Invariants de classes pour les variétés abéliennes à réduction semi-stable

Jean Gillibert

10 décembre 2004

Structure galoisienne des torseurs

S un schéma

G un S-sch'ema en groupes commutatif, fini localement libre G^D le dual de Cartier de G

(W. Waterhouse, 1971). On dispose d'un homomorphisme

$$\pi: H^1(S, G^D) \stackrel{\sim}{\longrightarrow} \operatorname{Ext}^1(G, \mathbf{G}_{\mathrm{m}}) \longrightarrow \operatorname{Pic}(G).$$

La première flèche est un isomorphisme déduit de la suite locale-globale pour les Ext^n .

La deuxième flèche est l'application naturelle.

On dit que π mesure la structure galoisienne des G^D -torseurs.

Théorie de Kummer : schémas abéliens

A un S-schéma abélien

 A^t le schéma abélien dual de A

n > 0 un entier naturel

Suite exacte de Kummer (pour la topologie fppf)

$$0 \longrightarrow A^t[n] \longrightarrow A^t \stackrel{[n]}{\longrightarrow} A^t \longrightarrow 0$$

Cobord de cette suite exacte

$$\partial: A^t(S) \longrightarrow H^1(S, A^t[n])$$

Pour tout $p \in A^t(S)$, on note $\partial(p) = [n]^{-1}p$.

L'homomorphisme de classes

K un corps de nombres, $S = Spec(\mathcal{O}_K)$

 A_K une K-variété abélienne, ayant partout bonne réduction $\mathcal{A} \to S$ le modèle de Néron de A_K

Alors \mathcal{A} est un schéma abélien.

(M. J. Taylor, 1988). On note ψ_n le morphisme obtenu par composition des applications suivantes

$$\psi_n: \mathcal{A}^t(S) \xrightarrow{\partial} H^1(S, \mathcal{A}^t[n]) \xrightarrow{\pi} \operatorname{Pic}(\mathcal{A}[n])$$

Ainsi $\psi_n(p)$ mesure la structure galoisienne du torseur $\partial(p)$.

Conjecture (Taylor): Si A_K est une courbe elliptique, alors les points de torsion de $\mathcal{A}^t(S)$ sont dans le noyau de ψ_n .

Cas d'annulation

- (A. Srivastav et M. J. Taylor, 1990). Vrai pour une courbe elliptique à multiplication complexe par l'anneau des entiers d'un corps quadratique imaginaire k, et n premier au nombre de racines de l'unité contenues dans k.
- (A. Agboola, 1996). Vrai pour une courbe elliptique, en supposant que n est premier à 6.
- (G. Pappas, 1998). Vrai pour un schéma abélien de dimension relative 1 sur une base quelconque, et n premier à 6.

Cas de non-annulation

(G. Pappas, 1998). Soient deux nombres premiers $r \neq \ell$. Il existe une courbe affine lisse C sur un corps fini de caractéristique r, et un C-schéma abélien A de dimension relative 2, possédant un point de torsion d'ordre ℓ sur lequel ψ_{ℓ} ne s'annule pas.

(Bley et Klebel, 1998). Il existe une famille de courbes elliptiques sur un corps de nombres, possédant un point de torsion d'ordre 2 sur lequel ψ_2 ne s'annule pas.

(Ph. Cassou-Noguès et A. Jehanne, 2001). Il existe une famille de courbes elliptiques à multiplication complexe possédant un point de torsion d'ordre 2 sur lequel ψ_2 ne s'annule pas.

Théorie de Kummer : schémas semi-stables

 A_K une K-variété abélienne à réduction semi-stable A un S-schéma en groupes semi-stable prolongeant A_K $U\subseteq S$ l'ouvert de bonne réduction de A

Le groupe A[n] n'est pas fini en général.

Soit donc G un sous-S-schéma en groupes fini et plat de A.

Alors nous avons une suite exacte de faisceaux fppf

$$0 \longrightarrow G \longrightarrow A \longrightarrow B \longrightarrow 0$$

dans laquelle le quotient B est représentable par un S-schéma en groupes semi-stable.

Objectif : trouver une suite exacte « duale », permettant de construire des G^D -torseurs.

Construction de la suite exacte duale

On travaille avec le petit site fppf sur S, c'est-à-dire la catégorie des S-schémas plats munie de la topologie fppf.

On montre que $\underline{\mathrm{Hom}}_S(A, \mathbf{G}_{\mathrm{m}}) = 0$ dans ce site.

On sait également (Grothendieck) que $\underline{\operatorname{Ext}}_S^1(G, \mathbf{G}_{\mathrm{m}}) = 0$ pour la topologie fppf.

En appliquant le foncteur $\underline{\mathrm{Hom}}_S(-,\mathbf{G}_{\mathrm{m}})$ à la suite exacte

$$0 \longrightarrow G \longrightarrow A \longrightarrow B \longrightarrow 0$$

on obtient la suite exacte

$$0 \longrightarrow G^D \longrightarrow \underline{\operatorname{Ext}}_S^1(B, \mathbf{G}_{\mathrm{m}}) \longrightarrow \underline{\operatorname{Ext}}_S^1(A, \mathbf{G}_{\mathrm{m}}) \longrightarrow 0.$$

On en déduit un morphisme cobord

$$\delta : \operatorname{Ext}^1(A, \mathbf{G}_{\operatorname{m}}) \longrightarrow H^1(S, G^D).$$

Soit A' un S-schéma en groupes semi-stable, prolongeant la variété duale A_K^t . On suppose que A ou A' est à fibres connexes.

Théorème (Grothendieck): Il existe une unique biextension W de (A, A') par \mathbf{G}_{m} prolongeant la biextension de Weil.

Cette biextension W permet de définir un morphisme

$$\gamma: A'(S) \to \operatorname{Ext}^1(A, \mathbf{G}_{\operatorname{m}}).$$

Définition de l'homomorphisme de classes

On note ψ le morphisme obtenu par composition des applications suivantes

$$A'(S) \xrightarrow{\gamma} \operatorname{Ext}^{1}(A, \mathbf{G}_{\mathrm{m}}) \xrightarrow{\delta} H^{1}(S, G^{D}) \xrightarrow{\pi} \operatorname{Pic}(G)$$

Ceci généralise la construction de Taylor.

Description géométrique de ψ

Le diagramme suivant est commutatif

$$A'(S) \xrightarrow{\gamma} \operatorname{Ext}^{1}(A, \mathbf{G}_{\mathrm{m}}) \xrightarrow{\delta} H^{1}(S, G^{D})$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$\operatorname{Pic}(A) \longrightarrow \operatorname{Pic}(G)$$

Soit $t(W) \in \text{Pic}(A \times_S A')$ le \mathbf{G}_{m} -torseur associé à W.

Pour montrer l'annulation de ψ sur les points de torsion, il suffit de montrer que, pour tout entier n multiple de l'ordre de G, la restriction de t(W) à $A[n] \times_S A'[n]$ est triviale.

Théorème (J. G.): Supposons que A_K soit une courbe elliptique, et soit n un entier premier à 6. Alors le G_m -torseur

$$t(W)|_{A[n]\times_S A'[n]}$$

est muni d'une trivialisation canonique.

Corollaire : Supposons que A_K soit une courbe elliptique, et que l'ordre de G soit premier à 6. Alors :

$$A'(S)_{\mathrm{Tors}} \subseteq \ker \psi$$

Application: caractéristique d'Euler équivariante

Soit G un S-schéma en groupes commutatif, fini et plat.

Soit $Y \to S$ un modèle minimal, régulier et projectif d'une courbe elliptique à réduction semi-stable sur K, et soit $X \to Y$ un G-torseur. Alors

$$\operatorname{pgcd}(12m, 2^7 3^2) \cdot \chi_R^P(\mathcal{O}_X) = 0$$

où m est l'ordre de G, et où χ_R^P désigne la caractéristique d'Euler projective équivariante. De plus, si m est premier à 6 et si R est principal, alors $\chi_R^P(\mathcal{O}_X) = 0$.

Un exemple elliptique

Soit E le modèle de Néron de la courbe elliptique $E_K = X_0(11)$ définie sur K par l'équation

$$y^2 + y = x^3 - x^2 - 10x - 20.$$

E est un S-schéma en groupes semi-stable E° contient un sous-groupe isomorphe à $\mu_{5/S}$

On pose
$$A = E^{\circ}$$
, $A' = E$ et $G = \mu_{5/S} \subseteq E^{\circ}$. Soit

$$\psi: E(S) \longrightarrow H^1(S, (\mathbb{Z}/5\mathbb{Z})_S) \longrightarrow \operatorname{Pic}(\boldsymbol{\mu}_{5/S})$$

l'homomorphisme de classes correspondant. Ainsi, à tout point $p \in E(S)_{Tors}$ nous avons associé un $(\mathbb{Z}/5\mathbb{Z})_S$ -torseur qui a une structure galoisienne triviale.