Brauer relations and large class groups

Jean Gillibert (joint with Pierre Gillibert)

International Conference on Class Groups of Number Fields and Related Topics 2022, KSoM

November 21, 2022

The general framework

- K / \mathbb{Q} : a Galois extension
- $G=\operatorname{Gal}(K / \mathbb{Q})$
- $\mathrm{Cl}(K)$: the ideal class group
- $h(K)$: the order of $\mathrm{Cl}(K)$

The general framework

- K / \mathbb{Q} : a Galois extension
- $G=\operatorname{Gal}(K / \mathbb{Q})$
- $\mathrm{Cl}(K)$: the ideal class group
- $h(K)$: the order of $\mathrm{Cl}(K)$

Basic fact: $\mathrm{Cl}(K)$ has a natural action of G, which endows it with a $\mathbb{Z}[G]$-module structure.

The general framework

- K / \mathbb{Q} : a Galois extension
- $G=\operatorname{Gal}(K / \mathbb{Q})$
- $\mathrm{Cl}(K)$: the ideal class group
- $h(K)$: the order of $\mathrm{Cl}(K)$

Basic fact: $\mathrm{Cl}(K)$ has a natural action of G, which endows it with a $\mathbb{Z}[G]$-module structure.

Today's topic: what kind of information about $\mathrm{Cl}(K)$ does this structure give?

An example: dihedral extensions

Assume that $G=\operatorname{Gal}(K / \mathbb{Q})$ is the dihedral group of order $2 p$, where p is an odd prime. Write $G=\langle\sigma, \tau\rangle$ with relations $\sigma^{p}=1=\tau^{2}$, and $\sigma \tau=\tau \sigma^{-1}$.

It was proved by Halter-Koch in 1977 that

$$
\frac{h(K)}{h\left(K^{\sigma}\right) h\left(K^{\tau}\right)^{2}}=\frac{\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{K^{\sigma}}^{\times} \mathcal{O}_{K^{\tau}}^{\times} \mathcal{O}_{K^{\sigma \tau}}^{\times}\right]}{p^{1+\epsilon}}
$$

where K^{μ} denotes the subfield fixed by μ, and ϵ is 0 (resp. 1) if K^{σ} is imaginary (resp. real).

This is a special, explicit case of Brauer's class number relation.

Dihedral extensions, continued

We have seen that $h(K)=h\left(K^{\sigma}\right) h\left(K^{\tau}\right)^{2}$ up to a power of p.
One may ask if there is some underlying isomorphism between (prime-to-p parts) of the class groups. This was conjectured by Nehrkorn, and proved by Walter in 1979 using integral representation theory.
More precisely, the map induced by the norms

$$
\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K^{\sigma}\right) \oplus \mathrm{Cl}\left(K^{\tau}\right) \oplus \mathrm{Cl}\left(K^{\sigma \tau}\right)
$$

has p-torsion kernel and cokernel. Note that $K^{\sigma \tau} \simeq K^{\tau}$.

Remark on the m－rank of class groups

Definition：if $m>1$ is an integer and A is a finite abelian group， we denote by rank ${ }_{m} A$ the largest integer r such that A contains $(\mathbb{Z} / m \mathbb{Z})^{r}$ as a subgroup．

According to the previous discussion，if $p \nmid m$ then we have

$$
\operatorname{rank}_{m} \mathrm{Cl}(K)=\operatorname{rank}_{m} \mathrm{Cl}\left(K^{\sigma}\right)+2 \operatorname{rank}_{m} \mathrm{Cl}\left(K^{\tau}\right)
$$

This is of particular interest in the quest for number fields whose class group has large m－rank．

The case $D_{6}\left(=\mathfrak{S}_{3}\right)$

In our previous work，we constucted a family of fields K / \mathbb{Q} with Galois group D_{6} such that

$$
\operatorname{rank}_{m} \mathrm{Cl}\left(K^{\sigma}\right) \geq 1 \quad \text { and } \quad \text { rank }_{m} \mathrm{Cl}\left(K^{\tau}\right) \geq 2
$$

Therefore，if $3 \nmid m$ we obtain

$$
\operatorname{rank}_{m} \mathrm{Cl}(K) \geq 5
$$

In fact，our result holds for all m ，and its proof does not require the use of the above formula．

The lower bound obtained is better than Nakano＇s one for general degree n extensions，which is $\left\lfloor\frac{n}{2}\right\rfloor+1$ ．

A natural question

What kind of lower bound (on the m-rank of the class group) is it possible to obtain for fields K / \mathbb{Q} with Galois group \mathfrak{S}_{n} ?

According to Nakano, one can construct (non-Galois) fields L / \mathbb{Q} of degree n whose class group has m-rank $\left\lfloor\frac{n}{2}\right\rfloor+1$. What if we take K to be the Galois closure of L ?
(Reminder: fields of degree n have generically Galois closure with Galois group \mathfrak{S}_{n}).

Brauer relations

Going back to the dihedral case, the relation between the class group of K and those of its subfields can be explained by integral representation theory.
More precisely, we have the following Brauer relation in the dihedral group $G=D_{2 p}$

$$
\{1\}+2 D_{2 p}=\langle\sigma\rangle+2\langle\tau\rangle
$$

which means that we have an isomorphism of $\mathbb{Q}[G]$-modules

$$
\mathbb{Q}[G] \oplus \mathbb{Q}^{2} \simeq \mathbb{Q}[G /\langle\sigma\rangle] \oplus \mathbb{Q}[G /\langle\tau\rangle]^{2}
$$

Integral version of the above isomorphism

One can check that the $\mathbb{Z}[G]$-module map

$$
\begin{aligned}
\varphi: \mathbb{Z}[G] \oplus \mathbb{Z}^{2} & \longrightarrow \mathbb{Z}[G /\langle\sigma\rangle] \oplus \mathbb{Z}[G /\langle\tau\rangle] \oplus \mathbb{Z}[G /\langle\sigma \tau\rangle] \\
(m, 0,0) & \longmapsto(m\langle\sigma\rangle, m\langle\tau\rangle, m\langle\sigma \tau\rangle) \\
(0, a, b) & \longmapsto\left(0, a \Sigma_{G /\langle\tau\rangle}, b \Sigma_{G /\langle\sigma \tau\rangle}\right)
\end{aligned}
$$

is injective, and has cokernel of order p.
In fact, one can construct a map φ^{\prime} in the other direction such that $\varphi \circ \varphi^{\prime}=p$ and $\varphi^{\prime} \circ \varphi=p$ (multiplication-by- p map).

The map $m \mapsto m\langle\sigma\rangle$ is a "reduction map". There is a "lifting map" $\mathbb{Z}[G /\langle\sigma\rangle] \rightarrow \mathbb{Z}[G]$ defined by $g\langle\sigma\rangle \mapsto \sum_{i=0}^{p-1} g \sigma^{i}$. These two operations are the building blocks for maps between such modules.

What is a permutation module?

A $\mathbb{Z}[G]$-Permutation module is a $\mathbb{Z}[G]$-module of the form $\mathbb{Z}[X]$, where X is a finite set on which G acts.

Such an X can be written as a union of orbits. Each orbit is of the form G / H (set of left cosets $g H$), where H is some stabiliser.

So, any permutation module is a direct sum of modules of the form $\mathbb{Z}[G / H]$, where H runs through subgroups of G.

Integral representation theory can be seen as the study of permutation modules.

How is this related to class groups?

The assignement

$$
\begin{aligned}
F:\{\mathbb{Z}[G] \text {-Permutation modules }\} & \longrightarrow\{\text { Abelian groups }\} \\
\mathbb{Z}[G / H] & \mathrm{Cl}\left(K^{H}\right)
\end{aligned}
$$

is an additive functor.
In particular, any relation between permutations modules yields a relation between class groups of subfields of K.

The "reduction map" $\mathbb{Z}[G] \rightarrow \mathbb{Z}[G / H]$ corresponds to the norm map $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K^{H}\right)$. The "lifting map" $\mathbb{Z}[G / H] \rightarrow \mathbb{Z}[G]$ corresponds to the natural map $\mathrm{Cl}\left(K^{H}\right) \rightarrow \mathrm{Cl}(K)$.

Functors are helpful

Going back to the dihedral case, the image of our permutation modules by the functor F are

$$
\begin{gathered}
\mathbb{Z}[G] \oplus \mathbb{Z}^{2} \longmapsto \mathrm{Cl}(K) \oplus \mathrm{Cl}(\mathbb{Q})^{2} \\
\mathbb{Z}[G /\langle\sigma\rangle] \oplus \mathbb{Z}[G /\langle\tau\rangle]^{2} \longmapsto \mathrm{Cl}\left(K^{\sigma}\right) \oplus \mathrm{Cl}\left(K^{\tau}\right)^{2}
\end{gathered}
$$

Functors are helpful

Going back to the dihedral case, the image of our permutation modules by the functor F are

$$
\begin{aligned}
\mathbb{Z}[G] \oplus \mathbb{Z}^{2} \longmapsto \mathrm{Cl}(K) \oplus \mathrm{Cl}(\mathbb{Q})^{2} \\
\varphi \downarrow \uparrow \varphi^{\prime} \\
\mathbb{Z}[G /\langle\sigma\rangle] \oplus \mathbb{Z}[G /\langle\tau\rangle]^{2} \longmapsto \mathrm{Cl}\left(K^{\sigma}\right) \oplus \mathrm{Cl}\left(K^{\tau}\right)^{2}
\end{aligned}
$$

In the source category, we have maps φ and φ^{\prime} whose composite in both directions is multiplication by p.

Functors are helpful

Going back to the dihedral case, the image of our permutation modules by the functor F are

$$
\begin{aligned}
& \mathbb{Z}[G] \oplus \mathbb{Z}^{2} \longmapsto \mathrm{Cl}(K) \oplus \mathrm{Cl}(\mathbb{Q})^{2} \\
& \varphi \downarrow \uparrow \varphi^{\prime} F(\varphi) \downarrow \uparrow F\left(\varphi^{\prime}\right) \\
& \mathbb{Z}[G /\langle\sigma\rangle] \oplus \mathbb{Z}[G /\langle\tau\rangle]^{2} \longmapsto \mathrm{Cl}\left(K^{\sigma}\right) \oplus \mathrm{Cl}\left(K^{\tau}\right)^{2}
\end{aligned}
$$

In the source category, we have maps φ and φ^{\prime} whose composite in both directions is multiplication by p.
This yields maps $F(\varphi)$ and $F\left(\varphi^{\prime}\right)$ between (sums of) class groups which, by functoriality, have the same property. Hence, the kernel and cokernel of these maps are p-torsion groups.

Revisiting Walter's proof

Walter's proof does not relies on functors, but on the following observation: for any subgroup H of G, we have

$$
\operatorname{Hom}_{G}(\mathbb{Z}[G / H], \mathrm{Cl}(K))=\mathrm{Cl}(K)^{H}
$$

and

$$
\mathrm{Cl}(K)^{H} \otimes \mathbb{Z}\left[\frac{1}{2 p}\right]=\mathrm{Cl}\left(K^{H}\right) \otimes \mathbb{Z}\left[\frac{1}{2 p}\right]
$$

The Brauer relation yields an isomorphism of $\mathbb{Z}\left[\frac{1}{2 p}, G\right]$-modules, hence the result.

Gain from the functorial approach: finer control on primes one should invert (p is enough), and information about the kernel and cokernel of the map (these are p-torsion).

The Kani-Rosen decomposition theorem

Let C be a smooth projective curve over a field k, and let C be the Jacobian variety of C.

In 1989, Kani and Rosen proved that, if G is a finite group of automorphisms of C, then certain Brauer relations in G gives rise to a decomposition of the Jacobian $J(C)$ as the product of Jacobians of subcovers.

For example, if $D_{2 p}$ acts on C then we have

$$
J(C) \times J\left(C / D_{2 p}\right)^{2} \sim J(C /\langle\sigma\rangle) \times J(C /\langle\tau\rangle)^{2}
$$

where \sim means the existence of an isogeny between these two abelian varieties.

Revisiting the Kani-Rosen decomposition theorem

The assignement
$F:\{\mathbb{Z}[G]$-Permutation modules $\} \longrightarrow\{$ Abelian varieties $\}$

$$
\mathbb{Z}[G / H] \longmapsto J(C / H)
$$

is an additive functor.
In particular, any relation between permutations modules yields a relation between Jacobians of subcovers of C.

One recovers the Kani-Rosen theorem, with a small refinement: in the dihedral case described above, there exists an isogeny whose kernel is p-torsion.

Another use of Brauer relations: BSD conjecture

Let E be an elliptic curve over \mathbb{Q}, and let K / \mathbb{Q} with group G.
Like the class group, the Selmer group and the Tate-Shafarevich group of E behave nicely with respect to subfields of K. The L-function behaves even better: its residue at $s=1$ is multiplicative under Brauer relations. More precisely, the map
$\{\mathbb{Q}[G]$-Permutation modules $\} \longrightarrow\left(\mathbb{Q}^{\times}, \times\right)$

$$
\mathbb{Q}[G / H] \longmapsto \operatorname{res}_{s=1} L\left(E / K^{H}, s\right)
$$

turns direct sums into products.
In 2009 and 2010, Tim and Vladimir Dokchitser used this to make progress towards the Birch and Swinnerton-Dyer conjecture.

General strategy

Let K / \mathbb{Q} be a Galois extensions with group G ．In order to establish＂nice＂relations between the class group of K and those of its subfields，we need two ingredients：
－a Brauer relation in G
－an integral version of this Brauer relation

General strategy

Let K / \mathbb{Q} be a Galois extensions with group G. In order to establish "nice" relations between the class group of K and those of its subfields, we need two ingredients:

- a Brauer relation in G
- an integral version of this Brauer relation

What do we mean by "integral version"?

Integral Brauer relations

A result of Maranda (1955): given a $\mathbb{Q}[G]$-isomorphism

$$
\bigoplus_{i \in I} \mathbb{Q}\left[G / H_{i}\right] \simeq \bigoplus_{j \in J} \mathbb{Q}\left[G / K_{j}\right]
$$

one can find a $\mathbb{Z}[G]$-morphism

$$
\varphi: \bigoplus_{i \in I} \mathbb{Z}\left[G / H_{i}\right] \longrightarrow \bigoplus_{j \in J} \mathbb{Z}\left[G / K_{j}\right]
$$

which becomes an isomorphism after tensoring by $\mathbb{Z}\left[\frac{1}{|G|}\right]$.

Integral Brauer relations

A result of Maranda (1955): given a $\mathbb{Q}[G]$-isomorphism

$$
\bigoplus_{i \in I} \mathbb{Q}\left[G / H_{i}\right] \simeq \bigoplus_{j \in J} \mathbb{Q}\left[G / K_{j}\right]
$$

one can find a $\mathbb{Z}[G]$-morphism

$$
\varphi: \bigoplus_{i \in I} \mathbb{Z}\left[G / H_{i}\right] \longrightarrow \bigoplus_{j \in J} \mathbb{Z}\left[G / K_{j}\right]
$$

which becomes an isomorphism after tensoring by $\mathbb{Z}\left[\frac{1}{|G|}\right]$. Such a map is injective (for obvious reasons) and has d-torsion cokernel for some d whose prime factors divide $|G|$. So, we have a map φ^{\prime} in the other direction satisfying $\varphi \circ \varphi^{\prime}=d$ and $\varphi^{\prime} \circ \varphi=d$. Thus, if F is an additive functor, $F(\varphi)$ has d-torsion kernel and cokernel.

Facts about Brauer relations

What kind of Brauer relations can one find in general?

- cyclic groups don't have Brauer relations.
- non-cyclic groups always do.
- in 2015, Bartel and Dokchitser gave a classification of all Brauer relations in all finite groups. These can be deduced from some explicit list of primitive relations.

Symmetric groups

Let L / \mathbb{Q} be an extension of degree n, whose Galois closure K / \mathbb{Q} has Galois group \mathfrak{S}_{n}. Then L has n conjugates, corresponding to the n stabilizers of one element in \mathfrak{S}_{n}. It is tempting to relate the class group of K with that of these subfields.

The case of $\mathfrak{S}_{3}\left(=D_{6}\right)$ has been seen previously.
For $n \geq 4$, there is no Brauer relation in \mathfrak{S}_{n} which allows to do this. This follows from the result of Bartel and Dokchitser.

Symmetric groups

Let L / \mathbb{Q} be an extension of degree n, whose Galois closure K / \mathbb{Q} has Galois group \mathfrak{S}_{n}. Then L has n conjugates, corresponding to the n stabilizers of one element in \mathfrak{S}_{n}. It is tempting to relate the class group of K with that of these subfields.

The case of $\mathfrak{S}_{3}\left(=D_{6}\right)$ has been seen previously.
For $n \geq 4$, there is no Brauer relation in \mathfrak{S}_{n} which allows to do this. This follows from the result of Bartel and Dokchitser.

Question: does there exist a weaker relation that a Brauer one?

A map in the symmetric case

Theorem
Let $n>1$ and let $G=\mathfrak{S}_{n}$ be the symmetric group over the set $\{0, \ldots, n-1\}$. We let $\sigma=(0 \ldots n-1)$ a cycle of length n, and for $i=0, \ldots, n-1$ we denote by H_{i} the stabilizer of i.
Then the morphism of $\mathbb{Z}[G]$-modules defined by

$$
\begin{aligned}
\varphi: \mathbb{Z}[G] \oplus \mathbb{Z}^{n-1} & \longrightarrow \mathbb{Z}[G /\langle\sigma\rangle] \oplus \bigoplus_{i=1}^{n-1} \mathbb{Z}\left[G / H_{i}\right] \\
(m,(0)) & \longmapsto\left(m\langle\sigma\rangle, m H_{1}, \ldots, m H_{n-1}\right) \\
\left(0,\left(n_{i}\right)_{i=1}^{n-1}\right) & \longmapsto\left(0,\left(n_{i} \Sigma_{G / H_{i}}\right)_{i=1}^{n-1}\right)
\end{aligned}
$$

has cokernel a $n(n-2)$!-torsion group.

The map φ^{\prime} in the other direction

In order to derive information from φ, it would be nice to find a $\operatorname{map} \varphi^{\prime}$ in the other direction such that $\varphi \circ \varphi^{\prime}=n(n-2)$!.

Unfortunately, the computations are intricate and it seems tricky to construct such a $\operatorname{map} \varphi^{\prime}$. In fact, it may not exist. Nevertheless, we prove the following

Lemma
Let $\varphi: M \rightarrow N$ be a morphism of $\mathbb{Z}[G]$-permutation modules, whose cokernel is d-torsion. Then there exists a morphism $\varphi^{\prime}: N \rightarrow M$ such that $\varphi \circ \varphi^{\prime}=d|G|$.

This follows from the fact that short exact sequences of $\mathbb{Z}[G]$-modules split after multiplication by $|G|$.

The relation we were looking for

By the Lemma, there exist φ^{\prime} such that $\varphi \circ \varphi^{\prime}=n!n(n-2)!$.
It follows from the functorial machinery that, if L / \mathbb{Q} is an extension of degree n whose Galois closure K / \mathbb{Q} has Galois group \mathfrak{S}_{n}, then there exist a map

$$
\mathrm{Cl}(K) \longrightarrow \mathrm{Cl}\left(K^{\sigma}\right) \oplus \mathrm{Cl}(L)^{n-1}
$$

whose cokernel is $n!n(n-2)$!-torsion (here, σ denotes any cycle of length n). In particular, letting $d:=n!n(n-2)$! we have

$$
\operatorname{rank}_{m} \mathrm{Cl}(K) \geq \operatorname{rank}_{d m} \mathrm{Cl}\left(K^{\sigma}\right)+(n-1) \text { rank }_{d m} \mathrm{Cl}(L)
$$

A variant of Nakano's construction

Let q_{1}, \ldots, q_{d} be pairwise distinct nonzero integers such that, for all $k \in\{1, \ldots, d\},\left(q_{k}, 1+(-1)^{d-1} \prod_{i \neq k} q_{i}^{m}\right)=1$.
Let Δ_{0} be an integer such that all primes dividing one of the q_{i}, or $q_{i}^{m}-q_{j}^{m}$ for some $i \neq j$ also divide Δ_{0}. Let $t \in \mathbb{Z}$, and let x be an algebraic number satisfying the equation

$$
x\left(1+t \Delta_{0}\right)^{m}+\prod_{i=1}^{d}\left(x-q_{i}^{m}\right)=0
$$

Then for $i \in\{1, \ldots, d\}$ the numbers $x-q_{i}^{m}$ are m-th powers of ideal classes in $\mathbb{Q}(x)$.

We let

$$
q_{i}=\left\{\begin{array}{ll}
t_{i} t_{i+1} & \text { for } i=1, \ldots n-1 \\
t_{n-1} t_{n} t_{1} & \text { for } i=n
\end{array} \quad \text { and } \quad \Delta_{0}=\prod_{i<j}\left(q_{i}^{m}-q_{j}^{m}\right)\right.
$$

Then:

- the Galois extension of $\mathbb{Q}\left(t_{0}, t_{1}, \ldots, t_{n}\right)$ obtained by splitting the polynomial in the variable x

$$
x\left(1+t_{0} \Delta_{0}\right)^{m}+\prod_{i=1}^{n}\left(x-q_{i}^{m}\right)
$$

has Galois group the symmetric group \mathfrak{S}_{n}.

- for any specialization of $\left(t_{1}, \ldots, t_{n}\right)$ in \mathbb{Z}^{n}, the assumptions of the previous slide are satisfied by the q_{i} and Δ_{0}.

Applying Hilbert's irreducibility theorem while controlling the signature of $\mathbb{Q}(x)$ yields the existence of infinitely many values of $\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{Z}^{n+1}$ for which the class group of $\mathbb{Q}(x)$ has m-rank at least $\left\lfloor\frac{n}{2}\right\rfloor+1$. Thus we obtain:

Theorem

Let $m>1$ and $n>1$ be two integers. Then there exists infinitely many, pairwise linearly disjoint, Galois extensions K / \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q}) \simeq \mathfrak{S}_{n}$ such that

$$
\operatorname{rank}_{m} \mathrm{Cl}(K) \geq(n-1) \times\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)
$$

For $n=3$ the lower bound is 4 (same as Nakano's), but using another family we achived 5 in our previous paper.
In general the bound above is smaller than Nakano's one $\left(\left\lfloor\frac{n!}{2}\right\rfloor+1\right)$, but the fields obtained are Galois extensions of \mathbb{Q}.

Thank you for your attention！

