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The general framework

▶ K/Q: a Galois extension

▶ G = Gal(K/Q)

▶ Cl(K ): the ideal class group

▶ h(K ): the order of Cl(K )

Basic fact: Cl(K ) has a natural action of G , which endows it with
a Z[G ]-module structure.

Today’s topic: what kind of information about Cl(K ) does this
structure give?
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An example: dihedral extensions

Assume that G = Gal(K/Q) is the dihedral group of order 2p,
where p is an odd prime. Write G = ⟨σ, τ⟩ with relations
σp = 1 = τ2, and στ = τσ−1.

It was proved by Halter-Koch in 1977 that

h(K )

h(Kσ)h(K τ )2
=

[O×
K : O×

KσO×
KτO×

Kστ ]

p1+ϵ

where Kµ denotes the subfield fixed by µ, and ϵ is 0 (resp. 1) if
Kσ is imaginary (resp. real).

This is a special, explicit case of Brauer’s class number relation.
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Dihedral extensions, continued

We have seen that h(K ) = h(Kσ)h(K τ )2 up to a power of p.

One may ask if there is some underlying isomorphism between
(prime-to-p parts) of the class groups. This was conjectured by
Nehrkorn, and proved by Walter in 1979 using integral
representation theory.

More precisely, the map induced by the norms

Cl(K ) → Cl(Kσ)⊕ Cl(K τ )⊕ Cl(Kστ )

has p-torsion kernel and cokernel. Note that Kστ ≃ K τ .
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Remark on the m-rank of class groups

Definition: if m > 1 is an integer and A is a finite abelian group,
we denote by rankm A the largest integer r such that A contains
(Z/mZ)r as a subgroup.

According to the previous discussion, if p ∤ m then we have

rankm Cl(K ) = rankm Cl(Kσ) + 2 rankm Cl(K τ ).

This is of particular interest in the quest for number fields whose
class group has large m-rank.
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The case D6 (= S3)

In our previous work, we constucted a family of fields K/Q with
Galois group D6 such that

rankm Cl(Kσ) ≥ 1 and rankm Cl(K τ ) ≥ 2.

Therefore, if 3 ∤ m we obtain

rankm Cl(K ) ≥ 5.

In fact, our result holds for all m, and its proof does not require
the use of the above formula.

The lower bound obtained is better than Nakano’s one for general
degree n extensions, which is ⌊n2⌋+ 1.
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A natural question

What kind of lower bound (on the m-rank of the class group) is it
possible to obtain for fields K/Q with Galois group Sn?

According to Nakano, one can construct (non-Galois) fields L/Q of
degree n whose class group has m-rank ⌊n2⌋+ 1. What if we take
K to be the Galois closure of L?

(Reminder: fields of degree n have generically Galois closure with
Galois group Sn).
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Brauer relations

Going back to the dihedral case, the relation between the class
group of K and those of its subfields can be explained by integral
representation theory.

More precisely, we have the following Brauer relation in the
dihedral group G = D2p

{1}+ 2D2p = ⟨σ⟩+ 2⟨τ⟩,

which means that we have an isomorphism of Q[G ]-modules

Q[G ]⊕Q2 ≃ Q[G/⟨σ⟩]⊕Q[G/⟨τ⟩]2.

...: ...



Integral version of the above isomorphism

One can check that the Z[G ]-module map

φ : Z[G ]⊕ Z2 −→ Z[G/⟨σ⟩]⊕ Z[G/⟨τ⟩]⊕ Z[G/⟨στ⟩]
(m, 0, 0) 7−→ (m⟨σ⟩,m⟨τ⟩,m⟨στ⟩)
(0, a, b) 7−→ (0, aΣG/⟨τ⟩, bΣG/⟨στ⟩)

is injective, and has cokernel of order p.

In fact, one can construct a map φ′ in the other direction such
that φ ◦ φ′ = p and φ′ ◦ φ = p (multiplication-by-p map).

The map m 7→ m⟨σ⟩ is a “reduction map”. There is a “lifting map”

Z[G/⟨σ⟩] → Z[G ] defined by g⟨σ⟩ 7→
∑p−1

i=0 gσi . These two operations

are the building blocks for maps between such modules.
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What is a permutation module?

A Z[G ]-Permutation module is a Z[G ]-module of the form Z[X ],
where X is a finite set on which G acts.

Such an X can be written as a union of orbits. Each orbit is of the
form G/H (set of left cosets gH), where H is some stabiliser.

So, any permutation module is a direct sum of modules of the
form Z[G/H], where H runs through subgroups of G .

Integral representation theory can be seen as the study of
permutation modules.
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How is this related to class groups?

The assignement

F : {Z[G ]-Permutation modules} −→ {Abelian groups}
Z[G/H] 7−→ Cl(KH)

is an additive functor.

In particular, any relation between permutations modules yields a
relation between class groups of subfields of K .

The “reduction map” Z[G ] → Z[G/H] corresponds to the norm map

Cl(K ) → Cl(KH). The “lifting map” Z[G/H] → Z[G ] corresponds to the

natural map Cl(KH) → Cl(K ).
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Functors are helpful

Going back to the dihedral case, the image of our permutation
modules by the functor F are

Z[G ]⊕ Z2 7−→ Cl(K )⊕ Cl(Q)2

φ ↓↑ φ′ F (φ) ↓↑ F (φ′)

Z[G/⟨σ⟩]⊕ Z[G/⟨τ⟩]2 7−→ Cl(Kσ)⊕ Cl(K τ )2

In the source category, we have maps φ and φ′ whose composite in
both directions is multiplication by p.

This yields maps F (φ) and F (φ′) between (sums of) class groups
which, by functoriality, have the same property. Hence, the kernel
and cokernel of these maps are p-torsion groups.
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Revisiting Walter’s proof

Walter’s proof does not relies on functors, but on the following
observation: for any subgroup H of G , we have

HomG (Z[G/H],Cl(K )) = Cl(K )H

and

Cl(K )H ⊗ Z
[ 1

2p

]
= Cl(KH)⊗ Z

[ 1

2p

]
The Brauer relation yields an isomorphism of Z

[
1
2p ,G

]
-modules,

hence the result.

Gain from the functorial approach: finer control on primes one
should invert (p is enough), and information about the kernel and
cokernel of the map (these are p-torsion).
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The Kani-Rosen decomposition theorem

Let C be a smooth projective curve over a field k, and let C be the
Jacobian variety of C .

In 1989, Kani and Rosen proved that, if G is a finite group of
automorphisms of C , then certain Brauer relations in G gives rise
to a decomposition of the Jacobian J(C ) as the product of
Jacobians of subcovers.

For example, if D2p acts on C then we have

J(C )× J(C/D2p)
2 ∼ J(C/⟨σ⟩)× J(C/⟨τ⟩)2,

where ∼ means the existence of an isogeny between these two
abelian varieties.
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Revisiting the Kani-Rosen decomposition theorem

The assignement

F : {Z[G ]-Permutation modules} −→ {Abelian varieties}
Z[G/H] 7−→ J(C/H)

is an additive functor.

In particular, any relation between permutations modules yields a
relation between Jacobians of subcovers of C .

One recovers the Kani-Rosen theorem, with a small refinement: in
the dihedral case described above, there exists an isogeny whose
kernel is p-torsion.
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Another use of Brauer relations: BSD conjecture

Let E be an elliptic curve over Q, and let K/Q with group G .

Like the class group, the Selmer group and the Tate-Shafarevich
group of E behave nicely with respect to subfields of K . The
L-function behaves even better: its residue at s = 1 is
multiplicative under Brauer relations. More precisely, the map

{Q[G ]-Permutation modules} −→ (Q×,×)

Q[G/H] 7−→ ress=1L(E/K
H , s)

turns direct sums into products.

In 2009 and 2010, Tim and Vladimir Dokchitser used this to make
progress towards the Birch and Swinnerton-Dyer conjecture.
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General strategy

Let K/Q be a Galois extensions with group G . In order to
establish “nice” relations between the class group of K and those
of its subfields, we need two ingredients:

▶ a Brauer relation in G

▶ an integral version of this Brauer relation

What do we mean by “integral version”?

...: ...



General strategy

Let K/Q be a Galois extensions with group G . In order to
establish “nice” relations between the class group of K and those
of its subfields, we need two ingredients:

▶ a Brauer relation in G

▶ an integral version of this Brauer relation

What do we mean by “integral version”?

...: ...



Integral Brauer relations
A result of Maranda (1955): given a Q[G ]-isomorphism⊕

i∈I
Q[G/Hi ] ≃

⊕
j∈J

Q[G/Kj ]

one can find a Z[G ]-morphism

φ :
⊕
i∈I

Z[G/Hi ] −→
⊕
j∈J

Z[G/Kj ]

which becomes an isomorphism after tensoring by Z
[

1
|G |

]
.

Such a

map is injective (for obvious reasons) and has d-torsion cokernel
for some d whose prime factors divide |G |. So, we have a map φ′

in the other direction satisfying φ ◦ φ′ = d and φ′ ◦ φ = d . Thus,
if F is an additive functor, F (φ) has d-torsion kernel and cokernel.
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Facts about Brauer relations

What kind of Brauer relations can one find in general?

▶ cyclic groups don’t have Brauer relations.

▶ non-cyclic groups always do.

▶ in 2015, Bartel and Dokchitser gave a classification of all
Brauer relations in all finite groups. These can be deduced
from some explicit list of primitive relations.
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Symmetric groups

Let L/Q be an extension of degree n, whose Galois closure K/Q
has Galois group Sn. Then L has n conjugates, corresponding to
the n stabilizers of one element in Sn. It is tempting to relate the
class group of K with that of these subfields.

The case of S3(= D6) has been seen previously.

For n ≥ 4, there is no Brauer relation in Sn which allows to do
this. This follows from the result of Bartel and Dokchitser.

Question: does there exist a weaker relation that a Brauer one?
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A map in the symmetric case

Theorem
Let n > 1 and let G = Sn be the symmetric group over the set
{0, . . . , n − 1}. We let σ = (0 . . . n − 1) a cycle of length n, and
for i = 0, . . . , n − 1 we denote by Hi the stabilizer of i .

Then the morphism of Z[G ]-modules defined by

φ : Z[G ]⊕ Zn−1 −→ Z[G/⟨σ⟩]⊕
n−1⊕
i=1

Z[G/Hi ]

(m, (0)) 7−→ (m⟨σ⟩,mH1, . . . ,mHn−1)

(0, (ni )
n−1
i=1 ) 7−→ (0, (niΣG/Hi

)n−1
i=1 )

has cokernel a n(n − 2)!-torsion group.
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The map φ′ in the other direction

In order to derive information from φ, it would be nice to find a
map φ′ in the other direction such that φ ◦ φ′ = n(n − 2)!.

Unfortunately, the computations are intricate and it seems tricky
to construct such a map φ′. In fact, it may not exist. Nevertheless,
we prove the following

Lemma
Let φ : M → N be a morphism of Z[G ]-permutation modules,
whose cokernel is d-torsion. Then there exists a morphism
φ′ : N → M such that φ ◦ φ′ = d |G | .

This follows from the fact that short exact sequences of
Z[G ]-modules split after multiplication by |G |.
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The relation we were looking for

By the Lemma, there exist φ′ such that φ ◦ φ′ = n!n(n − 2)!.

It follows from the functorial machinery that, if L/Q is an
extension of degree n whose Galois closure K/Q has Galois group
Sn, then there exist a map

Cl(K ) −→ Cl(Kσ)⊕ Cl(L)n−1

whose cokernel is n!n(n − 2)!-torsion (here, σ denotes any cycle of
length n). In particular, letting d := n!n(n − 2)! we have

rankm Cl(K ) ≥ rankdm Cl(Kσ) + (n − 1) rankdm Cl(L).

...: ...



A variant of Nakano’s construction

Let q1, . . . , qd be pairwise distinct nonzero integers such that, for
all k ∈ {1, . . . , d}, (qk , 1 + (−1)d−1

∏
i ̸=k q

m
i ) = 1.

Let ∆0 be an integer such that all primes dividing one of the qi , or
qmi − qmj for some i ̸= j also divide ∆0. Let t ∈ Z, and let x be an
algebraic number satisfying the equation

x(1 + t∆0)
m +

d∏
i=1

(x − qmi ) = 0.

Then for i ∈ {1, . . . , d} the numbers x − qmi are m-th powers of
ideal classes in Q(x).
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We let

qi =

{
ti ti+1 for i = 1, . . . n − 1
tn−1tnt1 for i = n

and ∆0 =
∏
i<j

(qmi − qmj )

Then:

▶ the Galois extension of Q(t0, t1, . . . , tn) obtained by splitting
the polynomial in the variable x

x(1 + t0∆0)
m +

n∏
i=1

(x − qmi )

has Galois group the symmetric group Sn.

▶ for any specialization of (t1, . . . , tn) in Zn, the assumptions of
the previous slide are satisfied by the qi and ∆0.
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Applying Hilbert’s irreducibility theorem while controlling the
signature of Q(x) yields the existence of infinitely many values of
(t0, t1, . . . , tn) ∈ Zn+1 for which the class group of Q(x) has
m-rank at least

⌊
n
2

⌋
+ 1. Thus we obtain:

Theorem
Let m > 1 and n > 1 be two integers. Then there exists infinitely
many, pairwise linearly disjoint, Galois extensions K/Q with
Gal(K/Q) ≃ Sn such that

rankm Cl(K ) ≥ (n − 1)×
(⌊n

2

⌋
+ 1

)
.

For n = 3 the lower bound is 4 (same as Nakano’s), but using another
family we achived 5 in our previous paper.

In general the bound above is smaller than Nakano’s one (
⌊
n!
2

⌋
+ 1), but

the fields obtained are Galois extensions of Q.
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Thank you for your attention!
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