on (M, dg) [100, Proposition 12.6].

For a tangent vector u € T, M, denote by ||u|| := 1/g(u,u) its norm of the Riemannian metric.
Denote by exp, : T,M — M the exponential map defined on T, M and by exp : TM — M the
exponential map defined on the tangent bundle TM. In the rest of this paragraph, suppose in
addition that (M, dg) is a complete Riemannian manifold. The exponential maps are C> smooth
since g is C* smooth [38, §2 of Chapter 2] [73, Proof of Proposition 6]. For a point z € M, its
tangent cut locus is the boundary of the set

{u € TpM | dg(exp, u,z) = [[u]| },

and its cut locus is the image of its tangent cut locus under the exponential map exp,. The
injectivity domain of x is the following subset of T, M,

{tu e T,M |t€]0,1),u € T, M is in the tangent cut locus of x}.
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We shall denote by Cut(z) the cut locus of 2. The set Cut(x) is closed and negligible with re-
spect to the volume measure Vol [66, (a) of Theorem 10.34]. The exponential map exp, is a
C°°-diffeomorphism from the injectivity domain of z to M \ Cut(x) [66, (c) of Theorem 10.34].
Since the gradient of d at x is Vd2(x) = —2exp,'(y) for y ¢ Cut(x) [73, Proposition 6], d2 is a
C®* function on M \ Cut(z). For two points z,y € M, z is in the cut locus of y if and only if y is
in the cut locus of x [11, Scholium 3.78].

1.2 Tools from measure theory

A measurable space (€2, F) is an ordered pair of set 2 and a o-algebra F of Q. The elements of F are
called measurable sets of Q2. A measure on (£2, F), or simply a measure on {2 when F is clearly given,
is a set function g : F — [0, +00] that satisfies the condition u(f) = 0 and is countably additive
(0-additive) [17, Definition 1.6.1]. This means that for all pairwise disjoint sets {A;};ens C F,
we have (U2, A4;) = > o2, u(A;), where infinite values are permitted. The trivial function that
assigns value 0 to every element of F, also known as null measure, will not be considered. Given
a topological space E, we denote by B(F) its Borel o-algebra, which is the o-algebra generated
by the open sets of E. Measures defined for the the measurable space (E, B(E)) are called Borel
measures.

The Lebesgue measure £™ on the Euclidean space R™ is not only defined on the Borel o-algebra
B(R™), but also assigns zero mass to all subsets of negligible Borel sets. We shall denote by u the
uniform probability measure on [0, 1], which by definition is the restricted Lebesgue measure £*| [0,1]-
In Chapter 6, by singular measures z, we mean measures on R that singular with respect to £!, i.e.,
pand £ are mutually singular. Apart from the Lebesgue measures, which are defined for Lebesgue
measurable sets [17, Definition 1.5.1], we exclusively consider measures without completions. The
volume measure Vol on a Riemannian manifold is treated as a Borel measure.

Fix a topological space E and a Borel measure p on it. Given a measurable subset A C E, we
define that: p gives mass to A if p(A) > 0; u is supported in A (or u assigns full mass to A) if
p(E\ A) = 0; A is the support of p if A is closed, u(E \ A) = 0, and for any open subset O of E,
©(0) = 0 implies O C E '\ A; A is an atom set [17, Definition 1.12.7] of p if u(A) > 0 and for any
subset A" C A, u(A") =0 or u(A”) = u(A). A point = € E is called an atom of p if the singleton
A :={x} is an atom set of u. A Borel measure is atomnless if it has no atom sets, and it is diffused
if it has no atoms. For separable metric spaces, atomless measures coincide with diffused measures
[3, Lemma 3.4, Lemma 12.18]. For any point 2 € E, the Dirac measure at x, denoted by ¢, is the
probability measure with {z} being its support. Moreover, on a separable metric space, any Borel
measure p has support [17, Proposition 7.2.9], and we denote it by supp(u).

A finite Borel measure p on E is called a Radon measure if for every Borel set A € B(X) and
e > 0, there exists a compact set K, C A such that u(A\ K.) < e. A finite Borel measure on a
Polish space is always a Radon measure [17, Theorem 7.1.7] [3, Theorem 12.7].

Recall that a finite Borel measure has at most countably many atoms, which follows directly
from the following lemma.

Lemma 1.4. The sum of any uncountably many strictly positive real numbers must be infinite.

Proof. Fix a set of strictly positive numbers {¢,,a € A}, where t, > 0 and A is an uncountable
index set. Define A,, := {a € A |ty > 1/n} for integers n > 1. Since A = U, >14,,, there exists an
integer ng such that A,,, is an infinite set, otherwise A becomes a countable set. It follows that the
sum ) oy ta > ZaeAnO 1/no must diverge. O

15



Measurable selections

A map f: (Q,F1) — (Q2, F2) between two measurable spaces is measurable (with respect to the
o-algebras Fi and F») if f~1(A) € Fy for A € F,. For a set-valued map ¥ : Q; — 292 whose
values are non-empty subsets of Qo, f: Q1 — Q9 is a selection of U if for any w € Q, f(w) € ¥(w).

We shall apply the following widely used measurable selection theorem to construct Wasserstein
barycenters. Its proof could be found in [17, Theorem 6.9.3], [3, Theorem 18.13], and [93, Theorem
5.2.1].

Theorem 1.5 (Kuratowski and Ryll-Nardzewski measurable selection theorem). Let E be a Polish
space, and let ¥ be a map defined on a measurable space (2, F) with values in the set of non-empty
closed subsets of E. Suppose that for every open set U C E, we have

{we | ¥(w)NU #£0} € F. (1.3)
Then ¥ has a selection that is measurable with respect to the pair of o-algebras F and B(E).

With the help of additional metric assumptions, we can simplify (1.3) as follows [93, Lemma
5.1.2]. We remark that the complement of the set {w € Q| U(w) NU # B} is not the set {w € Q |
U(w)N(E\U) # 0}.

Lemma 1.6. Let (E,d) be a proper metric space, and let U be a map on a measurable space (£, F)
with values in the set of subsets of E. If for every compact set K C E, we have

{we | V(w)NK £0} € F,
then for every open set U C E, we have
{weQ | ¥(w)NU #£0} € F.
Proof. Observe that for a sequence of subsets {A;};en+, we have
{lweQ | V(wNA#D} =Uj>1{fweQ | ¥(w)NA; #0}, where A:=U;>14;.

Hence, to prove the lemma, it suffices to express any open sets U as a countable union of compact
sets. Fix a point z € E, and define K; := {x € F | d(z,2) < jand d(z, E\U) > }} for j € N*.
The equality U = U;>1K; holds for any metric space. Moreover, since (E,d) is a proper metric
space, each set K is compact as a closed and bounded set. O

Conditional probability measures

For the definition of conditional measures, as given in [17, Definition 10.4.2], we focus on the special
case of the product space E" ! x E. This restriction facilitates the introduction of necessary notation
for Proposition 3.4 and ultimately aids in its proof.

Definition 1.7 (Conditional probability measures). Let E be a Polish space and let n > 2 be
a positive integer. Denote by x' = (22,...,7,) € E""! the last n — 1 components of a point
x = (z1,22,...,2Z,) € E™. Given a probability measure v on E™, define the measure 7 := pgf#’y on
E"~1 where py is the projection x € E x E"! — x’ € E""!. We call y(-,-) : B(E") x E" ! - R
a conditional measure for 7, written as dy(x) = y(dx,x’") d=w(x'), if
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1. for all X' € E"~1, 4(-,X’) is a probability measure on E",

2. for m-almost every X' € E"~!, 4(-,x’) is supported in E x {x},

w

. for any Borel set R C E™, the function x’ — (R, x’) is measurable, and

S

. for any Borel set RC E™ and S € E"~, 4[RN(E x S)] = [{v(R,x)dm(x').

Under our assumption that E is a Polish space, conditional measures always exist [17, Corollary
10.4.10]. For m-almost every x’, the measure v(-,x’) is unique [17, Lemma 10.4.3] and coincides
with the disintegration [39, 452E] of « that is consistent with the projection pso.

Souslin spaces

Souslin space theory is vital for proving one of our main results, Theorem 4.5, presented in Chap-
ter 4. Also known as Suslin spaces or analytic sets, this theory’s application in measure theory is
mainly referenced in Bogachev [17, Sections 1.10, 6.6, 6.7, 7.4]. For historical context and intro-
ductory material, see also [39, Chapter 42] and [92, p.28].

Definition 1.8 (Souslin spaces). A subset of a Hausdorff space is called Souslin if it is the image of
a Polish space under a continuous map. The empty set is considered as Souslin as well. A Souslin
space is a Hausdorff space that is a Souslin set.

By definition, Polish spaces are Souslin. Here are some properties of Souslin spaces:
1. Every Borel subset of a Souslin space is a Souslin space [17, Theorem 6.6.7];

2. Let E and F be Souslin spaces and let f : E — F be a measurable map. If f is bijective,
then E and F share the same Borel sets, see [39, Proposition 423F] or [17, Theorem 6.7.3];

3. If E is a Souslin space, then every finite Borel measure 1 on F is Radon [17, Theorem 7.4.3].

For a Polish space F, such as the Euclidean space R™, a subset A of E is a Souslin set if
and only if it is the projection of a Borel subset of the product space E x R [17, Theorem 6.7.2].
Nevertheless, every uncountable Polish space contains a Souslin subset that is not a Borel set [55,
Theorem (14.2)]. For concrete examples of such sets, see [17, Theorem 6.7.10] and [3, Examples
12.33, 12.34].

Functional analysis

In this subsection, we recall a few results selected from functional analysis that will be used in
Section 4.3, especially in the proof of Proposition 4.12.

For vector spaces, we fix the scalar field to be R. Let (E,| - ||) be a normed vector space. The
dual space of F is the space E* of all continuous linear functionals f : E — R, and it is equipped
with the following operator norm,

VieE", |fl= suwp [f(z).

lzll<10cE

A Banach space is a complete normed vector space. Since R is a Banach space, the dual space of a
norm space is always a Banach space [102, Proposition 1.16, Definition 1.17]. For example, consider
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a measurable space (2, F) with a o-finite measure p on it. Then the space L'(u) of p-integrable
functions on 2 is a Banach space [21, Theorem 4.8], and L>°(u) is the dual space of L'(u) [21,
Theorem 4.14] [17, Theorem 4.4.1]. The weak topology of E, usually denoted by o(E, E*), is the
coarsest topology such that for any f € E*, the function x € E — f(x) is continuous. In other
words, {x, }nen+ C E converges weakly to x € E if and only if lim,,—, o f(z,,) = f(x) for all f € E*.

The Eberlein-Smulian theorem characterizes compact sets with respect to the weak topology of
a Banach space. For its proof, see [2, Theorem 1.6.3] or [68, Theorem II.3].

Theorem 1.9 (Eberlein-Smulian theorem). A subset K of a Banach space E is pre-compact with
respect to the weak topology if and only if, from each sequence of elements of K, we can extract a
weakly convergent subsequence.

The following Banach—Steinhaus theorem is also known as the uniform boundedness principle.
For its proof, see [17, Theorem 4.4.3] or [21, Theorem 2.2].

Theorem 1.10 (Banach—Steinhaus theorem). Let E be a Banach space. Let F C E* be a set of
continuous linear functional on E. If for any © € E,

sup | f(z)] < +oo,
fer

then F is unfiormly bounded with respect to the operator norm,

sup || f]] < +oc.
f€EF

Remark 1.11. Thanks to the isometric embedding of a normed vector space F into the dual space of
E* [21, §1.3], Theorem 1.10 applied to the Banach space E* implies that every weakly converging
sequence of E is bounded in norm.

Given a measurable space (2, F), a real-valued countably additive set function v : F — R is
also referred to as a finite signed measure on 2. To deal with the set-wise convergence of countably
additive set functions, we introduce the following Vitali-Hahn—Saks theorem. For its proof, see [98,
§3.14], [17, Theorem 4.6.3] or [4, Theorem A8.15].

Theorem 1.12 (Vitali-Hahn-Saks theorem). Let (2, F) be a measurable space with a probability
measure (L on it. Letv, : F — R, n € N be a sequence of real-valued countably additive set functions
such that

1. the limit lim, o, vp(A) € R exists and is finite for any A € F;
2. each v, is absolutely continuous with respect to u, i.e., for A € F, u(A) = 0 implies v, (A) = 0.
Then {vp}nen s uniformly absolutely continuous with respect to u, i.e.,

sup |vn(A)| = 0 as u(A) — 0.
neN

As a corollary, we illustrate how to apply Theorem 1.12 with a o-finite measure pu.

Corollary 1.13. Let (2, F) be a measurable space with a o-finite measure p on it. Let { fn}nen C
LY (1) be a sequence of u-integrable function such that there exists a p-integrable function f € L'(u)

satisfying
VAE€F, lim/fndu:/fdu.
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Then for any € > 0, there exists § > 0 such that for A € F,

wAd) <6 = sup/fndu<6.
neENJ A

Proof. Since yu is o-finite, there exists an at most countable family of pairwise disjoint measurable
sets, {Ej,j € J} (J C N), such that 0 < u(E;) < 400 and pu(Q2\ UjesE;) = 0. Define the measure
n=> s )\jﬁEj)u\Ej with \; :=279/%, ., 27%. Since >_jesAj =1, 1 is a probability measure
satisfying
s
VAeF, n(A =/ —2 _1p dp. 1.4
W= [, 2wyt 4y
As p(Q\ UjesE;) =0, (1.4) implies that n(A) = 0 if and only if u(A4) = 0.
For n € N, define the countably additive function v, : F — R,

vn(A) ::/Afndu, AeF.

As f € L*(p), the limit lim,, o0 v, (A) = [, f d p always exists and is finite. Since 7(A) = 0 implies
p(A) = 0 and thus v, (A) = 0, Theorem 1.12 is applicable to {vy, }nen with the probability measure
n, which implies that sup,,cy |vn(A4)| = 0 as n(A) — 0. Moreover, since 7 is finite measure that is
absolutely continuous with respect to u, the convergence u(A) — 0 implies n(A) — 0 [29, Lemma
4.2.1]. Hence, p(A) — 0 implies sup,, ey [vn(A4)] — 0, which concludes the proof. O

1.3 Analysis on manifolds

In this section, we establish a rigorous framework and develop the necessary technical tools to
differentiate optimal transport maps in the subsequent section. We introduce the concept of ap-
proximate Hessian for Riemannian manifolds, which we define as approximate derivative of the
gradient expressed in normal coordinates. To achieve this, we first define the approximate deriva-
tive on Riemannian manifolds, using the notion of density points.

1.3.1 Approximate differentiability

We justify the definition of density point for Riemannian manifolds by comparing it to its usual
Euclidean counterpart.

Lemma 1.14 (Density points). Let (M, dg) be a Riemannian manifold and let A be a Borel subset
of M. We call x € M a density point of A (with respect to Vol) if

Vol[B(z,r) \ 4]

im — =0.
0 Vol[B(x,)]

This definition is equivalent to the standard one with respect to the Lebesque measure after pulling
x and A back to the Fuclidean space through an arbitrary chart around x. In particular, almost
every point of A is a density point of A with respect to Vol.
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Proof. Denote by m the dimension of M. In a (smooth) local chart (¢,U) with U a small enough
neighborhood of x € M, the metric of M is bounded (from both sides) by the metric of R™ with
constant scales 0 < ¢; < co. It follows that ¢"L™(p(N)) < Vol(N) < B'L™(¢p(N)) for any

measurable subset N C U [100, Proposition 12.6 and 12.7]. Hence, = is a density point of A if and
only if

£mlp(Bla, )\ p(ANT)]
T B (15)

Applying again the relation between the metric of M and the metric of R™, for any > 0, we have

B(p(z),e17) C @(B(z,7)) C B(p(x),car). Therefore, (1.5) is equivalent to that ¢(z) is a density
point of p(A) with respect to £L™. O

We now recall the definition of approzimate derivatives first on Euclidean space (see [17, 5.8(v)]
and [37, 3.1.2] for more detailed discussions), then on manifolds.

Definition 1.15 (Approximate derivatives on Euclidean spaces). Let m,n > 1 be two positive
integers. Given a function F' : 2 — R" defined on a subset €2 of R™, [ € R™ is an approzimate limit
of F' at a point € R™, for which we write | = ap lim,_,, F'(y), if there exists a Borel set Q, C Q

such that x is a density point of €2, and Qlim F(y) = 1. The approximate derivatives of F' are
YEQ y—a

defined via the approximate limits of its difference quotients as follows.
A linear map L : R™ — R" is called the approxzimate derivative of a function F : Q@ — R™ at a

point z € Q C R™ if
F(y)— F(x)— L(y —
ap lim [F(y) (z) (y — )|

Y- ly — 2|

= 0. (1.6)

The approximate derivative L will be denoted by ap D, F'.
The previous definition can be extended to the Riemannian setting as follows:

Lemma 1.16 (Approximate derivatives on manifolds). Let (M,dg) be an m-dimensional Rieman-
nian manifold M and let f : A — R" be a function defined on a subset A of M. Given an arbitrary
local chart (o,U) around a point x € A, [ is said to be approximately differentiable at x if the
approzimate derivative ap D, (g [f o ¢_1|@(AQU)} exists. The approximate derivative of f at x is
then defined as

ap Dy f := ap Dy()[f 0 ¢ |p(anty] © Do : T, M — R™,

where Dy : Ty M — T, )R™ denotes the differential map of ¢ at x and the tangent space Ty, ,)R™
is canonically identified with R™ in the above composition of functions. In particular, a constant
function has null approzimate derivative at density points located in its domain.

Proof. In Euclidean space, approximate derivatives are unique when they exist [35, Theorem 6.3].
Since density points are well-defined for Riemannian manifolds by Lemma 1.14 and coordinate
changes for M are smooth diffeomorphisms, it follows from (1.6) that the existence of approximate
derivative at a given point is independent of the choice of the chart and the change of variables rule
applies. To show our last statement, note that L = 0 satisfies (1.6) whenever F' := fo ™! is a
constant function. O
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1.3.2 Approximate Hessian of locally semi-concave functions

The properties of locally semi-concave functions provide a valuable toolbox for analyzing optimal
transport maps on manifolds. In this section, we examine the weak second-order regularity of these
functions.

In a Riemannian manifold (M, dg), a subset C' of M is said to be a geodesically convex (or simple
and conver) set if, given any two points in C, there is a unique minimizing geodesic contained within
C that joins those two points. A function f : C' — R defined on a geodesically convex set C' C M is
said to be geodesically convez (respectively geodesically concave) if the composition f o~ of f and
any geodesic curve v contained within C is convex (respectively concave). It is noteworthy that for
any point € M, there exists an open ball centered at z that is geodesically convex [106, 60], and
such a ball is referred to as a geodesically convex ball.

Definition 1.17 (Semi-concavity). Let (M, dq) be a Riemannian manifold. Fix an open subset
O C M. A function ¢ : O — R is semi-concave at x € O if there exists an open and geodesically
convex set C(r) centered at x and a C? function V : C(z) — R such that ¢ + V is geodesically
concave throughout C(z). The function ¢ is locally semi-concave on O if it is semi-concave at each
point of O.

Bangert [9, (2.3) Satz] proved that the notion of local semi-concavity is independent of the
Riemannian metric. This property also follows from the following characterization of locally semi-
concave functions (with a linear module), whose proof for the Euclidean case is detailed in [103,
Proposition 4.3, Proposition 4.8] and [27, Theorem 5.1]. In [36, Appendix A], it is adopted as the
definition of local semi-concavity. Denote by (-, -) and ||-||2 respectively the Euclidean inner product
and its associated norm. To stress that certain points are coordinate representations of manifold
points, we denote them by tilde symbols = and z.

Proposition 1.18 (Characterization of local semi-concavity, [105, Proposition 10.12]). Let (M, dg)
be an m-dimensional Riemannian manifold. Fiz an open subset O of M. A function f: O — R
is locally semi-concave if and only if for each point in O, there exist a chart (p,U) defined around
the point and a positive constant C > 0 such that VT € o(U), iz e R™, VZz € p(U),

(foe™ @) < (fop @) + (s, 2-7) +CZ -7l

Hence, a function is locally semi-concave if and only if it is so when expressed in local charts
[36, discussion after Lemma A.9]. We shall apply this chart-independence, along with Alexandrov’s
theorem, to establish the weak second-order regularity of locally semi-concave functions.

In the following theorem, we revisit Alexandrov’s theorem stated via approximate derivatives.
The proofs of this theorem can be found in [105, Theorem 14.1] and [76, Theorem D.2.1]. To
maintain clarity of notation, for a function f : U — R defined on an open subset U C R™, we define
its Euclidean gradient VE f(z) € R™ at x € U as the (column) vector (91 f(z), daf(z),...,0mf(x))
when all of these partial derivatives of f exist at x. By contrast, the symbol V f is reserved to denote
the gradient of functions f : U — R defined on some open subset U of a Riemannian manifold,
which is a (possibly not continuous) vector field defined at points where f is differentiable.

Theorem 1.19 (Alexandrov’s theorem). Let f : U C R™ — R be a semi-concave function. Then
the Buclidean gradient VE f of f is defined L™-almost everywhere on U:

VEf. A —R™ with A € B(R™) and L™(U \ A) = 0.
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For L™-almost everywhere on A, the function V¥ f is approzimately differentiable and its approz-
imate derivative (afjf)lgi,jgm forms a symmetric matriz. Moreover, at every point x where such

approzimate derivative of VF f exists, f admits a second-order Taylor expansion:

F(2) = @) + (V2 ()2 = 1) + 5 {ap DV E Sz — ),z = o) +ollz 2. (L7)
Remark 1.20. In the literature, the weak second-order regularity in Alexandrov’s theorem is ex-
pressed in different formulations, including the one that differentiates super-gradients of semi-
concave functions [76, Theorem D.2.1, Theorem D.2.2]. Their equivalence to (1.7) is proven in [105,
Theorem 14.25]. Compared to these equivalent formulations, our Theorem 1.19 further requires x
to be a density point of A for the existence of ap D, V¥ f. However, under our assumption that U
is an open set, the condition £™(U \ A) = 0 implies that every point of A is a density point.

To extend our results to the Riemannian setting, we provide a concise review of the Riemannian
Hessian. For a C? function defined on a Riemannian manifold (M, g), the Hessian at a point x € M
can be interpreted either as a self-adjoint linear map from the tangent space T, M to itself or as a
symmetric bilinear form on T, M x T, M. These two interpretations are related by duality through
the Riemannian metric g at « [80, Proposition 2.2.6]. While we shall primarily adopt the linear map
perspective in the subsequent sections, we shall utilize the bilinear form viewpoint in the following
two paragraphs. This choice is motivated by the fact that the chart-based expression of the Hessian
is simpler when viewed as a bilinear form.

In what follows, the Hessian of a C? function on a Riemannian manifold is a particular instance
of a continuous (0, 2)-tensor S. Namely, for any two given charts ¢, defined on a common open
subset U C M, there exist two bilinear forms S, and Sy, whose coefficients are continuous functions
such that VZ € p(U) C R™, Vu,v € R™,

(S (@)] (u, v) = [Sy(T(2)))(DzT (), D5T (v)),

where T = 10 ¢~ is assumed to be a smooth (transition) map defined on (U). In the case of the
Hessian of a C? function f, its expression in a chart ¢ is given by

Hessz (f 0 07 ")(05,0;) = 05(f o o™ (@) = Y_TH(@) du(f 0 ™ ")(@),

k=1

where 0; are the coordinate vectors associated with the given coordinate system [65, p.60 of Chapter
3], and Ffj are the Christoffel symbols of the chart, see [80, Chapter 2] for more details.

In the particular case of a chart ¢ inducing a normal coordinate system at xg € M [88, §2 of
Chapter I1J, i.e., =1 (u) = exp,, (u) after identifying 7%,y M with R™ by choosing an orthonormal
basis of Ty, M, the matrix made with the metric components g;; is the identity at o = p(x¢), and
all its first-order partial derivatives (and thus the Christoffel symbols) vanish at o [41, 2.89 bis].

Hence, the above formula at the point Zg is simplified into
Hessg, (f 0 9™ 1)(83,8;) = 9% (f 0 ") (@0)- (1.8)

Since the metric matrix (gi;)1<i, j<m at To is the identity, if we consider Hessz, (f o ¢~ 1) as a linear
map from R™ =2 T, M to itself, then it coincides with the derivative of VE(f o p™1) at Zo.

As a consequence, we are led to the following definition of Hessian for semi-concave functions
on a Riemannian manifold.
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Definition 1.21 (Hessian of semi-concave functions). Let (M, g) be an m-dimensional complete
Riemannian manifold, f : O — R be a semi-concave function defined on an open subset O C M,
and A C O be the subset of points where f is differentiable.

The function f is said to have an approzimate Hessian or simply a Hessian at a point x € A if
there exists a chart (p,U) inducing a normal coordinate system around z such that VZ(f o p=1)
is approximately differentiable at ¢(z), and its approximate derivative is symmetric. Then the
Hessian of f at x is the function Hess, f from T, M to T, M defined by

Hess, f(u) := (Dyp) ' oap Dy VF(f oy ') o Dypl(u), Vue T, M. (1.9)

Remark 1.22. To justify Definition 1.21, first note that if (¢, V) is another chart defined in a
neighborhood of x, then V#(f o ¢~!) is approximately differentiable at ¢(z) if and only if VZ(f o
¥~1) is approximately differentiable at ¢(x); indeed both vector fields are related by the formula

"(Dy)T) - [VE(f o™ ) (0(2))] = VE(f o™ 1) (4(2)), (1.10)

where z is close to x, T := p ot~ is a C* diffeomorphism defined around v (z) and *(D..)T)
is the transpose of T’s differential at ¢(z). See the proof of Lemma 1.16 for a similar argument.
Moreover, in our definition (1.9) of Hess, f(u), we can justify the independence of charts (inducing
normal coordinate systems) in two different ways. Since the Hessian of a C? function defined on
manifolds is a tensor, the required independence is guaranteed by its simplified local expressions
(1.8) in normal coordinate systems. Alternatively, we suppose that (¢, V) also induces a normal
coordinate system around z, which implies that the transition map T = ¢ o ¢~ ! is linear. By
applying the chain rule to (1.9) for the chart (¢, V'), the independence follows from the linearity of
Dy)T =T and the equality (1.10).

To summarize the content of this part, we have obtained the following analog of Alexandrov’s
theorem for locally semi-concave functions on Riemannian manifolds.

Proposition 1.23. Let (M, g) be a complete Riemannian manifold. Fiz an open subset O C M
and a locally semi-concave function f: O — R. For Vol-almost every x € O, there exists a function
Hess, f: T, M — T, M, called the Hessian of f at x, such that

o Hess, f is a self-adjoint operator on T, M ;
o the function f satisfies the following second-order expansion at x,
1
flexp, u) = f(z) + Daf(u) + 5 9u(Hess, f(u),u) +of[[ul]?), (1.11)

forue T, M.

1.4 Optimal transport and Wasserstein spaces

Let (E,d) be a Polish metric space. We consider the (2-)Wasserstein space (Wa(E), dw ) of proba-
bility measures on E with

Wh(E) : = {p is a probability measure on F | Jxg € E,/ d(zo,y)? d pu(y) < oo} ,
E
dwlurf = int [ dew)?date) (1.12)
vEI(u,v) JEXE
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where TI(u, v) is the set of probability measures on F x F with marginals 1 and v respectively, i.e.,
vy el(u,v) <= VA€ B(E), v(AxE)=u(A) and y(FE x A) =v(A).

The infimum in (1.12) is always attained by some measure v € I(u,v), and we call it an optimal
transport plan between p and v. Wasserstein spaces enjoy the following well-known topological
properties.

Theorem 1.24 (Topology of the Wasserstein spaces, [105, Theorem 6.18]). Let (E,d) be a Polish
metric space. Then the Wasserstein space (Wa(E), dw) is a Polish metric space.

The fact that (W2 (E),dw ) is a Polish space allows for an iterative construction. Thus, we can
define the Wasserstein space (Wa(Wa(E)),dw) over the Polish space (Wa(E),dw ), where dw is
the 2-Wasserstein distance on Wa(Wh(FE)). Convergence with respect to the Wasserstein metric is
characterized as follows.

Proposition 1.25 (Convergence with respect to the Wasserstein metric, [105, Theorem 6.9]). Let
(E,d) be a Polish metric space. Given a sequence of probability measures {in tnen in the Wasserstein
space Wh(E),dw) and a probability measure 1 € Wo(E), the limit lim,,_, o dw (fn, 1) = 0 holds if
and only if there exist a point xo € E and a positive constant C' > 0 such that for all continuous
functions ¢ : E — R with |¢p(x)| < C (1 + d(zo, x)?), we have

lim qbd,un:/(bdu.
In particular, it follows from Proposition 1.25 that convergence of probability measures with
respect to the Wasserstein metric implies weak convergence.
The Wasserstein space Wh(F) is not proper unless the base space E is compact [3, Remark
7.19]. If (E,d) is a Polish and geodesic space, then (Wa(E), dw ) is geodesic as well [7, Theorem

2.10]. We refer the reader to the classic references [105, 104, 90] for a comprehensive treatment of
optimal transport theory and Wasserstein spaces.

Optimal transport on Riemannian manifolds

Let us first recall the definition of c-concave functions on Riemannian manifolds.

Definition 1.26 (c-transforms and c-concave functions). Let (M, dg) be a Riemannian manifold.
Define the function ¢ : M x M — R as the half of the squared distance function, i.e., for x,y € M,

ela,y) = 3d(z,y)" (1.13)

Let X and Y be two non-empty compact subsets of M. A function ¢ : X — R is c-concave if there
exists a function ¢ : Y — R such that

0(a) = inf clo,y) — wly), Vo€ X. (1.14)

We write it as ¢ = 9° and call ¢ the c-transform of 1. The set of all c-concave functions with
respect to X and Y is denoted by Z¢(X,Y).
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The significance of c-concave functions in optimal transport theory is highlighted by the fol-
lowing theorem of McCann [73], which extends Brenier’s seminal theorem [104, Theorem 2.12] to
Riemannian manifolds. Recall that given a c-concave function ¢ on a compact set X with X C M
open, its gradient V¢ exists on X almost everywhere with respect to Vol since ¢ is Lipschitz [73,
Lemma 4].

Theorem 1.27 (Optimal transport on manifolds, [30, Theorem 3.2]). Let (M,dgy) be a complete
Riemannian manifold. Fix two measures p,v € Wa(M) with compact support such that 1 is
absolutely continuous (with respect to the volume measure Vol). Given two bounded open subsets
X,Y C M containing the supports of u and v respectively, there exists ¢ € I°(X,Y) such that
(Id, F) ¢ is the unique optimal transport plan between p and v, where the function F := exp(—V¢)
is p-almost everywhere well-defined.

1.4.1 Optimal transport on the real line

The real line provides a notable setting where the optimal transport problem admits an explicit
solution, expressed via quantile functions (Theorem 1.37). In this subsection, we shall first re-
view interesting basic properties of quantile functions. As many of these properties will be used
repeatedly in Chapter 6, we also provide detailed proofs for most of them.

Quantile functions

The definition of quantile functions involves taking the infimum of a given subset of R. A subtlety
arises when this subset is empty. To address this, we adopt the following convention for the infimum
of an empty set with a specified domain (y, z) C R:

inf 0=z, (1.15)
z€(y,z)

where y is allowed to be —oo and z is allowed to be 4+00. In contrast, when we are certain that we

are not taking the infimum of an empty set, we shall use the notation inf, or inf, which omits the
x

specified domain.

Definition 1.28 (Distribution functions and quantile functions). Let u be a probability measure

on R. Its distribution function f, : R — [0,1] is defined by f,(z) := pu((—o0,z]), and its quantile
function f; ' :[0,1] — R is defined by

12

and  f7(0) =l £, S (D) =t A (0),

i) = igf{x eER| fulz) >ttfor0<t <1

where the extended real line R is the set of real numbers plus two infinite values {—o0, +-00}.

In the literature, there exist different definitions of distribution functions and quantile functions.
Our choice ensures that they share common properties such as right-continuity and monotonicity.
To justify this point, it is helpful to recall the general definition of right-continuous inverse.
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Lemma 1.29 (Right-continuous inverses). Let f : (y,z) — R be function defined on a possibly
unbounded interval (y,z) C R. Define its right-continuous inverse f~1 : R — R as follows,

) = inf {z€(y,2)]| flz) >t} teR.
z€(y,2)
If the function f~' is finite on an open interval I := (a,b), then its restriction f~|; is right-
continuous and non-decreasing.

Proof. Assuming that f~1|; : (a,b) — R is a finite function, we show that it is right-continuous.
Observe that if f(z) > t with ¢ € (a,b), then there exists ¢ > 0 such that f(x) > ¢t + . Hence,
the set {x | f(z) > t} is the union of {x | f(z) > t + ¢} for € > 0, which shows that f=! is
right-continuous and non-decreasing on (a, b). O

According to Definition 1.28, quantile functions are completely determined by their values on
the open interval (0,1). Moreover, on this interval, Lemma 1.29 guarantees their right-continuity
and monotonicity, as shown in the following lemma.

Lemma 1.30. Fiz a probability measure p on R. Its distribution function f,, is right-continuous
and non-decreasing on R. Its quantile function f;l is finite on the open interval (0,1), and the
real-valued function fu_l|(0’1) :(0,1) = R is right-continuous and non-decreasing.

Proof. By definition, for z € R, f,(x) := p((—o00, z]). Thanks to the relation (—oo, ] = Nys4(—00,y],
this function is right-continuous [17, Proposition 1.3.3] and non-decreasing. Moreover, [17, Propo-
sition 1.3.3] also implies the basic properties that limg o fu(2) = 0 and limg 4 o fu(z) = 1.

It follows that for any 0 < t < 1, the set {x € R | fu(x) > t} is non-empty with a finite infimum,
and f;'(t) is thus finite. Hence, Lemma 1.29 applies to fu_l with the interval I = (0,1). O

Remark 1.31. According to Definition 1.28, the quantile function f; ' is right-continuous at 0.
Furthermore, it follows from the proof of Lemma 1.30 that f, 1(0) can be equivalently defined as
inf,{x € R | f.(x) > 0}. However, since the set {x € R | f,(x) > 1} is always empty, if we
define f;*(t) uniformly as infycr{z | fu(x) > t} for all t € [0,1], then f; (1) = 4oo for any
probability measure p on R. This is not convenient to express some properties of quantile functions
(c.f. Lemma 1.33) compared to Definition 1.28.

For the discontinuity points of quantile functions, we characterize them as follows.

Lemma 1.32. Fiz a probability measure . on R. Denote by f;l(t,) = limgyy fﬂ_l(s) the left limit
of the quantile function f* att € (0,1). Fizt e (0,1). Ify = f;'(t-), z = f ' (t) withy < z,
then

ful@) =t forb e (y,z) and fu(ly—e) <t< fu(z+e) fore>0. (1.16)

Conversely, if (1.16) holds for y < z, then y = fljl(t,), z = fijl(t), Therefore, t € (0,1) is a
discontinuity point of f;l if and only if the interval (f;l(t,), fu " (1)) is a connected component of
the complement of the support of .

Proof. Note that if 0 < ¢t < 1, then both f;*(t_) and f;'(t) are finite according to Lemma 1.30.
Moreover, since f,, is non-decreasing, the set {x € R | f,(z) > t} is an interval unbounded from
above. This interval could be possibly closed or open, but must have f, L(t) as its left endpoint by
definition of fﬂ_l(t)

(Proof of =) Assuming y = f,/'(t_), z = f'(t) with y < z, we prove (1.16) by considering the
value f,(w) for w € R in different cases as follows.
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L If w > z = f;'(t), then by our preceding description of the set {z € R | f.(z) > t}, it
contains the point w, which implies f,(w) > t.

2. Ifw <y = f'(t-) = limeyo f,/'(t — €), then there exists € > 0 such that w < f,'(t —e),

which implies f,(w) <t — e by definition of f,'(t — ¢) and thus f,(w) < t.

3Iff N (t) =y <w < z= f(t), then w ¢ {x € R fu(x) >t} and thus f,(w) < t. Since
w > fi 1 (t—e) for any € > 0, f,(w) > t — €, which further implies f,(w) = ¢ by the preceding
inequality f,(w) <t.

(Proof of <) Now assume that (1.16) holds for y < z. Since f, (2 —J) =t < f.(z +6) holds for
6 € (0,z—y), we have f,'(t) = inf,{x € R | f,(x) >t} = z. By the right-continuity of f,, f.(y) =
limgyy fu(0) = t. 10 < s <t= fu(y), then f;'(s) <y and thus f'(t_) = limgy £, '(s) < y.
We prove by contradiction that f;l(t_) = y. Indeed, if w := fu_l(t_) < y, then for any w’ > w
and 0 < s < t, f;7'(s) <w < w and thus f,(w') > s (c.f. Case 1 in the previous paragraph),
which further implies f,,(w) > ¢ by the right-continuity of f,. However, this is a contradiction since
fu(w) < fu(y —e) for 0 < € < y —w by the monotonicity of f, and f,(y —€) <t for any € > 0 by
assumption.

For the last part, note that the open set R\ supp(p) is a disjoint union of open intervals, with
each of them being a connected component of R\ supp(u). By definition of support, a bounded
interval (y,z) (y < z) is one of these connected component if and only if the distribution function
fu is constant on the interval (y, z) but not constant on any interval (y — 6,z + ¢) for 6 > 0. O

Moreover, for a probability measure @ on R with compact support, we can describe its support
with the two values f;*(0) and f;'(1) as follows.

Lemma 1.33. Let p be a probability measure on R. The infimum and supremum of the support of
u are related to its quantile function as follows,

£1(0) = infsupp(p)  and  f;'(1) = sup supp(p).
In particular, p has compact support if and only if fu_l is finite on the whole unit interval [0, 1].

Proof. We first prove the following two inequalities,

f71(0) <infsupp(p) and  f, (1) > supsupp(u).

The case that f,;'(0) = —oo or f,'(1) = 4oc is trivial, we are left to consider the case where
they are finite. If y < f,1(0), then for any ¢ € (0,1), 3y + £/, *(0) < f,(t) and thus y +
%f;l(()) ¢ {z € R| fu(z) > t}. It follows that f.(3y + %f;l(O)) = 0, and hence the point
y, strictly smaller than %y + %fu_l(O), is not in the support of . As y is arbitrarily chosen, we
have (—oo, f,71(0)) Nsupp(u) = 0 and thus f;'(0) < infsupp(u). If z > f; (1), then for any
t e (0,1), 52+ 5f71(1) > f7(t) and thus 3z + $f71(1) € {x € R | fu(z) > t}. It follows that
fu(%z—&—%fﬂ_l(l)) = 1, and hence the point z, strictly bigger than 3z + %fu_l(l), is not in the support
of 1. As z is arbitrarily chosen, we have (f; (1), +00)Nsupp(u) = 0 and thus f, ' (1) > sup supp(u).
We now prove the inequalities,

f71(0) > infsupp(p) and  f, (1) < supsupp(u).
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The case that infsupp(u) = —oo or supsupp(u) = +oo is trivial, we are left to consider the case
where they are finite. If y < infsupp(u), then f,(y) = 0 and thus y < f;l(t) for all t € (0,1),
which implies y < f;'(0). As y is arbitrarily chosen, we must have f;(0) > infsupp(yu) since
the opposite inequality fu_l(O) < infsupp(u) and y := %f;l(O) + %infsupp(u) would lead to a
contradiction. If z > supsupp(y), then f,(z) = 1 and thus z > f*(¢) for all ¢ € (0,1), which
implies z > f;l(l). As z is arbitrarily chosen, we must have f}jl(l) < infsupp(p) since the opposite
inequality f, (1) > infsupp(u) and z :=  f,*(1) + 3 supsupp(x) would lead to a contradiction.
Since p has compact support if and only if both infsupp(u) and sup supp(p) are finite, our last
statement in the lemma follows. O

In Definition 1.28, we define quantile functions as the right-continuous inverses (Lemma 1.29)
of distribution functions. The following technical lemma [33, Lemma (4.8) of Chapter 0] holds
for general right-continuous and non-decreasing functions defined on properly chosen intervals. It
implies that quantile functions fully characterize probability measures, a property to be used later.

Lemma 1.34. Let f: R — [0,1] and g : (0,1) — R be two right-continuous and non-decreasing
functions. Then

g(t) = inf{x | f(z) >t} fort € (0,1) <= f(x)= inf {t|g(t) >z} forz e R,
z€R t€(0,1)

where we followed the convention (1.15), i.e., infyer 0 := 00 and infyc 1) 0 := 1. In particular,
for a probability measure p on R, its distribution function f, is the right-continuous inverse (defined
in Lemma 1.29) of fljl\(o71), ie, [fit o)™ = fu

Proof. For simplicity, we write {f > t} and {g > =} to denote the sets {x € R | f(z) > t} and
{t € (0,1) | g(¢) > x} respectively. We drop the subscripts of inf in symbols inf,cr{f > ¢t} and
inf;c(0,1){g > =} when the sets are shown to be non-empty.

Let us prove the implication from left to right. Assume that the left-hand side is true. For
r € R, define h(x) := infic(o,1){g > x}. Fix an arbitrary real number x € R, we prove the equality
f(z) = h(x) by showing the following two inequalities.

1. We first prove the inequality f(z) < h(z). It holds trivially when h(z) = 1. We are left
to prove the case that h(xz) < 1, i.e., the set {g > z} is non-empty. For any t € {g > z},
since g(t) = inf{f > t} > =z, we have © ¢ {f > t} and thus f(z) < t. It follows that
f(z) <inf{g > =} = h(x).

2. We then prove the inequality f(z) > h(z). Again, this inequality is trivial when f(z) = 1.
Hence, we proceed with case that f(z) < 1. As f is right-continuous at x, for § > 0 sufficiently
small, we have f(x) < f(z +d) < 1. For such a ¢, since g(f(x + ¢)) = inf{f > f(z + )} >
x+ 9 >z, we have f(z +0) > inf{g > z} = h(z). Therefore, f(z) = limsyo f(x + ) > h(z).

The implication from right to left can be proven similarly. For the last statement, it suffices to
set f:= f, and g := f,"]0,1)- O

The following lemma is analogous to the characterization of weak convergence using distribution
functions. It helps to deal with the measurability issues of maps related to p +— f, L(t) with ¢ fixed,
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Lemma 1.35. Let {un}tnen be a sequence of probability measures on R. The sequence {n tnen
converges weakly to a probability measure u on R if and only if f;l (t) converges to fu_l(t) for any
0 <t<1 such that fu_l is continuous at t. Moreover, if the convergence holds, then

lgilif Sl < f7M (@), vt e[0,1) and Eﬂgfff;}(l) > fi (). (1.17)
Proof. The characterization of weak convergence in terms of convergence of quantile functions at
continuity points is proven in references such as [26, Proposition 5.7 of Chapter III] and [101,
Lemma 21.2]. We are left to show the inequalities in (1.17). Assume that the weak convergence of
{ptn }nen to p holds.
For t € [0, 1), there is sequence of decreasing and positive numbers {ej }ren such that ¢ + ¢ €
(0,1) and fu 1 is continuous at t + €. Since quantile functions are non-decreasing, we have

. 1 . -1 1 —1 _ -1
limsup f, " (t) < limsup f, " (t +ex) = nginoo fo, (E+ex) = f(t+ex),

n—-+oo n—-+oo

which implies limsup,, _, , o f,1(t) < fﬂ_l(t) by the right-continuity of fu_l at t.
We prove the case t = 1 by contradiction. Assume that there exists z € R such that

liminf f,;'(1) = lim inf f,'(1) <z < f;'(1).

n—4oo0 " " n—-+oo k>n
It follows from Definition 1.28 that u((—oo,x]) < 1 and pg((—oo,z]) = 1 for infinitely many k.

Since {fi, }nen converges weakly to u, the upper semi-continuity of distribution functions implies

1 = limsup p, ((—00,7]) = limsupfun(x) < fu(x) = p((—o0,2]) <1,

n—-+oo n—-+oo
which is a contradiction. O
We provide an example showing that the inequalities in (1.17) can be strict.

Example 1.36. For n = 1,2, ..., denote by p, := N(0,1/n) the normal distribution on the real
line with mean 0 and variance 1/n. By the convergence of their quantile functions on the interval
(0,1), the sequence p,, with n > 1 converges weakly to the Dirac measure u := dg at 0. However,
we have f1(0) = —oo and f, ! (1) = 400 for any n > 1 while f,(0) = f; (1) = 0.

The importance of quantile functions in the optimal transport theory is highlighted by the
following theorem. We refer to [104, Theorem 2.18] for a proof.

Theorem 1.37. Let p, v be two probability measures in the Wasserstein space (Wa(R), dw). Then
their quantile functions f;*, f;1 € L*([0,1]) are squared integrable and

oy (1, 7)? = / ) — £ (0 . (1.18)

To further derive optimal transport maps between probability measures on R, we first prove the
following well-known lemma related to the uniform probability u restricted on [0, 1].

Lemma 1.38. Let i be a probability measure on R and let u := £1|[071] be the uniform measure on
R. The quantile function fu_l of i pushes forward w to u, i.e., [fu_l]#u = u. If p is atomless, then
the distribution function f,, of p pushes forward p tow, i.e., [fulap =1u.
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Proof. We first prove the equality | ' 4w = p. It suffices to show that, for any z € R,

M((—OO, I]) = [f;:l]#u((_oovx])v
or equivalently, tei(r(lfl){t | f ) >z =u({t € [0,1] ] f71(t) < a}), (1.19)

where we applied Lemma 1.34 with the definition f,(z) := p((—o00,]) in the left-hand side. If the
set {f, ' > x} is empty, then both sides of (1.19) are equal to 1. If the set {f, " > x} is non-empty,
then it is a sub-interval of [0, 1]. Moreover, this sub-interval has 1 as its right endpoint, and shares
a common endpoint with its complement { ' 1 < 2}, which has 0 as its left endpoint. Hence, in
this case, both sides of (1.19) are equal to the common endpoint.

Now we assume that p is atomless and prove the equality [f,]xp = u, which is equivalent to
the following statement,

viel0,1], plzeR| fu(z) <t} =t (1.20)

For t = 0 or ¢ = 1, the equality (1.20) holds trivially. As p is atomless, its distribution function f,
is continuous, which implies that the image set f,,(R) is connected and thus contains the interval
(0,1). Hence, for any given ¢t € (0, 1), there exists y € R such that f,(y) = t. Since f, is non-
decreasing, the set {f, <t} \ (—oo,y| is contained in the set {f, = t}. As f, is continuous and
non-decreasing, {f, = t} is either a singleton or a closed interval, and in both cases, the set is
p-negligible since p is atomless. Therefore, p({f, < t}) = p((—oo,y]) = fu(y) = t, which is the

equality (1.20) to prove. O

As a corollary, we obtain the following equalities when compositing distribution functions and
quantile functions.

Corollary 1.39. Let i be a probability measure on R and let u := £1|[0$1]. If 1 is atomless, then

fuo fu_l(t) =t, for every t € (0,1), (1.21)
f;l o fulz) ==, for p-almost every x € R. (1.22)

Proof. Let us first prove (1.21) for u-almost everywhere:

fuo fu_l(t) =t, for u-almost every t € (0, 1), (1.23)

Since f; 1(t) is finite for ¢t € (0,1) by Lemma 1.30, Lemma 1.34 implies that
“w
-1 _ . —1 —1
fuo £ 0 = nf {51 47(5) > 0.

As t is smaller than any possible element in {fu_l > fﬂ_l(t)}, we have f, o fﬂ_l(t) > t. Hence,

1
/0 |fu°f,fl(t)—t\dtZ/RfMOfljldu—/RIddu
:/Idd[fuofgl]#u—/ldduzo,
R R

where we applied the equality [f, o fﬂ_l]#u = [fu]#p = u implied by Lemma 1.38. It follows that

|fu 0 fi1(t) —t| = 0 for u-almost every ¢ € (0,1), which implies (1.23).
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By considering the integral fR | fu Lo fu(z) — z|dp(x), we can prove the p-almost everywhere
equality (1.22) similarly thanks to the inequality fu_l o fu(xz) > x and the equality [fu_l o fulup = p.

Finally, let us deduce (1.21) from (1.23). Define A := {t € (0,1) | f, o f/'(t) = t}. Since
u(A4) =u([0,1]) = 1 and any open subset of [0, 1] has strictly positive u-measure, for any ¢ € (0, 1),
there exists a sequence {tp}n>1 C A such that ¢, > t,41 and lim, . t, = t. Hence, by the
right-continuity of f,, and f,° L

t= nler;Otn =lim f, Ofu_l(tn) = fuo ( lim f,:l(tn)> = fu Ofu_l(t),

n—oo

which implies t € A and thus the statement (1.21). O
We are thus able to deduce the following corollary of Theorem 1.37.

Corollary 1.40. Let p,v be two probability measures in the Wasserstein space (Wa(R),dw). If p
is atomless, then f, 1o fu is an optimal transport map pushing forward p to v.

Proof. Thanks to the equality (1.22) and [f,]xp = u, we have

1
; ) = £ d.

/R[J”J1 o fulw) —al*dp = /R[f;l o fulz) = fi! ofu(a:)]Qdu:/

Hence, it follows from Theorem 1.37 that
dw (o) = [ 140 fuw) — o dp
R

which implies that f,!o f, is an optimal transport map. U

1.4.2 Differentiating optimal transport maps

In this part, we collect some properties of optimal transport maps between absolutely continuous
measures on a Riemannian manifold, which are taken from [30, Sections 4 & 5]. These properties
will be used in Chapter 4. To justify them, we remark that our definition of Hessian enjoys the
second-order expansion (1.11), which allows us to apply properties proven for the Hessian defined
in [30, Definition 3.9]. See Remark 1.20 and [30, Discussion after Definition 3.9] for more details.
To motivate the definition of differentiating optimal transport maps, we first illustrate how to
differentiate the maps exp(—V¢) with ¢ being C? smooth. Let us first recall the definition of parallel

transport. We denote by V the Levi-Civita connection on a Riemannian manifold.

Definition 1.41 (Parallel transport). Let (M, g) be a Riemannian manifold. Given a smooth curve
v : 1 — M on an open interval I, tg € I and v € T, (;,)M, a vector field X along + is called the
parallel transport of v along ~ if

X’y(to) =wv, and V,y/(t)X =0fortel.

When a particular point ¢ € I is selected in the context, for example, by explicitly considering the
tangent space T.,;) M, we also call the tangent vector X, ;) € T ;)M the parallel transport of v.

For the existence and uniqueness of parallel transport, see [66, Theorem 4.32]. Parallel transport
is deeply connected with the Riemannian metric. For example, it is a linear isometry along the
smooth curve [66, Proposition 5.5]. Moreover, it determines the Levi-Civita connection.
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Proposition 1.42 (Parallel transport determines the connection, [66, Corollary 4.35]). Let (M, g)
be a Riemannian manifold. Suppose X and Y are smooth vector fields on M. Fiz a point p € M
and a smooth curve v : I — M with tg € I such that y(to) = p and v'(to) = X,,. Fort € I, denote
by HZ_,tO :TyyM — Ty 40y M the parallel transport map, sending tangent vectors in T )M to their
parallel transports in Ty M along the curve . Then

0 Yo = Yo

VxY|, = lim —=%

1.24
t—to t — to ( )

Note that in the equality (1.24), the right-hand is independent of the smooth curve v, provided
v (to) = Xp. Also, we remind that the vector VxY|, can be also written as Vx Y as it only
depends on X, and the value of ¥ in a neighborhood of p [66, Proposition 4.5]. Since parallel
transports along different curves are considered in the following proof, we introduce the symbol
I,y : T.M — T,M without indicating the curve explicitly, to represent the map sending a
tangent vector v € T, M to its parallel transport in Ty, M along the minimal geodesic v from z to
w.

Lemma 1.43. Let (M, g) be a complete Riemannian manifold. Fix an open set U C M, a point
x € U, and a C? smooth function ¢ defined on U. Define F := exp(—V¢) on U. Assume that the
(fized) point y := F(x) is out of the cut locus of x. If the two functions, ¢ and d§/2, have the same
gradient at x, then

D, F = [D_gg(z) exp,] o (Hess, d. /2 — Hess, ¢). (1.25)

In the above formula,

1. D_vy(z)exp, : T-vg@)TeM — T,M denotes the differential of the exponential map exp,, :
T, M — M at —Vé(x);

2. the composition is defined via the canonical identification of T_v )T M with T, M.

Proof. The formula (1.25) is already proven in [30, Proposition 4.1], whose proof can be simplified
thanks to our assumptions. Define y := F'(z). By the assumption that y is not in the cut locus of z,
Hess,, d§/2 is well-defined. Shrink the neighborhood U of z if necessary so that for (w, z) € U x U,
w is not in the cut loci of y and z [88, (2) of Proposition 4.1 in Chapter III]. Define the following
function g on U x U,

g(w, z) := exp,, (—Vd(w)/2 + .y, [Vd,(2)/2 = Vo(2)]),

where II,_,,, : T,M — T, M denotes the parallel transport of tangent vectors along the minimal
geodesic from z to w. For z € U, since I, is the identity map on T, M, g(z, z) = F(z). Forw € U,
g(w, ) = exp,,(—Vd;(w)/2) = y is a constant, where we used the assumption Vd:(z)/2 = V¢(x)
for the first equality and used that w is not in the cut locus of y for the second one. Let us verify
that the differential at x of the map z € M — I1,,,Vé(z) € T, M is Hess, ¢, i.e.,

D,G = Hess, ¢ with G(z):=1,,,Vo(z), (1.26)

where the tangent space T ()T, M is identified with T, M so that D,G : T,M — Tg)T.M is
regarded as map from the space T, M to itself. Indeed, given a vector v € T, M, by introducing the
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minimal geodesic 7 : t € (—4,d) — exp, tv for small § > 0, we have II] ,, = IL,(4)— according to
Definition 1.41. Hence, Proposition 1.42 implies

Hes, 60) = V.96 = li 07000 ~T010) _ ,, GG0) ~ Gly(0)

=D,G(v),

where we used the definition of Hessian as the covariant derivative of gradients [30, Proposition
2.2.6]. Since v € T, M is arbitrarily chosen, (1.26) is thus proven. Therefore,

D, F = 0yg(x,x) + 0.9(x,x) = 0.9(x, ) (1.27)
= [D_vg() 0 exp,] o (Hess, d§/2 — Hess, ¢), (1.28)

where we applied F(z) = ¢g(z,2), the chain rule and g(w,z) = y for the line (1.27), and applied
the relation between Hessians and differential of parallel transports, as illustrated by (1.26), for the
line (1.28). O

We are now ready to import the definition of the (weak) differential of optimal transport maps
from [30], with which we can then state the change of variables formula.

Proposition 1.44 (Differentiating optimal transport maps, [30, Proposition 4.1]). Let (M, dg) be
a complete Riemannian manifold. Given a c-concave function ¢ defined on X C M with X a
bounded open set, we set F := exp(—V @), which is Vol-almost everywhere well-defined on X. Fix
a point x € X such that Hess, ¢ exists (1.9). Then the point y := F(z) is not in the cut locus of
x, Vo(z) = Vdfj/Q(x), and Hess, di/? — Hess, ¢ is positive semi-definite. Define the differential
D F :T,M — TyM of F at x as

D, F := [D_yg(z) exp,] o (Hess, d§/2 — Hess,, ¢), (1.29)
and define Jac F(z) := det D, F as the Jacobian determinant of D, F.

The Jacobian determinant of the differential D, F', as defined in Proposition 1.44, is calculated
with respect to normal coordinate systems of the tangent spaces T, M and T, M [30, Lemma 2.1].
By [30, Claim 4.5], these algebraic Jacobians are equivalent to their geometric counterparts, which
results in the following change of variables formula. For further details, see [105, p.364 of Chapter
14].

Proposition 1.45 (Interpolation and change of variables formula). Let (M, dgy) be a complete Rie-

mannian manifold. Fiz two absolutely continuous measures p,v € Wa (M) with supports contained

in two bounded open sets X and ) respectively. Let F := exp(—V¢) be the optimal transport map

that pushes p forward to v, where ¢ € I¢(X,)) is a c-concave function given by Theorem 1.27.
Denote by ¢¢ € I¢(Y, X) the c-conjugate of ¢. The set

Q:={ze€X|F(zx) €Y, Hess, ¢ and Hessp(y) ¢° exist }
satisfies the following properties:
1. w(Q) =1;
2. defining F* := exp(—tV¢) for 0 <t < 1, we have Jac F* > 0 on Q;
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3. denote by f and g the density functions of u and v respectively; there exists a measurable
subset N C ) depending on these two density functions such that f(N) =1 and for x € N,

f(z) = g(F(x)) Jac F(x) > 0
4. for any Borel function A on [0,400) with A(0) =0, with N as in Property 3,

_ f
/M A(g)d Vol = /NA (JacF) Jac F'd Vol. (1.30)

(Either both integrals are undefined or both take the same value in R U {400, —00}.)

Proof. All the statements follow from [30, Claim 4.4, Theorem 4.2, Corollary 4.7] except Property 2
for t € (0,1). To justify this proposition, we fix t € (0,1) and deduce Property 2 from the following
known results:

(a) det[D_;vg(x) exp,] > 0 since exp, (—tV¢(x)) is not in the cut locus of x [66, (c) of Theorem
10.34).

(b) t¢ is c-concave [30, Lemma 5.1].
(c) Hess, d%t(m)/Q — t Hess,, d%(x)/2 is positive semi-definite [30, Lemma 2.3].

(d) Hess, d%(m)/ 2 — Hess, ¢ is positive definite since it is positive semi-definite [30, Proposition
4.1] and det D, F' = det[D _yy(s) exp,] - det[Hess, df, /2 — Hess, ¢] > 0 [30, Claim 3.4].

Since det D, F* = det[D_;y4(5) €xp,] - det[Hess, d%t(z)/Q — t Hess,, ¢] according to Proposition 1.44
and Result (b), it suffices to show det[Hess, d%t(w)/Z — tHess, ¢] > 0 by Result (a). Denote by m
the dimension of M. Recall that the Minkowski’s determinant inequality [104, (5.23)] states, if A, B
are two symmetric m x m matrices such that A is positive semi-definite and B is positive definite,
then

det[A + B]= > det Am + det B

Considering the equality
Hess, d%t(w)/Q —tHess, ¢ = [Hessw d%t(w)/Q — t Hess, d%(w)/Q} + [t Hess, d%(i)/2 — tHess, ¢} )

it follows from Result (¢) and Result (d) that

1 1
det |Hess,, d%t(w)/Z — t Hess,, (b} " > det [HessI d%t(x)/Q — t Hess,, d%(z)/2] "

1

+ tdet {Hessm d%m/? — Hess, fﬂ " >0,

which concludes the proof. O
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Chapter 2

General framework for barycenters

Barycenter is the notion of mean for probability measures on metric spaces. Given a probability
measure p on the Euclidean space R™, if its second moment is finite, then its mean me xdp(z)
can be equivalently defined as the unique point where the infimum

yeR™

inf / ly — 23 d ()
R’Iﬁ,

is reached. This formulation in terms of minimization and metric is still valid for general metric
spaces, and it leads to our definition of barycenter (see Definition 2.1).

For barycenters in proper metric spaces, their existence is a consequence of the compactness
property. Furthermore, in Section 2.1, we also demonstrate the existence of measurable barycenter
selection maps, a crucial element for the construction of Wasserstein barycenters (Proposition 2.12).
Consequently, the framework for barycenters in this chapter involves considering a proper metric
space (F,d) and studying barycenters within F or Wasserstein barycenters in W (E). To provide
partial justification for this framework, we also include Section 2.2, which presents counter-examples
illustrating the failure of barycenter’s existence in metric spaces that are not proper. Finally,
Section 2.3 reviews established results concerning the existence and uniqueness of Wasserstein
barycenters.

2.1 Barycenters on proper metric spaces

Given that Wasserstein spaces are composed of probability measures with finite second moments,
the definition of barycenters for these measures is sufficient for our development. For a slightly
more general definition, we refer to [94, Proposition 4.3]. For clarity, we shall use the symbol z,
to represent a chosen barycenter of the measure u, but it is important to note that this does not
imply the uniqueness of z,.

Definition 2.1 (Barycenter). Let (F,d) be a metric space and let o be a probability measure on
E such that [, d(z,y)?d p(y) < oo for some point zg € E. We call z, € E a barycenter of y if

zEE

/ d(z30,9)* d p(y) = min / d(z,y)? du(y).
E E
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Recall that a metric space is proper if its bounded closed subsets are also compact. Barycenters
always exist in proper spaces since a minimizing sequence is bounded and thus pre-compact. We
refer to Ohta [77] for more details and some other properties of barycenters in a proper space.

We can readily construct counter-examples demonstrating the lack of uniqueness for barycenters.

Example 2.2. Let S? be the two-dimensional sphere and fix two antipodal points x,y of SZ.
Consider the measure y = %51; + %5?/ on S?. Then all points in the equator, i.e., the set of all points
with equal distances to  and y, are barycenters of .

Given the prevalence of the phenomenon illustrated by Example 2.2, we prioritize investigating
measurable selections of barycenters, which are necessary for our subsequent development, rather
than identifying conditions ensuring uniqueness.

2.1.1 Measurable selection of barycenters

Let us recall the following topological property of projection maps. For two topological spaces F4
and F5, we denote by p; and py the canonical projection maps defined on F; x E5, where p; maps
(z,y) € E1 X Ey to x € E7 and po maps (x,y) to y € Ey. Recall that these projection maps are
continuous and open (i.e., mapping open sets to open sets). The map p; (respectively ps) is closed
if By (respectively F7) is compact [20, Proposition 8.2].

Proposition 2.3 (Measurable selections of barycenters). Let (E,d) be a proper metric space. The
function f: Wo(E) — R defined by

() = mindw (1, 0z)
is continuous. There exists a measurable map Z : Wa(E) — E such that for p € Wa(E), Z(p) is a
barycenter of . Moreover, if A C Wh(E) is a compact set, then the set of all barycenters of u for
u running through A is compact.

Proof. Observe that dw (p,0.)* = [,.pd(z,y)*>du(y) is exactly the term to be minimized when
we define the barycenters of u. As (E,d) is a proper metric space, the minimum in the definition
of f(u) = mingeg dw (i, d,) is reached by the barycenters of i, which shows that f is well-defined.
We now prove the continuity of f. For pu,v € Wh(F) and y € E, thanks to the triangle inequality
of the Wasserstein metric dy, we have

flu) = gggdw(u, 6z) < dw(p,8y) < dw(p,v) + dw (v, 8y). (2.1)

By taking the infimum of the right-hand side of (2.1) over all y € E, we obtain f(u) < dw (u,v) +
f(v). After exchanging the roles of u and v, it follows that |f(u) — f(v)| < dw (g, v), which implies
the continuity of f. Hence, the following set

[i={(,2) € Wa(E) x E | dw(p,d.) = f(p)},

is closed. Furthermore, (i, z) € T if and only if z is a barycenter of p.
We then prove the existence of measurable selection of barycenters. Fix a compact subset K of
E. Consider the following set

I = pl[r N (WQ(E) X K)] C WQ(E),
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where p; : Wh(FE) x K — Wy(FE) is the first projection map. Note that I'x is set of all measures
in Wh(F) with one barycenter located at K. Since K is a compact set, p; is a closed map [20,
Proposition 8.2], which implies that I'x is a closed set and thus measurable. Consider the map
U : Wy(E) — 2F sending u € Wi (E) to the set of barycenters of u. By definition of I' and T'x, we
have

U(p) =p2(T N ({p} x B)] and {n e Wa(E) | ¥(u) N K # 0} =T'k.

Therefore, according to Theorem 1.5 and Lemma 1.6, to obtain a measurable selection map Z :
Wh(E) — E of ¥, we are left to show that U(u) is closed for any p € Wh(E). However, this
property follows from the fact that I' N ({} x E) is a closed set as an intersection of two closed
sets. It remains to prove the “moreover” part of the proposition, which is a generalization of the
previous property.

For a compact set A C Wh(E), the set of all barycenters of y for g running through A can be
equivalently expressed as

bary(A) :==p3[I'N (A x E)] C E,

where ps : A X E — FE is the second projection map. Since A is compact, po is then a closed map
[20, Proposition 8.2], which further implies that bary(A) is a closed set. We claim that the set
bary(A) is bounded. Fix two arbitrarily chosen points z,y € bary(A), and suppose that they are
respectively barycenters of p, i1, € A. By the triangle inequality of dy, we have

d(z,y) = dw (0, 5y> < dw (pa, 62) + dW(My: 5y) + dw (1 Uy)
= fpa) + F(iy) + dw (1o, 1y)
< 2sup f(p) + sup dw(p,v).
HEA nvEA

Thanks to the continuity of f and the compactness of A, the term 2sup,,¢ 4 f(u) < 400 is bounded.
By the continuity of the distance function dy : Wa(E) x Wa(E) — R and compactness of the set
A x A, the term sup,, ,c 4 dw (1, V) < 400 is also bounded. Hence, our preceding claim is proven
as points z,y € bary(A) are arbitrarily chosen. It follows that bary(A) C E is compact since E is
a proper metric space. O

We shall apply Proposition 2.3 mainly with the following type of measures that are supported
in finitely many points.

Corollary 2.4. Let (E,d) be a proper metric space. Fix a positive integer n > 1 and n positive
real numbers \; > 0 fori=1,...,n such that >, \; = 1. The function f : E™ — R"™ defined by

n

f(zy,...,z,) :=min Y N\ d(y,x;)> (2.2)
ver i

is continuous. There exists a measurable map B : E™ — E such that for x = (z1,...,2,) € E™,
B(x) is a barycenter of the probability Y .| X\i 65,. Moreover, if A C E™ is a compact set, then the
set of all barycenters of Y i N; 05, for x = (x1,...,2y,) Tunning through A is compact.

Proof. Consider the following map from E™ to Wa(E):

0:(21,...,00) € E" = > i b,, € Wa(E).
=1
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We first prove that 6 is a continuous map. For two points x = (z1,...,2,) € E™ and y =
(Y1,.--,Yn) € E™, by considering the transport plan sending x; to y; for each 1 <4 < n, we have

dw (0(x),0(y))> = dw (D Aidurs p Xi0,,)* < D Nid(wi,p:)*.
i=1 i=1 i=i

It follows that if y converges to x in E™, then 6(y) converges to 0(x) in Wh(E).
By definition of f in (2.2), for x = (z1,...,2,) € E™, we have

n

—mi o N2 ‘ 2 _ . 2
f(x)=min » N\ d(x;,y) —Iyrggdw(z&émjy) —Lrélgdw(ﬁ(x),éy).

yeR
YR i=1

It follows from Proposition 2.3 and the continuity of 8 that f is also continuous. Moreover, according
to Proposition 2.3, there exists a measurable barycenter selection map Z : Wa(E) — E. Hence,

the map B := Z o0 is measurable and sends (1, ...,z,) to a barycenter of > . | \; §,,. Moreover,
since 6 is continuous, the set A := 0(A) C W,h(F) is compact if A C E™ is compact, which implies
the last part of the corollary by Proposition 2.3. O

2.1.2 Barycenters and cut-loci

In the context of Riemannian manifolds, the problem of finding barycenters for a finite set of points
exhibits a close relationship with optimal transport problems through the presence of c-concave
functions. This connection will be leveraged in Chapter 3.

Lemma 2.5. Let (M,dg) be a complete Riemannian manifold. Given an integer n > 2, let
i > 0,1 <i<n, ben positive real numbers such that Y., \; = 1. With the function ¢ given in
(1.13), we define

n . . o 1 : 2
fi(z,za,. 0 mn) € M™ — Inin 2 Xic(w,z;) = 3 Inin 2 i dg(w, )" (2.3)
Fixz a non-empty compact subset X C M andn—1 points x; € M for2 <i < n. Denote byY the set
of all barycenters of > 1 | \; 6z, when x1 runs through X. Define fi:x1 € X v f(z1,...,2,)/ M\
and g1 :y €Y = —1/M Y o Nic(y, z;), then f1 = ¢gf € I°(X,Y) and g1 = f{ € I°(Y, X).

Proof. The set Y C M is compact by Corollary 2.4. Using the given definition of Y, we can replace
the minimum over M in (2.3) by the minimum over X, which shows the equality f; = ¢¢ € Z°(X,Y).
Since f1(z) + ¢1(y) < c(z,y) for any (z,y) € X x Y, we have

g (y) < fily) = inf c(x,y) — fi(z). (2.4)

Fix an arbitrary point y € Y. Our definition of Y implies the existence of z; € X such that y is a
barycenter of >\ A; 0,,. For such a pair (z1,y) € X XY, fi(z1)+g1(y) = c(z1,y) by the definitions
of f1 and g¢;. It follows from the two inequalities, fi(z1) + f{(y) < c(z1,y) = fi(x1) + ¢1(y) and
(2.4), that ¢1(y) = ff(y). Since y is arbitrarily chosen, we conclude that g; = ff € Z¢(Y, X). O

The c-concave function g1 € Z°(Y, X) defined in Lemma 2.5 has simple expression unlike its
c-transform f;. Furthermore, thanks to the following lemma by Kim and Pass [57, Lemma 3.1], we
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conclude that g; is C? smooth since squared distance functions are C? smooth out of cut-locus. This
differential property of g1 (to be used in Lemma 3.2) is crucial to prove the absolute continuity of
Wasserstein barycenters.

Lemma 2.6 (Barycenters and cut loci, [57, Lemma 3.1 and proof of Theorem 6.1]). Let (M,dg)
be a complete Riemannian manifold. Given an integer n > 1, let \; > 0,1 < i < n, be n positive
real numbers such that E:L:l ANi=1andlet x; € M,1 <i<mn, ben points of M. For1<i<mn,
z; is out of the cut locus of any barycenters of > o ; N; 0z, -

2.2 Counter-examples of barycenter’s existence

Recall that the Wasserstein space Ws(E') over a metric space F is not proper unless the space E is
compact [38, Remark 7.19]. Consequently, the existence of barycenter in Wasserstein spaces is not
guaranteed a priori. To better illustrate the obstacles toward barycenter’s existence, we dedicate
this section to examining the existence of barycenters in general metric spaces that are not proper.

As recalled in Definition 1.2, a length space [23, Chapter 2] is a metric space where the distance
between two points is the infimum of the lengths of all rectifiable curves joining them. Here,
curves are continuous maps from compact intervals [a,b] C R to the metric space. For example,
Riemannian manifolds and Wasserstein spaces over them are length spaces. We shall provide
some counter-examples of barycenters’ existence in length spaces. The following lemma facilitates
determining whether a point is a barycenter.

Lemma 2.7. Given two points x,y in o length space (E,d), z, is a barycenter of p := %JI + %674
if and only if it is a midpoint between x and y, i.e., d(x,z,) = d(z,,y) = 3d(z,y).

Proof. A midpoint z between x and y reaches the two equalities in the following long inequality,
2 2 2 2\ __ 2
o) < (o, 2) + d(z, ) <2 (dle, 2 + dl0)?) =1 [ dew) dpto),
E

which implies that z is a barycenter of p if z is a midpoint.

Assume that z,, is a barycenter of p := %51 + %5?;- For a rectifiable curve v : [0, 1] — E, denote
by 7|[s,¢ its restriction on [s,¢] C [0,1] and by 7, € [0, 1] a “midway position” such that La(vj,r,]) =
La(7}r,,1)) (see (1.1) for the definition of L4), whose existence follows from the continuity of length
structure with respect to concatenation [23, §2.2.1]. For a rectifiable curve v from z to y, since z,
is a barycenter of p,

w2, + () =2 [ dlzwfdutu) <2 [ () 0P duo)
< Li(vo,r))? + La(yr, 1) = %Ld(v)zo

Taking the infimum over all possible v on the right-hand side, we obtain d(z, z,)? + d(z,,y)* <
%d(x, y)?, which shows that z, is a midpoint between z and y.

With Lemma 2.7, we can construct counter-examples in length spaces as follows.

Example 2.8 (No existence of barycenters in some length spaces). Recall that a locally com-
pact complete length space is proper [23, Theorem 2.5.28] and thus guarantees the existence of
barycenters. Here are two counter-examples of barycenter’s existence when the space is not proper.

39



1. For a locally compact but not complete length space, consider the unit disk without origin.
From physical intuition there is no barycenter for its uniform measure. Alternatively, we can
pick two center-symmetric points x = —y and consider the measure %51. + %53, as an example.

2. For a complete but not locally compact length space, we shall prove Lemma 2.9 as an example.

To justify the second example above, it suffices to show that the given space is not geodesic,
since in a complete length space, shortest paths always exist if midpoints always exist [23, Theorem
2.4.16]. Recall that a length space is called geodesic (Definition 1.3) if the distance between two
points is equal to the length of some rectifiable curve connecting them.

In the following example inspired by [45, Example 5.1] (see also [91, Example 4.43]), we express
the induced lengths of Lipschitz curves using integrals of their derivatives, similar to the case of
Riemannian manifolds. Since energy variation shares the same solutions as arc-length variation,
we can disprove the existence of shortest paths between two selected points by showing that the
corresponding energy variation has no solution. Note that starting from an arbitrary metric space,
we can always define an induced length structure (Definition 1.1) on it, and further turn the space
into a length metric space by equipping it with the metric induced by the previous length structure.
See [23, §2.3.3] for more details of this construction.

Lemma 2.9 (Infinite dimensional ellipsoids in the Hilbert space R>). Let (¢p)nen+ be a strictly
decreasing sequence with a positive lower bound. We define

(o] 1’2
E:= {(ml,xQ,...)GR"O | ch—l}.
n=1 "

Let d be the metric on E inherited from the Hilbert space R> and let Lg be the length structure on E
induced by d. Then there is no curve v connecting two poles e := (¢1,0,...) and —e := (—¢1,0,...)
that reaches the infimum length Lq(v) between them.

Moreover, there exists a length space (E, ci) defined via Lg that is complete but not geodesic.

Proof. Denote by (-,-) and || - || respectively the inner product and norm of the Hilbert space
R>. Let u := L']j] the uniform measure on [0,1]. A rectifiable curve v always admits an arc-
length proportional parametrization on [0, 1] and its length does not depend on its parametrization
[23, Proposition 2.5.9]. For a Lipschitz curve «, one can define its derivative 7/ : [0,1] — R>
almost everywhere since it has countably many components and each component of v is a Lipschitz
function from [0, 1] to R. It follows from the Newton—Leibniz formula [17, Theorem 5.4.2] that for
0<s<t<l, () —v(s) = fst ~"du. Hence, ||| is equal to the metric derivative (speed) of
for u-almost everywhere [8, Remark 1.1.3]. We thus have the following arc-length integral formula
[23, Theorem 2.7.6],

t
Ld(ﬂ[s,t])=/ [7[[du for0<s<t<1.

We show that there is no curve connecting e and —e with infimum length. Indeed, if there is
one, then it could be realized by a Lipschitz curve. We claim that arc-length variation shares the
same solution as energy variation over Lipschitz curves on [0, 1]:

1 1
arg min L(y) := argmin/ IV | dw = argmin/ IY'[|? du,
Y Y 0 vy 0
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where the minimum is taken over all Lipschitz curves « : [0,1] — F with given endpoints. For
this claim, the Cauchy-Schwarz inequality implies that solutions to the energy variation should
have arc-length proportional parametrizations. In this case, the energy is exactly the square of the
arc-length, so they attain their minima simultaneously.

It remains to show that there is no solution to the corresponding energy variation. Given a
Lipschitz curve v = (v1,72,...) : [0,1] — FE connecting e and —e, we shall construct a Lipschitz
curve 7 : [0,1] — E whose energy is strictly smaller than +. Since v is continuous, it is impossible to
have all functions ; with ¢ > 2 being zero. Fix an arbitrary integer n > 3 such that 7, _1 is not a zero
function. We modify ~ leaving v; and ~ for k > n unchanged to lower the energy of v as follows.
Define the continuous function ¢ := [|(22,...,2*)|| and the open subset A := = ¢ 1(0,00) C [0,1].
Note that A is not empty since v,_1([0, 1]) 7& {0} by our choice of n. We modify v only on A to
define a new curve 7 : [0,1] — E connecting e and —e,

77(t) = (’71 (t)7 0,... ) 0, Cn‘](t)v 7n+1(t)7 < ')7 te A

For t € A, we have ¢(t) > 0 and thus ¢'(t) = q2 =1 Zl 5 ('77(15) Hence, we obtain the
following inequality on A,

V17 = 12 = 1102 - - 1) IP = (end’)?

1,.c Y2 Cn Yn
= ; "MIZ = (4 Iy o Z(m 12 Cn Tn\\2
= 18- AP = (), (R Ty
L a2
> LA 2 _ I 2 L a2 Cn 9
= ||(’Y27 ?’yn)H ||<72) a’Yn>|| q2 ||(C2 027 Cn Cn)H
2 s ¢
! / ’
> ||(’Y27?7n)” _||<'72,,’Yn>|| q—:O7

where in the above two inequalities, we applied respectively the Cauchy-Schwarz inequality and the
assumption that = < 1 for 1 <4 < n. However, the obtained inequality ||7/[|* — ||| > 0 becomes
strict on the set where (V@) - v )]l ;é 0, which by our choice of n is not negligible. It
follows that the curve n has strictly lower energy than «y. Since the curve « is arbitrarily chosen,
the energy variation has no solution.

The induced length space (E,d) is defined via the length structure Ly such that d(z,y) is the
infimum of Ly(7y) for all rectifiable curves v connecting x and y [23, §2.3.3]. It is shown above that
(E,d) is not geodesic. We are left to show that it is complete. Since d(z,y) < d(z,y) and (E,d) is
complete, it suffices to show the claim that d and d induce the same topology on E. To prove this
claim, we first consider the case where F is replaced by the unit sphere B in the Hilbert space R*°.
Denote by dp and dp the metrics constructed from B in the same way how d and d are constructed
for E. The distance formula dp (z,y) = arccos(x,y) for x,y € B holds since we can approximate
x,y by points with finitely many non-zero components and apply the distance formulae for finite-
dimensional unit spheres. It follows from the distance formula that (B,dp) and (B,dg) share the
same topology. Now we argue that the general case of E for the claim can be reduced to the previous
case. Consider the map f : B — FE that sends (21, - ,&p,...) € B to (c121,...,CnTn,...) € E.
Since both the sequence {¢;}ien+ and the sequence {ci_l}ieN* are bounded, the map f and its
inverse f~! are Lipschitz continuous, with respect to the pair of metric spaces (E,d) and (B,dg)
or the pair of metric spaces (F, d) and (B,dg). Therefore, (E,d) is homeomorphic to (B, dp) and
(E,d) is homeomorphic to (B, dg), which thus proves the claim. O
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As a complement to Example 2.8, we also present the following counter-example demonstrating
the non-existence of barycenters on a metric space that is locally compact and complete but not a
length space.

Example 2.10. We endow R with the metric function d(x,y) = ¢(Jz — y|) for z,y € R, where ¢ is
a sub-additive piece-wisely linear function defined as: ¢(0) = 0, ¢(z) =z + 0.5 for 0 < x < 1 and
¢(x) =z + 1 for z > 1. This metric space is locally compact since all singletons are open, closed
and compact. It is not a proper space since a closed ball with radius 1 contains infinitely many
points while each point is an open set, so this ball is not compact. It is a complete space since if
d(z,y) < 0.5 then z = y. We consider the probability measure y := 15_1 + 16; on (R, d).

Define f(z) := [z d*(z,y)dpu(y) = [z ¢*(lz —y|) du(y). We plot these two functions ¢ and f
below. Red points are values of functions where they are discontinuous.

0] f

0 x<0
{x+05 O<x<1

x+1 xz1
1 / I
)

0.5 1.0 15 2.0 25 3.0 3 2 1 F 1 2 3

Figure 2.1: d(z,y) := ¢(jz — y|) Figure 2.2: f(z) := [, d*(z,y)d p(y)

Then f(—x) = f(x) and f is increasing on (0,+00). Moreover, f is continuous on (0,1) but
lim, o f(x) < f(0) < f(1). This shows that f has no minimum value and thus p has no barycenter.

2.3 Known properties of Wasserstein barycenters

Wasserstein barycenters are barycenters of probability measures on Wasserstein spaces. In this
section, we outline some established properties related to the existence and uniqueness of Wasser-
stein barycenters. Following the development of [62], to prove the existence, which is not obvious
given the conter-examples presented in the last section, we shall begin by constructing Wasserstein
barycenters of finitely many measures. This construction will rely on a specific type of multi-
marginal optimal transport plans, which we now introduce.

Definition 2.11 (Multi-marginal optimal transport plans). Let (E,d) be a proper metric space.
Given an integer n > 2, let A; > 0,1 < ¢ < n, be n positive real numbers such that Z?:l AN =1
and let u; € Wo(E),1 < i < n, be n probability measures on E. Denote by O the set of probability
measures on E™ with marginals p1,..., iy, in this order. We call v € © a multi-marginal optimal
transport plan (of its marginals) if

n

/En {,Iélf{sl 2 Nod(y,z)? dy(xy,. .. x,) = géiél /En glélg 2 Nod(y,z:)? db(zy,. .., z,). (2.5)

n

In what follows, the marginal measures p; and constants A\; will be clear from the context, and
Definition 2.11 is the sole type of multi-marginal optimal transport problems we shall consider. By

42



Corollary 2.4, the cost function infy,ep > ;| A d(xi,y)? is continuous with respect to (z1,...,z,) €
E™. Hence, we can prove the existence of a multi-marginal optimal transport plan < in the same
way as the classic proof for the existence of optimal couplings between two measures [105, Theorem
4.1]. Now we are ready to construct Wasserstein barycenters. It is important to note that although
we shall use the notation pp to indicate that a measure is a barycenter of P, this notation should
not be interpreted as implying the uniqueness of such a barycenter.

Proposition 2.12 (Construction of Wasserstein barycenters of > | X\; §,.,). Let (E,d) be a proper
metric space. Given an integer n > 2, let \; > 0,1 < ¢ < n, be n positive real numbers such that
Yo A =1 Let pa,...,pn € Wa(E) be n probability measures and let vy be a multi-marginal
optimal transport plan of them, i.e., satisfying (2.5). If B : E™ — E is a measurable map such that
B(z1,...,x,) is a barycenter of Y iy Xi 0g,, then

1. pp := By~ is a barycenter of P:= """ | \; 6,,;

2. (B, pi)#7 is an optimal transport plan between pp and p;, where p; denotes the canonical
projection (z1,...,2,) € E™w— x; € E;

3. if X, Xq,...,X, are n + 1 random wvariables from a probability space (Q,F,P) to (E,d)
with law pp, ji1, ..., s such that Ed(X, X;)? = dw (up, ui)?, ie., (X,X;) is an optimal
transport coupling between up and p;, then for P-almost every w € Q, X (w) is a barycenter

of 311 Xi 0, (w)-

Proof. Given an arbitrary probability measure v € Wy (E), thanks to the gluing lemma [104, Lemma
7.1], there are n + 1 random variables X, X;,... X, valued in E with laws v, py, ..., such that
Ed(X, X;)? = dw (v, u;)?. We introduce the symbol x := (x1,...,2,) to represent a general point
in E™ with components z1, ..., z, in this order. Since y; = p; v, we have

n

indw(wvm)kz/ Aid(B(x)@i)de(x):/ min > A d(y, 2:)? dy(x)
i=1 i=17E"

=)
Er VSRS

< E mi Ndy, X;)? <EY N\d(X, X;)?
< Iyxgg; (9, X:)” <EY A d(X, X))

i=1

= Z Az dW(V7 Mi)Qa
=1

where we sequentially applied the definitions of pup = By, dw (e, iti), v, B and X, Xy,...,X,.
Since v is arbitrarily chosen, it follows that up is a Wasserstein barycenter. By setting v = up
in the above inequality, we actually obtain an equality. Our last two statements follow from this
inequality. Firstly, this equality implies that Y7 | A; dw (e, pi)* < Doy e Ai d(B(x), 23)* dy(x)
is indeed always an equality, which proves the second statement. Secondly, it also implies that the
law of (X1,...,X,) is a multi-marginal optimal transport plan and mingeg Yy A; d(y, X;(w))? =
S A d(X (w), X;(w))? for P-almost every w € ©, which proves the third statement. O

The general existence of Wasserstein barycenters was first established in [62], which is based on
the consistency of Wasserstein barycenters.
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Theorem 2.13 (Consistency of Wasserstein barycenters, [62]). Let (E,d) be a proper metric space.
Fiz a probability measure P € (Wa(Wh(E)),dw) on (Wa(E),dw). Given a sequence of measures
P; € Wo(Wa(E)) with their corresponding barycenters pp;, € Wa(E), if dw(P;,P) — 0 as j goes to
+o00, then dyw (up;, pp) — 0 for some barycenter pup of P up to extracting a subsequence of ip, .

Recall that finitely supported probability measures are dense in Wasserstein spaces [105, Theo-
rem 6.18], so the consistency of Wasserstein barycenters together with the previous construction of
Wasserstein barycenters (Proposition 2.12) implies the following theorem.

Theorem 2.14 (Existence of Wasserstein barycenters, [62]). If (E,d) is a proper space, then any
P e Wo(Wa(E)) has a barycenter.

Note that in Theorem 2.13, we may need to pass to a subsequence of Wasserstein barycenters
pp; and the limit barycenter up is not known in advance. Hence, Theorem 2.13 will be enhanced if
we can assert the uniqueness of barycenters under some additional assumptions, as follows.

Proposition 2.15 (Uniqueness of Wasserstein barycenters). Let (E,d) be a proper space. If a
probability measure P € Wo(Wa(E)) gives mass to a Borel subset A C Wa(E) such that for p € A
and v € Wa(E), any optimal transport plan between p and v is induced by a measurable map T
pushing p forward to v, i.e., v = Tyup and dw(p,v)? = I d(z,T(x))?*dp, then P has a unique
barycenter in Wa(E).

Proof. The uniqueness follows from the strict convexity of the squared distance function to a given
point in Wh(E), as shown by [90, Theorem 7.19] and [58, Theorem 3.1]. We recall the proof for the
sake of completeness.

Observe that any convex combination of probability measures in the space Wh(E) is still a
probability measure in it. Fix pu € A and consider the squared Wasserstein distance function
dw (u, -)? with respect to this convex structure. For A € [0, 1] and two different probability measures
V1,9 € Wh(E), by definition of Wasserstein metric we have

dw (, Ay + (1= M) < Ndw (p,v1)2 + (1= Ndw (p, 1) 2. (2.6)

By our assumptions, there are two measurable maps T, T5 : E — E such that v; := (Id xT7)¢p
and 7o = (Id xT)xp are optimal transport plans between g and the two measures v; and v
respectively. We claim that (2.6) cannot be an equality unless A = 0 or A = 1. Indeed, if (2.6) is
an equality for some 0 < A < 1, then by setting v := Ay + (1 — A) 72 we have

Aw (1, 11)% + (1= Ndw (p,v2)? = dw (1, Avt + (1 — A)e)?
< / d(w,y)* dy(z,y)
ExXE
= )\dw(p,7 V1)2 + (1 - )‘)dW(:uv V2)27

and thus ~ is an optimal plan between p and Av; + (1 — A)ve. By assumptions, there exists a
measurable map T : E — E such that v = (Id XT')zp. Denote by graph(S) C E? the graph of a
map S : E — E. Note that if S is a measurable map, then graph(S) = {(x,y) € E? | d(S(z),y) = 0}
is a Borel subset of E2. Since y[graph(T)] = A1 [graph(T)]+(1—\)y2[graph(7)] = 1and 0 < A < 1,
we have 71 [graph(T)] = ~2[graph(T)] = 1. Hence, for i € {1,2}, u({z € E | T;(z) = T(2)}) =
~ilgraph(T') N graph(T;)] = 1. It follows that both 77 and T» coincide with T almost everywhere
with respect to p and thus 73 = 79, which is a contradiction since vy # vs.
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This shows that dy (u,-)? is strictly convex on Wh(E) for p € A. Since P(A) > 0, the map

v EWa(E) — dyy (v, ) dP(p)
Wa(E)

is also strictly convex on W5 (E) by the linearity and positivity of the above integral. It follows that
the Wasserstein barycenter of P asserted by Theorem 2.14 is unique. O

Remark 2.16. Under the assumptions of Proposition 2.15, the optimal transport plan between u € A
and v € Wy(M) is unique. Indeed, if we set v1 = v5 = v, then (2.6) becomes an equality for any
A € [0, 1]. Hence, given any two optimal transport plans «; and 2 between measures p and v, our
arguments on the measure v := Avy; + (1 — \) 72 imply that they must coincide.

There are many setups in which we can apply Proposition 2.15. We typically choose A as the
set of absolutely continuous measures with respect to some given reference measure. The following
lemma will be applied in Section 4.3.2, whose particular case, ensuring that A is a Borel set of
(Wa(E), dw), is now needed in this section.

Lemma 2.17. Let (E,d) be a metric space equipped with a o-finite Borel measure p on E. Assume
that p is outer regular, i.e., for any Borel set N € B(FE),

w(N) = inf{u(O) | O open neighborhood of N }.

Denote by A the set of probability measures in Wa(FE) that are absolutely continuous with respect
to . For e, d >0, define the set

Ees={v € Wo(E) | VN € B(E), f(N) <5 = v(N) <e}.

It is a closed set with respect to the weak convergence topology of Wo(E), and we have

A= &2

keNleN

In particular, if E is a proper space and p s a locally finite Borel measure, i.e., p gives finite (possibly
null) mass to some open neighborhood of every point in E, then with respect to the Wasserstein
metric topology, Ec 5 is a closed set and A is a Borel set.

Proof. Our proof is based on [58, Proposition 2.1, Remark 2.2] though we use different assumptions.

Suppose that v; € & 5 converges weakly to v € Wh(E). For any N € B(E) such that p(N) < 4,
there exists an open set O such that N C O and p(O) < ¢ since p is outer regular. By the
characterization of weak convergence of probability measures on metric spaces [17, Corollary 8.2.10],
we have

v(N) <v(0) <liminfv;(0) <€
]—)OO

and thus & s is closed with respect to weak convergence topology of Wh(E).

The inclusion A O (), ey Ujen E2-# 2-1 follows from the definition of a measure v being absolutely
continuous with respect to u: YN € B(E), u(N) =0 = v(N) = 0. We now prove the reverse
inclusion. Fix a measure v € A. Since p is o-finite, we can apply the Radon-Nikodym theorem to
write v = f - u. The reverse inclusion A C [, oy Ujen E2-# 2-1 follows from the absolute continuity
of Lebesgue integral [17, Theorem 2.5.7, Proposition 2.6.4].
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Given a proper space F and a locally finite Borel measure p on E, observe that p gives finite
mass to compact sets, and every open subset of F is o-compact. It follows that u is outer regular
[98, Theorem 6 of §2.7] and also o-finite. Since Wasserstein convergence implies weak convergence,
the set & 5 is closed with respect to the Wasserstein metric. It follows that A is a Borel set of
Wh(E). O

Remark 2.18. On a metric space, any finite Borel measure is outer regular, see [17, Definition 7.1.5,
Theorem 7.1.7] or [16, Theorem 1.1]. However, this is not true for o-finite Borel measures. For
example, define the Borel measure p on R such that for N € B(R), u counts the number of rational
points in N. This measure is o-finite but not outer regular since p never gives finite mass to open
sets. As for the assumption regarding the o-compactness of open sets in the above cited theorem
[98, Theorem 6 of §2.7], for metric spaces it can be replaced by assuming that p gives finite mass
to a sequence of open sets O;,7 > 1 such that £ = U;>10;. We also mention that there exists a

o-finite and locally finite but not outer regular Borel measure on a locally compact Hausdorff space
[19, problem 5 of Exercise §1, INT IV.119].

Thanks to Proposition 2.15 and Lemma 2.17, the Wasserstein barycenter of P is unique for
the following spaces, provided that P gives mass to the set of absolutely continuous measures with
respect to the corresponding canonical reference measure:

1. complete Riemannian manifolds, see Villani [105, Theorem 10.41] or Gigli [42, Theorem 7.4];
2. compact finite dimensional Alexandrov spaces, see Bertrand [13, Theorem 1.1];

3. for K € R and N > 1, non-branching CD(K, N) spaces, see Gigli [43, Theorem 3.3];

4. for K € Rand N > 1, RCD"(K, N) spaces, see Gigli, Rajala and Sturm [44, Theorem 1.1];

5. for K € R and N > 1, essentially non-branching MCP(K, N) spaces, see Cavalletti and
Mondino [25, Theorem 1.1];

6. (2-)essentially non-branching spaces with qualitatively non-degenerate reference measures, see
Kell [56, Theorem 5.8].

The above spaces are listed in (nearly) ascending order of generality. For the metric measure
spaces, we assume that the metric space is proper and the reference measure is locally finite. The
references cited above demonstrate that the unique optimal transport plan (Remark 2.16) between
an absolutely continuous probability measure and a given probability measure is induced by a
measurable map, allowing us to apply Proposition 2.15.
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Chapter 3

Absolutely continuous barycenters
of finitely many measures

Given the established existence and uniqueness of Wasserstein barycenters (under mild assumptions)
on Riemannian manifolds (M, dg), we are now prepared to demonstrate the absolute continuity of
these barycenters with respect to the volume measure Vol. In this chapter, we turn our attention
to Wasserstein spaces Wh (M) defined over Riemannian manifolds and aim to prove that the unique
Wasserstein barycenter of a finite collection of measures is absolutely continuous with respect to
Vol, provided that at least one measure in the collection possesses this property.

To achieve this, we adapt the proof of absolute continuity developed by Kim and Pass [58] for
the specific case of compact manifolds. Our adaptation will incorporate a geometric perspective and
will address both the case of finitely many measures with compact support and the more general
scenario where compactness assumptions are relaxed.

3.1 Lipschitz continuity of optimal transport maps

To better illustrate our approach towards the absolute continuity of Wasserstein barycenters of
finitely many measures, we recall the following result corresponding to the case of two measures.

Proposition 3.1 (Regularity of displacement interpolations, [105, Theorem 8.5, Theorem 8.7]).
Let (M,dg) be a complete Riemannian manifold. Let t € [0,1] — py € Wa(M) be a minimal
geodesic in the Wasserstein space Wo(M) such that both ug and py have compact support. For any
0 < XA <1, puy is the barycenter of (1 — AX)d,, + Ay, . The optimal transport map from px to po is
Lipschitz continuous, and it follows that py is absolutely continuous provided that pg is absolutely
continuous.

In [105, Chapter 8], the Lipschitz continuity presented in Proposition 3.1 is demonstrated as
a consequence of Mather’s shortening lemma. Furthermore, the subsequent statement regarding
absolute continuity follows from the property that Lipschitz maps preserve sets of Lebesgue measure
zero. An alternative approach to establishing Lipschitz continuity is provided by Bernard and
Buffoni [12] through the Hamilton-Jacobi equation, a method extended to non-compact settings by
Fathi and Figalli [36]. For the specific case of absolutely continuous measures on Euclidean spaces,
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McCann [72, Proposition 1.3] presented a concise proof of Lipschitz continuity. Further relevant
references can be found in the bibliographical notes of Chapter 8 in Villani [105]. The objective of
this subsection is to generalize the result stated in Proposition 3.1.

We deduce the following Lipschitz continuity from the c-concave functions defined in Lemma 2.5,
which are related to barycenter selection maps and thus Wasserstein barycenters of the probability
measures A10,, + Y i o A; ds,,- Recall that a measurable barycenter selection map B : M" — M
(Corollary 2.4) sends x = (z1,...,x,) € M™ to a barycenter of Y. A; §,,. In the following results,
the constants A\;,1 < i < n for B are given in the context.

As a convention to simplify the notation, we denote by x’ = (xa,...,2,) € M"~! the last n — 1
components of x € M™, and identify the pair (z1,x’) with x. Introduce the following two projection
maps,

pro M x M = M, pi(z1,x) = 215
pa: M x M™ 1 — M1 po(ag, X)) =%,

Lemma 3.2 (Lipschitz continuous maps F' = exp(—Vg1)). Let (M,dgy) be a complete Riemannian
manifold. Given an integer n > 2, let \; > 0,1 < i < n, be n positive real numbers such that
" A = 1. Fiz a non-empty compact subset X C M and a point X' = (x2,...,x,) € M"™1.
Denote by Y the compact set of all barycenters of Y, X; 65, when x1 runs through X. Define the
function g1 :y € M — —1/A1 >0 5 Nic(y, ;) (the function ¢ is defined in (1.13)). It is smooth
in a neighborhood of Y and thus F' := exp(—Vyg1) : Y — M is a well-defined Lipschitz continuous
function. We have F(Y) = X and the following characterization of F':

n
z€Y and x1 = F(z) <= z1 € X and z is a barycenter of Z/\i Oy (3.1)
i=1
Given a measure gy € Wo(M) with support X and a measurable barycenter selection map B : M™ —
M, pp = By (i1 @ 0z, @ -+ ® 8y, is a barycenter of P:= Ay 0., + 375 i 05, and (Id, F)gpup is
an optimal transport plan between pup and p.

Proof. According to Lemma 2.6, g; is smooth in a neighborhood of Y, which implies that F' is
continuously differentiable on this neighborhood. Since g; restricted to Y is a c-concave function
(Lemma 2.5) and Vg, exists on Y, by defining ¢§ : € X + minyey{c(z,y) —01(y)}, a well-known
property of c-concave functions proven by McCann [73, Lemma 7] shows that

z€Y and z1 = exp(—V¢1)(2) =: F(z) <= (21,2) € X xY and g{(z1) + g1(2) = ¢(z1, 2).
Note that though the cited lemma of McCann is proven for compact manifolds, the arguments of
its proof only depend on the existence of the gradient Vg; and the compactness of X and Y. For
z1 € X, we have g§(z1) = 1/A1infyen D iy Ai c(w, x;)? (Lemma 2.5) and thus

n

(x1,2) € X xY and g{(x1) + ¢91(2) = (21, 2) < Z/\i dg(z,2:)* = wlél& Nidg(w,z;)?,

i=1 i=1
which implies the characterization (3.1). F(Y) = X follows from (3.1) and the definition of Y.
Since v 1= p1®0d5,®- - -®0d5, is the only measure on M" with marginals i1, 6,, .. ., 05, in this or-

der, it is the (unique) multi-marginal optimal transport plan of its marginals. Proposition 2.12 shows
that up = Byy is a Wasserstein barycenter of P. Moreover, since p1(x1,x’) = 21 = F(B(z1,X'))
for 21 € X by (3.1), Proposition 2.12 shows that (B,p1)xy = (B, F o B)uy = (Id, F)xpp is an
optimal transport plan between pp and p;. O
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3.2 Divide-and-conquer via conditional measures

Lemma 3.2 implies that any barycenter selection map on X x {x'} is injective (note that this is
different from being unique). The following lemma by Kim and Pass [57, Lemma 3.5] generalizes
this injectivity, and it will help us to generalize Lemma 3.2.

Lemma 3.3. Let (M,dq) be a complete Riemannian manifold. Given an integer n > 2, let
Ai > 0,1 < i <n, ben positive real numbers such that Y ;_ X\; =1 and let p; € Wao(M),1 <1i<mn,
be n probability measures with compact support. If v is a multi-marginal optimal transport plan
with marginals py, ..., iy, then

X,y €supp(7), xF#y = bary({x}) Nbary({y}) =0,
where bary({(z1,...,z,)}) is the set of barycenters of > N; Oz, -

To avoid being lengthy, we skip the proof of above lemma [57, Lemma 3.5], which is based on
c-cyclical monotonicity and Lemma 2.6. Though the proof in the given reference is for the case
when Ay = --- = A, = 1/n, there is no essential difficulty to apply it to the stated case [57, proof
of Theorem 6.1]. The following proposition constructs an optimal transport map pushing forward
pp = By to pp when p;,2 <4 < n, are discrete measures and thus generalizes Lemma 3.2. The
optimal transport map may fail to be a Lipschitz map, but it is a disjoint union of Lipschitz maps
defined as follows. Given (at most) countably many disjoint subsets Y; C M,j € J C N with
functions Fj : Y; — M, the disjoint union F of Fj,j € J is the function defined on U;csF; such
that Fly, = F;. We shall use conditional measures (Definition 1.7) to deduce further conclusions
from F}’s Lipschitz continuity.

Proposition 3.4. Let (M,dy) be an m-dimensional complete Riemannian manifold. Given an
integer n > 2, let \; > 0,1 < ¢ < n, be n positive real numbers such that Z?:l Ai = 1. Let
w1 € Wo(M) be a probability measure with compact support and let p; € Wa(M),2 <i<n, ben—1
discrete measures, i.e., probability measures supported in at most countably many points. Given
a multi-marginal optimal transport plan v of 1, ..., uy in this order and a measurable barycenter
selection map B : M™ — M, the measure pup := By~ is a barycenter of P := " X\id,,. The
measure up is supported in a disjoint union of at most countably many compact sets, and on each
of them Lemma 3.2 defines a Lipschitz continuous map with a compact subset X C M and a point
x' € M"1 such that X x {x'} is contained in the support of vy. Denote by F the disjoint union of
these Lipschitz maps. (Id, F')gpp is an optimal transport plan between pp and p1.
For positive real numbers d,e > 0, we define the set

Ees ={pEWL(M) |VYN € B(M), VOoI(N) <d = u(N) <e}.
If there is a common Lipschitz constant C' of the Lipschitz maps, then u1 € Ec5 = pp € Ec5/0m -

Proof. Proposition 2.12 shows that up is a Wasserstein barycenter. Let us reveal more details of
7. The measure 7 := p2 4y on Mn"1 is discrete since its marginals o, ..., i, are so. Denote
by {x}}jes the set of all atoms of 7, where J C N is an at most countable set (Lemma 1.4).
For each j € J, we introduce the following definitions. Define m; := 7({x}}) > 0 and define
Xj = pi(suppy N (M x {x}})). Applying Lemma 3.2 to X; and x/; € Mn"=1 we obtain a compact
set Y; and a Lipschitz continuous map F} : ¥; — M such that F}(Y;) = X;. Since 7 is supported
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in the union {J;c ;{x;}, 7 is supported in the union J,c; X; x {x}}. As in Lemma 3.3, we denote
by bary({(z1,...,2,)}) the set of barycenters of ;' ; A 0s,.

We claim that Y; N'Yy = () for two different indices i,k € J. Indeed, if 2 € Y; NY}, for i,k € J,
then by the characterization of F;, Fj, in Lemma 3.2, z € bary({(F;(2),x})}) Nbary({(Fx(2),x})})-
Since ;¢ X; x {xj} C suppy and F;(Y;) = X, Lemma 3.3 forces that x; = x}, and thus i = &,
which implies our claim. Define F' as the disjoint union of Fj,j € J, i.e., F|yJ = Fj. Since
pi(z,x;) =z = F(B(z,x})) for z € X; and + is supported in the union (J;c ; X; x {x}}, it follows
from Proposition 2.12 that (B, p1)4vy = (B, F o B)ygy = (Id, F)4up is an optimal transport plan
between pp and p;. Since the union UjEJ Y; is the domain of F' and Flupup = p11, pp is supported
in a union of at most countably many compact sets that satisfies our description.

We claim that p1(X; N X%) = 0 for two different indices i,k € J. Consider the conditional
measure such that dy(x) = v(dx,x’)d7(x). In accordance with the notation in Lemma 3.2, for
cach j € J, denote by (y7,...,y}) = x; € M"~! the re-writing of x; in components and introduce

1 n
v = ;/’[/1|Xj’ QJ =\ 6Vj + Z)\l 66}];7 lo; = B#’Y(axg)
J 1=2

Lemma 3.2 implies that Fj,vq, = v; and 1, is a barycenter of Q;. For R € B(M™) and j € J,
thanks to the property m; = 7({x}}) > 0, we have y[RN (M x {x})] = 7(R,x}) m; by Definition 1.7,
which implies that (-, x;) is supported in X; x {xz} Since = is supported in the union UjeJ X, x
{x}}, we obtain the following equality by choosing R of the form A x M" ! with A € B(M),

1 1 1
YA X M) = —[Ax (G = —[(ANXG) x M™H] = — (AN X5),

J J T

which implies that the first marginal of (-, x;) is v; as A is arbitrarily chosen. Furthermore, for a
measurable map f: M™ — M,

VN € B(M), [fg](N) =7(fH(N) = D (T (V)X m = D [ x)I(N) .

jed jed

By setting f = p; and f = B, we obtain

1 = Zﬂ'j v; and pp= ij Q- (3.2)

jeJ jeJ

Hence, given i € J, u1(Xi) = 3¢ 7 |x; (X;) and thus p (X; N Xy) = 0 for k € J different from 4.

We now assume the existence of a common Lipschitz constant C of all F, j € J. As the images of
a Borel set under the Lipschitz maps F}; are not necessarily Borel sets, we state the regularity of the
volume measure as follows (c.f. [L05, Proof of Theorem 8.7]) to simplify the subsequent arguments.
For any Borel set N € B(M), there exist Borel sets W}, j € J such that F;(NNY;) C W; C X; and
Vol(W;) < C™Vol(N NYj) [100, Proposition 12.6, Proposition 12.12, Remark after Proposition
12.12].

For j € J, with the re-writing x; = (yjz,yg’,,y;l) € M1 (-, x
measure vj ® 511? R - ® 59;. It follows from Lemma 3.2 that

%) is equal to the product

1
Fj#VQj =V; = ;MllXj' (33)
J
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As F;(N NY;) € Wj, we have vg,(NNYj;) < I/Q].(Fjil(Wj)) = v;(W;). Therefore, according to
(3.2) and (3.3),

pe(N) = mjvg,(NNY;)) < Zﬂj%ltﬂxj(wj) => W) =m(JwW;), (34
jed jer i€t et

where we used W; C X; and i (X; N Xy) = 0if ¢ # k € J. Since Yj,j € J are disjoint,
Vol(Ujes Wj) < C™ 3 i, VOl(N NY;) < C™Vol(NV). Assuming that g1 € &5, then for any
N € B(M) with Vol(N) < ¢/C™, we have Vol(U;c; W;) < ¢ and thus pup(N) < p1(U;je; Wj) <€
by (3.4). Therefore, the implication p; € £ 5 = pp € & 5/cm is proven, which concludes our
proof. O

Remark 3.5. Figuratively speaking, the sets X, j € J create a tiling of the support of p; and the
points x;-, j € J pull them apart (via barycenter selection maps) into disjoint sets Y;, j € J, which
contain different pieces of the support of up separately.

3.3 Absolute continuity implied by compactness

Consider the probability measure P = """ | \; d,, with positive real numbers \; and compactly
supported measures i; € Wa(M). We can approximate each p; for 2 < i < n with discrete measures
to apply Proposition 3.4. If u; is absolutely continuous, then P has a unique barycenter pp, which is
approximated by the barycenters of the approximating sequence (Theorem 2.13). Recalling that the
sets &5 (defined in Lemma 2.17) provide a full characterization of absolutely continuous measures
and are closed under weak convergence, the remaining task to prove the absolute continuity of up
is to establish the existence of a common Lipschitz constant C' for the optimal transport map F
(defined as in Lemma 3.2) across all elements of the approximating sequence. Proposition 3.4 will
then allow us to conclude the result. It is important to note that the domain Y of the map F changes
along the approximating sequence, thus the existence of the constant C' is not a straightforward
consequence of compactness. More precisely, our goal is to prove:

Theorem 3.6 (Absolute continuity of the barycenter of Y7 | X; 8,,,). Let (M,dg) be a complete
Riemannian manifold. Given an integer n > 2, let A\; > 0,1 < i < n, be n positive real numbers such
that " Ai =1 and let p; € Wo(M),1 < i < n, be n probability measures with compact support.
If py is absolutely continuous, then the unique barycenter pp of P := > | X;d,, is absolutely
continuous with compact support.

Proof. The uniqueness of up and the compactness of supp(up) follow from Proposition 2.15, Propo-
sition 2.12, and Corollary 2.4. We are left to show the absolute continuity of pp. To prove
it, we approximate each p; for 2 < i < n in (Wa(M),dw) by a sequence of finitely supported
probability measures {yx]};>1 whose supports are contained in the compact support of z;. Then
P i= Moy + Dro i 5”17; converges to P in Wa(Wo(M)). By the consistency of Wasserstein
barycenters (Theorem 2.13), the unique barycenter up, of P; converges in (Wa(M),dw) to the
unique barycenter pup of P. ‘

Denote by ; a multi-marginal optimal transport plan of marginal measures 1, u3, . . ., w? in this
order. Fix an index j, a non-empty compact subset X C M and a point X’ := (xa,...,2,) € M"}
such that X x {x'} C supp~y;. Applying Lemma 3.2 to X and x’, we obtain a Lipschitz continuous
function F' = exp(—Vg1) on a compact set Y.
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We claim that there exists a Lipschitz constant C' of F' on Y independent of 7, X and x’. Recall
that g1(y) == —1/A1 >y i ¢(y, @;) is smooth in a neighborhood of Y. Given z € Y, since the
point z is a barycenter of > i A\;d;, (Lemma 3.2) with z; := F(z), it is a critical point of the
following map

n
we M Z/\i dg(w,z;)?, (3.5)
i=1
which implies Y | A; Vdi(z) = 0 thanks to Lemma 2.6. Hence, by definition of g;, we get
Vd2 /2(z) = Vgi(z). Moreover, Lemma 2.6 enables us to apply Lemma 1.43 to compute the
differential of F' at z,

D.F =D, exp(—Vai) = [D_vy, (») exp.] o (Hess, d2 /2 — Hess, g1)

1 n
= [D_vg,(2) exp,] 0 oW Z Ai Hess, d2. (3.6)
i=1

In (3.6), Y7 A\; Hess, d2 is positive semi-definite since z reaches the global minimum of the
map (3.5). We now bound (3.6) via compactness as follows. Consider the compact set A :=
supp(p1) X - - - x supp(ppn) C M™. Corollary 2.4 implies that the set of all barycenters of Y " | A; 6y,
for (y1,...,yn) running through the set A is compact. Moreover, by our construction of P;, the
union of the supports of up, p;, up; and uz for1 <i<mnandj>1iscompact. Hence, independent
of z, j and X', D_gy, (») exp, is uniformly bounded (in norm) and ;" ; A; Hess d2_is uniformly
bounded from above by the Rauch comparison theorem for Hessians of distance functions, which
is applicable here and gives a constant upper bound thanks to the compactness, see [30, Lemma
3.12 and Corollary 3.13] or [30, Theorem 6.4.3]. This shows the existence of the claimed Lipschitz
constant C. We remark that the absolute continuity of ;1 is not needed for the existence of C.
Applying Proposition 3.4 to measures i1, pi3, . . ., i3, we have for €,6 > 0, u3 € €5 = pp; €
Ee,5/cm since pp, is the unique barycenter of P;. As up; converges to up weakly, Lemma 2.17 shows
that all measures U, for 7 > 1 and pp are absolutely continuous since pu; is so. O

3.4 Absolute continuity without compactness

Theorem 3.6 can be further generalized to the case where the measures do not have compact support.
This extension is achieved by decomposing the support of a multi-marginal optimal transport plan
v into a countable union of compact sets. Such a decomposition is feasible because complete
Riemannian manifolds are proper metric spaces.

Theorem 3.7 (Absolute continuity of Wasserstein barycenter of finitely many measures). Let
(M,dg) be a complete Riemannian manifold. Given an integer n > 2, let \; > 0,1 <i <n, ben
positive real numbers such that Y. A; = 1. Fiz n probability measures p; € Wa(M),1 <i <n
such that py is absolutely continuous. The unique barycenter pp of P =" | X; 6, is absolutely
continuous.

Proof. According to the construction of Wasserstein barycenters in Proposition 2.12 and the unique-
ness of pp, we can write up = By with a measurable barycenter selection map B and a multi-
marginal optimal transport plan - of marginal measures u, po, .. ., i, in this order.

Since M™ is a manifold and +y is a probability measure, there exist at most countably many
compact sets K; C M",j € J C N such that k; :=v(K;) >0, >, ;k;j = L and 7(K; N K;) =0
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for indices ¢ # j. To justify the existence of these sets, we choose K as a closed metric annulus of
M™ with a fixed center and two finite radii. To decide the radii, we require that K; N Kj is either
empty or the boundary set of a metric ball. For our choice of the radii, it suffices to show that ~
can only give non-zero mass to at most countably many boundary sets of metric balls. Recall that
uncountable sum of positive real numbers must diverge (Lemma 1.4), so the previously required
argument follows from the fact that v is a probability measure.

For j € J, we define the probability measure v; := %ﬂ K; to be the normalized restriction of v

to the set K;. By assumptions, for N € B(M),

pp(N) =v(B~H(N)) = > kv (BTHN)) =Y kj [By](N). (3.7)

JjeJ JjeJ

For 5 € J, denote by V{7 ..., vl € Wy(M) the n marginals of 7, in this order, and define Q; :=
PIHEPY 0,5, pg; = Byvy;. We prove by contradiction that «; must be a multi-marginal optimal
transport folan of its marginals (c.f. [105, Theorem 4.6]). Indeed, if this is not true and 'yg- is a multi-
marginal optimal transport plan of the marginals of 7;, then v no longer satisfies our assumption
of being optimal, since its cost (i.e., the integral (2.5)) becomes strictly bigger than the cost of
the measure 7' := 7y|yn\k, + k;j7;. It follows from Proposition 2.12 that ug, = Byv; is the
unique Wasserstein barycenter of Q;. Since y; has compact support and the first marginal p; of
v is absolutely continuous, all marginals V{, ...,V have compact support and the first one V{ is
absolutely continuous. Hence, by Theorem 3.6, the barycenter ug, of Q; is absolutely continuous.
According to (3.7), if Vol(V) = 0, then pup(N) = >_.c ; kj po; (N) = 0. Therefore, the probability
measure pp is absolutely continuous. O

Remark 3.8. The proof of Theorem 3.6 involves three steps:

1. Lemma 3.2 handles the case where p; (2 <14 < n) are Dirac measures, leveraging the product
structure of vy = 1 ®@ - -+ @ fiyy.

2. Proposition 3.4 establishes an estimate based on the existence of a uniform Lipschitz constant
for the case where u; (2 < i < n) are discrete measures, building upon the previous case.

3. Compactness is used to obtain a uniform Lipschitz constant for approximation sequences of
discrete measures converging to the given compactly supported measures p; (2 <1i < n).

To show absolute continuity for the discrete marginal case (step 2) alone, measure-theoretic argu-
ments similar to the proof of Theorem 3.7 suffice, employing a “divide-and-conquer” strategy. As
seen in Proposition 3.4, this corresponds to the use of conditional measures. However, this corre-
spondence might be subtle, as Proposition 3.4 primarily prepares Lipschitz constant arguments for
Theorem 3.6 to handle uncountable supports, which goes beyond the scope of the measure-theoretic
approach.
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Chapter 4

Absolute continuity via lower Ricci
curvature bounds

In the last chapter, we have seen that for P := Z?:l Ai 0y, with p; being absolutely continuous,
Kim and Pass’ proof of the absolute continuity of the (unique) barycenter up of P remains valid
for non-compact manifolds M (Theorem 3.6). For a general measure P giving mass to absolutely
continuous measures, the strategy is to approximate [P with finitely supported measures P; whose
barycenters up, are already shown to be absolutely continuous. Thanks to the consistency of
Wasserstein barycenters (Theorem 2.13), up; converges to up weakly. However, this is not sufficient
to ensure that up is also absolutely continuous. To overcome this difficulty, Kim and Pass [58]
imposed a uniform upper density bound on up,’s, which forced them to include the assumption
that P gives mass to a set of absolutely continuous probability measures whose density functions
are uniformly bounded.

In this chapter, instead of following their quantitative approach, we seek for proper integral
functionals G on W,(M) that admit finite values only for absolutely continuous measures. The
continuity of these functionals has been studied in various sources, including [24], [105, Theorem
29.20], [90, Chapter 7], and [5, Chapter 15]. We summarize their assumptions and conclusions
in Lemma 4.6. Additionally, we aim to control the value of G at up, by those at the support
of IP;, which enables us to use the convergence P; — P effectively. Classic references, such as
Villani’s monograph [105], focus on the A-convexity of G, a widely studied property that would
satisfy our requirements if we tolerate some independent constants in its inequality expression
of convexity (Proposition 4.3). Functionals defined in this way generalize the entropy functional
f-Volm [ a Jlog fdVol, which is an important example in the study of synthetic treatment of
Ricci curvature lower bounds developed in [69, 96, 97]. Proposition 4.3 reveals how Ricci curvature
affects the properties of Wasserstein barycenters and suggests possible extensions of our current
work to general metric measures spaces.

The methodology previously described leads us to Proposition 4.9 on the absolute continuity of
Wasserstein barycenters, where an extra assumption on P is needed. With the help of a generalized
de la Vallée Poussin criterion (Theorem 4.13), this assumption can be further simplified: we ask
that P gives mass to a compact subset in some weak topology of absolutely continuous measures.
Although this topology is barely mentioned in the literature of optimal transport, it generates
the same Borel sets as the topology induced by the Wasserstein metric according to the theory of
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Souslin space. This helps us to state our main result with a natural assumption on P:

Theorem. Let (M,dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a probability measure P € Wo(Wo(M)) gives mass to the set of absolutely continuous probability
measures on M, then its unique barycenter is absolutely continuous.

4.1 Hessian equality of Wasserstein barycenters

In this section, we prove the Hessian equality for Wasserstein barycenters of finitely many measures
(Theorem 4.1). A similar property is named as the 2nd order balance (inequality) by Kim and
Pass [58, Theorem 4.4], but being an equality instead of an inequality is crucial for our proof of
Proposition 4.3. Let us take a special case to illustrate this equality. Consider the reduced case
in Lemma 3.2. Namely, take n (> 2) positive numbers \; > 0 such that > ;" ; A\; = 1 and denote
by pp the barycenter of P:= " | \;§,,, where y; is absolutely continuous with compact support
and p; = 0,2 < i < n, are Dirac measures. Let us set ¢1(2) := ¢1(2) == —1/\1 Z?:g Aie(z, x;)
and ¢;(z) := c(z,2;),2 < i < n. Thanks to Lemma 3.2 and Lemma 2.6, if z is in the support of
pp, then z is not in the cut locus of any xz;, which implies exp(—V¢;)upup = p; for 2 < i < n.
Besides, by definition of the ¢;’s, >_1 | A; ¢; = 0; therefore Y . | A\;V¢;(z) = 0. Consequently, we
get > i A\i Hess, ¢; = 0, which is the Hessian equality we are referring to.

The Hessian equality (4.1) to prove is a second-order relation. We first demonstrate a first-
order counterpart of this equality using the conclusion of Proposition 2.12 that relates barycenters
in manifolds to Wasserstein barycenters.

Theorem 4.1 (Hessian equality for Wasserstein barycenters). Let (M, dg) be a complete Rieman-
nian manifold. Given an integer n > 2, let \; > 0,1 <1 < n, be n positive real numbers such that
St X =1 and let p; € Wo(M),1 < i < n, be n probability measures with compact support. We
assume that pi1 is absolutely continuous. The unique barycenter up of P:= """ | \; 8, is absolutely
continuous with compact support. For 1 <i <mn, let F; = exp(—V¢;) be the optimal transport map
pushing up forward to u;, where ¢; is a c-concave function given by Theorem 1.27.

For pp-almost every x € M, x is a barycenter of Y A; OF, (), and we have the Hessian equality

n
Z >\i Hessl. (]51 =0. (41)
=1
Proof. By Theorem 3.6, up is absolutely continuous with compact support. We now apply Proposi-
tion 2.12 to P. Since up is the unique barycenter of P, it coincides with the barycenter constructed
in Proposition 2.12. Cousider the identity map Id : (M, B(M),up) — M as a random variable
taking values in M. It has law pp, and the random variable F; = F; o Id has law p; for 1 <i < mn.
Proposition 2.12 implies that for pup-almost every x € M, x is a barycenter of > | A; 8 Fi(x)-

Let Q be a Borel subset of M with up(2) = 1 such that for x € Q, V¢, (x) exists for 1 <i <n
and z is a barycenter of Y i | \; OF,(2)- Fix a point x € ). By definition, x reaches the minimum
of the function

n n
hiwe M dw (0w, Y Aidp@)” =Y Aidg(w, Fi(x)).
i=1 i=1
By Lemma 2.6, the fixed point z is out of the cut locus of any point F;(z) for 1 < i < n. We can
thus differentiate h at w = x and get Vh|y=, = 0. Since V¢;(z) = %Vd%y(xﬂw:x holds as both

gradients exist [30, Lemma 3.3], it follows that Y | \;V;(z) = %Vh|w=x =0.
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Define f := 3" | A\; ¢; on a neighborhood of € that is a common domain for ¢;,1 < i < n. The
function f is locally semi-concave as each ¢; is so, and for x € Q, Vf(z) = 31", \Ve;(z) =0 €
T.M by the previous arguments. Let Q; C Q be the set where the (approximate) Hessians of f
and ¢;,1 <1i < n, all exist. Let Q5 be the set of density points of 2. We have Vol(Q2\ ;) = 0 by
Proposition 1.23, and Vol(2\ Q2) = 0 by [35, Theorem 1.35].

For z € 1, using the linearity of the Hessian operator, we get Hess, f = > | A\; Hess, ¢; by
(1.9). Besides, noting that V f is constant on €2, we infer from the last statement of Lemma 1.16
that for z € Qo N, Hess, f = 0. It follows that for x € 21 N, ZLI A; Hess, ¢; = 0. This proves
the theorem since pup(Q1 N Q) = 1 thanks to the absolute continuity of pp. O

4.2 Displacement functionals for Wasserstein barycenters

Recall that the notion of Hessian plays a central role in differentiating optimal transport maps
(Proposition 1.44). There is also the following widely used connection between Hess,, ¢ and Jacobi
equations involving exp(—V¢), which is demonstrated in various works including Sturm [95], Lott
and Villani [69, §7], Cordero-Erausquin et al. [31] and Villani [105, Chapter 14]. The function J(¢)
defined below is actually D, exp(—Vt ¢) using (1.29). By convention, for a function f with variable
t € R, we denote by f its derivative with respect to t.

Proposition 4.2. Let (M,dg) be an m-dimensional complete Riemannian manifold and let ¢ be
a c-concave function defined on X C M with X a bounded open set. Fix a point x € X such that
Hess, ¢ (Proposition 1.23) exists. Then t € [0,1] — ~(t) = exp(—tV¢)(x) is a minimal geodesic.
Define

J:t€[0,1] = [D_;vg(x) exp,] o (Hess, di(t)/Q — t Hess, ¢).

Denote by A¢(x) the trace of Hessy ¢ and by det J(t),0 < t <1 the determinant of J(t) calculated
in coordinates using orthonormal bases of T, M and Ty M. If —K € R is a lower Ricci curvature
bound of M along v and det J > 0, then £ := —logdet J defined on [0,1] satisfies

0> /m— K||Vé(a)|?
with £(0) = 0 and £(0) = A¢(z). In particular,
1> Ag(x) — K|[Vo(@)]*/2,
where we define | := (1) = —logdet J(1).

2}

Proof. Since Hess, ¢ exists, y(1) is not in the cut-locus of x [30, Proposition 4.1] and thus ~ is a
minimal geodesic. Let {e1,...,e,} C T, M be an orthonormal basis. Fix an index 1 < i < m. Fix
0 > 0 such that the curve ¢ € [0,1] — exp,(tde;) is a minimal geodesic. For s € (—§,6), define
Ys := exp, se; and consider the following family of geodesics (with parameter s)

a:[0,1] x (=6,8) = M
(t,s) = exp,, {—tlsy, [Vo(z) + sHess, ¢(e;)]},

where II,_,,, : T, M — T,,, M (c.f. Lemma 1.43) is the parallel transport along the minimal geodesic
t € [0,1] — exp,(tde;). Note that the variation field dsa(¢,0) of « satisfies the Jacobi equation
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along v with initial condition 87,a(0,0) = e; and 97, ,(0,0) = — Hess, ¢(e;) [66, Proposition
10.4).

We now compute the Jacobi field dsa(t,0). If V¢ exists at y,, then the infinitesimal character-
ization of Hess, ¢ [30, Definition 3.9] implies,

Vé(ys) = Myyy, [Vo(z) + sHess, ¢(e;) +o(s)] as s — 0, (4.2)

which is a non-smooth version of the relation (1.26) between Hessian and parallel transport. Fix
at € [0,1] and a sequence of real numbers s; — 0 with |s;| < ¢ such that V¢ exists at w; =
exp,(s;je;). By definition of o and (4.2), we have exp(—tV¢)(w;) = a(t,s;) + o(s;) as j — oo.
Hence, using the normal coordinates around exp(—tV¢)(z), we can compute dsa(t,0) as follows,

—1
exXP_ »exp(—tV o) (w;
Osa(t,0) = lim b= [P ()
Jj—o0 S5 — 0

=D, exp(—Vio) - -e; = J(t) - e,

where in the second equality we used the fact that t ¢ is a c-concave function [30, Lemma 5.1] and
the infinitesimal justification [30, (b) of Proposition 4.1] of differentiating exp(—Vt ¢).
Since Ox(t,0) = 4(t), we obtain the following Jacobi equation derived from «,

Jit) + R(J;(t),4(1)) - (1) = 0, Ji(0) = e;, Ji(0) = — Hess, ¢(e;),

where J;(t) :== J(¢) - ¢; and R is the Riemannian curvature tensor on M.

Therefore, J satisfies a matrix form of Jacobi equation to which we can apply differential equa-
tion comparison theorems, and then conclude our proposition. The details are given in many
references such as Villani [105, Theorem 14.8]. O

The following displacement functionals fd Vol € Wo(M) — [ G(f)d Vol are inspired by the
entropy functional, where G(z) := xlogz. To uniformly bound (from above) their values of the
approximating sequence of barycenter measures to which the consistency of Wasserstein barycenters
is applied, we add the assumption of bounded derivatives. Examples of G can be constructed
according to Theorem 4.13.

Proposition 4.3 (Displacement functionals). Let (M,dg) be an m-dimensional complete Rieman-
nian manifold with a lower Ricci curvature bound —K (K > 0). Given an integer n > 2, let
Ai > 0,1 < i <n, ben positive real numbers such that ;. X\; =1 and let p; € Wao(M),1 <i<mn,
be n probability measures with compact support. Assume that there is an integer 1 < k < n such
that for any index 1 < i < k, p; is absolutely continuous with density function g;. Denote by up
the unique Wasserstein barycenter of P := Y 1" 1 \;6,, € Wa(Wa(M)),dw), which is absolutely
continuous, and we denote by f its density function.

Let G be a function on [0,00) with G(0) = 0 such that the function H : ¢ € R — G(e*) e " is
continuously differentiable with non-negative derivative bounded above by some constant Ly > 0.
The following inequality holds,

k
i LyK o Lu, »

1< 24 D) dVol + —22 4 (P, 5, huli 2m), 4.

MG(f)dVo _;:1 A/MG(g) Vol == di(P,6,..)° + S5 (m® + 2m) (4.3)

where we define the constant A := Zle Ai
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Remark 4.4. The following example helps to understand (4.3). Take P = AJ,, + (1 — X)d,,, with
0 < XA < 1 and absolutely continuous measures Ml,,ug G Wa(M). Set G(x) := xlogz. Since
H(z) =z, we choose Ly = 1. Define Ent(f - Vol) := [,, G(f)d Vol. The inequality (4.3) becomes

K m?
Ent(up) < AEnt(m) + (1= A) Ent(pz) + 5 AL = Ndw (p1, 12)” + = +m,

which has exactly one additional term Lz (m? + 2m)/(2A) compared to the A-convexity expression
of Ent used to define lower Ricci curvature bound —K for metric measure spaces in [96, §4,2] and
[69, Definition 0.7].

Moreover, Lg(m? + 2m)/(2A) is also the only additional term when we compare inequality
(4.3) with the Wasserstein Jensen’s inequality proven by Kim and Pass [58, Theorem 7.11], which
corresponds to the case k = n. However, our inequality (4.3) for the case k < n is crucial to the
proof of our main result in the next section.

Proof of Proposition 4.3. For 1 <14 < n, let F; := exp(—V¢;) be the optimal transport map from
ptp to p; with ¢; a c-concave function given by Theorem 1.27. According to Theorem 4.1 and
Proposition 1.45, there exists a Borel set Q@ C M with up(2) = 1 such that Z?:l Ai Hess, ¢; = 0
for x € Q, Jacexp(—tV¢;) >0 on Q for ¢ € [0,1] and 1 <7 <k, and

f :
) = : <1< .
/MG(gl)dVol /NiG<JaCFi JacF;dVol, 1<i<k, (4.4)

where N; C Q for 1 < i < k are Borel sets such that up(N;) = 1 and f = g;(F;) JacF; > 0 on N;.
Hence, log f is well-defined on U¥_, N;. Define I;(x) := —log Jac F;(x) on €. It follows from (4.4)
that

/ G(g;)dVol = / H(ogf+1l;))dpup, 1<i<k. (4.5)
M N;
Applying Proposition 4.2 to ¢; for 1 < i < k, we have on ,

i > Ag; — K||Vi|?/2, 1<i<k. (4.6)

For z € Q and 1 < ¢ < n, since Hess, d%i(x)/Q — Hess, ¢; is positive semi-definite (Propo-
sition 1.44), we can also bound A¢;(z) from above using the upper bound of the Laplacian of
distance functions, as observed by Kim and Pass [58, Lemmma 2.7

VEdg(z, Fi(x))
tanh(fd (z, Fi(x)))
<m(l+VEKdg(w, Fi(x))) <m+m?/2+ K |[Véi(x)[P/2,  (47)

Adi(z) < Adf,(,y/2 <m

where we used the general inequality o/ tanha < 1+« for a > 0!, applied the inequality of arith-
metic and geometric means to /K dg(z, F;(z))? - vm?2, and employed the equality dg(z, F;(z)) =

1Since lima )0 g = 1s it suffices to show that the function f(a) := sinh o + asinh o — @ cosh « is non-negative
for @ > 0. As f(0) = 0 and f/(a) = sinha + a(cosha — sinha) = sinha + ae™%, we have f'(a) > 0 and thus
fle) = f(0) =0.
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IVoi(z)|| for = € . With our assumptions on H, (4.6) and (4.7) imply that for 1 < i < k, on the
set UF_| N; (where log f is well-defined),

H(log f +1;) — H(log f) = H'(€) li > H'(€)[A¢; — K|Veil*/2]
> H'(€)[Adi — K|[V¢il*/2 = m — m? /2]
> L (A¢; — K|[V3]|?/2) = L (m +m?/2), (4.8)

where we applied the mean value theorem to H that gave the real number & between log f + [; and
log f. Sum up k inequalities as (4.8) with coefficients \;/A on the set UF_| N,

Hlog f +1;) — 22 ZA (Ags — K|IV6:]2/2) + Lz (m +m?/2)

i=1

]~

[
M- L
>\>* >\>/

H(log f)

N
Il
—

n

H(log f +1;) + LAH SN Ag + LHKZA IV il + Lag(m +m?/2)

i>k

h
Il
—

H(log f +1,) Z A [Vi]]? + S5 (m® + 2m), (4.9)

IA
>\>/

N
Il
—

where we used Y., A; A¢; = 0 derived from the Hessian equality for the first equality and used
(4.7) for the last inequality. Finally, (4.3) follows from (4. 5) after integrating (4.9) over NyN...NNg
against pp since pp(N;) = 1 for 1 < i < k and dw (up, p1s)* = [, |V@i[|> dpp for 1 < i < n. O

4.3 Proof of absolute continuity

In this section, we prove our main result of this chapter, i.e., the following theorem.

Theorem 4.5. Let (M, dg) be a complete Riemannian manifold with a lower Ricci curvature bound.
If a probability measure P € Wao(Wa(M)) gives mass to the set of absolutely continuous probability
measures on M, then its unique Wasserstein barycenter is absolutely continuous.

New auxiliary results in this section no longer require Riemannian structure, so we usually
consider a Polish space equipped with a o-finite Borel measure.

4.3.1 Preserving absolute continuity along approximating sequences

We first deduce an intermediate result by applying the consistency of Wasserstein barycenters to
the displacement functionals introduced in Proposition 4.3.

The following lemma, taken from Santambrogio [90, Proposition 7.7, Remak 7.8], originates from
Buttazzo and Freddi [24, Theorem 2.2], which was slightly generalized later in [6, Theorem 2.34].
One can find another slightly generalized version by Ambrosio et al. [5, Theorem 15.8, Theorem
15.9] with a proof for the case of Euclidean spaces.

Lemma 4.6. Let E be a Polish space equipped with a o-finite Borel measure p. Let G be a function
on [0,00) such that

1. G(z) > 0 with G(0) =
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2. G is continuous and convex;
3. lim G(z)/x = oc.
T—r00
With respect to the reference measure u, if there is a sequence of absolutely continuous probability

measures v; = f; dp, i > 1 converging weakly to a probability measure v such thatliminf | G(f;)dp
1—00 E

is finite, then v is also absolutely continuous and

/ G(f)dugliminf/ G(f;)dp < oo, (4.10)
E 1— 00 E
where f is the density of v.

Since convergence in Wasserstein metric implies weak convergence (Proposition 1.25), Lemma 4.6
ensures that the set below is closed in Ws(E).

Definition 4.7 (B(G, L) sets). Let E be a Polish space equipped with a o-finite Borel measure p.
Let G be a function on [0, 00) such that

1. G(z) > 0 with G(0) = 0;

2. @ is non-decreasing, continuous, and convex;

3. zlLII;o G(z)/x = oo;

4. the function H(x) := G(e")/e” has continuous, non-negative, and bounded derivative.

Given a positive number L > 0, we refer to the following subset of Wh(E) as B(G, L),

B(G,L) := {I/EWQ(E) V:f'/uL,‘/EG(f)d/J,<L}7

which is a closed subset of W5 (E) thanks to Lemma 4.6.

The function G : z +— log z on [0, +00) is not always positive and non-decreasing, so it fails to
meet the above assumptions. Since G (e71) = —e~ ! is the minimum value of G , we can consider the
function that is equal to 0 on [0,1] and is equal to G(z/e) + e~! on € [1,400), which is a valid
example. Indeed, we include the property that G is non-decreasing to ensure that each element in
B(G, L) can be approximated by elements in B(G, L 4+ 1) with compact support, as shown in the
following lemma.

Lemma 4.8. Let (E,d) be a proper metric space equipped with a o-finite Borel measure p. Fix
a B(G, L) set as defined in Definition 4.7. For any probability measure v € B(G, L), there exists
a sequence of probability measures in B(G,L + 1) with compact support that converges to v with
respect to the Wasserstein metric.

Proof. Let f be the density function of v with respect to u, i.e., v = f - u. Since the integral
J fdp = 11is non-zero, there exists a positive number [ > 0 such that the set {x € E | f(z) <1}
is not p-negligible. Since p is o-finite, there exists a bounded subset Y C E such that f(y) <1 for
y €Y and 0 < p(Y) < +o00. We define for (k,z) € N* x E,

g(k,fﬂ) = f(x)]]'g(azo,k:) (l’) +ag ]]‘YOE(zo,k)(x)’ (411)
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where we set ay := 0 if u(Y N B(xg,k)) = 0 and ay = [1 — v(B(xo,k))]/u(Y N B(xg, k)) if
w(Y N B(xg, k) > 0. Since limg_, o u(Y N B(xg,k)) = u(Y) > 0, for k sufficiently large such that
ar, > 0, the sequence oy, is decreasing with limy_, o ap = 0. Let kg € N* be the smallest integer
such that ag, > 0. Our choices of ay and kg ensure that for n € N*, ag 4, > 0 and g(ko + n,-)
is a probability density function with respect to u. Define v, := g(ko + n,-) - p. Since (E,d) is a
proper metric space, vy, is a probability measure with compact support and thus v, € Wh(F). We
now prove the convergence v,, — v with respect to dy using the characterization Proposition 1.25.
For a continuous function ¢ : E — R such that |¢(z)| < 1 + d(xg,x)?, note that

6(x) glho +n,2)| < (14 dlao, 7)) - (F(@) + o, Ty (@) and  Tim glko +n,7) = f(x).

As'Y is pre-compact with u(Y) < 400 and v € Wh(E), it follows from the dominated convergence
theorem that

im [ ¢dv, = lim [ é(x) glko +n,2)dp(z) = /E o) f(2) d () = /E b,

which implies lim,, o dw (Vn, ¥) = 0 according to Proposition 1.25.
Since f(y) <! for y € Y and G is non-decreasing, we have

V(n,z) e N* x E, G(g(ko +n,z)) < G(f(x))+ G+ ak,) Ly (z). (4.12)

Since G is a continuous function and (YY) < 0, we can apply the dominated convergence theorem
to (4.12) and obtain

tim_ [ Glotho+n.2) dta) = [ Glf@) duto).

Hence, for n sufficiently large, v,, € B(G, L + 1), which concludes the proof. O

As the assumptions in Definition 4.7 include the ones we used to construct displacement func-
tionals in Proposition 4.3, we obtain the following intermediate result.

Proposition 4.9. Let (M,dgy) be a complete Riemannian manifold with a lower Ricci curvature
bound. If P € Wo(Wa(M)) gives mass to some closed set B(G, L) defined in Definition 4.7 with
respect to the volume measure on M, then the unique barycenter of P is absolutely continuous.

Proof. Write P = P(B(G, L)) P! + (1 — P(B(G, L)) P? with P1,P? € Wy(W,(M)) such that P! is
supported in B(G, L). We approximate P in the Wasserstein metric dw with finitely supported
measures P; € Wo(Wo(M)) by approximating P! and P? as follows.

Since B(G, L) equipped with the Wasserstein metric dw is a non-empty closed subspace of
Wa(M), we can construct the Wasserstein space Wa(B(G, L)) and treat P! as an element in it.
Recall that the set of finitely supported measures is dense in Wasserstein spaces [105, Theorem 6.18].
Applying this property to the Wasserstein spaces Wo(B(G, L)) and Wy(Ws(M)), we obtain two
sequences of finitely supported probability measures {P}};>1 and {P3};>1 satisfying dw (P}, P") —
0, dW(IP’i,IP’Q) — 0 when j — oco. Furthermore, thanks to Lemma 4.8, we can further refine the two
approximating sequences to ensure that all ]P’]l, IP’? for 7 > 1 are supported in probability measures
with compact support and Pj(B(G, L + 1)) = 1. Define P; := P(B(G, L)) P} + (1 — P(B(G, L)) P5.
It follows that dw(P;,P) — 0 as j — occ.
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Consider the displacement functional G : f - Vol — [ 1 G(f)dVol. Proposition 4.3 implies the
following estimate of G(up,) at the barycenter up, of Pj,

Ly K L
g(:u’]Pj) < / g(”) dHDJI(V) + LdVV(HDJa 5/@.)2 + i( 2 + 2m)7 (413)

where A :=P(B(G, L)), —K is a lower Ricci curvature bound of M, m is the dimension of M, and
Ly is an upper bounded of the H' with H(x) := G(e*)e”*. Denote by up the unique barycenter
of P, the consistency of Wasserstein barycenters (Theorem 2.13) implies that dy (pp,, up) — 0 and
thus dw(P;, 5#113) — dyw(P,d,,) as j — oo. Since the support of P} is a subset of B(G, L + 1) and
dW(IP’j,éwj) is bounded for j > 1, by setting

Ly

LyK
L=(L+1)+ sup d (P, 6y, )* +

H 2
2
2N uh op (0 2m),

we have pup, € B(G, L') for all j > 1. Tt follows from Lemma 4.6 that up is absolutely continuous. [

We replace the assumption P(B(G, L)) > 0 by a more natural one in the next subsection.

4.3.2 Compactness via Souslin space theory

The last step towards our main result is to show that the closed subset B(G, L) needed in Proposi-
tion 4.9 always exists if P gives mass to the set of absolutely continuous measures. Our inspiration
is the criterion of uniform integrability by Charles-Jean de la Vallée Poussin. This criterion [17,
Theorem 4.5.9] constructs a functional f — [ G(f)dp that is uniformly bounded for a family of
uniformly integrable functions. We have enough freedom in its construction to impose the proper-
ties required by Definition 4.7 on the function G. Pre-compact sets of measures with respect to the
topology 7 defined below are closely related to uniformly integrable families.

Definition 4.10 (The set A and four topologies 7., Tw, 7, 71). Let E be a Polish space with a o-
finite reference measure u. Pick a point x¢ € F and define the following set of measurable functions
on F,

A= {f e L' ()

rzo [ sau=1 [aw ot <ocf,

which is independent of the chosen point xy. The set A is naturally identified via f < f - u with
the set of probability measures in Ws(E) that are absolutely continuous with respect to u. We
introduce the following four topologies. Denote by 7, the topology on Ws(E) with respect to
the weak convergence, denote by 7y the topology of the Wasserstein space Wh(FE), denote by 7
the weak topology on L!(u) induced by its dual space L°(u) [17, Theorem 4.4.1] and denote by
71, the topology of the Lebesgue space L!(u). By definition, 7, C 7w and 7 C 77. Denote by
(A7), (A, 7w), (A, 7) and (A, 1) the four topological subspaces induced by these topologies on
the set A.

Consider the case when E is a complete Riemannian manifold and x is the volume measure on F.
By Lemma 2.17, A is a Borel set for the topology 7. Given a probability measure P € Wa(Wa(E))
such that P(A) > 0, our goal is to find a compact subset F in (A,7) with P(F) > 0. If we can
accomplish this, then F forms a family of uniformly integrable functions by the Dunford-Pettis
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theorem (Proposition 4.12), bringing us closer to the main result. To find such an F, a direct but
problematic approach is to argue that P is a Radon measure. However, this argument overlooks
that crucial point that P (restricted on A) must be a Borel measure with respect to the Borel sets
of (A, 7).

To address this issue, we employ some well-known results from the Souslin space theory, which
can fill the gap in the previous argument with Radon measures.

Lemma 4.11. Let (E,d) be a Polish space with an outer regular and o-finite Borel measure p on
E. Let A be as in (4.14). The four topological subspaces, (A, Ty ), (A, 7w ), (A, 7), and (A, 71) share
the same Borel sets.

In particular, if P € Wa(Wa(E)) gives mass to the set A, then it gives mass to a compact subset
of (A, 7).

Proof. For spaces (A, 7,) and (A, 7y ), the first statement is already proven in [79, Lemma 2.4.2],
and we recall its arguments here. By Lemma 2.17, A is a Borel set for both 7,, and 7y . Since
(Wh(E), dw) is a Polish space, (A, 7y) is then a Souslin space as a Borel subset of (W»(E), dw ) [17,
Theorem 6.6.7]. Consider the identity map Id : (A, 7w ) — (A, 7,), it is continuous and bijective.
According to definition 1.8, (A, 7,) is a Souslin space as the image of the Souslin space (A, Ty )
under the continuous map Id. Moreover, (A, i) and (A, 7,,) share the same Borel sets since the
measurable map Id is bijective [17, Theorem 6.7.3].

We claim that (A, 77) is also a Souslin space. We first prove that the Lebesgue space L!(u) is
complete and separable using the assumption that E is Polish. L!(u) is complete for any measurable
space E [17, Theorem 4.1.3]. Its separability is asserted in Brézis [21, Theorem 4.13] and Bogachev
[17, Section 1.12(iii), Corollary 4.2.2, Exercise 4.7.63] but only proven for the case of Euclidean
spaces. Here is a brief proof of it. Every Polish space is homeomorphic to a closed subspace of
R*® [17, Theorem 6.1.12]. Moreover, one can show that L!'(u) is separable when E = R*™ using
the same arguments for Euclidean spaces. It follows that L!(u) is a Polish space. We then prove
that A is a Borel set for the topology 7. Fix a point g € E. Define the following sets for integers
k,j>1,

gy o= {feL1<u>]fzo,[Efdu=1,/Emin{d(xo,xf,k}f(m)du(x)sj}.

Fix two integers k,j > 1. We show that the set Ay ; is a closed subset of L'(p). Let {fitiz1 C A
be a sequence converging to f € L'(u) in L'(1). Since {fi};>1 has a subsequence converging almost
everywhere to f, f is non-negative for y-almost everywhere. It follows that [, fdu = |/ f|lL1() =
lim; o0 || fillL1() = 1. Noting that as i — oo,

” min{d('x()v ')27 k}fl - min{d(x(h ')27 k}fHLl(u) < k”fl - f”Ll(u) — 0,

which implies that f € Ay ;. Hence, Ay, ; is a closed subset of L!(11). By the monotone convergence
theorem, we have A = Uj>1 Ng>1 Ag,j, which proves that A is a Borel set. Finally, (A,7) is a
Souslin space as A is a Borel set of the Polish space L'(u) [17, Theorem 6.6.7].

By definition of 7, and 7, we have the topological inclusions (A, 7,) C (A,7) C (A, 71). Using
the identity map as before, we conclude that the three topological spaces, (A, 7,), (A, 7) and (A, 77,),
share the same Borel sets since (A, 77) is a Souslin space [17, Theorem 6.7.3].

P, restricted on A, is then a Radon measure with respect to the common Borel sets for the four
topological subspaces since finite Borel measures on Souslin spaces are Radon [17, Theorem 7.4.3].
Hence, P(A) > 0 can be approximated by the P-measure of compact subsets of (A, 7). O
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We prove the following slightly generalized Dunford-Pettis theorem that connects uniform inte-
grability and the weak topology 7.

Proposition 4.12 (Dunford-Pettis theorem). Let (2, F) be a measurable space with a o-finite
measure . on it. Let F C L'(u) be a set of u-integrable functions. If F has compact closure in the
weak topology induced by the dual space L (u) of L*(u), then F is uniformly integrable, i.e.,

lim Sup/ |fldp=0.
Coe fer J{ir1>0}

Proof. We need the assumption of y being o-finite to ensure that L>(u) is the dual space of L (1),
see [17, Theorem 4.4.1] and [87, Exercise 6.12]. The above definition of uniform integrability is taken
from Bogachev [17, Definition 4.5.1]. When p is finite, the equivalence between pre-compactness in
the weak topology and uniform integrability is already proven by Bogachev [17, Theorem 4.7.18].
The following arguments for the general case are based on his proof.

We prove our statement for o-finite measures by contradiction. Suppose that F has compact
closure in the weak topology, but is not uniformly integrable. Then, there are ¢ > 0 and a sequence
{fn}n>1 C F such that

inf / [frldp > e (4.15)
{Ifal>n}

n>1

Applying the Eberlein-Smulian theorem (Theorem 1.9) to {f,} and the Banach space L'(u) [21,
Theorem 4.8], we obtain a subsequence {fy, }x>1 convergent to some function f € L'(x) in the
weak topology. In particular, for every measurable set A € F we have

klin;OAfnkdu:Afdu. (4.16)

It follows from the Vitali-Hahn—Saks theorem (Corollary 1.13) that sequence {f,, }x>1 has uni-
formly absolutely continuous integrals, i.e., for every € > 0, there exists § > 0 such that

u(A) <6 = sup/ | fr,ldp <e. (4.17)
k>1Ja

Via the isometric embedding of L!(u) into the dual space of L>(u) [21, Corollary 1.4], the Ba-
nach—Steinhaus theorem (Theorem 1.10) is applicable to the Banach space L*(u) and the conver-
gent sequence of functional {fn, }x>1, which implies that C' := supy>q [|fn,llz1(n) < oo is finite.
Take the 0 given by (4.17) for the € in (4.15), and let n be an integer bigger than C/§. Then by
Chebyshev’s inequality,

1
sup fi({| fri | > n}) < —sup || fo, llnr ) <9,
k>1 N g>1

which leads to a contradiction between (4.15) and (4.17). O

We also generalize the de la Vallée Poussin criterion to construct the function GG in Definition 4.7.
In the following proposition, the o-finiteness of y allows us to apply Fubini’s theorem.
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Theorem 4.13 (De la Vallée Poussin criterion). Let (2, F) be a measurable space with a o-finite
measure p on it. A subset F C L'(u) is uniformly integrable, i.e.,

lim sup/ lfldp=0
=00 feF J{|f|>C}

if and only if there exists a function G defined on [0,400) such that
1. G(z) =0 for 0 <z <1;
. G is a non-decreasing and convex function that is smooth on (0, +00);

2
3. supfeFfQ (Ifhdp <1;
4. if we define the function H(z) := G(e®)e~" on R, then lim H(z) = 400, and its derivative

T—r+00

H' is smooth with 0 < H'(z) < 1.

Proof. If we have the asserted function G for some subset F C L!(u), then for every € > 0, we can
find a real number C' > 0 such that G(t)/t > 2/e for any t > C. It implies that | f(z)| < e G(|f(x)])/2
for all f € F when |f(x)| > C. Hence,

[ ansg [ Gellanse
{f1>C} 2 Jys1>cy

which shows that F is uniformly integrable.

Now assume that we are given a uniformly integrable subset F C L'(u). To better motivate
our construction of G, we postpone the definition of a smooth function H with H(xz) = 0,z < 0
o (4.21) but use it here to define G(z) := H(logx) z. Differentiate this equation twice, we obtain
G'(z) = [H’(log x) 4+ H"(logz)]/x. By our requirements on H, G(x) = 0 for 0 < z < 1. Hence, we
have G(z) = [y [5 G"(t)dtds for z > 0 and thus

/QG<|f>duAA”'KG"@)MM@/Q/R/RG”(@-no<t<s<,«|dtdsdu

://G”(t)~10<t<sou(|f|>s)dtds
R JR

= [0 10 [ 1> s)dsat
R t

B /°° H'(logt) + H"(logt)
B t

| uir1> s)dsar
- [1w ) [ T uf] > ) dsdy, (4.18)
R

eY

where we applied Fubini’s theorem twice and a change of variables y := logt. According to (4.18),
we need to control H' + H" and the integral of u(|f| > s) at the same time. For the integral, note
that by Fubini’s theorem again, we have for t > 0 and f € L'(u) that

/ / /10<9<|f|d5dl~t //1|f|>t ]lo<s<|f|dﬂd5
{\f\>t} {IfI>t}

/ / Tococicis) + Tocrcocis dpds = tu(|f] > 1) + / u(f] > s)ds. (4.19)

t
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Let a: N — N be a strictly increasing function such that «(0) > 0 and

(o]
SUP/ U(\f|>5)d8§sup/ f]dp < 2~
fEF Jentn) FEFJ{If|>entm)

where we used (4.19) for the first inequality and the uniform integrability of F for the second one.
It follows that

supZ/ p(|fl>s)ds <1. (4.20)

n>0 e

For the term H' + H"” in (4.18), we bound it from above with a function that is non-zero only on
selected intervals based on our choice of c(n), allowing us to convert the integral of [ u(|f] > s)d s
into the series summation (4.20). To achieve this, we first select a smooth function v : R — [0, 1]
such that y(z) =1 for z € [a(n) +1/3,a(n) +2/3] and y(z) = 0 for z ¢ (a(n), a(n) +1). Then we

define
Hi) fo Jo (et dtds, :1:>O. (4.21)
a T S 0
In this way, we have H”(z) + H'(x) = (). Using this construction, (4.18) and (4.20) imply that
a(n)+1
sup/G|f\ d,u—supZ/ y/ u(|f] > s) dsdy<sup2/ p(|f] >s)ds <1.
n>0 (1) e n>0 oo

For the first derivative of H, we have

0< H'(z)= ef””/ y(t)etdt <e (e —1) <1
0

And by direct calculation we have that the difference

a(n)+1 (n)+3% .
H(a(n)+1)—H(a(n))>/ e_s/ eldtds = (1 —e 3)?
a(n)—&-% oz(n)+%

is bigger than a constant independent of n, which implies that 1121 H(xz) = +o0 since H is non-
r—r 400

decreasing. It follows from 0 < < 1 that G is non-decreasing and convex as G"(z) = y(logz)/x >
Oforz>1and G(z)=0for 0 <z <1 O

4.3.3 Final step of the proof

To prove Theorem 4.5, it remains to combine the previous auxiliary propositions to replace the
assumption in Proposition 4.9 that P(B(G, L)) > 0 for some set B(G, L) (Definition 4.7).

As in Definition 4.10, we denote by A the set of absolutely continuous measures in Wh(M). If
P(A) > 0, then Lemma 4.11 provides a compact subset F of (A, 7) such that P(F) > 0. Applying the
Dunford-Pettis theorem (Proposition 4.12) to F with p := Vol, we see that F is uniformly integrable.
Then the de la Vallée Poussin criterion (Theorem 4.13) asserts the existence of a smooth function G
such that F C B(G, 1) C A. Therefore, our theorem follows from Proposition 4.9 and the property
P(B(G,1)) = P(F) > 0.
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Chapter 5

Restriction property of
Wasserstein barycenters

Our main goal in this chapter is to generalize the divide-and-conquer technique used in the proofs
of Proposition 3.4 and Theorem 3.7. This generalization enables us to construct a new probabil-
ity measure such that one of its barycenters is a (normalized) restriction of a given Wasserstein
barycenter. Consequently, we can study local properties of Wasserstein barycenters and deduce
global properties via local restrictions.

In our restriction technique, we avoid operating on multi-marginal optimal transport plans (as
they are not defined for general measures IP), and instead construct a push-forward map. This map
modifies each element v in the support of P by restricting the optimal transport plans between a
fixed barycenter of P and v. We begin with a technical lemma that establishes the measurability of
these modifications, which is crucial for dividing couplings of two measures (one of which is fixed)
according to a given bounded measurable function.

Lemma 5.1. Let (F,dy), (F,d2) be two Polish spaces. Consider their product space E x F' endowed
with the product metric d((x1,v1), (v2,92))? = dy (21, 22)? + do(w2,y2)? for 1,29 € E and y1,ys €
F. Fiz a measure p € Wh(E), denote byT',, the subset of measures in Wa(E x F') whose first marginal
measure is p. Given a non-negative bounded measurable function g on E such that g - pu € Wh(E),
the following map

G:MMel'y—~g-ITeWy,(ExF)

is continuous with respect to the Wasserstein metric dw of Wa(E x F), where g - II stands for the
measure g(x) - I(dz,dy) on E x F.

Proof. Let o be an optimal transport plan between II;,II; € I';,. Then the following probability

measure
g(x1)g(x2) - o(dzy,dyr,d s, dys) € Wa(E X F x E x F)

is a coupling between g - II; and g - IIs. Hence,
dw (G(I11),G(I12))* < |93 dw (11, IL2)?,

where ||g]|oc denotes the L*°-norm of g with respect to u. It follows that G is a continuous map
with respect to the Wasserstein metric. O
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The following proposition details our method of constructing new Wasserstein barycenters by
restricting an existing one.

Proposition 5.2 (Restriction property of Wasserstein barycenters). Let (E,d) be a proper metric
space and let p € Wa(E) be a probability measure on E. Then there exists a measurable function
IT : v — II, from Wah(E) to Wa(E x E) such that II, is an optimal transport plan between
and v, where the metric on E x E is given by d((z1,y1), (x2,y2))? = d(z1,22)% + d(y1,y2)? for
T1,T2,y1,y2 € E. If one can write p = A pt + (1 — N p? with u* € Wa(E) for i = 1,2 and some
fized positive number 0 < X\ < 1, then for any v € Wh(E), we can write 11, = AL + (1 — \)II2 and
v =Avt+ (1 — \)v? such that 11}, is an optimal transport plan between p' and v* € Wo(E), and
the map F': Wa(E) — Wh(E) that sends v to v' is continuous.

Moreover, in the above rewriting, if ju is a Wasserstein barycenter of P € Wo(Ws(E)), then u*
is a Wasserstein barycenter of Q' := F',P.

Proof. The existence of a measurable selection v +— II, of optimal transport plans is proven in
[105, Corollary 5.22]. By definition of the metric on F x E, it follows from v, u € Wh(FE) that
I, e Ws (E X E)

Since = Al + (1 — A)p? and 0 < A < 1, measures u', u? are absolutely continuous with
respect to p. For i = 1,2, denote by ¢° the density function of u’ with respect to u, i.e., u* = g* - p.
In particular, we have Ag' + (1 — X\)g? = 1 for p-almost everywhere. Define II}, := ¢ - II, for
v € Wu(E), where ¢' - TI,, stands for the measure g¢(x) - II,(dx,dy) on E x E as in Lemma 5.1.
Since MIL + (1 — MIIZ2 = [Ag' + (1 = N\)g?|l, =10, € Wy(E x E), we have IIL, 112 € Wh(E x E).
For i = 1,2 and v € W,(E), define /¥ as the second marginal of IT},, which belongs to Ws(E) since
pt € Wo(E) and I, € Wa(E x E). Tt follows from the restriction property of optimal transport
plans [105, Theorem 4.6] that II, is an optimal transport plan between u’ and v*. Note that by
definition, v* := 7% [¢" - 11, ], where 7% : E x E — E is the projection map sending (z,y) € E x E to
y € E. We now show that the push-forward map wi :Wh(E X E) = W, (E) is continuous. Given
I, 11, € Wo(E x E), if 0 € Wy (E? x E?) is an optimal transport plan between II; and Ily, then

dw (111, 11)% = / d(z1,72)* + d(y1,y2)* d o (21, Y1, 22, y2)
E2xE?
> / d(y1,y2)? d[m? x 7] 40 (y1,y2) > dW(WiHh?TiHﬁza
EXE

which implies the continuity of the push-forward map 7. Tt follows from Lemma 5.1 that F* : v
vt is a continuous map from Wy (E) to Wh(E).
Now we assume that p = pp is a barycenter of P. Observe that

= [ [ dew? DT+ (0= NI )] dPW)
Ws(E) JEXE

= [ Dhdw (0 (L= N (2,022 4B
Wa(E)

>\ min / d )2dQY(v) + (1 —A) min / d 0)2dQ3%(v),
i [ a@0) 00 i [ w0 @)
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where we used the fact that II¢, is an optimal transport plan between u® and v¢. It follows that
Q! € Wo(Ws(E)) for i = 1,2. We claim that the last inequality above must be an equality. Consider
the measure 11 := A g1 + (1 — M) g2 with pg: being a Wasserstein barycenter of Q°. According to
the decomposition v = Avt + (1 — A\)v?, if II; (i = 1,2) is a transport plan between pg: and v/’
then AII; + (1 — A\)II is a transport plan between &t and v. Hence, it follows from the definitions
of g, Qi, v¥, and dy (11, v)? that

A min / d )2dQY(v) + (1 —A) min / d )2 dQ* (v
i [ a0 00 i [ e @

) duw (g, v)* QW) + (1 — A) / dw (g, )2 AQ%(v)
Wh(E) We (E)

:/ [N dw (g, )2 + (1 — Ndw (g2, v2)?] dP(v)
Wa(E)
> /WE) dw (7, )2 A P(v).

Hence, if our claim is false, then the expression fWQ( ) dw (-, v)? dP(v) admits strictly smaller value
on the measure i than on the barycenter measure p. Our claim is thus proven by contradiction,
which implies the last assertion in the lemma. O

Remark 5.3. The proof of Proposition 5.2 is structurally analogous to the proof for the restriction
of optimal transport plans in [105, Theorem 4.6]. Both arguments proceed by contradiction: as-
suming the property fails allows for the construction of a new candidate solution, which violates
the presumed optimality of the original. This analogy becomes an identity in the special case of
the barycenter problem over two measures, vg,v1 € Wa(E). Recall that the McCann interpolation
{vo}o<o<1 between v; and v, is made of barycenters of the measures Pg = 64, + (1 — 0)d,,. This
interpolation is closely related to the dynamical optimal coupling in [105, Definition 7.20]. Conse-
quently, a decomposition of the dynamical optimal coupling corresponds to decomposing a series
of barycenters pp, = vy.

In the thesis, a key property used frequently in conjunction with Proposition 5.2 is that the
map F” sends a probability measure v to the measure v’ that is absolutely continuous with respect
to v. The following corollary presents two direct consequences of this property.

Corollary 5.4. Let (E,d) be a proper metric space. Fix a probability measure P € Wa(Wh(E))
with a barycenter up € Wa(E). Given an equality pp = Apt + (1 — N)p? with u* € Wh(E) for
i=1,2 and X € (0,1), there exist two probability measures Q',Q? such that u* is a barycenter of
Q' for i =1,2 and the following property holds. For any measure n on E,

1. if the measure P gives mass to the set of probability measures that are absolutely continuous
with respect to n, then so do the measures Q' and Q?;

2. if the measure P assigns full mass to the set of probability measures that are absolutely
continuous with respect to 1, then so do the measures Q' and Q?;

Proof. Proposition 5.2 provides two continuous maps F'}, F? : Wy(E) — Wy (E) such that A F1(v)+
(1= XN)F?(v) = v for v € Wa(E) and ' (i = 1,2) is a barycenter of Q' := F',P. It follows that
probability measures F!(v), F?(v) are absolutely continuous with respect to v. Hence, given a
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measure 1 on E, if v is absolutely continuous with respect it, then so are the measures F!(v) and
F?(v). The two assertions in the corollary follows directly from the definitions of Q! and Q? via
the maps F!, F2. O
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Chapter 6

Wasserstein barycenters on metric
trees

This chapter investigates the regularity of Wasserstein barycenters in the setting of metric trees,
with a particular focus on characterizing their potential singularities. While the study of absolutely
continuous Wasserstein barycenters on Riemannian manifolds has seen significant progress, the na-
ture of singular barycenters remains less understood. The geometric complexity of general manifolds
motivates our shift to metric trees—a simpler, yet non-trivial class of geodesic spaces that exhibit
rich phenomena. Here, we introduce a novel reduction technique that provides a systematic ap-
proach to characterizing singular Wasserstein barycenters on trees by leveraging the well-developed
theory on the real line.

We begin with a canonical example that illustrates the singularity (see Example 6.25, inspired
by [50]). Consider the tripod in Figure 6.1, formed by three copies of the unit interval [0, 1] joined
at a common origin. Let P := %E?Zl 0., be a probability measure on the space of probability

Figure 6.1: P = Zle %(5,,1. on the tripod

measures, where each v; is an absolutely continuous measure supported on the outer half [%7 1] of
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a distinct branch. The unique Wasserstein barycenter of P is the Dirac measure up = Jg at the
central vertex. This starkly demonstrates how a collection of regular measures can collapse into a
purely singular barycenter, motivating a deeper investigation into the mechanisms governing such
behavior.

Our setting of a metric tree, a metric graph without cycles, treats edges as continuous intervals
with prescribed lengths, making it a geodesic space. Consistent with our framework of optimal
transport (Section 1.4) in this thesis, we set the squared distance function as the cost function and
thus consider the 2-Wasserstein space. It is important to distinguish our work from the related
literature. For instance, research on the “tree metric” or “tree-Wasserstein distance” typically
considers only the vertices of a tree and benefits from a closed-form expression for the 1-Wasserstein
distance [81, 61, 70, 85]. Similarly, ramified optimal transport studies transport problems between
finitely support measures with branching cost structures [108, 109, 110]. While our metric graph
setting aligns with that of [71], their work focuses on the 1-Wasserstein distance. To our knowledge,
only a few works, such as [15, 34], have studied optimal transport with the squared distance cost
on metric graphs. This highlights that, despite its apparent simplicity, the 2-Wasserstein space
on a metric tree remains largely unexplored compared to its counterparts on the real line or on
Riemannian manifolds.

The cornerstone of our analysis is a reduction technique introduced in Section 6.2. For any
oriented edge € := {vg,v;} of a tree ', we define a reduction map 7€ : T' — R. As illustrated in

-

r
€
o 03
T€
R
. . . . —
—6 0 2 5 7

Figure 6.2: Tllustrative example of the reduction map T°€.

Figure 6.2, this map effectively “flattens” the tree into the real line by identifying the edge € with
an interval and isometrically embedding the rest of the tree relative to €. Our key technical result,
Theorem 6.22, states that if the support of a measure u € Wh(T') is contained within the edge
€, the Wasserstein distance between g and any other measure v € W5(T') is preserved under this
map: dw (u,v) = dw (T€yp, T€4v). This powerful result allows us to transform certain optimal
transport problems on a tree into equivalent, and more tractable, problems on the real line.

By combining this reduction technique with the restriction property of Wasserstein barycenters
(Chapter 5), we develop a unified framework for extending results from R to metric trees. The power
of this approach is demonstrated by our proof of the almost absolute continuity of Wasserstein
barycenters on trees (Theorem 6.28). This theorem asserts that if P € Wy (W,(T')) gives positive
mass to the set of measures that are absolutely continuous (with respect to the one-dimensional
Hausdorff measure #), then any barycenter up must be absolutely continuous everywhere except,
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possibly, at the vertices of the tree. In other words, singularities of the barycenter are confined to
the vertex set V.

The chapter is structured as follows. We begin in Section 6.1 by formally defining metric
graphs and establishing their properties as proper geodesic spaces. Our core analytical tools, the
reduction technique, is introduced in Section 6.2. To build the necessary foundation, Section 6.4
explores barycenters on R, introducing concepts like the dual measure and the rigid property to
characterize singularity. For instance, we show that if the barycenter of P € Wa (W, (R)) is singular,
then P-almost every measure must also be singular (Theorem 6.51). Armed with these tools and
insights, we return to metric trees. In Section 6.5, we apply our framework to rigorously characterize
barycenter singularities at vertices, motivated by the almost absolute continuity theorem. Finally,
Section 6.6 synthesizes our approach through several detailed examples, illustrating the unique and
sometimes counter-intuitive behavior of Wasserstein barycenters on metric trees.

6.1 Definitions and preliminary properties

6.1.1 Metric (measure) graphs

In this subsection, we present a constructive definition of a metric graph in terms of length functions
defined on its edges. This construction induces a canonical measure on the metric graph, which
coincides with the Lebesgue measure when restricted to each edge. A metric graph equipped with
this canonical measure is referred to as a metric measure graph, a basic concept that underlies much
of the subsequent development in this chapter.

Recall that a (undirected, simple and non-trivial) graph is an ordered pair G := (V, £) consisting
of a non-empty set of vertices V and a non-empty set of edges &€ C {{z,y} | z,y € V and = # y},
which are unordered pairs of vertices. Note that even though our definition excludes more general
graphs containing loops or parallel edges, it is not an essential restriction since we can turn them
into graphs by adding vertices so that our propositions in this chapter are applicable.

We also introduce the following definitions for graphs [18, §1.1, §4.1] [32, §1.1, §1.3]. A vertex
x € V is incident with an edge o € £ if x € «, in which case we also say that « is an edge at . The
two (distinct) vertices incident with an edge are its ends, and an edge joins its ends. The degree of a
vertex is the number of edges at the vertex. Graphs are called finite, infinite or countable according
to the number of their vertices. A path (respectively a cycle) is a finite graph whose vertices can
be arranged in a linear (respectively cyclic) sequence, in such a way that two vertices are joined by
an edge if and only if they are consecutive in the sequence. We denote a path p by p = zpx;1 ...z
if {zg,x1,..., 2k} is the set of its vertices and {{zg,z1}, {z1,22},. .., {Zr_1, 2k }} is the set of its
edges, where xg, 1, ..., %) are k41 distinct elements, i.e., x; # x; if ¢ # j. Moreover, we say that p
is a path from xq to xy (as well as between x¢ and xy). For two graphs G = (V,€) and G' = (V', &),
G’ is a sub-graph of G if V' C V and & C £. When the sub-graph G’ is a path (respectively a
cycle), we also say that G’ is a path (respectively a cycle) of G. A graph is connected if for every
two different vertices, there is a path between them. A ¢ree is a connected graph without cycles.

A graph is locally finite if the degree of each vertex is finite. It is known that a connected, locally
finite and infinite graph is countable [107, Theorem 1.4]. We shall construct metric graphs from
connected locally finite graphs via length functions defined on edges. For convenience, we assume
in the following construction that the set of vertices is a subset of N, which indeed imposes a global
orientation of graphs.
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Definition 6.1 (Metric graphs and simple paths). Let G = (V, £) be a connected and locally finite
graph. Without loss of generality, we assume that its vertices VV C N are natural numbers. For
notational clarity, introduce &g ) := & x [0,1]. Let X := (V U &p,17)/ ~ be the set of equivalent
classes generated by the following relation:

Va={i,j} €& with i <j, (a,0) ~ ¢ and (o, 1) ~ j. (6.1)

Elements in X are written as [i] and [(«,s)], representing the equivalent classes of ¢ € V and
(o, 5) € &po,1) respectively. We identify V with V := {[i] | i € V} and € with E := {[a] | « € £}
with [a] := {[(«e, )] € X | 0 < s < 1}, which allows us to reuse definitions, such as vertez, edge and
end, for X. For the edge a given in (6.1), we associate it with two oriented edges, m and m,
which enumerate points of the set [a] via the parameter s in subscript as follows,

[0 =), [iits:=[(a,1—s)], forselo,1]. (6.2)

In short, an oriented edge € is an edge with a given order of its two ends, satisfying € = {€y, €1 }.
A length function of G is a function [ : £ — R uniformly bounded from below by a strictly
positive number, i.e., inf,cg (o) > 0. Fix such a length function ! of G. Via the identification of £
with F, we also consider [ as a function defined for (oriented) edges of X.
Given two points z,y € X, a simple path from z to y (as well as between x and y) is an injective
map v : [a,b] = X defined on a compact interval [a,b] C R with the following properties:

L v(a) =z, 7(b) = y.

2. If x,y are two different vertices, then there exist a path p = vgvy ...v, of G and a partition
a=tyg <ty <---<t,=>bsuchthat for k=0,1,...,n—1land 0<s<1

tet1 — tk = l({vk,ve+1})  and (1 — $)tg + stp+1) = {Vk, V1 }s - (6.3)
Otherwise, -y is the restriction of a simple path between two vertices.

For a simple path 7 defined on [a,b], we define its length as b — a. We now define the metric d;
on X. For two given points x,y € X, we set d;(x,y) to be the infimum of the lengths of all simple
paths from z to y. The metric space (X, d;) is called a metric graph, and we denote it by the triple
I':=(V,E,d;). The graph G is called the base graph of I'. A metric graph I is called a metric tree
if its base graph G is a tree.

Remark 6.2. Oriented edges of metric graphs are denoted using arrow notation, for instance, €.
A subscript appended to this symbol, such as €, designates a point located within the edge €,
parameterized by s as detailed in (6.2). Conversely, symbols without arrows but with subscripts,
such as e, eq, ..., are employed to denote possibly distinct edges.

We introduce in the following terminologies for simple paths.

Definition 6.3 (Terminologies for simple paths). Consider the space X constructed in Defini-
tion 6.1. Given a simple path « : [a,b] = X, we say

1. «y begins at an edge e; and ends at an edge e; if v(a) € e; and (b) € es;

2. v is a simple path from e to es if it begins at e, ends at ey, and its image set contains eq, es;
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3. ~y visits a vertex v if the vertex v is the in the image set of ~;

4. if vg = y(to),v1 = ¥(t1),.-.,vn = Y(tn) are all the vertices visited by v and a < to < t1 <
... <ty <b, then v visits the sequence of vertices vg,v1,...,v, in this order;

5. if 4" : [b,c] — X is another simple path such that ~(b) = ~/(b), the concatenation of v, v is
the map f: [a,c] — X defined via the relations f|j, ) = v and f|p,q =7

The preceding construction of metric graphs in Definition 6.1 can also be found in classic ref-
erences such as [22, §1.9] and [23, §3.2.2]. We now state some basic properties, especially the
geometric uniqueness of simple paths, which are used to demonstrate that (X, d;) is a valid metric
space.

Lemma 6.4. Consider the space X, the simple paths, and the map d; introduced in Definition 6.1.
Simple paths are geometrically unique in the following sense: given two simple paths y1 : [a1,b1] = T
and ¥z : [ag,bo] = T from x = y1(a1) = Y2(az) to y = y1(b1) = 72(b2),

if v1([a1,b1]) = Y2([az, b2]), then Vi € [a1,b1], 71 (t) = Y2(t + ¢), where ¢ :=as —a; = by — by.

The concatenation of two simple paths results in another simple path if and only if the resulting
map is injective. Simple paths between any two given points in X always exist. The function

d;: X x X = R defines a metric on X.

Proof. Given an edge e = {vg,v1} € E, the requirement (6.3) forces that any two simple paths from
vg to v1 with e being their image set can be different at most up to a transition of the definition
domain. To prove the claimed geometric uniqueness, we extend =1, 72 to be simple paths between
vertices that still share the same image set, and denote by vg,v1, ..., v, the sequence of all vertices
visited by them in this order. By comparing consecutively the resections of -1, y2 whose images are
exactly the edge {v;,v;y1} (¢ =0,1,...,n — 1), we conclude the geometric uniqueness by applying
the preceding property implied by (6.3).

Let f : [a,¢] — X be the concatenation of two simple paths 7 : [a,b] = X and 7’ : [b,¢] — X and
assume that f is injective. Since simple paths are themselves concatenations of their restrictions,
to prove that f is a simple path, it suffices to consider the case where both the images of v and +/
are contained in an edge e and a < b < ¢. Given that v(b) = v/(b) and [ is injective, the geometric
uniqueness implies that both v and ' are restrictions of the same simple path between the two
ends of e. Hence, f is also a restriction of a simple path, which implies that f is a simple path.

We now prove the claimed existence of simple paths between two given points. Let ej, ez be
two edges containing them respectively. Note that, for any given path vgv; ... v, of the base graph,
we can construct a simple path v from vy to v, that visits the vertices vy, v1, ..., v, in this order.
Since the base graph is connected, we can thus construct simple paths from e; to ez, which implies
the existence of simple paths beginning at e; and ending at e;. Hence, the claimed existence is
proven and the map d; is thus well-defined for any two given points.

We now prove that d; is a valid metric on X. Fix three arbitrarily chosen points z,y, z € X, we
aim to show the following three properties,

1dl($7y):0:>x:y7 2. dl(xvy):dl(yvm)v 3. dl(l'vy)—’_dl(yaz) Zdl(xaz)

Since the length function [ is uniformly bounded from below by a positive constant, d;(z,y) = 0
implies that z,y belong to the same edge, which further implies Property 1 by the injectivity of
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simple paths. For Property 2, note that if v : [a,b] — X is a simple path from z to y, then
v : [a,b] = X defined via v/(t) = y(a + b — t) is a simple path from y to 2 with the same length.
To prove Property 3, consider two arbitrarily chosen simple paths, 71 : [a1,b1] — X from « to y
and s : [ag,by] — X from y to z. As their concatenation is not necessarily injective, we define
er = inf{t € lar, b | (t) € 12(az ba])} and ¢ = sup{t € [an,b] | 72(¢) € (lar, b))} Since
v1(b1) = 72(az), both ¢; and ¢y are well-defined. Applying the geometric uniqueness to the two
simple paths ¢ € [0,b1 —a1] = y1(by —t) and ¢ € [0, by — as] — ¥1 (b2 —t), we conclude that the two
points 1 (c1) = y2(c2) coincide, and is either one of the three points x,y, z or a common vertex in
the images of 1 and ~2. Define 7y : [0,b2 — c2 + ¢1 — a1] — X by setting v|jo,c, —a;] = V1l[a1,e,] @a0d

Yier—arba—cater—ar] = V2ljes,bs]- By our choice of ¢; and cg, 7 is an injective concatenation of two
simple paths. Hence, v is a simple path from x to z, which implies d;(x,z) < bs — as + by — a1.
Since 1 and -5 are arbitrarily chosen, Property 3 is thus proven by our definition of d;. O

Remark 6.5 (Explicit formulae for the length of a simple path). Via the simple path defined in
Definition 6.1, (oriented) edges of metric graphs are realized as segments interpolating their ends,
whose length is determined by the given length function. For a simple path between two different
vertices, its length is equal to the sum of the lengths of all edges contained in its image set. For the
typical case where both x and y are not vertices and not located at the same edge, we consider a
simple path 7 : [a,b] = X from z to y. Let vg,v1, ..., v, be the sequence of vertices visited by v in
this order, and let wg,w; be the two vertices such that x = {wg,vo}s, and y = {vy, w1 }s,, where
0 < sp,s1 < 1. Then the length of v can be calculated as follows,

n—1
length ofvzzb—azto—a—&—Z(tk_H —tg)+b—t,
k=0
_— n—-l _— —_—
= (1 = s0) l({wo,v0}) + Z I({vk, ve41}) + s1l({on, w1}),
k=0

where we regard ~ as a restriction of the simple path corresponding to the path wougvy ... v,we,
and the equalities tg —a = (1 — sg) I({wo, vo}), b — tn = $11({vn,w1}) are implied by (6.3).

For metric trees, the distance between two given points can be reduced directly to the length of
a simple path between them.

Lemma 6.6. Let I' = (V, E,d;) be a metric tree. For two given points x,y € T, if v is a simple
path from x to y, then di(x,y) is equal to the length of ~.

Proof. 1t suffices to show the claim that, up to a translation of the domain, ~ is the unique simple
path from z to y. We prove this claim by contradiction and assume that there are two simple paths,
v : 1 = T and v : I — T, from x to y that are not a translation of each other. Since I is a
tree, the geometric uniqueness in Lemma 6.4 excludes immediately the possibility that = and y are
located at the same edge. Consider the two sequences of vertices visited by these two simple paths
in order. Thanks to the local uniqueness of simple paths, these two sequences must be different,
and we can thus find one vertex v; present in one sequence but not in the other one. Without loss
of generality, we assume vy € (1) while v; ¢ ¥2(I3). Chosen a vertex vy visited by 2. Since vy is
the common end of two different edges, {v1, w} and {v1,w’}, whose interiors intersect with v, we
can find two different paths in the base graph from vy to v, viw...vs and viw’...vy. The union
of these two paths contains a cycle in the base graph, which is a contradiction. O
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Metric properties of metric graphs

Given an oriented edge €, for two points €s; and €; in it, it is not necessarily true that d;(€s, €;) =
|t — s|1(€) since there could be simple paths between them that have smaller lengths and visit
vertices other than €p,€;. Thanks to the requirement of a strictly positive global lower bound
imposed on length functions, (oriented) edges are locally isometric to intervals of equal length.

Lemma 6.7 (Local isometries of oriented edges). Let T = (V,E,d;) be a metric graph. For an
oriented edge € of T', the map 1€ : € — [0,1(€)] defined by I¢(€s) := sl(€) is a local isometry of e,

; . 1
19(€) — I¥(@)] = (@, &) = [t =s|1(&)  ift,5.€ [0,1] and |t = 5] < 5 inf I(e).

Proof. Note that the map I€ is bijective. We denote its inverse map by v : [0,1(€)] — €, which by
definition is a simple path. If ¢, s € [0, 1] satisfy

1
<tos< i inf
0st—s< 7 nfie),

then the restriction v|(s(g),+1(e) attains the infimum length among all possible simple paths from €
to €;. Indeed, the geometric uniqueness in Lemma 6.6 implies that any other path would necessarily
include an edge other than € in its image, and thus have a length of at least infoc g I(e). Therefore,
di(€s,€;) = |t — s|l(€), which concludes the proof. O

As a corollary, we prove that metric graphs are length spaces. For a metric graph I' = (V, E, d;)
and a curve 7 : [a,b] — T, recall that its length (Definition 1.1) is defined by

N—-1
Lg,(v) = sup > di(y(t:), (i), (6.4)

a=to<t;<---<tn=b i=0

where the supremum is taken over all possible finite partitions of the compact interval [a, b] using
points a = tg <t; <--- <ty =0

Corollary 6.8. LetT' = (V, E,d;) be a metric graph. Simple paths are 1-Lipschitz continuous, and
a continuous map v : [a,b] — T is a simple path if it is injective and locally isometric. For any
two points x,y € I', the distance between them satisfies dij(x,y) = inf, Lg, (), where the infimum is
taken over all continuous curves v from x to y. In particular, T is a length space.

Proof. By definition, the length of a simple path between z,y € I is larger than the distance
di(z,y). Since restrictions of simple paths are still simple paths, it follows that simple paths are
1-Lipschitz continuous. Assuming that a continuous map 7 : [a,b] — T is injective and locally
isometric, we prove that it is a simple path. If the restriction v to (¢,d) C [a,b] is isometric and
its image v((c,d)) is contained in an oriented edge €, then by the local isometry of I€(&,) := sI(€)
(Lemma 6.7), the map I€ o Yl(e,ay is simply a transition of intervals, which implies that v is locally
a simple path. By the compactness of [a,b], 7 is a concatenation of finitely many simple paths.
Since « is injective, Lemma 6.4 implies that - is a simple path.

We now prove the last part of our proposition. In the infimum inf, L () over all possible
continuous curves y from x to y, it suffices to consider only injective ones. Thanks to the existence of
natural parameterization [23, Proposition 2.5.9], we can replace a continuous curve with a Lipschitz
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map that is locally isometric without changing the length. Therefore, according to the definition of
d;, it remains to show that for a simple path v : [a,b] — X, we have the equality Lg,(v) = b—a. By
Lemma 6.7, there exists a partition a = g < t; < --- < tx = b of [a, b] such that the restriction of
on each interval [¢;,t;41] is isometric. Since ZZV:_Ol di(v(t:),y(tit1)) = b—a, we have Ly, (v) > b—a.
Note that the sum Zj":gl di(y(t;),y(ti+1)) remains unchanged if we add more partition points. By
adding the partition points {¢;}o<i<ny to any given partition, we obtain Lg,(v) < b — a, which
concludes the proof. O

We prove some basic metric properties of metric graphs in the following theorem. Recall that a
length space is geodesic (Definition 1.2) if the distance of two given points is equal to the length of
some rectifiable curve connecting them.

Theorem 6.9. Metric graphs are proper, complete, separable, and geodesic metric spaces.

Proof. We first show that metric graphs are proper metric spaces, i.e., closed and bounded subsets
of metric graphs are compact. Fix a metric graph I' = (V| E,d;) and let € > 0 be a uniform lower
bound of the length function ! of I'. For any given vertex v € V, the closed metric ball B(v, ¢)
is contained in finitely many edges since the base graph of I' is required to be locally finite by
Definition 6.1 and any edge intersecting with the ball B(v,€) must have v as one of its ends. We
now prove by mathematical induction the claim that for any n = 1,2, ..., the closed metric ball
B(v,ne) is contained in finitely many edges. The case for n = 1 is already shown. Assume that the
claim is true for n = k. Consider the set W of all ends of edges that intersect with B(v, k €), which
by assumption is finite. By the triangle inequality, we have B(v, (k + 1)€) C Uyew B(w, €), which
implies the claim for n = k4 1 since each B(w, €) is shown be contained in finitely many edges and
W is a finite set. Therefore, the claim holds for any n € N*. Since simple paths are continuous
(Corollary 6.8), each edge of T and thus the union of finitely many edges is compact. Moreover, as
' is connected, any bounded set must be contained in one of the metric balls B(v,ne). It follows
that a closed and bounded subset of I" is compact. In particular, metric graphs are locally compact.

Recall that any proper metric space is complete and separable (Section 1.1). Moreover, a
complete locally compact length space is always geodesic [23, Theorem 2.5.23]. O

Remark 6.10. The requirement of metric graphs being locally finite is crucial for Theorem 6.9 to
hold. Consider the bouquet with countably many edges, as described in [23, Example 3.1.17]. This
space can be viewed as the product space of countably many copies of the unit interval [0, 1], all
joined at the vertex 0. Since the set of all vertices (the endpoints 1 of each interval plus the shared
endpoint 0) has no convergent subsequence, this space fails to be locally compact.

The canonical reference measure

The canonical measure H on I' is defined using its edges and vertices, which is indeed the one-
dimensional Hausdorff measure [23, §1.7] on T

Definition 6.11 (Canonical measures on metric graphs). Let I' = (V, E,d;) be a metric graph.
The canonical measure H is the measure on I' that gives no mass to the set of vertices V', and for
each oriented edge € € E, the image measure I4[H|¢] of its restriction H[z to € is the Lebesgue

—

measure on [0,1(€)], where 1€ : & — [0,1(€)] is the local isometry sending €, to s1(€)
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Since a metric graph I' has at most countably many edges, the above definition uniquely deter-
mines a o-finite canonical measure H. We always assume that a metric graph is equipped with its
canonical measure, and is thus a metric measure graph. For example, a Borel measure on a metric
graph is said to be absolutely continuous if it is absolutely continuous with respect to the graph’s
canonical measure.

6.1.2 Curvature bounds on metric trees

Our focus in several upcoming sections will be on metric trees. In this subsection, we introduce
the concept of metric spaces with curvature bounded above. This concept provides a basis for
comparing metric trees with Riemannian manifolds, and thus offers a glimpse into how curvature
bounds influence the properties of Wasserstein barycenters (to be illustrated later in Section 6.3).
Our presentation, adapted from [22, Chapter II.1], is for illustration purpose ounly; these results
will not be used in subsequent proofs. We begin with the definitions of geodesic triangles and their
comparison triangles.

Definition 6.12 (Geodesic triangles, comparison triangles and comparison points). Let (E,d) be
a geodesic space. A geodesic segment connecting two points p,q € F is the image of a Lipschitz
curve of length d(p, q) from p to q. By convention, we denote by [p, ¢] a definitely chosen geodesic
segment connecting p and ¢. A geodesic triangle A in F consists of three points p,q,r € E, its
vertices, and a choice of three geodesic segments [p, ¢|, [¢, 7], [r, p] connecting them, its sides. Such a
geodesic triangle will be denoted by A([p, ql, [g,7], [r,p]). If a point z € F lies in the union of [p, q],
[q,r] and [r,p], then we write z € A.

Given a real number k € R, denote by M? the model space of dimension 2 and constant sectional
curvature k. If k = 0, then Mg := R? is the Euclidean plan. For k # 0, M? is obtained from the
sphere S? (if k£ > 0), or the hyperbolic plane H? (if £ < 0), by multiplying the distance function
by the constant 1/ \/m Denote by dj the Riemannian distance function of M7?. A geodesic
triangle A with vertices p, g, 7 in M? is called a comparison triangle for A = A([p, g, [¢, 7], [, p]) if
dx(p,q) = d(p,q), di(q,7) = d(q,r) and dg(p,7) = d(p,r). A point T € [, 7] is called a comparison
point for z € [¢,7] if di(q,Z) = d(g,z). Comparison points on the sides [p, g] and [p, 7] are defined
in the same way.

We now define metric spaces with curvature bounded above by k [22, Definition 1.2 of Chapter
I1.1]. For simplicity, we restrict our attention to the case where k < 0. The definition for k > 0 is
similar, but requires slightly more care because the diameter of the model space M, ,f is 7w/ VE.

Definition 6.13 (Metric spaces with curvature bounded from above). Let (E,d) be a geodesic
metric space and let kK < 0 be a real number. Fix a geodesic triangle A in E and a comparison
triangle A C M7 for A in the model space (M2, dy) of constant sectional curvature k. The triangle
A is said to satisfy the CAT(k) inequality if for any two points z,y € A with their comparison
points Z, 7 € A,

d(z,y) < di(T, 7).

The metric space F is said to be of curvature < k if for every x € X, there exists a metric ball
centered at x such that any geodesic triangle contained in it satisfies the CAT(k) inequality.

We stress that metric spaces of curvature < k are defined by local satisfaction of the CAT (k)
inequality. By contrast, metric spaces satisfying the CAT(k) inequality globally are referred to as
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CAT(k) spaces in the literature. The above definition via local CAT(k) inequality, often called
curvature bounds from above in the sense of Alexandrov, generalizes the concept of Riemannian
manifolds with sectional curvature bounded from above. This generalization is justified by the
following theorem [22, 1A.6 of Chapter II.1].

Theorem 6.14. Fiz a real number k < 0. A complete Riemannian manifold (M,qg) is a metric
space of curvature < k in the sense of Definition 6.13 if and only if the sectional curvature of M is
less than or equal to k.

Observe that for a geodesic triangle in a metric tree, any given side is contained in the union of
the other two sides. Using this observation along with the triangle inequality for distance functions
in model spaces, one can deduce the following curvature property of metric trees [22, (5) of Example
1.15 in Chapter II.1].

Proposition 6.15. A metric tree is of curvature < k for all real number k < 0.

Proof. We fix a real number k < 0 and prove the CAT(k) inequality for geodesic triangles in metric
trees. Fix a geodesic triangle A with vertices p,q,r in a metric tree and consider its comparison
triangle A with vertices P, 7,7 in the model space M ,3 . The CAT(k) inequality holds trivially, as
an equality, for the case that the three vertices p, g, of A located in the same geodesic segment.
We are left to consider the non-trivial case that the comparison triangle A is not degenerate.
Without loss of generality, it suffices to consider two points « € [p,¢q] and y € [g,r] and prove

p p

Figure 6.3: Comparison triangle A in M2 for A in a metric tree

d(z,y) < di(T,7), where T € [p, q], ¥ € [, 7] are the comparison points for x,y. As in Figure 6.3, let
v be the unique vertex contained in the three sides of A. By the definition of comparison points,
we have

dk(fv q) = d(ﬂ?, Q) = d(xa U) + d(l}, q)a dk(@a g) = d(q7 y) = d(Q? 1}) - d(U7 y)
It follows from the triangle inequality of dj that
dk:(j7 ?j) > dk(f, Q) - d/c(q’ y) = d(.’l?, U) + d(’Ua q) - d(Q7 ’U) + d(U’ y) = d(.’l?, U) + d(’U, y) = d(.’I}, y)a
which is the equality to prove. O
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Remark 6.16. In the above proof of Proposition 6.15, the CAT(k) inequality is proven globally.
In particular, each metric tree is a CAT(0) space, which is also alternatively referred to a global
NPC space in [941, Proposition 3.4]. According to [94, Proposition 4.3], barycenters of probability
measures on metric trees are unique. We shall see in Proposition 6.63 an example showing that
Wasserstein barycenters on the Wasserstein space Wy (I') over a metric tree I' are not unique, which
in particular implies that Ws(T') is not a CAT(0) space (c.f. [14, Remark 2.10] [59, remark after
Proposition 1.4] [8, Example 7.3.3]).

6.1.3 Wasserstein barycenters on the real line

Since the real line R can be represented as a metric tree (with integers being its vertices) and any
edge of a metric tree is isometric to a compact interval, it is helpful to first investigate properties
of Wasserstein barycenters on R. As reviewed in (Section 1.4.1), any optimal transport problem
on R admits an explicit solution. This solution underlies the formula of Wasserstein barycenter
presented in Theorem 6.18.

Recall that L2(]0,1]) denotes the Hilbert space of squared integrable functions on [0, 1] with
respect to the Lebesgue measure and f, 1 denotes the quantile function (Definition 1.28) of a
probability measure 1 on R. The Wasserstein space Wy (R) inherits the linear structure of L?([0, 1])
via quantile functions, as shown by the following formula in Theorem 1.37,

duy (j1,)? = / ) — £ Pt (6.5)

Proposition 6.17. The following subset Q of L*([0,1]) is convex and closed,
Q = {g € L*([0,1]) | g coincides with a non-decreasing function on (0,1) almost everywhere}.
The map F : Wo(R) — Q sending u to ;1 1S a surjective isometry.

Proof. The convexity of @ follows from its definition. According to Theorem 1.37, u € Wh(R) if
and only if f; ! € L*([0,1]). Moreover, it follows from (6.5) that F is an isometry.

We now prove that F' is surjective. Fix an element g € (. Since any monotone function
has at most countably many points of discontinuity [17, Corollary 5.2.4], we can modify g on a
negligible set such that g is right-continuous and non-decreasing on (0, 1) with g(0) = lim o g(¢)
and g(1) = limsy g(f). According to Lemma 1.29, the function f(z) := infico ) {t | g(t) > =}
defined for x € R is right-continuous and non-decreasing. By definition of f, we also have that
lim, o f(z) = 0 and lim, 4 f(z) = 1. If follows that there exists exactly one probability
measure g on R such that f, = f [29, Proposition 4.4.3]. By Lemma 1.34, g coincides with fu_l on
(0, 1), which shows that F is surjective.

Last, since (W2(R), dy ) is a complete metric space, @ is a closed set. O

Thanks to the above linear structure, explicit calculations of Wasserstein barycenters on R are
possible.
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Quantile function formula for Wasserstein barycenters on the real line

For a finitely supported probability measure P = >""" | \;4,,, the quantile function of its barycenter
pp is given by the formula [79, §3.1.4],

(1) :ZAif,Zl(t) :/W . 7Nt dP(v), Ytelo,1].

Via the isometric embedding F' : Wh(R) — @ (see Proposition 6.17), this formula neatly translates
to a linear combination in Q:
== Z )\i F(Ul)
i=1

This linearity demonstrates that the Wasserstein barycenter problem on R simplifies significantly
thanks to the linear structure of L?([0,1]). Building upon this, the following theorem extends this
result to general measures P € Wy (Ws(R)). Our proof proceeds in two steps: first, we show that

)= fi, ® o L(t)dP(v) defines a valid quantile function; second, we prove that g € @ is indeed
the barycenter of FxP, crucially employing the linear structure of ¢ via Fubini’s theorem.

Theorem 6.18 (Wasserstein barycenters on the real line). Let P € Wa(Wh(R)) be a probability
measure on the Wasserstein space Wa(R),dw). Then P has a unique Wasserstein barycenter
pp € Wa(R), whose quantile function satisfies

frw= [ 5 ware, Ve, (6:5)

In particular, the integral in (6.6) is finite for t € (0,1), and the inequality still holds when it takes
possibly infinite values for the case t =0, 1.

and lower semi-

Proof. By Lemma 1.35, the map v — £, 1(¢) is upper semi-continuous for ¢ € [0, 1)
29, p-176]. It follows

continuous for ¢ = 1, which implies that it is measurable for any ¢ € [0, 1] [2¢
from Theorem 1.37 and Fubini’s theorem that

// 2AP(v dt—/ / ?dtdP(v) = / dw (80, v)? dP(v) < +oo,
WQ(R) Ws (R Wz (R)

where we applied the property that the quantile function of J§y is the constant 0, i.e. fé =
If follows from the Cauchy-Schwarz inequality that the function g : [0,1] — R defined by g(¢ )
@) f7H(t)dP(v) for t € [0,1] is an element in L2([0, 1]).
We claim that g is a non-decreasing and right-continuous function on (0, 1) with ¢(0) = limyo g(¢)
and g(1) = limy4q g(t). We first show that g must be finite on (0,1). Indeed, if g(t) = +oo for some
€ (0,1), then g(s) = +oo for any s € [t,1] since any quantile function f, ! is increasing, which
contradicts the fact that g € L2([0,1]). Due to the same reason, we cannot have g(t) = —oo for
some t € (0,1). Hence, g is finite and non-decreasing on (0,1). Fix t € [0, 1), we show that g is right-
continuous at t. Let {t,}n>1 C (¢, %) be a decreasing sequence smaller than % that converges
to t. Applying the monotone convergence theorem with measure PP to the decreasing sequence of
non-positive functions v — 7 (t,,) — f, 1 (1), we obtain limy, o0 g(tn) — g(}4%) = g(t) — g(H),
which shows that g is right-continuous at ¢ since the decreasing sequence {tn}nzl is arbitrarily
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chosen and g is non-decreasing on (0,1). By a similar application of the monotone convergence
theorem, we see that ¢g(1) = limy; ¢g(¢). Hence, our claim on ¢ is proven.

According to Proposition 6.17, since g|(o,1) is non-decreasing and right-continuous, there exists a
unique measure pup € Wo(R) such that f;ﬂ} = g. It remains to show that up is the unique barycenter
of P. For any measure n € W5(R), by Theorem 1.37 and Fubini’s theorem, we have

1
2 . g e1ppm2 )
/WQ(R) dw (n,v) dIP’(V)*/O /Wz(R)[f,7 (t)— f7Y )2 dP(v) dt
= /O [f{ (t) — /WQ(R) £ 1) dP(v)

where the abbreviated term I(P) is independent of 7,

= [ /WQ(R)[le(t)]ZdP(V)— ( /WQ(R) le(t)dP(V)> dt.

It follows from (6.7) that the infimum inf, ¢y, (g) fwz(R) dw (n,v)? dP(v) is reached by 7 if and only
if fH(t) = fwz(R) [ (t) = g(t) = f,'(t) for almost every t € [0,1]. Therefore, up is a barycenter
of P and its uniqueness follows from the injectivity of the embedding in Proposition 6.17. O

dt+ I(P), (6.7)

6.2 A reduction technique for metric trees

Metric graphs, being Polish spaces (Theorem 6.9), fit the general theory framework of optimal
transport and Wasserstein spaces. In this section, we introduce a reduction technique to simplify
optimal transport problems on metric trees. This technique allows us to recover the optimal trans-
port plans for the case where one measure is supported in an edge, by reducing the problem to a
corresponding optimal transport problem on the real line.

On a metric tree I' = (V, E,d;), each edge e € E is isometric to an interval of length I(e)
(Lemma 6.6). Extending this isometry to the entire tree yields the following reduction map, which
preserves distances for certain simple paths.

Proposition 6.19 (The reduction map associated to an oriented edge). Let T' = (V, E,d;) be a

metric tree and let € = {vg,v1} be an oriented edge of T'. There exists a unique map T¢:T >R of
€ defined by the following conditions,

1. T%(vg) = 0, T¢(vy) = I(€), and T€ restricted to {vg,v1} is an isometry onto [0,1(€)];

2. given any simple path v : [a,b] — T such that v(a) or v(b) is located at the edge {vo,v1}, T¢
composed with ~ is an isometry,

Vios € la,b], di(y(),y(s) = TE(v(1) = TE(v(s))]-

The map T¢ is called the reduction map associated to € = {vg, vy }.
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Proof. We first prove the existence. Fix a point « € T'. If z € €, then set T¢(z) := d;(x,vo). As for
the case that = ¢ €, we first claim that d;(z,vo) # di(x,v1). Consider the two geodesics connecting
x and v, v, respectively. If dj(z,v9) = dij(z,v1), then by Lemma 6.6 none of them contains the
edge €, which contradicts the assumption that I' is a metric tree since these two geodesics and the
edge € produce a cycle. This contradiction proves our claim. With the help of this claim, in the
case that o ¢ €, we can define T¢(x) := dj(z,vo) if d(x,vo) > d(x,v1), and T¢(z) := —d;(x,vo) if
di(x,v0) < d(z,v1). B

We now show that the previously defined function T°¢ satisfies the second property. Recall that
the length of a simple path is equal to the distance between its two endpoints (Lemma 6.6). By our
construction, T°¢ is a continuous function satisfying |T¢(y) — T¢(z)| = d;(y, 2) for y € € and z € T
Therefore, if 7 : [a,b] — T is a simple path such that v(a) € {vg, v}, then

b—a=di(y(b),v(a)) = [T*(y(b)) — T*(v(a))l. (6.8)

Consider the restrictions of v to the intervals [a, s] for s € (a,b). Since (6.8) also holds for these
restrictions and the composited function 7€ o v : [a,b] — R is continuous, the function T° o vy —
T°¢ o ~v(a) must be always non-positive or always non-negative, i.e.,

T¢on(s) —Tox(a)=s5—afor s € (a,b] or TCox(s)—T¢o~(a)=a—s forsc (a,b],

which further implies that 7€ oy is monotone and isometric. Hence, for t, s € [a, b], di(y(t),v(s)) =

[t = s| =T(4(t)) — T¢(+(s))]-
As for the uniqueness, note that a real number is uniquely determined by its distance to 0 and
1(€). Hence, for z € ', T*(z) is uniquely determined by the distances d;(x,vo) and d;(x, v1). O

The reduction map associated to an edge induces a push-forward map from W5 (T") to Wa(R).
To simplify notation in subsequent development, we use the symbol 7 to denote this map.

Definition 6.20 (The push-forward map associated to an oriented edge). Let T' = (V, E,d;) be a
metric tree and let € be an oriented edge of I'. We denote by T¢, or simply by 7 (when the oriented
edge € is explicitly given in the context), the map

T WQ(F) — WQ(R)

defined for y € Wy(T') by the formula 7 (u) := T€4pu, where T€ is the reduction map associated to
€ (Proposition 6.19). We call T the push-forward map associated to €.
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The push-forward map 7 preserves several properties of probability measures across the Wasser-
stein spaces Wa(T') and Wh(R). Let us start with the absolute continuity. To avoid confusion, we
remark that there is no relation between the symbol € (an oriented edge) and e (an edge).

Lemma 6.21. LetT' = (V, E,d;) be a metric tree. Fiz an oriented edge € of T and let T : Wo(T') —
Wa(R) be the push-forward map associated to € (Definition 6.20). Then for any p € Wa(T'),

w is absolutely continuous <= T () is absolutely continuous.

Proof. Recall from Definition 6.11 that canonical measure H of I' gives no mass to the vertices of
I, and on each edge e, H|. is the Lebesgue measure after identifying e with an interval of equal
length.

We first prove the case where p € W5(T') is supported in some edge e € E. Consider a simple
path ~ from € to e. The second property of T°¢ applied to v implies that the map T¢|, : e — T¢(e)
is a metric isomorphism. Since p is supported in e, p is absolutely continuous with respect to H|.
if and only if 7 () is absolutely continuous with respect to T€4[H|.]. By definition of H, T4 [H|.]
is the Lebesgue measure restricted to T¢(e), which proves the lemma for the particular case of .

Now consider the general case for u € Wh(T'). As I’ has at most countably many edges, we can
re-write p as p1 1= ).y Aj pij such that for each index j € J C N, 0 < A; <1 and p; € Wa(l)
is supported in some edge of I'. Note that, with respect to a given measure, a sum of at most
countably many non-negative measures is absolutely continuous if and only if each measure in the
sum is so. Since 7T is a push-forward map, 7 (u) = Eje] Aj T (15). Hence, the general case follows
from the previously proven case. O

The push-forward map 7T also helps to reduce an optimal transport problem on I' to an optimal
transport problem on R, which relies on the following two properties of T°°.

1. TF preserves the distance of two given points if one of them is contained in the edge &;
2. for any edge e € E, T is injective on the set €U e.

The first property ensures that the push-forward map induced by 7€ x T : T'xI' — R x R preserves
the optimality of couplings thanks to the cyclical monotonicity characterization of optimal transport
plans, as we shall see in (6.9). With the second property, we can show that the push-forward map
is surjective as a map from the couplings of p and v to the couplings of T (u) and 7 (v). These
two properties are used, in the following theorem, to demonstrate the following two inequalities
respectively,

Note that the symbol dy is employed to denote both the Wasserstein metrics of Wh(I') and Wh(R).

Theorem 6.22. Let I' = (V,E,d;) be a metric tree. Fiz an oriented edge € of I' and let T :
Ws(T') — Wh(R) be the push-forward map T associated to € (Definition 6.20). For two given
probability measures p,v € Wa(T'), if i is supported in the edge €, then

dw (n,v) = dw (T (1), T(v))-
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Proof. For any coupling ~ of x and v, since u is supported in €, Proposition 6.19 implies that

/ dy(z,y)? d(z,y) = / T¢(2) — TS d (e, )
I'xI’

I'xIl

- / | — y* d[T€ x T4 (,y), (6.9)
RxR

which shows dy (T (1), T(v)) < dw (u, v) since [T€ x T€ 4 is a coupling of T () and T (v).

We now prove the inequality dw (i, v) < dw (T (1), T (v)). Let n be an optimal transport plan
between T (1) and T (v). According to (6.9), it suffices to find a coupling of y and v such that 7€ xT¢
pushes forward it to n. Rewrite v = Y . p Ae Ve + D,y Ao 0y, Where Ac, Ay, € [0, 1], 0, denotes the
Dirac measure supported at the vertex v € V and v, € W,(I') is a probability measure supported in
the edge e that gives no mass to the ends of e. Denote by f, (respectively f,) the density functions
of T(ve) (respectively T(d,)) with respect to 7 (v). It follows that » . pAe fo + > cp A fo =1
for T (v)-almost everywhere. Introduce the probability measures n.(dz,dy) = fe(y) - n(dz,dy)
and n,(dz,dy) := fu(y) - n(dx,dy). By our choices of f. and f,, 7. is a coupling of T (u) and
T(ve) if Ae # 0 and 1, = T () ® T(0,) is the product measure of its two marginals if A, # 0.
Moreover, n = > AeTle + D ey Avw. We are now ready to construct a coupling between x and
v as follows.

Fix an edge e € E. We claim that 7€ is injective on the set €U e. Since the base graph of T is
connected, there exists a simple path from € to e, and Proposition 6.19 shows that T°¢ is injective on
its image, which proves our claim. Set U, := T¢(€Ue) C R and denote by S, : U, — €Ue the inverse
map of T¢|s_.. Since €U e contains the support of y and v, U, contains the support of T(v,) and
T (p). Hence, U, x U, contains the support of 7., which allows us to define the probability measure
Ve := [Se X Se]me on T x I'. For e € E such that A # 0, since S, is the inverse map of TE\EUE and
Ne is a coupling of 7T (1) and T (ve), e is a coupling of y and v, and 5. = [T x T¢]47e.

For v € V, note that the measure v, := p ® §, satisfies 1, = [Té X Té]#’yv if A, #0. As a
sum of at most countably many probability measures on I' x T', v := > g Ae Ve + D ey Ao Mo

ecE

is a well-defined probability measure satisfying [Tg X Té]#w = 1. Moreover, v is coupling of
and v since v, (respectively v,) is a coupling of u and v, (respectively d,). Therefore, we have
dw (1, v) < dw (T (u), T (v)), which implies the equality dw (u,v) = dw (T (u), T (v)). O

Remark 6.23. Note that Theorem 6.22 does not assert the uniqueness of optimal transport plans
between p and v even if there is a unique optimal transport plan between 7 (u) and 7 (v). In
Proposition 6.63, we shall see how the reduction technique is applied and also an example illustrating
the non-uniqueness of Wasserstein barycenters due to the branching structure of metric trees.

Remark 6.24. Our proof of Theorem 6.22 relies on the injectivity of 7€ on €U e to define . such
that n. = [Té X TE]#%. However, the assumption that v, assigns no mass to the endpoints of
e allows us to weaken this requirement: injectivity of 7€ on €U é (where é is the interior of e)
is sufficient. This assumption, introduced in the decomposition v = Eee g Ae Ve + ZvEV Ay 0y tO
prevent multiple choices for v, when endpoint mass is allowed, unexpectedly also contributes to
this weakening of the injectivity condition on T°¢.

According to Theorem 6.9, metric graphs are proper metric spaces, which implies that Wasser-
stein barycenters always exist on metric trees. By combining Theorem 6.22 with the formula of
Wasserstein barycenters on the real line (Theorem 6.18), we shall prove some interesting properties
of Wasserstein barycenters on metric trees.
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6.3 Almost absolute continuity of barycenters

In Chapter 4, it is shown that lower Ricci curvature bounds ensure the absolute continuity of
Wasserstein barycenters. However, metric trees are metric spaces with curvature < k for all k <0
(Proposition 6.15), and are thus usually considered to have curvature —oo. The following example,
inspired by [50, Example 1], shows that on metric trees, the absolute continuity of Wasserstein
barycenters is no longer guaranteed.

Example 6.25. Consider the metric tree I' with a tripod shape, which is constructed by attaching
three unit intervals [0, 1] at the endpoint 0. Denote by v; for ¢ = 1,2, 3 the three probability mea-
sures supported in the three different edges of I', such that each of them is the uniform probability
measure on [%7 1]. Then the Dirac measure &y at vertex 0 is the unique barycenter of the measure

P:= Z?Zl %(51,1.. To streamline our presentation, we postpone the proof of this property to Propo-
sition 6.59. Therefore, with respect to the canonical measure on I', we see that while P gives mass

to absolute continuous measures, its barycenter is not absolutely continuous.

This section is devoted to proving that Wasserstein barycenters on metric trees are almost
absolutely continuous, meaning that the above singularity can only occur at vertices. We start with
the following lemma, which characterizes Wasserstein barycenters when they are supported in an
edge. Its proof relies on the reduction technique (Theorem 6.22) introduced in the previous section.

Lemma 6.26. Let I' = (V, E,d;) be a metric graph. Fiz an oriented edge € of I' and a probability
measure P € Wo(Wa(T')). Suppose that P has a barycenter up € Wa(I') that is supported in the edge
€ of T'. Denote by T : Wh(T') = Wh(R) the push-forward map associated to € (Definition 6.20) and
define Q := TxP. Then the quantile function of T (up) is determined by the quantile function of pg
as follows: fort € [0,1],

0 if frl (1) <0
Frtm@® = f) i 0 < £ (1) <1(E)
() if f‘Ql(t) > 1(€).
Proof. Since pp is a barycenter of P that is supported in the edge €, Theorem 6.22 implies that
inf / du (T(), T()2 dPW) =  inf du ()2 A P(v)
HEW,(E) Wy (T) HEW,(E) Wa(T)
= [ (e vP a0 = [ d(T(e), T AP() (6.10)
Wo(T') Wo(T)

Since the restriction of the reduction map T°¢ to € is an isometry onto [0,1(€)], 7 maps W(€)
bijectively to Wa([0,1(€)]). Applying the definition Q := TxP to (6.10), we obtain

inf /WR) duw ()2 d Q) = / dvw (T (), )2 d Q). (6.11)

neWs([0,1(e)]) W2 (R)

Denote by pg the unique Wasserstein barycenter of Q, which satisfies f;@l = sz(R) f71dQv)

(Theorem 6.18). To further simplify (6.11), we apply Theorem 1.37 with Fubini’s theorem (c.f.
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(6.7) in the proof of Theorem 6.18) and obtain
1
2 = =1y _ £=1(4)]2
/W2(R) dw (p,v) dQ(V)—/O /WQ(R)[f“ t)— £,71®))2dQv)dt

- / 1 lf;l(t) - /W2<R> 17N dQ) 2

1
- /0 U - TP AA+ 1),

dt +I1(Q)

where the abbreviated term I(Q) is independent of p,

/ /WQ(R) dQ() - (/WQ(R)f;l(t)d@w))th.

Hence, (6.11) is equivalent to

1
HEWQ.([O 1(@))) / U = fuelPdA = /o Uriun = fua T4 (6.12)

By Lemma 1.33, a probability measure p is in the space Wh([0,1(€)]) if and only the image of f;l is
contained in the interval [0,1(€)]. Hence, a solution u € Wa([0,1(€)]) of the minimization problem
in the left-hand side of (6.12) must satisfy the requirements

[ = 0if fi (1) <0, frH(t) = fi ()10 < fo () <UE),  fiH(t) =€) if f. ) (t) > U(E).

In particular, the measure 7 (up) € Wa([0,1(€)]) satisfies the above requirements, which concludes
the proof. O

Lemma 6.26 implies that Wasserstein barycenters on metric trees can be fully reduced to the
real line, provided that they are supported in the interior of an egde.

Corollary 6.27. LetT' = (V, E,d;) be a metric graph. Fix an oriented edge € of ' and a probability
measure P € Wa(Ws(T')). Suppose that P has a barycenter up € Wa(T') that is supported in the edge
€ of T and assigns no mass to the ends of €. Denote by T : Wa(T') — Wa(R) the push-forward map
associated to € (Definition 6.20). Then T (up) is the unique barycenter of Q := T4P.

Proof. Since pp is assumed to give no mass to the ends of €, 7 (up) gives no mass to the endpoints
of [0,1(€)]. Hence, Lemma 1.34 implies

o . 1 1 . 1
0= Frou(© = Jnf {t] f7ly (0> 0h 1= lm from(s) = lim inf {t] f7,,(0) > s}

It follows from these two equalities that for 0 < ¢ < 1, f}éﬂp)(t) # 0 and f;(lw)(t) # 1(€). According
to the requirements satisfied by 7 (up) in Lemma 6.26, we must have 0 < fl; (t) < I(€) and
f;(lw)(t) = f;Ql (t) for t € (0,1). Hence, T (up) = pg is the unique barycenter of Q. O
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At first glance, the assumption in Lemma 6.26 (and thus in Corollary 6.27), that P has a barycen-
ter up € Ws(T') supported in the edge €, might appear limited. However, this assumption becomes
useful when combined with the restriction property of Wasserstein barycenters (Proposition 5.2).
The proof below, demonstrating the almost absolute continuity of Wasserstein barycenters, provides
a concrete example of this idea.

Theorem 6.28 (Almost absolute continuity of Wasserstein barycenters on metric trees). Let I' =
(V,E,d;) be a metric graph. Fiz a measure P € Wa(Ws(T')) that gives mass to absolutely continuous
measures on I'. If up is a barycenter of P, then the restriction of up to the interior of any given
edge is absolutely continuous. Therefore, if up is not absolutely continuous, then its singular part
is a sum of Dirac measures at the vertices of .

Proof. Fix an oriented edge € of I'. Denote by € the interior of €. If i gives no mass to the set é,
then its restriction on € is null, and thus absolutely continuous.

Consider now the case that up(é) > 0 and denote by pe € Wa(I') the normalized probability
measures of the restriction of up to €. Let 7 : Wa(I') — Wa(R) be the push-forward map associated
to € (Definition 6.20). According to Lemma 6.21, for n € Wh(T"), T(n) is absolutely continuous if
and only if n is absolutely continuous. We prove the absolute continuity of ug by discussing two
different cases.

If pe = pp, then T (pe) is the unique barycenter of Q := TxP according to Corollary 6.27, which
is absolutely continuous since Q gives mass to absolutely continuous measures on R (Theorem 4.5).
It follows that up is absolutely continuous when pe = pp. We now prove that pe is absolutely
continuous when pg # pp. For the division pp = Aps + (1 — A)v with A := pp(é) € (0,1) and
v € Wh(T'), Corollary 5.4 provides two measures Py, Py € Wo(Ws(T')) such that pe is a barycenter
of P; and v is a barycenter of P;. Moreover, Corollary 5.4 implies that both Py and Py give mass
to absolutely continuous measures since P does so. We then have pz = pp, is absolutely continuous
as proven in the previous case.

Since the directed edge € is arbitrarily chosen, our theorem is proven. O

6.4 New results of Wasserstein barycenters on R

Theorem 6.28 shows how properties of barycenters supported in an edge can be extended, via the
restriction property of Wasserstein barycenters, to general barycenters (with appropriate modifica-
tions) on metric trees. This motivates our study of Wasserstein barycenters on the real line with
compact support, since their properties can then be translated to barycenters on metric trees that
assign full mass to the interior of some edge (Corollary 6.27). Our investigation proceeds as follows:
given a probability measure P € W (Ws(R)) with its unique barycenter possessing certain prop-
erties, we aim to identify necessary properties satisfied by P-almost every measure. The following
proposition concerning compact support illustrates this paradigm.

Proposition 6.29. If the unique barycenter up of P € Wa(Wa(R)) has compact support, then for
P-almost every measure v € Wo(R), v has compact support. Moreover, if up is a Dirac measure,
then for P-almost every measure v € Wh(R), v is a Dirac measure.

Proof. Lemma 1.33 shows that a probability measure p on R has compact support if and only if its
quantile function is finite on the unit interval [0, 1]. By the formula of Wasserstein barycenters on
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R (Theorem 6.18), we have
—1 o -1 -1 _ -1
£21(0) = /WR) LU0 ARW), £ = /WR) 71 (1) dP(w).

We remind the reader that the existence of the above integrals is part of the conclusions of Theo-
rem 6.18. Since both f;ﬂ}l (0) and fljpl(l) are finite by our assumption, the above equalities imply
that for P-almost every measure v € W(R)), both f,1(0) and f,!(1) are finite, which further
implies that v has compact support.

Now consider the special case that up = §, is a Dirac measure. Since f;]p1 is the constant
function on [0, 1] with value z, Theorem 6.18 implies

0< [ 5= O aRE) = 0 - £ 0) =5 - =0
Wa (R)

Hence, for P-almost every v, f,1(1) = £,1(0), and the last part of our proposition follows from
Lemma 1.33. O

The preceding proof relies on the key idea of expressing the properties of a probability measure
through its quantile function. To further develop this idea, we introduce dual measures in the
following subsection.

6.4.1 Dual measures

Lemma 1.30 states that a quantile function is uniquely determined by its values on the open interval
(0,1), where it is also right-continuous. This property is shared by the distribution function of a
probability measure on [0, 1]. Based on this, we define dual measures as follows.

Definition 6.30 (Dual measures). Let p,r be two probability measures on the real line that are
supported in the unit interval [0,1]. Denote by ' ! the quantile function of p and by fz the
distribution function of zi. The measure g is the dual measure of y if

falt)y=f71(), Vo<t<l

Our definition of dual measures is justified by the following lemma.

Lemma 6.31. Let o be a probability measure supported in the unit interval [0,1]. Its dual measure
i always exists and is unique. Moreover, p is the dual measure of i, i.e., L = j.

Proof. Consider the following function f : R — [0, 1] defined by setting
f(z) = f;l(x) for0<z <1, f(z):=0forz<0, f(z):=1forx>1.

Since p is supported in the unit interval [0,1], Lemma 1.33 implies f,*(x) € [0,1] for = € [0,1).
It follows that the function f defined above is non-decreasing and right-continuous. Hence, there
exists a unique probability measure zz on R such that f = f5 is the distribution function of p
[29, Proposition 4.4.3]. Given that the distribution function of a probability measure supported
in [0,1] is uniquely determined by its values on the open interval (0,1), we conclude that f is
the sole distribution function of this kind that matches f, L on (0,1). Consequently, according to
Definition 6.30, i is the unique dual measure of p.
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It remains to that p is the dual measure of fi. Since f;(t) = fﬂ_l(t) for 0 <t <1, Lemma 1.34
implies that f, () = inf;e(0,1){t € (0,1) | fa(t) > 2} for x € R. We now re-write the infimum part
of this formula of f, (). Since f5(t) = 1 for t > 1, if the set {t € (0,1) | fa(t) > x} is empty for
some 0 < x < 1, then by convention (1.15),

. i(I(l)fl){t €0,1)| falt)y >z} =1= iItlf{t eR| fa(t) > x}. (6.13)
€(0,
As f;(t) = 0 for t < 0, by considering two different cases according to whether the set {t € (0,1) |
fi(t) > x} is empty, the established eqaulity (6.13) implies that, for 0 < 2 < 1,

fule) = inf (€ (0.1)| f3(t) > o} = inf{t R | fult) > 2} = f5"(x),

which shows that  is the dual measure of i according to Definition 6.30. O

Remark 6.32. In the proof of Lemma 6.31, we see that f; and f;l coincide on [0, 1), with the
possibility of being distinct at the point 1. For example, if the point 1 is not in the support of p,
then f,'(1) <1 by Lemma 1.33, while f3(1) = ([0,1]) = 1 by the assumption z € W5([0,1]).

Now we are ready to investigate some basic properties of dual measures. In the following
proposition, we characterize atoms of a probability measure using its dual measure. By discrete
measure, we mean a o-finite measure that is a weighted sum of (at most countably many) Dirac
measures. For example, we can assign non-zero mass properly to the rational numbers in [0, 1] to
construct a discrete probability measure. Note that the support of this example is the closure of
all rational numbers in [0, 1], which is exactly the interval [0, 1].

Proposition 6.33 (Atoms and dual measures). Fiz two probability measures u, fi supported in [0, 1]
such that 1 is the dual measure of p. We have the following characterizations of p,

1. u is a discrete measure if and only if the support of 1 is negligible with respect to the Lebesque
measure on R;

2. p is atomless, i.e., p({x}) =0 for all € R if and only if [0,1] is the support of [i;

3. the support of pu consists of finitely many points if and only if the support of i1 consists of
finitely many points;

4. the support of u consists of countably many points if and only if the support of i consists of
countably many points.

Proof. Recall from Lemma 1.33 that if a measure v has compact support, then [f,1(0), £, 1(1)]

v v

is the convex hall of supp(v). Hence, the intervals (—oo, fgl(O)) and (frjl(l), +o0) are the two
unbounded connected components of R \ supp(r). Moreover, atoms of p are characterized by
connected components of R \ supp(zz) as follows.

1. Since p({0}) = f,.(0) —limgyo fu(s) = fﬁ_l(O), Lemma 1.33 implies that x({0}) = > 0 if and
only if the interval (—oo, ) is a connected component of R \ supp(f).

2. For 0 <t < 1, since u({t}) = fu(t)—limsps fu(s) = fﬁ_l(t)—limsﬁ fﬁ_l(s), Lemma 1.32 implies
that p({t}) = « > 0 if and only if the interval (fil(t) — x,frjl(t)) C (0,1) is a connected
component of R\ supp(fx).
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3. Since p({1}) =1 —limgyq fu(s) =1— fﬁl(l), Lemma 1.33 implies that p({1}) =z > 0 if and
only if the interval (1 — z, +00) is a connected component of R \ supp(x).

Note that the open set R\supp(p) is a disjoint union of at most countably many intervals, which are
connected components of R\ supp(t). The above characterizations associate each of the intervals
with an atom of u. It is also shown that, for each interval, the length of its intersection with (0, 1)
is equal to the jump of f,, at the associated atom. Consequently, the sum of all jumps of f,, given
by > 0,1 {fu(t) = limge fu(s)}, is equal to the Lebesgue measure of the open set (0, 1) \ supp(z).
Recall that a probability measure p on R is discrete if and only if the sum of all jumps of f, is 1,
and it is atomless if and only if f,, is continuous. Hence, Property 1 and Property 2 follow from
the previously established equality >, 1 1{f.(t) — limgp, fu(s)} =1 — L (supp(f1)).

For Property 3, we first prove the claim that a probability measure v on R is a weighted sum
of finitely many Dirac measures if and only if both f, and f,* admit only finitely many values. If
v= E;V:1 Aj 0z, then the image set f,([0,1]) is contained in the set {0, A1, A, ..., Z;VZI Aj =1},
and the image set f;l([O7 1]) is contained in the set {z1,z,...,zx}. Conversely, as f, is non-
decreasing, if f, admits only finitely many values, then [0, 1] is a union of finitely intervals such
that f, is constant on each of them, which implies that v is a weighted sum of finitely many Dirac
measures. Therefore, the claim is proven. Since f, I and fi can only differ at 1 (Definition 6.30
and Remark 6.32), Property 3 follows from the preceding claim.

For Property 4, we assume that the support of y consists of countably many points and prove
that so does the support of fi. We claim that the closure of the image of f,, i.e., the set f,(R), is
countable. Denote by A C [0,1] the set of discontinuity points of f,,, which is a countable set since
fu : R —[0,1] is a monotone function. For our claim, it suffices to prove

Tu(®) = fulsupp () (10,11 fulA-), where fu(A-) := | lim £, (v). (6.14)

For x € R\ supp(p) such that f,(z) ¢ {0,1}, there exist two points a,b € supp(x) such that
x € (a,b) C R\ supp(u) since supp(p) is a closed set. It follows from the right-continuity of
fu that f(z) = f(a), which implies f,(R) C f,(supp(p)) U {0,1}. Therefore, for a fixed point
te fu(R)\ fu.(supp(p)) in the open interval (0,1), there exists a sequence {z; };en C supp(p) such
that ¢ = lim; 4. f(x;). By passing to a subsequence, we can assume without loss of generality
that {x;};en is monotone and lim; oo 2; =: « € supp(p). Since ¢t # f(z) € f(supp(p)) and
[y is right-continuous, the sequence {z;} must be non-decreasing. Hence, t = lim;_, o f(z;) =
limy4, f(z) € f,(A-), which proves (6.14) by our previous choice of ¢. Our claim is thus proven,

which implies that the closure set f 1([0,1]) is countable. By Lemma 1.32 and Lemma 1.33, i gives

no mass to the complement of f7 1([0,1]). Tt follows that supp(ji) consists of at most countably
many points. By Property 3, supp(ft) is necessarily a countable set since supp(p) is not a finite set.
Property 4 follows from the duality pu = p. O

Recall that the Cantor measure ¢ on [0,1] is an atomless probability measure whose support
is the Cantor set [29, Example 2.1.10, Exercies 7 of §2.1]. Hence, its dual measure ¢ is a discrete
measure with support [0, 1] according to Proposition 6.33. This result might initially appear counter-
intuitive, as one might expect that for a discrete probability measure p, both its distribution function
fu and its quantile function f;l would admit at most countably many values. This expectation

seems to contradict the fact that f{l coincides the distribution function f. of ¢ on (0,1). However,
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a closer look at the proof of Proposition 6.33 reveals that f,, admits countably many values if and
only if the support of u consists of countably many points. To further clarify the subtle distinction
between discrete measures and measures with countable support, we present the following example.

Example 6.34 (A discrete measure whose distribution function admits uncountably many values).
Denote by A C (0,1) the set of all rational numbers between 0 and 1 of the form (2k — 1)/2™,
where k,m € N* are strictly positive integers such that & < 2™~!. We define a discrete probability
measure u by setting p({a}) = 1/3™ for a = (2k — 1)/2™ € A. Note that u assigns full mass to the
set A since
1 1 1 1,2
A =1-2492. —4922. —_ 4 ... = Z(2ym—1 1
pA) =12 +2 55 +2% 7+ ;3(3) ,
which implies that p is a well-defined probability measure. We now calculate the distribution
function f, of p. For x € (0,1), since y € AN (0,5] <= 2y € AN (0,z], we have u((0,5]) =
£1((0, z]). Hence,

1 1
Va € (071), fu(§w) = gf,u(x)a (6.15)
which implies that f,(3) = p({3}) + limyp1 fu(4) = & + 3 limyp fu(y) = 2. For = € (0,1) and
y € AN (0, 5], p assigns the same mass to the point y as to the point y + % € AN (%, 1'%“3] Hence,
(00, 2]) = p((3, 2£2]). It follows that, by (6.15),
1+ 1 1 1+=x 2 T 1
vee©1), i =L@ a2 G = e L@ (66)

We now prove by mathematical induction the claim that, for m € N* and ¢t = Y1, 5+ with

a; €{0,1}, f.(t) =3, 23‘?'. For the case m = 1, the equality f,(0) = 0 is trivial and the equality
fu(3) = % is already shown. Assume that the claim is true for m = k (k € N*). For ¢t = Zf:ll 5
we write t = 4 + 1 Zle AL, If ay = 0, then (6.15) implies that f(t) = %Zle 2'1;’“. If a; =1,
then (6.16) implies that f(f) = 2 + %Zle 2‘“% Therefore, the claim for m = k + 1 is shown,
which proves the claim for any m € N*. Note that any real number s € [0, 1] can be represented as a

sum s = y_.°, 9 with a; € {0, 1} such that the sequence {a;};>1 is not asymptotically identical to

1. Denote by N(j) the j-th index such that ay ;) = 0. Then, one can approximate s from above by
t; = Zfi(lj)fl %Jrﬁ as j — oo. It follows from the right-continuity of f, that f,(s) = > .2, 23‘?.
Hence, f,([0,1]) is the Cantor set, which is uncountable.

Remark 6.35. In the literature, the properties of the distribution functions of discrete measures are
investigated under the name of saltus function or jump function. See references such as [40, 226B],
[99, Definition 1.6.30], [11, §13.2 of Chapter 1], [54, Definition 1.1.5], [84, §7 of Chapter I], and [75,
§1 of Chapter VIII].

Proposition 6.33 shows that the dual measures of various types of singular measures (with
respect to the Lebesgue measure) retain singularity. To generalize this observation, we begin with
some technical preparations.

For a specific class of complex measures, which will suffice for our subsequent development, we
introduce the total variation norm as defined in [10, Definition 5.1.11, Definition 5.1.13].
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Definition 6.36 (Total variation norm of complex measures). Let 1 and v be two finite measures
on [0, 1]. The total variation norm of the complex measure p +iv is

ln+ivllry =sup 3 [u(A) +iv(A),

s

Aem
where the supremum is taken over all possible partitions m = {A1, Aa, ..., Ax} of the unit interval
[0,1] = U?ZlAj into finitely many pairwise disjoint measurable sets {4, }1< <k, and |z +iy| ==

v/ 22 4+ y? denotes the modulus of the complex number = + iy with x,y € R.

As shown in the following lemma [10, Theorem 5.3.5], the total variation norm can be calculated
with the aid of Radon-Nikodym derivatives.

Lemma 6.37. Let p be a finite measure on [0,1]. For two given squared integrable functions
f,g € L?(u) with respect to p, we have

||f~u+ig~u||Tv:/[ ]|f+igdu:/[ ]\/f2+92du.
1 0,1

)

To prove that a measure is singular, we shall use the following proposition showing that certain
sets are negligible with respect to the Lebesgue measure, whose proof and generalizations can be
found in [111, Theorem 7.29], [82, Theorem 4.1.4], [67, Corollary 3.37], [49, Corollary 6.2.2], and [89,
Theorem (4.5) of Chapter IX]. For completeness, we provide a proof using Vitali covering theorem.

Proposition 6.38. Let f:[0,1] = R be a real function on [0,1]. Define
Ay :={x € (0,1) | the derivative of f exists at x and f'(x) = 0}.
The image set f(Ay) is contained in a Borel set with Lebesgue measure 0.

Proof. We first recall the following Vitali covering theorem stated for R [17, Theorem 5.5.1]. Let
E C R be an arbitrary set. A fine covering of F is a collection F of compact intervals such that
for every x € F and € > 0, the exists an interval I € F in the collection that contains z and has
length less than €. The Vitali covering theorem asserts that we can extract from any fine covering
of E a sub-collection of at most countably many intervals 7' = {I;,j € J} C F (J C N) such that
L,NIL,=0ifm+#ne.Jand LY(E\Ujesl;) =0.

Fixane > 0. For x € Ay, there exists a positive number 6, > O such that 0 < x—d, < z+d, <1
and |f(z + h) — f(z)| < ¢|h] if |h] < 6. Consider the following fine covering F of f(As(E)). To
define F, we associate x with the intervals [f(z) —eh, f(x) +eh] for all 0 < h < d, i.e.,

Fo= |J{lf@) —ch, f(x) +ch] CR|0 < h <5}
T€Af

By the Vitali covering theorem, there exists an at most countable subfamily of pairwise disjoint
closed intervals, ' := {I; := [f(z;) —ehj, f(z;) + €hj], j € J} C F, that covers the set f(Ay)
up to a negligible set. For j € J, define A; := [z; — h;,x; + h;]. We claim that for k # [ € J,
the two intervals A, and A; are disjoint. Indeed, if y € A N Ay, then |f(y) — f(zx)| < €hi and
|f(y) — f(x;)| < ehy, and thus

f(y) € [f(zr) —ehw, f(ar) +ehe] N [f(z1) — € hi, fa1) + € hil,
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which contradicts the property that F’ is a family of pairwise disjoint closed intervals. Therefore,
our claim is proven. Since A; C [0,1] for j € J, we have } . ; A(A;) < A([0,1]) = 1, which implies

c(fAp) < MU L) =X 2h, = £MA) <=,

JjeJ jeJ jEJ

where £* denotes the outer measure of the Lebesgue measure £! on R. Since £ > 0 is arbitrarily
chosen, we have £'(f(Af)) = 0, which concludes the proof. O

The symmetry between a probability measure and its dual is not yet fully exploited, partially
due to the discontinuity of distribution functions. To overcome this, we employ the Minty param-
eterization, introduced in [74, §3] and further explained in [36, B of Chapter 12], which transforms
monotone (possibly multivalued) mappings into 1-Lipschitz functions. This allows us to express the
symmetry between dual measures in terms of Wasserstein barycenters, which will be illustrated by
figures later (Remark 6.41).

Proposition 6.39 (Symmetry between dual measures). Let p be a probability measure supported
in the unit interval [0, 1]. Denote by w:= L 1) the uniform probability measure on [0,1] and by by
the unique barycenter of %5u + %5;. The probability measure b, := 2u— by is the unique barycenter
of %511 + %5,“ and the distribution function fy, of by is the optimal transport map pushing forward
b, to p,

Proof. Note that the barycenter measure by is absolutely continuous since so is the measure u.

Since the distribution function f,, of u coincides with the identity function on [0, 1], we have L = u.

It follows from the formula of Wasserstein barycenters on R (Theorem 6.18) that f— = % fut % fu-
I

We first show that b, := 2u — by is a probability measure, which is equivalent, after passing to the
distribution functions, to prove that, for any 0 <z <y < 1,

for (y) = fo, (x) <2y — 22 (6.17)

Fix z,y € [0,1] such that # < y. Define B := {t € [0,1] | < f—(t) < y}. By Lemma 1.38,
by = [fb_ﬁl]#u, which further implies by = [f(;]#u and thus fo (y) — fo,(z) = uw(B). If B is empty,
then (6.17) holds trivially. It remains to consider the case that B is non-empty, which implies

fo,(y) — fo,(x) =sup B — inf B. (6.18)

By definition of B and the right-continuity of f— = % fu+ % fus
I

. 1, 1, .
z < fg«ﬂ(lnfB) = §1nfB + §fu(1nfB).

Moreover, for any t € B, since f,, is non-decreasing,

1 1 . 1 1
it + if#(me) < it + ifu(t) = f@(t) <,
which implies %supB + %fu(infB) < y. Therefore, (6.18) implies

Joa(y) = fo,(x) =sup B —inf B <2y — f,(inf B) — 22 + f,(inf B) < 2y — 2z.
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Since x,y is arbitrarily chosen and (6.17) is proven, b, = 2u — by is a probability measure. Note
that b, is absolutely continuous since by is so.
We now show that dy (u, b,) = dw (b, ). Since by is atomless, [fy,]4b; = u according to
Lemma 1.38. As fy, = fg_tl for u-almost everywhere, Lemma 1.38 also implies that | fbﬁ]#u =
i

[fE_jl]#u = E,; Hence, [fo,]#(b.) = [fo,lp(2u —bz) = 26; —u = p thanks to the equality

fg; = % fu+ % fu- As b, is also an atomless measure and its distribution function is 2fy — fo,

[2fu — fo,]#(bu) = u by Lemma 1.38. Since both f,. and 2f, — fe, are non-decreasing functions,
they are optimal transport maps pushing forward the measure b, to measures ;1 and u respectively.
Therefore,

1 1
dw (u, b,,)> = / 2fu(@) = fo, (2) — 2 d by, (x) = / [Fu = fo, 2 db, and

1 1
duw (b, u)2:/0 |x—fbﬁ<x>|2dbu<x>=/0 fu — fo P db,,

which implies dyw (u, b,) = dw (b, n).

Consider the map g := fp, o fb_ul. Since g is non-decreasing and gxu = [fp_ |x(b,) = i, g is
the optimal transport map pushing forward u to u. Since by, is atomless, fp, o fb_u ! is the identity
function on (0, 1) by Corollary 1.39. Hence,

(Id,g)#u = (fbu ° f[;}vfbp ° f&l)#u = (fbuvfbﬁ)#(bu)

is the optimal transport plan between u and p. Since b, = 2u — by, we have fy, = 2fy — fo, and
thus

1 1
oy (u, ) = / 12fu(@) — fon (2) — fo, (@2 dbu(z) = 4 / [ — fo, 2 b, = 4duw(u,b,)>.
Note that for any n € Wh(R),

1 1 1 1
S @w (W m)? + Sdw (n,w)* = [Sdw (wn) + Sdw (0, w)]* > dw (u, p)?,
which becomes an equality if 7 = b, since dw (u, b,) = dw (b,,, ) = 2dw (u, ). It follows that by,

is the unique barycenter of %&L + %cﬂt. O

Having established the necessary background, we are now in a position to prove the following
characterizations of singular measures.

Theorem 6.40. Fiz a probability measure p supported in the unit interval [0,1]. Let u:= £1|[0’1]
be the uniform probability measure on [0,1]. Denote by 1 the dual measure of n and by by the
unique barycenter of %511 + %5,7. The following statements are equivalent.

1. The measure p is singular, i.e., p and W are mutually singular.
2. The total variation norm of the complex measure W+ i is 2.

3. The function Vg, : [0,1] — R that sends x € [0,1] to V. (x) :=  — fy,(x) is a 1-Lipschitz
function and the length of its graph is /2.
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4. by is the restriction of 2u on some measurable subset of [0,1] of Lebesgue measure 1/2.
5. The dual measure [i is singular.

Proof. The equivalence between Statement 1 and Statement 2 is proven in [10, Proposition 5.4.4
(a)]. For completeness, we repeat the part of their proof demonstrating that Statement 1 implies
Statement 2. If p and u are mutually singular, then by definition [17, Definition 3.2.1] there
exists a measurable set © C [0,1] such that w(2) = 1 and p([0,1] \ Q) = 1. By refining any
finite partition 7 of [0,1] such that for A € m, either A C Q or A C [0,1] \ 2, we obtain that
lu+ipllry = ha(@)] + i (0,1 \ Q)] = 1+ 1 = 2.

For Statement 3, before proving its relations with other statements, we exhibit the following
properties of bz and Vy . Since b, := 2u—by; is a probability measure according to Proposition 6.39,
fo, is a 2-Lipschitz function (c.f. (6.17)). It follows by direct calculation that Vs, = fu — fo, is a
1-Lipschitz function. Note that the barycenter measure by is absolutely continuous since u is so.
Denote by h the density function of by, i.e., bz = h-u. The length of the graph of Vg, is

[ o= [ Viraemrau= 2 [ v e

1t ) 1 .
:ﬁ/o h+i(2 = Bl du = —=lbg +i8,lrv.

where for the last equality, we applied Lemma 6.37 to the equality b;+ib, = (h+i(2—h))-u. Since
bz is atomless, [fy.]4bz = u by Lemma 1.38. Moreover, Proposition 6.39 implies [fo]4(b,) = p.

We prove that Statement 2 implies Statement 3. To avoid confusion, for a subset A C [0,1],
we denote by [fy.] 7' (A) the pre-image of A under the map fe,, which is not necessarily the image
set fb_ﬁl(A) of A under the map fb_ﬁl. Recall that for any two subsets A, B C [0,1], [fo,]"(4) N
[fbﬁ]’l(B) = [fbﬁ]*l(A N B) and [fbﬁ]’l(A) U [fbﬂ]’l(B) = [fbﬁ]’l(A U B). Hence, for a given
disjoint partition m = {Ay, As,..., Ax} of [0,1] with finitely many measurable sets {A;}1<;<xk,
7' = {[fe,] T (A1), [fo,] 7 (A2),. .-, [fo,] ' (Ak)} is also a disjoint partition of [0,1]. It follows
from [fh,;]#bﬁ =u and [fbﬁ]#(bp) = u that

D () +ip(A) = Y Joa(A) +ibu(A)]. (6.19)

Aem Alern!

Since (6.19) holds for arbitrarily chosen partition 7 and [V;_| <1, if Statement 2 is true, then

1 . 1 ) !
Va= St iply < g ity = [0 Paus v

which implies Statement 3.

Assuming that Statement 3 is true, we prove Statement 4 as follows. Since Vy, is a 1-Lipschitz
function, Statement 3 implies that |V{,ﬂ| = |1 — h| =1 for u-almost everywhere. Hence, the density
function h of by satisfies that for u-almost every x € [0,1], h(z) is either 0 or 2, which implies
Statement 4.

Assume that Statement 4 is true. Consider the distribution function f,; and define Ao := {z €
(0,1) | féﬁ(x) =0}, Az := {x € (0,1) | féﬂ(a:) = 2} and Q := [0,1] \ (Ap U A2). Statement 4
implies that u(Ag) = u(As) = 3, u(Q) = 0 and bz = 2u|a,. Consider the measure b, := 2u — bj.
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According to Proposition 6.39, b, is the barycenter of %51; + %%. Moreover, since p is the dual
measure of i and bz = 2u — b, applying Proposition 6.39 again, we obtain [fe,]4#bz = . Since
the derivative of fy, = 2fy — fo, exists at points in Ay with value 0, Proposition 6.38 implies that
there is a (Borel) measurable set X C [0, 1] such that f,,(A2) C X and w(X) = 0. As bz = 2u/a,
and Az C [fo,]71(X),
A(X) = ba([fo, )71 (X)) > 2ula,)(A2) = 1,
which implies gz and u are mutually singular, i.e., Statement 5.
We have now shown that

Statement 1 — Statement 2 — Statement 3 — Statement 4 — Statement 5.

Since p is the dual measure of f1, by applying the above statements to the measure g in place of p,
it follows that Statement 5 implies Statement 1. O

Remark 6.41. To explain the relation between measures ;v and by in Proposition 6.39 and Theo-
rem 6.40, we illustrate some geometric operations in Figure 6.4.

A A

|
° / Vo, = fo, — fn
'\/*—4 Vo = fn — fof 1 1 g

(a) Rotate and scale f,, to obtain Vs, (b) Rotate and scale fz to obtain Vy,

Figure 6.4: Geometric interpretations for ; and by

For measure 1, we represent the graph of its distribution f, using the image of the complex
us

curve I')y = fu +if, :t€[0,1] — t+i f,(t). By rotating I, with degree —% and then scaling it

with factor ?, we obtain

in 1 1 1 1
e 4. F“ t— §t+ if#(t) +1 [(it + §f/t(t)) - t} (620)

o[

The measure by, denoting the barycenter of 6,416z, is introduced to simplify the term $t+3 f,,(t).
Since fi- = 1t+1f.(t), (6.20) can be equivalently written as s — fo=(s) +i(f;=(s) —s). With the
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intuition that fs is approximately the inverse of fg; in mind (c.f. Corollary 1.39), we apply the “re-
parameterization” (not bijective in general, and thus not rigorous) that replaces the pair (s, f@ (s))
with (fe,(t),%). With the new parameterization, (6.20) becomes t € [0, 1] + ¢+ (t — fo . (t)), which
also represents the graph of Vg, : ¢ — t — fp_(t). Therefore, approximately speaking, Vj can be
obtained by rotating and scaling f,,.

To explain the geometric meaning of Proposition 6.39, we consider the function Vy, : t —
t — fo,(t) = fo,(t) —t, where b, := 2u — by. With the preceding re-parameterization, its graph
becomes

S st () +ils - (hs et 2 Aulo)]

Applying the “re-parameterization” that replaces (s, f,.(s)) with (fz(t),t), we obtain

1 1 1 1
ts —t+ = falt) +i[(5t+ = fa(t) —t
HQ +2fu()+l[(2 +2fu( )) =t
which is g cem T -I'z. Therefore, b, is the barycenter of %&L + %6# according to the relation

between f,, and Vg, that we deduced in the preceding paragraph. Using the rotation of angle —7,
Proposition 6.39 translates the symmetry between f,, and f; with respect to the line y = x into
the symmetry between Vy, and Vp, with respect to the z-axis.

As for Theorem 6.40, the equivalence between Statement 1 and Statement 2 relies on the fol-
lowing idea: the length of the plane curve, obtained from the map t — (¢, f,(¢)) by connecting
discontinuity points of f,(t) with segments, is equal to the total variation norm ||u+ ¢ y||7v, which
can reach the maximum value 2 if and only if u, u are mutually singular. The equivalence between
Statement 2 and Statement 3 follows directly from the geometric relation between the graphs of f,
and ng-

6.4.2 Rigid properties

Let pp be the unique barycenter of some probability measure P € Wo(Ws(RR)). A measure property
Q of up is a rigid property of Wasserstein barycenters on R if pup possessing the property Q implies
that for P-almost every v, v also has property Q. For example, Proposition 6.29 shows that having
compact support and being a Dirac measure are two of the rigid properties. In this subsection, we
prove some rigid properties of barycenter measures related to singularity, applying the theory of
dual measures.

Some results proven in the preceding subsection 6.4, though stated for dual measures, can be
applied in a wider context via the Lebesgue decomposition theorem. Let us first clarify the definition
of singular functions.

Definition 6.42 (Singular functions and jump functions). Let F : I — R be a real function
defined on an interval I C R. F is a singular function if its derivative exists and is equal to 0 almost
everywhere (with respect to the Lebesgue measure £'|;). F is a jump function if it coincides with
the distribution function of a discrete measure p on R up to a constant, i.e., F' — f,|r is a constant
function on I, where p is not necessarily a probability measure while f,(t) = p((—o0,t]).

We now state a particular case of the Lebesgue decomposition theorem for monotone functions
[17, Theorem 5.4.5], which is particularly applicable to quantile functions restricted to (0, 1).
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Lemma 6.43. Let g : (0,1) = R be a right-continuous and non-decreasing function. It can be
uniquely written as follows, _
g=9"“+9"+¢, (6.21)

such that g*¢, g°¢, g°® are three non-decreasing functions defined on (0,1) satisfying
1. g*¢ is absolutely continuous with g*¢(t) = Otg’(s) ds;
2. g°¢ is singular and continuous;
3. ¢’ is a right-continuous jump function with lim, o ¢’ (t) = 0.
Alternatively, we can also uniquely decompose g as the sum of two non-decreasing functions,
9=9"+¢, (6.22)
such that g° is a continuous function and g7 satisfies the previous requirement.

Proof. The existence of the decomposition (6.21) is explicitly constructed in [63, Corollary to The-
orem 5.7.1] or [10, Theorem 5.4.1, Theorem 5.4.3]. In particular, ¢’ is defined as follows,

7= ¥ Jols) - tmata)|. vee ). (6.2

0<s<t

For the existence of (6.22), it suffices to set g¢ := ¢g%¢ + g°°.

As for the uniqueness of (6.21), we assume that g = h®® + h*¢ + h7 is another decomposition
satisfying the same requirements. The equality h?® = ¢ is trivial. By Definition 6.42, h/ — ¢’
is the difference of two distribution functions of discrete measures up to a constant. Hence, being
continuous, b/ — g/ = ¢°¢ — h*¢ is forced to be a constant function. It follows from lim o h?(t) =
lims o g7 (t) = 0 that i/ = g7, which furthers implies h*¢ = g*¢. The uniqueness of the decomposition
(6.22) can be proven similarly. O

With the help of Lemma 6.43, we characterize singular measures on R as follows.

Proposition 6.44 (Characterization of singular measures on R). Let p be a probability measure
on R. Denote by f;1|(0’1) = g% + ¢°° + ¢/ = g° + g7 the decomposition of its quantile function as
in Lemma 6.43. The measure u is singular if and only if f;1|(0’1) is a singular function, i.e., g*¢
is a zero function. The support of p is negligible if and only if f[:1|(0)1) is a jump function, i.e., g¢
is a comstant function.

Proof. By Lemma 1.30, f 1|(071) is a real-valued right-continuous and non-decreasing function,
which allows us to apply Lemma 6.43.

To prove the proposition, we first consider the case when p is supported in [0, 1]. Theorem 6.40
states that pu is singular if and only if i is singular, which is also equivalent to that fu 1\(071) is
singular by Definition 6.42. By the same arguments, Proposition 6.33 implies that p has negligible
support if and only if f; |1y is a jump function.

We now consider the general case that p is a probability measure on R. Fix an interval I := (a, b
such that u(I) > 0. Consider the map Q' : (a,b] — [0,1] defined by Q(x) := #=2. Define the
measure

1
vy = m@l#[ﬂ‘(a,b]]a
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which is obtained by first transforming s, into the measure Q' [ul(q4] on [0,1] and then
normalizing it as a probability measure. Note that vy is singular if and only if (4, is so; and vy
has negligible support if and only if y1(, 5 does so. By definition of vy, for x € [0, 1],

1
fu, (@) = m [fu(z(b—a)+a) - fu(a)].

According to the definition f, () := inf,{z € R | f,,(z) >t} for t € (0,1), we have

F(0) = 2 [ (D) + fula) —a], VE€ 0.

In particular, f, ' is singular if and only if f; | (s, (a).f, (4] is singular; f; ' is a jump function if
and only if f;l |(f.(a),7,.(v)] 18 @ jump function. Since v7 is a probability measure supported in [0, 1],
it follows from the previously proven case that | s is singular if and only if f 1|( Fula),fu(b)] 18
singular; the support of p|(4p) is negligible if and only if f;1|(fu(a)7f“(b)] is a jump function.

Since the interval I = (a, b] satisfying u(I) > 0 is arbitrarily chosen, our proposition is proven
after choosing a collection of such intervals covering the support of u. O

Measurability related to quantile functions

Giving P € Wo(W»(R)), Proposition 6.44 inspires us to analyze the singularity of barycenters up
and measures v € supp(P) via the decomposition of quantile functions. For example, with the
decomposition f; |1y = g5 + gJ given by (6.22), it is natural to deduce for ¢ € (0,1) that

o= predre = [ godee s [ gndee. e
Wa(R) W2 (R) Wa(R)
However, to rigorously justify (6.24), we must show that the function v — ¢<(t) is measurable so
that its integral against P is well-defined. In this subsection, we shall prove some measurability
properties related to quantile functions.

While the measurability of v ~ f, () is already proven in Lemma 1.35, the measurability
of v — ¢&(t) is still non-trivial. In the following proposition, we use notation from the domain of
stochastic processes, since its proof is extracted from the related literature. We refer to[28, Theorem
8.1.23], [33, Theorem 3], [18, Theorem 3.42 of Chapter III] or [53, Theorem 2.1.37] for the standard
statement of this proposition, which is proved for adapted stochastic processes with finite variation.
For simplicity, some technical details are left out to the classic reference [51].

Proposition 6.45. Let (Q,F) be a measurable space. For each w € €, we associate it with
a non-decreasing and right-continuous function g, : (0,1) — R. Denote by g, = g5 + g/, the
decomposition of g, as in Lemma 6.43. For t € (0,1), we define two functions Xy : (Q,F) = R
and Yy : (Q,F) — R by setting

X (w) :=gu(t) and Y(w):=gl(t).
If X; is F-measurable for allt € (0,1), then Y; is F-measurable for all t € (0,1).

Proof. We say a function defined on (2, F) is measurable if it is F-measurable. To fit our proposition
correctly into the settings of stochastic processes, we choose an arbitrary interval [a,b) satisfying
0 < a < b<1and re-define

X=X, Y, =Y, fort€[0,a] and X,:=X, Y;:=Y, for s € [b,+o0),
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which allows us to regard X; and Y; as functions on (€2, F) indexed by R. Moreover, we consider the
constant filtration {F; };>¢ with F; := F. In the following arguments, by deducing the measurability
of {Y;}1>0 from the measurability of {X;};>0, our proposition is also proven since the preceding
interval [a, b) is arbitrarily chosen.

For ¢ > 0, define functions X;_ : (2, F) - R and AX; : (Q,F) — R by setting

Xi—(w) := lgrths(w) and  AXy(w) = Xp(w) — Xi— (w).
Moreover, we further define Xy := Xy and AXy := Xg — Xo— = 0. According to the definition
(6.23) of g, Vi = >, AX, for any ¢ > 0.
Fix ¢ > 0. The measurability of Y; is proven by constructing a sequence of measurable functions
Sp (2, F) = (0,1), n € N*, such that their graphs graph(S,) := {(w,s) € 2 x (0,1) | s = S, (w)}
are pairwise disjoint and cover the set {AX # 0}, i.e.,

{(w,5) € 2 x (0,1) | AX(w) # 0} C | graph(S,). (6.25)

n>1

The explicit construction of {S,}»en= can be found in [51, Proposition 1.32 of Chapter I], and we
skip it for simplicity. Since a non-zero term in the sum ) ,_ ., AX,(w) must be one of AXg, (,,)(w)

according to (6.25), it follows from the relation S;(w) # S;(w) for ¢ # j that

> AX (W) =Yi(w) =D AXg, ()W) Igs, <y (w).

0<s<t

Hence, we are left to show that w — AXg, (,)(w)lig, < (w) is measurable. In the context of
stochastic process, it is equivalent to show that the stopped process AXS» is adapted, which holds
[51, Definition 1.20, Proposition 1.21 and Corollary 1.25 of Chapter I] thanks to our assumption
that functions f,, for w € €2, are non-decreasing and right-continuous. O

We also need to deal with the measurability involving total variation.

Definition 6.46 (Total variations of functions). Let [a,b] C R be a compact interval and let
f :[a,b] = R be a function defined on it. We define the total variation of f on [a,b] as

N-1
Vo (f) = sup D 1 (ti) = fE), (6.26)

a=to<t1<---<tn=b i—0

where the supremum is taken over all partitions a = tg < t; < -+ < tiy = b of the interval [a, b].
We say that f is of bounded variation on [a, b] if V.2(f) < +oo0 is finite.

Note that uncountably many partitions are compared in the supremum (6.26), and thus pose the
problem of measurability when we consider the total variations of a family of functions. However,
for right-continuous functions, it suffices to consider only countably many partitions, a widely used
conclusion when we consider the variation of stochastic processes [51, Proposition 3.3 of Chapter I]
[33, Proof of Theorem 4] [418, Proof of Theorem 3.44] [28, Remark 8.1.10]. We prove it for the case
[a,b] = [0,1] in the following lemma to clarify the details.

102



Lemma 6.47. Let f : [0,1] — R be a right-continuous function with bounded variation. For
n € N*, define
k: + 1 k

Then lim,, 00 Qn(f) = V3 (f).

Proof. By triangle inequality, @, (f) is increasing in n. Since Q,(f) < Vit (f) by definition (6.26),
the limit lim, oo @, (f) exists and lim,, oo Qn(f) < Vi (f). Therefore, it suffices to show that
given any partitions 0 =ty < t; < --- <ty =1 and € > 0, there exists m € N*, such that

N-1

D f(tivn) = F(t)] < Qu(f) + ¢,

=0

as the right-hand side is always dominated by lim,, .. @, (f) + €. Since f is right-continuous, we
may choose m sufficiently large such that for any i=1,2,..., N —1, there exists k; € N* such that
ti < ki/2™ <tip1 and |f(ki/2™) — f(ti)] < 5577+ By further setting kn := 1, we obtain from the
triangle inequality that

i i ki k;
Pt = 1< 1) = )]+ 17D — F)| 4 1) — £
ki1 ki 2¢
— 1P - fGo) + 5
It follows that
i z+1 ki 2Ne
;| (tit1) — |<Z|f *)|+W<Qm(f)+6,
which concludes the proof. O

We are now ready to prove the following two rigid properties.

Barycenter measures with negligible support

In the following proposition, we prove that having negligible support is a rigid property, and Propo-
sition 6.45 is employed to ensure the measurability for the equality (6.24).

Theorem 6.48. Let P € Wo(Wh(R)) be a probability measure on Wa(R). If the support of its
barycenter up is negligible, then for P-almost every v, the support of v is negligible.

Proof. For each v € WQ( ), we apply the decomposition (6.22) to its quantile function f,, and
obtain f, 0,1y = g5 + gi. For each ¢ € (0,1), Since v — f,*(t) is measurable for each ¢ € (0,1),
Proposition 6.45 guarantees that the functions v +— ¢/ (¢) and thus v +— g¢S(t) are measurable. It
follows from the barycenter formula (6.6) that

mﬂw:/ ﬁ@dﬂw+/ A1) dPw), Vie (0,1). (6.27)
Ws(R) W (R)
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We remark that in the above equality, both sides are finite thanks to Lemma 1.30. We claim that the
function F*°: (0,1) — R defined by F°(t) := fWQ(R) 95(t) dP(v) is a constant function. Since g¢ is
continuous and non-decreasing, F° is also continuous and non-decreasing according to the monotone
convergence theorem (c.f. proof of Theorem 6.18). Consider the function F7 := [}, ® gl (t)dP(v)
defined on (0,1). Since F7 is non-decreasing and right-continuous, (6.22) implies the decomposition
FJ = he+hi. Hence, f,.'01) = (F°+h¢) + h, which is a valid decomposition of the form (6.22).
According to Proposition 6.44, F'°4 h¢ must be a constant function, which further implies that both
F¢ and h¢ are constant functions since they are non-decreasing. Therefore, our claim is proven.
Since the integral of non-decreasing functions, F°(t) = fW2 ® g95(t) dP(v), is constant, ¢S is a
constant function for P-almost every v. Hence, our proposition follows from Proposition 6.44. [

Singular barycenter measure

As stated in Proposition 6.44, a probability measure on R is singular if and only if its quantile
function is singular on (0,1). Hence, we begin with a criterion for singular functions via total
variation. In this subsection, the map Id refers to the identity function on (0, 1).

Lemma 6.49. Let f: (0,1) — R be a right-continuous and non-decreasing function. The function
f is singular if and only if for any compact intervals [a,b] C (0,1),

VE(f —1d) = VO(f +1d) = f(b) — f(a) + b — a.

Proof. The equality V(f +1d) = f(b) — f(a) + b — a follows directly from Definition 6.46 since f
is non-decreasing. Denote by f = g% + ¢°¢ + ¢/ the decomposition (6.21) of f. Hence, we obtain
the following re-writings,

fHId= (¢ +1d)+ ¢ +¢’ and f—1Id= (¢ —1Id)+g° + ¢,

whose restrictions to [a, b] correspond to the decomposition of a function of bounded variations as a
sum of an absolutely continuous function, a singular and continuous function and a jump function.
A classic result on total variation [67, Corollary 3.90], which can be deduced from the corresponding
decomposition of signed measures [10, Theorem 5.3.6, Theorem 7.5.10], implies that

b
Vab(erId):/ 1 (2) + 1| d + V2 (g™) + VE(g),

b
VA1) = [ 1f @) = 1lda 4 Ve + V).
Therefore, V2(f +1d) = V2(f — 1d) is equivalent to |f'(x) — 1| = |f'(z) + 1| for L£L'-almost every
x € [a, b], which is further equivalent to f’(x) = 0 almost everywhere. O

One advantage of Lemma 6.49 is its compatibility with integrals as illustrated by the following
lemma, allowing us to apply it with the formula of Wasserstein barycenters on R,

Lemma 6.50. Let (0, F, u) be a probability space. Let f:Q x (0,1) = R be a function such that
for each w € Q, the function f, : t — f(w,t) is right-continuous on (0,1), and for each t € (0,1),
the function w — f(w,t) is F-measurable. Then, for any sub-interval [a,b] C (0,1),

v ( / fwdu(w)> < [ Vi) an). (6.28)
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Proof. The measurability of the function w + V’(f.,) is guaranteed by Lemma 6.47. We are
left to show the inequality (6.28) for the case that the right-hand is finite. Given a partition
a=1tyg <ty <--- <ty =", since

NZ_) [ rtsinano) - [ riane)| < Z/m 1) = Lot d )
< [ Vi) aue.

(6.28) follows directly from Definition 6.46. O

With the above technical preparations, we are ready to show that being singular is a rigid
property of Wasserstein barycenters.

Theorem 6.51. Let P € Wo(Wh(R)) be a probability measure on Wa(R). If its barycenter pp is
singular (with respect to L), then for P-almost every v, v is also singular.

Proof. Proposition 6.44 reduces our task to showing that f,* |(0,1) is singular for P-almost every v.
Thanks to Lemma 6.49, it suffices to fix an arbitrarily chosen compact interval [a,b] C (0,1), and
then prove that

VIt —1d) = VO(f, 1 +1d)  for P-almost every v. (6.29)

Applying Lemma 6.50 with the formula of Wasserstein barycenter on R (Theorem 6.18), we

obtain
Vo(fn —1d) =V S dP(v) —1d
a ( Hp ) a (/WZ(R) fz/ ( ) )
<[ vt ewdre) < [ VI VI ARE)  (630)
W2 (R) Wa(R)

=/ [£710) = £ (@) +b— a] dP() = £1(b) — £} () +b—a
W2 (R)
= V2(fn! +1d),

where we used that quantile functions are right-continuous (for the right-continuity of f, —Id) and
non- decreabing (for the calculations of total variation). Since pp is singular, Lemma 6.49 implies
Vo (fio uu» —1d) = Vb(fmp + 1d), i.e., the inequalities (6.30) must be equalities, which proves the

statement (6.29) and thus the theorem. O

6.5 Singularity at vertices

For Wasserstein barycenters on metric trees, Theorem 6.28 proves their almost absolute continuity,
drawing our attention to their singularity at vertices, a feature that marks a fundamental difference
from the real line R. The aim of this subsection is to deepen our comprehension of how the distinct
branching structure of metric trees shapes barycenter properties, and to illuminate the potential for
extending established results from R to this setting. Recall that Ry = [0, +00) and R_ = (—o0, 0]
are two half axes containing the origin point.
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Necessary conditions for singularity at vertices
We begin with a necessary condition for barycenters to be Dirac measures on vertices.

Lemma 6.52. Let ' = (V, E,d;) be a metric tree. Fix a verter v € V and an oriented edge
€ = {v,w}. Let P € Wo(Wa(T')) be a probability measure such that up = 0, is a barycenter of P.
Denote by T : Wa(T') = Wh(R) the push-forward map associated to € (Definition 6.20). Then the
unique barycenter pg of Q := T4P is supported in the half azis R_.

Proof. Since pp is supported in €, Lemma 6.26 is applicable. As f;(lw) is the constant function
with value 0, Lemma 6.26 implies f,, < 0, which concludes the proof by Lemma 1.33. O

We can generalize Lemma 6.52 via the restriction property of Wasserstein barycenters (Propo-
sition 5.2). Let us first prove the following property.

Proposition 6.53. LetT' = (V, E,d;) be a metric tree. Fiz an oriented edge € of I' and a probability
measure P € Wo(Wa(I')). Denote by T : Wa(I') — Wh(R) the push-forward map associated to €
(Definition 6.20). Let F : Wa(T') — Wh(T') be a measurable map such that F(v) is absolutely
continuous with respect to v. Then the barycenters of Qq := TxP and Qg := [T o F|4P satisfy

Conv (supp(pg,)) € Conv (supp(uq,)) ,
where Conv(A) for A C R denotes the convex hull of A.

Proof. We first prove the claim that for v € Wu(T'), T o F(v) is absolutely continuous with respect
to 7(v). Recall that 7 is indeed a push-forward map. Denote by T : I' — R the reduction
map associated to € (Proposition 6.19). For A € B(R), if T(v)(A) := v([T€]~'(A)) = 0, then
T o F(v)(A) := F(v)([T¢]~*(A)) = 0 since F(v) is absolutely continuous with respect to v. Hence,
the claim is proven, which implies supp(7 o F'(v)) C supp(7 (v)).

We now prove our proposition for the case that g, has compact support, which is reduced to
the following inequalities according to Lemma 1.33,

L) 2 £ 0)> =00 and £l (1) < £ (1) < 4oc (6.31)

By Proposition 6.29, for P-almost every v, F(v) has compact support since the barycenter of
Q; = FxP does so, which further implies

Frapa)(0) 2 f7,)(0) > =00 and  frlp, (1) < fr,, (1) < +oo, (6.32)

thanks to the inclusion supp(7 o F'(v)) C supp(7(v)) and Lemma 1.33. By Theorem 6.18, for
t €10,1],

fl () = /Wm Frlpoy®dP@)  and £l (1) = /Wzm Fr (B AP().

Hence, (6.31) follows from the inequalities (6.32). As for the case that supp(ug,) is not compact,
either we have Conv (supp(ug,)) = R and the proposition is trivial, or it suffices to prove one
inequality in (6.31) according to Lemma 1.33, which can be done via similar arguments as above. [

The map F : Wh(I') — Wh(T') in Proposition 6.53 is provided by Proposition 5.2. In the
following proposition, we also demonstrate how to leverage the explicit construction of F.
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Theorem 6.54. Let I' = (V,E,d;) be a metric tree. Fiz a vertex v € V and an oriented edge

€={v,w}. Let P € Wo(Wi(T")) be a probability measure such that it has a barycenter up satisfying
pup({v}) > 0. Denote by T : Wa(T') = Wh(R) the push-forward map associated to € (Definition 6.20)
and define Q := TxPP. Then the unique barycenter pug of Q satisfies

pg(R-) > 0.

Proof. The case that pp({v}) = 1 follows directly from Lemma 6.52. Define X := pp({v}). We are
left to prove our proposition for the case 0 < A < 1. Consider the decomposition pup = A pu!+(1—\)u?
with p! = §, and p? € Wu(T). Proposition 5.2 provides a measurable map F : Wy(I') — Wy(T)
such that &, = pu' is a barycenter of FuP and

VveWsa(T), v=AF)+ (1 -\v? with v%cWy(I). (6.33)
According to Proposition 6.53, the barycenters of Q = TxP and Q' := [T o F|4P satisfy

Conv (supp(ug)) C Conv (supp(ug)) - (6.34)

Since 6, is a barycenter of FxP, Lemma 6.52 implies that

supp(yugy) C R_.

We prove by contradiction that pug(R-) > 0 and assume now that pg(R_) = 0. Denote by
T¢ :T — R the reduction map associated to € (Proposition 6.19). Since supp(ug) C Ry, (6.34)
implies that supp(ng/) € R NRy = {0} and thus pug = dg. Moreover, according to Lemma 1.33,
po(R_) = 0 and the inclusion (6.34), i.e., {0} C Conv (supp(ug)), imply that f;Ql (0) = 0. Since
pg = do is a barycenter of Q" = [T o F|4P, Proposition 6.29 implies that Q' is supported in Dirac
measures. Hence, for P-almost every v, q, := f;iF(”) (0) € R is finite and T o F(v) = dg, is a Dirac
measure, which further implies

T e} =v (19 @) 2 AF0) (197 1@) = ATo F){ah) =X (6.35)

where we applied (6.33) for the above inequality. Since f’@ll (0)=0= f;@l(()), Theorem 6.18 implies

o - v)=9v= - V). .
/WQ(F) fToF(V) (O) d]P)(V) - /W2 (F) qu d]P)( ) O /W2(F) fT(,/) (O) d]P’( ) (6 36)

According to (6.35) and Lemma 1.33, for P-almost every v, f7i(1y)(0) < q,, which further implies
f;(ly)(O) = ¢, thanks to (6.36). Therefore, for P-almost every v, T(v) is supported in [g,,+00)
with 7(v)({g,}) > A > 0, which implies f;(ly)(%) = ¢, by definition of quantile function. Hence,
by Theorem 6.18,

0= 50O = [ adPw)= [l aRe) = 11,
Wa(I) w02 He 2

which implies 1g({0}) > 5 > 0, a contradiction to the assumption that pug(R_) = 0. O
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Dirac measures at vertices as barycenters

The reduction technique for Wasserstein barycenter problems on metric trees might seem to offer
only an edge-dependent perspective. However, by comparing the barycenter problems reduced to
R by different push-forward maps (Definition 6.20), we gain significant insight into the original
problem. The following technical but crucial proposition provides such an example, where we
consider two edges with opposite orientations. To impose opposite orientations on two edges (see
Figure 6.5), we label vertices via simple paths. Recall that the simple path from one given vertex
to another one is unique up to transitions of its domain (c.f. proof of Lemma 6.6).

Proposition 6.55. Let I' = (V,E,d;) be a metric tree. Let ey = {vi,w1},ea = {va,wa} be
two different edges of I'.  We label the vertices of e1,es such that by restricting a simple path
from wy to wa, we can obtain a simple path from vy to va. Denote by T1, Tz : Wa(T') — Wh(R)

respectively the push-forward maps associated to {vy,w1} and {ve,ws} (Definition 6.20). Fiz a
measure P € Wo(Wa (L)), denote by pq, , pig, respectively the unique barycenters of Qi := TP and
Qs := TQ#P-

Assume supp(pg,) C Ry and supp(pg,) C Ry. Then ug, = pg, = do, and the edges e; and ez
share a common vertex v = vg.

Proof. Thanks to the way how we label the vertices vy, vq, w1, w2, we can divide measures in the
support of P into three groups. The first group corresponds to measures, excluding ¢,,, whose
images under 77 are supported in R;. The second group corresponds to measures, excluding d,,,
whose images under 75 are supported in R;. The third group collects all measures not included in
the preceding two groups. In other words, we write

P =\ Py + Ao Py + A3 Ps, (6.37)

where Py is supported in A; := T, '[Wa(RT) \ &), P is supported in Ay := T5 *[Wa(RT) \ &,
A1 :=P(A1), A2 :=P(As), and A3 := 1 — A1 — A2. To uniquely determine (6.37), we further require
that Py = 0y, if A1 = 0, Py = §y, if Ao = 0, and P53 = %6,}1 + %(51,2 if A3 = 0. To show that
Ay and A, are disjoint, we note that if a measure u € Wh(T') satisfies supp(71(p)) € R* and
supp(72(p)) € RT, then u = d,, = J,, by our labelling of the vertices, which implies A1 N A3 = 0.
According to Lemma 1.33,

Av:={p e Wa(D) | f7,7,)(0) = 0 and fri, (1) # 0},
As :={pnenWy(T) | f7_-21(#)(0) > 0 and fﬁl(#)(l) # 0}.

In particular,
pesupp(Py) = fr,,(0) <0 and fr{,(0)<0. (6.38)

Define T} := 71 4P; and Ty := T24P5. Denote by C := d;(v1,v2) > 0 the distance between v;
and vy. We now deduce the relation between f;ll(y) and f7__21(y) for v € A1 U Ag, using the fact that

{v1, w1} and {v9, wy} are pointing toward different directions of the simple path from w; to wy. By

definition of reduction maps, if v € A; or v € A, then T1(v)({z}) = Ta(v)({—z — C}) for z € R.

Hence, by Lemma 1.33, for v € Ay,
f,,_-Ql(y)(O) = —f;ll(u)(l) —C (both sides can be —o0)
fﬁl(y)(l) = _fil(u) (0) = C  (both sides are finite as v € Ay).
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Figure 6.5: Reduction maps associated to {vi,w;} and {ve, w2}

Similarly, if v € A, then f,;ll(u) (0) = —fﬁl(y)(l) — C (both sides can be —o0) and f;—ll(y)(l) =
_fﬁl(u) (0) — C (both sides are finite as v € Aj).
Applying the formula of Wasserstein barycenter on R (Theorem 6.18) with (6.37), we obtain

fi1(0) = /W) f71,)(0)dP()

- [ IR OaB @)+ /. IR 0dB0) 5 /m(

=M O+ 20 [ £ (1) = €] + /W2(F) Sk (0) dPs(v),

) O 4Ps)

where we used f;ll(y)(O) = ffﬁl(y)(l) — C for v € A;. We have flj@ll (0) > 0 by assumption, and
X3 Ja ) I3 (0) dP3(v) <0 by (6.38). Hence,
ML) = % £l )+ C]. (6.39)

By the same arguments,

Fuw 0) =X [—f;ﬁ (1) - C] + A2 frn (0) + A3 /W . Frb) (0 dP5(v),

where we used ff,gl(y)(O) = —f{_ll(y)(l) — C for v € A;. And we also have

IO [ Frb () + c} . (6.40)
According to (6.39), the inequality fu_é (1) > f@é (0), and (6.40),
NSt 0) 2 2 [£l )+ C) 2 % [£210)+C] = i+ 22)C + A £21 (). (6.41)

It follows from fu_qul(l) > f-1(0) that (A + X2)C = 0, \; fu_ll1 0) = X\ fl:]rll (1), A2 fu_mi 0) =

M1y
A2 fi) (1), which further implies, by the previous expressions of f, ! (0) and f, ' (0),

o (0) = A3 /wz(r) I (0)dP3(v) = A3 /w2<r) F i (0)dP3(v) = f! (0) = 0. (6.42)
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We now prove that ug, = pg, = do. Since fl;rl1 = fw2(r) f;ll(u)dIE”l(V), it follows from
A flell 0) =X\ fu_qul (1) that Ay fr;(,) is a constant function for Pi-almost every v (c.f. proof of
Proposition 6.29). Thanks to the relation between fr, () and fr;() for v € Ay, A1 fr(0) is also a
constant function for Pi-almost every v. Similarly, Ao f;é (0) = Ao fu_é (1) implies that As f7; ()
and A2 f7,(,) are both constant functions for Ps-almost every v. Let us prove the claim that
A3 friw) and A3 fr;(,) are both constant functions for P3-almost every v. Since the case A3 = 0
is trivial, we are left to prove the claim for the case A3 # 0. In this case, (6.38) and (6.42) imply
that for v € supp(Ps), f7_’11(u) (0) = f,;zl(y)(O) = 0, which further imply f%l(y)(l) = f;zl(y)(l) =0
as v ¢ A; U Ay, Hence, the claim is proven. Therefore, according to the following equalities for
t€10,1]

frd® = [ LGRS / EPCLLIORRY |t @aew).

2(T)

fao=x TRl ® AR+, / I aB) + s /Wm F7h) (D dPs(v),
both fl(lsnctions fg@ll and f;@i are constant. Since fg@ll (0) = f;@lz (0) = 0 by (6.42), we have ug, =
HQy = 90-
We are left to prove that v; = v, i.e., C = 0. Since (A +X2)C = 0, the case A1 +Xy > 0 is trivial.
If Ay + X2 =0, then A3 > 0 and we have shown in the preceding paragraph that 71 (v) = T2(v) = do
for P3-almost every v. In particular, P3 = d5, = ds,,, which concludes the proof. O

By properly choosing two oriented edges to compare their reduction maps, we prove the following
powerful proposition that helps us to determine the support of a Wasserstein barycenter on metric
trees.

Proposition 6.56. Let I' = (V, E,d;) be a metric tree. Fix an oriented edge € of I'. Denote by
T : Wh(T') = Wa(R) the push-forward map associated to € (Definition 6.20). Let P € Wo(Ws(T))
be a probability measure. Assume that the unique barycenter ug of Q := TuP is supported in R_.
Then for any barycenter up of P, its image T (up) under T is supported in R_.

Proof. We prove the proposition by contradiction. Denote by T¢ : I' — R the reduction map associ-
ated to € (Proposition 6.19). Assume that there exists a barycenter up such that pp((0, +00)) > 0.
Since (0, +00) = Ugso(x, +00), there exists a real number 0 < z < [(€) such that up((x, +00)) > 0.
Denote by v := €,/;&) € I the pre-image of x under TE. Ifz < 1(€), then we consider the following
modification of the vertices and edges of I We add v; to V as a vertex, and replace the edge
{€0,€1} € E with two edges {€p,v1} and {vy, €} of lengths x and I(€) — = respectively. Such a
modification does not change the metric structure of I". Moreover, the reduction map associated to
{&p,v1} coincides with T°¢. Therefore, by possibly replacing € with {€y, v}, we can assume without
loss of generality that = = [(€) and v; = €].

Since pp((1(€), +00)) > 0, there exists an edge ez = {va,ws} € E such that I(€) < T¢(vs) <
T¢(ws) and we can write

pp = Apt + (1= N)p?,

where 0 < A < 1, u! € Wu(T), p? € Wa(T), and pl(es \ {v2}) = 1. According to Proposition 5.2,
there exists a measurable map F : Wy(I') — W,(T') such that pu' is a barycenter of FuP. By
Proposition 6.53, the barycenter pg of Q' := [T o F|4P is supported in R_ since by assumption,
the barycenter pg of Q = TxP is supported in R_.
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We shall derive a contradiction using Proposition 6.55. Define w; := €. Denote by 77 and 7Ts
respectively the push-forward maps associated to {vi,w;} and {vs,ws}. Since € = {wy,v1} and
the barycenter pug of Q" = [T o F|4P is supported in R_, the barycenter pg, of Qq := [T1 0 F|P is
supported in [I(€), +00). Consider the barycenter pqg, of Qs := [Tz 0 F|xP. Since pu'(e2 \ {va}) =1,
T2(p1)((0,1(e2)]) = 1, which implies fﬁl(#l)(t) > 0 for t € (0,1). As p' is a barycenter of FyP,
Lemma 6.26 implies that fu_ng > 0. Hence, supp(ug,) C R4+. Applying Proposition 6.55 to ug, and

HQ,, We obtain that pg, = pg, = do, which is contradiction since supp(ug, ) C [[(€), +00). O

As a corollary to Lemma 6.52 and Proposition 6.56, we get a sufficient and necessary condition
for a Dirac measure at some vertex to be a barycenter.

Theorem 6.57. Let T' = (V, E,d;) be a metric tree. Fix a vertex v € V and a probability measure
P e Wo(Wh(T')). We enumerate all the edges e, := {v,wi} € E, k=1,2,...,n, such that v is an
end of each ey. For each edge ey, denote by Ty, : Wa(I') = Wa(R) the push-forward map associated
to {v,wy} (Definition 6.20), define Qi := T 4P, and denote by ug, the unique barycenter of Q.
Then §, is a barycenter of P if and only if

supp(ug, ) C (=00,0], fork=1,2,...,n. (6.43)
Moreover, if (6.43) holds, then 6, is the unique barycenter of P.

Proof. 1f 4, is a barycenter of P, then (6.43) follows directly from Lemma 6.52.
Assuming that (6.43) holds, we prove that 4, is the unique barycenter of P. Let up be a

barycenter of P. Denote by T} the reduction map associated to {v,wy} (Proposition 6.19). By
Proposition 6.56, (6.43) implies that

supp(7Te(pp)) CR_ for k=1,2,...,n.
Since {eg}1<k<n is the set of all edges at v,

pe(D\ {v}) = pp(Up_y Ty (0, +00)) < Y pe(Ty (0, +00))) = 0,
k=1

which implies pp = 6,. O
Remark 6.58. Inspired by Theorem 6.54 and Theorem 6.57, one may wonder if the condition
po,(R2) >0, fork=1,2,...,n, (6.44)

implies that pp({v}) > 0. We shall see in Proposition 6.64 a counter-example for this implication.

6.6 Summary and examples of barycenters
The preceding subsections established several key results and, in doing so, identified a systematic

approach for studying Wasserstein barycenters on metric trees. This approach is built upon the
reduction technique for metric trees and the restriction property of Wasserstein barycenters.
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Our systematic approach for Wasserstein barycenters on metric trees

To fix the notation, let T' = (E,V,d;) be a metric tree and let P € Wy(W5(T')) be a probability
measure. Fix an oriented edge € := {v,w} of T'. Denote by T¢: T — R and T : Wy(I') = Wh(R)
respectively the reduction map (Proposition 6.19) and the push-forward map (Definition 6.20)
associated to €. Applying this reduction technique to P yields the measure Q := TxP € Wo(Wh(R)),
whose unique barycenter is denoted by pq.

The first step of our approach focuses on the potential mass concentration of up at vertices,
specifically, determining if up({v}) > 0. As detailed in Section 6.5, this involves examining the
support of pg by calculating f;@l (0) and f;@l(l), which in turn relies solely on the supports of
measures in supp(P). Key results underpinning this step include:

1. Theorem 6.54 establishes that if pg(R_) = 0, then pp({v}) = 0.

2. Conversely, if ug(R_) = 1, then Proposition 6.56 excludes the edges and vertices contained
in [T¢]7 (R, \ {0}) out of supp(up). This same proposition (Proposition 6.56) also enables
the exclusion of parts of an edge from supp(up) by strategically adding a new vertex to that
edge, a technique demonstrated in its proof.

3. Finally, Theorem 6.57 provides a fast and intuitive criterion for §, to be a (and thus the
unique one) barycenter of P.

The second step shifts focus to the behavior of pp on the edges of I', i.e., analyzing its restriction
up|z. If pp is supported in the edge €, then Lemma 6.26 illustrates how pp is fully determined by
tig. This connection allows us to extend several properties of Wasserstein barycenters from the real
line to metric trees. For instance:

1. Proposition 6.29 contributes to the understanding of the (almost) absolute continuity of
barycenters on metric trees. It implies that singularities of up are confined to vertices, pro-
vided that [P assigns positive mass to absolutely continuous measures.

2. The concept of rigid property is proposed and explored in Section 6.4.2, with particular atten-
tion to various types of singularity. After a careful examination of the properties of T, estab-
lished rigid properties of barycenters on the real line, such as being a Dirac measure (Propo-
sition 6.29), having negligible support (Theorem 6.48), and being singular (Theorem 6.51),
can be effectively translated to criteria of certain singularities of pp.

We point out a crucial aspect woven throughout our approach, which deserves special emphasis
due to its subtle power. That is the flexible application of the restriction property of Wasserstein
barycenters to gain deeper insights into pup. Recall that in Proposition 5.2, corresponding to a
decomposition pp = Ap! + (1 — \)p?, the construction of F? : Wy(T') — Wh(T') (i = 1,2) such that
! is a barycenter of Q' := F' 4P is not completely obscure. While a comprehensive understanding of
optimal transport on metric trees would undoubtedly unlock the full potential of this construction,
we can still derive valuable conclusions even with partial information, a strength demonstrated in
the proof of Theorem 6.54.

To solidify the ideas discussed above, the remainder of this subsection presents several concrete
examples. These examples have been carefully selected to illustrate the application of our approach
and to showcase the distinguished properties of Wasserstein barycenters on metric trees.
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Concrete examples

The following proposition presents the essential difference between the behaviors of Wasserstein
barycenters on metric trees and on the real line. To achieve a comprehensive understanding of this
difference, we provide two proofs with one based on direct calculations and the other one based on
our results in section 6.5.

Proposition 6.59. LetT' = (V, E, d;) be the metric tree representing a tripod, where E is the union
of three identical copies of the unit interval [0,1] and V consists of four points with one of them
being the common end 0 € V' shared by all the three edges e1,es,es € E. Fori=1,2,3, let v; be a
probability measure supported in the interval [%, 1] of edge e;. The Dirac measure §y at the vertex
0 € V is the unique barycenter of the probability measure P :=>""_, 35,,1 e Wa(Wi(T)).

L2

Yy

lee

5 3
z3

Vs

1e

Proof. For three given points x1, 2, T3 € [%, 1] in the supports of vy, vs, v3 respectively, we claim
that the vertex 0 is the unique barycenter of the measure p = Y .| éd . Fix a point y € T.
Without loss of generality, we assume that y € [0, 1] is on the edge e3. Since 1+ 22 > 12> 23, we

have the inequality

[ e dta) = 3. >+dl<o,y>]2+%[dxu,m+dz(o,y>]2+§[dz<x3,o>—dl<o,y>}2

_Z o2yt + y(xl—i—xg—xg >Z /dlmO du(x), (6.45)

which is an equality if and only if y = 0. Hence, our claim is proven.

Let pp be a barycenter of P. Thanks to the gluing lemma [64, Lemma 7.1], there are random
variables X, X1, X, X3 with laws up, vy, 19, v3 respectively such that Ed;(X, X;)? = dw (up, j1:)?
for i = 1,2,3. By the claim proven in the previous paragraph,

3

1
> gh(X X)?

i=1

3

1 21 _ v 2 v
ngl(Oin) ] _/WQ(F) dw (do, ) dP( )s

/ dw (up,v)*dP(v) =E >E
W (T)

i=1

which must be an equality as up is a barycenter of P. Hence, we have X = 0 almost everywhere
and thus up = dg, which concludes the proof since pp is arbitrarily chosen. 0
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We can also prove Proposition 6.59 using reduction maps.

Alternative proof of Proposition 6.59. Consider the order 0,1 for the two ends of the edge e;, and
denote by € = {0,1} this oriented edge. Denote by T : Wa(T') — W5(R) the push-forward map

1

\/

-1 -1 0 3 1

associated to € (Deﬁnition 6.20), and define p; := T (v;) for i = 1,2,3. We claim that the barycenter

po of Q = Zl 1 3 Oy, 1is supported in the interval [— 2,0]. Indeed, by assumptions, Lemma 1.33
implies f, *(1), f,,'(0) € [5,1] and f (1), f,}(0) € [-1,—3] for i = 2,3. It follows from the

Iz Hi
formula of Wasser;tein barycenters on R (Theorem 6.18) that
—1 1 —1 —1 -1 1 1 1
f,u,@ (1) = g(flll (1) + fug (1) + f/,l,g (1)) < g(l - 5 - 5) <0, and
- 1, . _ _ 1.1 1
fu,@l(o) = g(full(o) + fugl(o) + fugl(o)) > §(§ —-1- 1) 2a

which implies our claim according to Lemma 1.33. Since the assumptions of Proposition 6.59 are
symmetric with respect to the three edges of I', our claim remains valid for all oriented edges
corresponding to e; with ¢ = 1,2,3. Hence, Proposition 6.59 follows from Theorem 6.57. O

The endpoint % for the interval [1,1] is optimal in the assumptions of Proposition 6.59. We now
modify v3 to violate the assumptions, demonstrating how it forces a change of the barycenter up.

Proposition 6.60. Let T' = (V, E,d;) be the tripod with three edges identified with the unit interval
[0,1] such that 0 € V' is the common end shared by all the three edges e1,es,e3 € E. Fiz a positive
number 0 < 6 < % Consider three points T1 := 1 € ey, Ty := % € ey, T3 := % — 0 € e3 located at
three different edges respectively, and define Dirac measures v; = 0, fori=1,2,3. The barycenter
of P:= Zz 1 35,,1. is unique, and it is the Dirac measure at point g €e.

Proof. Define p := Zf’ 1 éuz = ZZ 1 3(5%. We claim that the point z, := g € e; located at edge
e1 is the unique barycenter of . To minimize the integral I(y) := dw (8, 1)* = [p di(y,2)* d p(x)
for y € I', we discuss the possibilities of y locating at different edges. For the case y € e1, with the
same calculation as (6.45), the integral

Z o+ '+ y(x2+x3—m1)

has a unique local minimizer y = —%(xQ +ax3—x1) = g =z, € e1. As for the cases that y € ey or

y € es, since x1 + x3 > o and x1 + x2 > x3, I(y) is locally minimized at y = 0 € e N ez according
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to similar calculations. Since 0 is a common vertex of all three edges, we conclude that y = z, is
the unique global minimizer of I(y) over y € T', which proves our claim.
To show that yp := 0., is the unique barycenter of P, observe that for n € W»(T'),

3
2 1 0 ,
/WQ(F) dw (n,v)”dP(v) _gg/rdz(y,xi) dn(y):/p/pdl(y’x) d () dn(y)
= /Fdl(%x) dp(w) = /Wm dw (8-, )2 dP(v),

where the equality is reached if and only if y = z,, for n-almost every y, i.e., n =d,. O

Regarding the singularity of Wasserstein barycenters, the rigid properties proven for the case of
real line can be naturally extended to the general case of metric trees. For simplicity, in the following
proposition, we only apply the restriction property of Wasserstein barycenters (Proposition 5.2) for
finitely many times.

Proposition 6.61. Let I' = (V,E,d;) be a metric tree. Let P € Wa(Ws(T')) be a probability
measure. Assume that P has a barycenter pup such that up has compact support, pp gives no mass
to the set of vertices (i.e., w(V) = 0), and up is singular with respect to the canonical reference
measure H on T'. Then for P-almost every v, supp(v) is compact and v is singular with respect to

H.

Proof. Since the set supp(up) is bounded and inf.c g I(e) > 0, there exists at almost finitely many
edges eg, k =1,2,3,...,n, such that up(egx) > 0. As up(V) = 0, we obtain the following decompo-
sition,

pp = A pt A Ao A A

where for 1 <k <mn, 0 < A\ := pp(er) < 1, u* € Wy (') assigns full mass to the interior of the edge
ex. We shall first show how to reduce our proposition to the case n = 1. Assume now n > 1.

By applying the restriction property (Proposition 5.2) for n—1 times, we construct n measurable
maps F'* : Wy (') — Wy(T') such that p* is a barycenter of Q := F¥4P and for v € W (T),

v=MF'W)+ M F2(v) + -+ X F(v). (6.46)

The construction of F*,1 < k < n, is done as follows. We first apply Proposition 5.2 to the
decomposition pp = Ay p! + (1 — Ap)n' with n' := =370, Ay ¥, and thus obtain two maps
AY Bt Wo(T') — Wy(T') such that u! is a barycenter of Q! := A'4P and n' is a barycenter of
T! := B'4P. Moreover, for v € W»(T), we have v = A\; A'(v) + (1 — A1)B'(v). Then we apply
Proposition 5.2 to the decomposition n' = 13\1 p+(1— 1;\2/\1 )n? with n? .= ﬁ S s Ak
Hence, we obtain two measurable maps A%, B% : W5(T') — Wh(I') such that u? is a barycenter of
Q? := A%,T! = [A% 0 B'] 4P and n? is a barycenter of T? := B2, T!. Moreover, for v € W ('),

v=MA(v)+ (1 -\)B'(v)

A2 A2
1—X\ 1-X
=M A W)+ X A% 0 B (v) + (1 — A\ — X\2)B% 0 B (v).

= M ANW) + (1-A) (B (W) + (1 - —2)B*(B' (1))
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By repeating the above application of Proposition 5.2 for n — 1 times, we obtain maps A*, B* :
Wia(T) — Wh(T) for 1 < k < n — 1. To complete the construction, it suffices to set F™ :=
B 1'oB"26...Bland FF:= Ao B*¥1lo...oB for 1 <k <n-—1.

Thanks to the decomposition (6.46), for the proof of our proposition, it suffices to show that
the following statement holds for any 1 < k < n: for Q*-almost every v, supp(v) is compact and v
is singular with respect to H. Hence, the proposition can be reduced the case that up assigns full
mass to the interior of some edge.

Fix an oriented edge € of I' and denote by e its interior. We now prove the proposition under
the assumption that pup(é) = 0. Denote by 7€ : T' — R and 7 : Wy(T') — Wh(R) respectively
the reduction map (Proposition 6.19) and the push-forward map (Definition 6.20) associated to
€. Define Q := TxP and denote by ug the unique barycenter of Q. According to Corollary 6.27,
po = T (up). By definition of H, since T¢|z : € — [0,1(€)] is an isometry and supp(up) C €, pp is
singular if and only if pg = Té#mp is singular. Since pq is singular, Theorem 6.51 implies that for
Q-almost every v € Wh(R), v is singular. That is to say, for P-almost every v € Wh(T'), T (v) is
singular. We claim that

T(v) € Wa(R) is singular = v € W,(T') is singular .

We prove the claim by contradiction and assume that v € Ws(I") is not singular. Then we can write
v==0uv+ (1 —-0)ry with 0 < 6 <1, v1,v5 € Wh(T') such that v is absolutely continuous. As T
is a push-forward map, 7 (v) = T¢4v = 0 T (v1) + (1 — 0)T (v2). According to Lemma 6.21, T (vy)
is absolutely continuous, which implies that 7 (v) is not singular, contradicting the assumption.
Hence, the claim is proven, and for P-almost every v € W5(I'), v is singular with respect to H.
We are left to prove the conclusion concerning the compactness of supp(r). According to
Proposition 6.29, since ug has compact support, for P-almost every v, T (v) has compact support.
Note that 7'¢ maps the metric ball B(&,r) C T' centered at &, with radius 7 > 0 to the metric ball
B(0,7) C R centered at 0 with the same radius r. Hence, T (v) € W»(R) has compact support if
and only if ¥ € Wy(I") has compact support, which concludes the proof. O

We can readily demonstrate that absolute continuity is not a rigid property of Wasserstein
barycenters on R. For instance, if we consider P := 15, + 185, € W2(Wa(R)), where v is an ab-
solutely continuous measure, then its barycenter pp is absolutely continuous, while J,, a singular
measure also in supp(P), is not. Nevertheless, it is particularly interesting to construct an abso-
lutely continuous barycenter pp with supp(P) being a subset of singular measures, such as those
supported on merely two fixed points. This construction, which also helps to further illuminate
Proposition 6.61, is presented in the following proposition. To build this example, it will suffice to
set pu:= L0.1).

Proposition 6.62. Let u be a probability measure supported in the unit interval [0,1]. Denote by
& its dual measure (Definition 6.50). Consider the map F : [0,1] = Wh(R) defined by

F(z):=x6+ (1 —z)d1.
Then p = pp is the unique barycenter of P := Fyup.

Proof. As aresult of direct calculations, we observe that the dual measure of F(z) = x do+ (1 —x)d;
is the Dirac measure ¢, at x. According to Theorem 6.18, the unique barycenter up of P satisfies
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that, for ¢t € (0,1),
) = /WR) A 0aR0) = [ 1 0@ = [0 i)

- / 1o (2) dfi(z) = A0, 1)) = fa(t).

It follows that 0 < f;; < 1, which further implies supp(up) C [0,1] according to Lemma 1.33.
Therefore, the above equality shows that pp is the dual measure of jz, which implies our conclusion
@ = pp by Lemma 6.31. O

The uniqueness of Wasserstein barycenters on the real line is guaranteed by Theorem 6.18.
Moreover, given a Riemannian manifold (M, dg), the barycenter of P € Wa(W,(M)) is unique if
P assigns positive mass to the set of absolutely continuous measures (Section 2.3). However, as
illustrated by the following example, such uniqueness fails to hold on metric trees due to their
inherent branching structure.

Proposition 6.63. Let I' = (V, E,d;) be the tripod with three edges of unit length, ie., V =
{vo, v1,v2,v3}, E = {e1,ea,e3} with e; = {vo,v;} and l(e;) =1 fori=1,2,3. Let vy be the uniform
probability measure on e; and vo = %51}2 + %51}3 be the averaged sum of two Dirac measures at
vertices vy and vsz. Define P := %61,1 + %@2. Then P has infinitely many absolutely continuous
barycenters, and optimal transport maps pushing forward vy to ve are not unique.

U2

€2
vV = H‘el r
vy e
P =16, + 16,
T€
Q = %5111 + %5%
1= Lj0,1) R
0 5 1 d 2 j

Proof. Consider the oriented edge € = {v1,v0} and let T : Wh(I') — Wh(R) be the push-forward
map associated to € (Definition 6.20). Define py := T(v1) = £! 01] p2 = T(r2) = 62 and
Q:=TxP = %6,“ + %5u2. According to the formula of Wasserstein barycenters on R (Theorem 6.18),
fig := 2Ly z) is the barycenter of Q.
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By direct calculation using Theorem 1.37, we obtain dyw (11, pg) = dw (pq, p2) = 3dw (p1, p2) =
V7/(21/3). Since vy is supported in the oriented edge € Proposition 6.19 implies that for any
measure v € Wh(T'), dw (v1,v) = dw(p1, T(v)). We prove that any measure up constructed as
follows is a barycenter of P. Define up := %772 + %773 with 72 (respectively n3) being a probability
measure supported in the edge es (respectively es) such that

1 1
T (up) = 57'(772) + 57'(7]3) = 2£1|[1,g] = po-

Since pug = T (pp) is the barycenter of Q, we have

1 1
dw (vi, pp) = dw (1, T (pe)) = dw (p1, po) = §dW(ﬂ1,M2) = §dW(V17V2)-

Since e U eg is isometric to a segment of length 2, we can deduce from Theorem 1.37 the following
optimal transport plan v between pp = %772 + %773 and vo,

1 1
V=gm® Ouy + 38 ® O

Using the fact that both the restrictions T°¢|., and T¢|., are isometric, we obtain
dw (pp,v2)? :/dl(x,y)Qdy(m,y)
r

1 1
:5/ dl(x,02)2dn2(x)+§/ dl(x,v?))? dnz(x)
D) €3
1

S (T ) ) + S (T (), 2)?

= (5T () + 5T ) ) = o (T (), 1)

1 2
= dw (pg, p2)* = [2dW(M1,M2)] = idW(V17V2)2~

Therefore, dw (v1, up) = dw (up,v2) = %dw(l/l, v9), which implies that pp is a barycenter of P =
16,, + 30,, according to Lemma 2.7 (c.f. proof of Proposition 6.39). From our construction of yp,
there are infinitely many possible choices and all of them are absolutely continuous.

As for the optimal transport maps pushing forward v; to vs, we can find multiple of them by
dividing the edge e; into two parts with equal lengths. For example, set I; := [T'¢]~1([0, %]) to be
the pre-image of [0, %] under the map 7€ and set I5 := e;\I;. Define two maps Fy, Fs : e; — {va,v3}
as follows: F; sends points of I; to vo and sends points of I5 to v3; F5 sends points of I; to vz and
sends points of I to ve. Since vq(I1) = v1(Iz) = %, both F} and Fy push forward v; to .. By
direct calculation, we have

/dl(Fl(x),:v)Qdul(x):/ dl(FQ(m),$)2dV1($):/ |1—x+1|2dw:§,

ey €2 [0,%]U(%,1]

which shows that F; and F are both optimal transport maps since dyy (v1,12)? = dw (p1, u2)? =
7/3. 0
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While Proposition 6.63 demonstrates that P can have infinitely many barycenters, a key question
remains: does any barycenter pp assigns positive mass to the common vertex vy? To address this,
we can, as noted earlier in this subsection, apply results from Section 6.5. The upcoming example
highlights a situation where Theorem 6.54 alone is insufficient to conclude that pp({vo}) = 0. This
therefore serves as an ideal example to illustrate a flexible application of the restriction property of
Wasserstein barycenters.

Proposition 6.64. Let I' = (V, E,d;) be the tripod with three edges of unit length, ie., V =
{vo,v1,v2,v3}, E = {e1,ea,e3} with vg,v; being the two ends of e; and l(e;) = 1 for i =1,2,3.
Consider two probability measures vi,ve € Wa(T') such that vy is supported in ey, v1({v1}) = 0,
and vy = 66,, + (1 — 0)dy, with 6 € [0,1]. Define P := 16,, + 36,,. Then any barycenter yup of P
gives no mass to the vertices of T', i.e., up(V) = 0.

Moreover, if vy is absolutely continuous (with respect to H), then all barycenters of P are
absolutely continuous.

Proof. We first prove the claim that §,, is not a barycenter of P for any ¢ =0, 1,2, 3.

We begin with the case for vy since it is more complicated than others. Assume without loss of
generality that vo({ve}) > 0, i.e.,, 0 < 6 < 1. Consider the oriented edge € = {vg, v2} and denote by
T : Wa(I') = Wa(R) the push-forward map associated to € (Definition 6.20). Define pq := T (11),

(1

r
(%]
vs lTa vy = 00,, + (1 —0)d,,
M1 R

\J

po = T(v2) =061 + (1 —0)6_1, and Q := T4P = 36, + 16,,. By Lemma 1.33, ) > -1
since v1({v1}) = 0, and f)'(1) = 1 as 6 = vp({va}) > 0. Therefore, according to Theorem 6.18,
the unique barycenter ng of Q satisfies

1

Frd ) = S+ 5k >0

Hence, by Lemma 1.33, ug is not supported in R_. It follows from Lemma 6.52 that §,, is not a
barycenter of P.

As for the case v; with ¢ = 1,2,3, we consider the oriented edge {v;,v9} and the corresponding
reduced Wasserstein barycenter problem on R as above. Note that the whole graph is mapped to
a subset of R} by the reduction map associated to {v;,v9} (Proposition 6.19). Hence, if d,, is a
barycenter of P, then 11 = vy = §,, by Lemma 6.52, which is impossible under our assumptions.
This concludes the proof of our previous claim.

We prove by contradiction pp(V) = 0. Otherwise, we can decompose a barycenter up as follows,

pp = Ay, + (1= N2,
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where i is one of the indices 0,1,2,3, 0 < A < 1 and pu? € Wy(T'). By Proposition 5.2, there exists
a measurable map F' : W5(T') — W, (T') such that F''(v) is absolutely continuous with respect to
v and §,, is a barycenter of Q' := F',P. However, Q' = $6p1(,,) + $051(,,) satisfies the same
assumption as P, which leads to a contradiction due to the previous claim.

If 14 is absolutely continuous, Proposition 6.29 implies that any up is absolutely continuous
when restricted to the interior of each edge. It follows from pp(V) = 0 that v, is absolutely
continuous. O
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Titre : Régularité des barycentres de Wasserstein
Mots clés : barycentre Wasserstein, théorie du transport, géométrie riemannienne, arbre métrique

Résumé : Cette these porte sur I’'étude des conditions géométriques qui gouvernent la régularité des barycentres de Wasserstein.
L'objectif central est de comprendre comment la géométrie sous-jacente d’un espace métrique — en particulier, la présence ou
I’absence d’'une minoration de la courbure de Ricci — détermine si un barycentre est absolument continu ou singulier. La recherche
aboutit a deux contributions principales, I'une concernant les espaces lisses et non-branchants (variétés riemanniennes) et I'autre
les espaces singuliers et branchants (arbres métriques).

La premiere contribution majeure établit la continuité absolue des barycentres de Wasserstein sur les variétés riemanniennes sous
des hypothéses significativement plus faibles que celles connues auparavant. Cette thése montre que sur toute variété rieman-
nienne compléte dotée d’une courbure de Ricci minorée, le barycentre de Wasserstein up est garanti d’étre absolument continu,
a condition que sa mesure de probabilité définissante P sur I’espace de Wasserstein assigne une masse positive a I’'ensemble des
mesures absolument continues. Ce résultat assouplit considérablement les conditions des travaux antérieurs, qui exigeaient a la
fois la compacité de la variété et que la mesure P assigne une masse positive a I’ensemble des mesures dont les densités sont
uniformément bornées. La preuve introduit une approche novatrice reposant sur plusieurs nouveaux outils analytiques. Nous
développons un nouveau type de fonctionnelles de déplacement, dont les propriétés découlent d'une nouvelle égalité hessienne
pour les barycentres. Ces fonctionnelles permettent d’établir une estimation cruciale garantissant la régularité. De plus, la preuve
integre des outils de la théorie des espaces sousliniens pour lier I'hnypothése générale sur P aux conditions topologiques spécifiques
requises par nos estimations fonctionnelles.

La seconde contribution majeure est le développement d’un cadre systématique pour analyser et caractériser les barycentres
de Wasserstein sur les arbres métriques, ou I'absence d’une minoration synthétique de la courbure de Ricci peut engendrer un
comportement complexe. Ce cadre, qui combine un principe de localisation novateur (la “propriété de restriction”) avec des
techniques qui raménent les problémes de transport sur les arbres au cadre plus simple de la droite réelle, fournit les outils
nécessaires pour étudier en détail la structure de ces barycentres. Il permet une investigation méthodique de la maniere dont la
topologie de branchement de I'arbre génére des phénoménes tels que la singularité et la non-unicité, qui distinguent ces espaces
des variétés.

En résumé, cette these fait progresser notre compréhension des barycentres de Wasserstein en :
1. Prouvant un résultat définitif sur leur continuité absolue sur les variétés a courbure de Ricci minorée, étayé par de nou-
veaux outils analytiques incluant des fonctionnelles de déplacement novatrices et I'application de la théorie des espaces
sousliniens.

2. Développant un cadre systématique pour caractériser les barycentres sur les arbres métriques, fournissant les outils pour
analyser leur structure et leur singularité.

Title: Regularity of Wasserstein barycenters
Key words: Wasserstein barycenter, optimal transport, Riemannian geometry, metric tree

Abstract: This thesis investigates the geometric conditions that govern the regularity of Wasserstein barycenters. The central goal
is to understand how the underlying geometry of a metric space—specifically, the presence or absence of a lower Ricci curvature
bound—determines whether a barycenter is absolutely continuous or singular. The research yields two main contributions, one
concerning smooth, non-branching spaces (Riemannian manifolds) and the other concerning singular, branching spaces (metric
trees).

The first key contribution establishes the absolute continuity of Wasserstein barycenters on Riemannian manifolds under signif-
icantly weaker assumptions than previously known. This thesis shows that on any complete Riemannian manifold with a lower
Ricci curvature bound, the Wasserstein barycenter up is guaranteed to be absolutely continuous, provided its defining probability
measure P on the Wasserstein space assigns positive mass to the set of absolutely continuous measures. This result significantly
relaxes the conditions of previous work, which required both the manifold to be compact and the measure P to assign positive
mass to the set of measures with uniformly bounded densities. The proof introduces a novel approach built on several new an-
alytical tools. We develop a new class of displacement functionals, whose properties are derived from a novel Hessian equality
for barycenters. These functionals allow us to establish a crucial regularity-enforcing estimate. Furthermore, the proof integrates
tools from Souslin space theory to bridge the gap between the general assumption on P and the specific topological conditions
required by our functional estimates.

The second key contribution is the development of a systematic framework to analyze and characterize Wasserstein barycenters
on metric trees, where the lack of a lower synthetic Ricci curvature bound can lead to complex behavior. This framework, which
combines a novel localization principle (the “restriction property”) with techniques that relate transport problems on trees to the
simpler setting of the real line, provides the necessary tools to study the structure of these barycenters in detail. It allows for
a methodical investigation of how the tree’s branching topology generates phenomena such as singularity and non-uniqueness,
which distinguish these spaces from manifolds.

In summary, this thesis advances our understanding of Wasserstein barycenters by:

1. Proving a definitive result on their absolute continuity on manifolds with a lower Ricci curvature bound, supported by new
analytical tools including novel displacement functionals and the application of Souslin space theory.

2. Developing a systematic framework to characterize barycenters on metric trees, providing the tools to analyze their structure
and singularity.
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