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The general framework

> K/Q: a Galois extension

> G = Gal(K/Q)

» CI(K): the ideal class group
» h(K): the order of CI(K)

Basic fact: CI(K) has a natural action of G, which endows it with
a Z|G]-module structure.

Today’s topic: what kind of information about CI(K) does this
structure give?



An example: dihedral extensions

Assume that G = Gal(K/Q) is the dihedral group of order 2p,

where p is an odd prime. Write G = (o, 7) with relations

oP=1=72and o7 =707 L.

It was proved by Halter-Koch in 1977 that

hK)  [0F:0%,0%0%.]
h(KU)h(KT)2 - p1+e

where K* denotes the subfield fixed by u, and € is 0 (resp. 1) if
K7 is imaginary (resp. real).

This is a special, explicit case of Brauer’s class number relation.



Dihedral extensions, continued

We have seen that h(K) = h(K?)h(K™)? up to a power of p.

One may ask if there is some underlying isomorphism between
(prime-to-p parts) of the class groups. This was conjectured by
Nehrkorn, and proved by Walter in 1979 using integral
representation theory.

More precisely, the map induced by the norms
CI(K) — CI(K?) @ CI(K™) @ CI(K°T)

has p-torsion kernel and cokernel. Note that K77 ~ K.



Remark on the m-rank of class groups

Definition: if m > 1 is an integer and A is a finite abelian group,
we denote by rank,, A the largest integer r such that A contains
(Z/mZ)" as a subgroup.

According to the previous discussion, if pt m then we have
rankm, CI(K) = ranky, CI(K?) + 2rank,, CI(KT).

This is of particular interest in the quest for number fields whose
class group has large m-rank.



The case D (= G3)

In our previous work, we constucted a family of fields K/Q with
Galois group Dg such that

rank, CI(K?) >1 and ranky, CI(K™) > 2.
Therefore, if 31 m we obtain
rank, CI(K) > 5.

In fact, our result holds for all m, and its proof does not require
the use of the above formula.

The lower bound obtained is better than Nakano's one for general
degree n extensions, which is |5] + 1.



A natural question

What kind of lower bound (on the m-rank of the class group) is it
possible to obtain for fields K/Q with Galois group &,7

According to Nakano, one can construct (non-Galois) fields L/Q of
degree n whose class group has m-rank | 5] 4 1. What if we take
K to be the Galois closure of L?

(Reminder: fields of degree n have generically Galois closure with
Galois group G,).



Brauer relations

Going back to the dihedral case, the relation between the class
group of K and those of its subfields can be explained by integral
representation theory.

More precisely, we have the following Brauer relation in the
dihedral group G = D,

{1} + 2Dy, = (o) + 2(7),
which means that we have an isomorphism of Q[G]-modules

Q6] ® Q* ~ Q[6/(o)] @ QIG /()%




Integral version of the above isomorphism

One can check that the Z[G]-module map

0 Z[G) @72 — Z[G /(o) ® Z[G/(7)] ® Z[G/{o7T)]
(m,0,0) — (m(o), m(r), m(oT))
(0,a,b) — (0,aXG/(r), bXG/(or))

is injective, and has cokernel of order p.

In fact, one can construct a map ¢ in the other direction such
that ¢ o ¢’ = p and ¢’ o p = p (multiplication-by-p map).

The map m— m(co) is a "reduction map”. There is a "lifting map”
Z|G/{o)] — Z[G] defined by g(o) — Zf:ol go'. These two operations
are the building blocks for maps between such modules.




What is a permutation module?

A Z[G]-Permutation module is a Z[G]-module of the form Z[X],
where X is a finite set on which G acts.

Such an X can be written as a union of orbits. Each orbit is of the
form G/H (set of left cosets gH), where H is some stabiliser.

So, any permutation module is a direct sum of modules of the
form Z[G/H], where H runs through subgroups of G.

Integral representation theory can be seen as the study of
permutation modules.



How is this related to class groups?

The assignement

F : {Z|G]-Permutation modules} — {Abelian groups}
Z|G/H] — CI(KM)

is an additive functor.

In particular, any relation between permutations modules yields a
relation between class groups of subfields of K.

The “reduction map” Z[G] — Z[G/H] corresponds to the norm map
CI(K) — CI(K"). The “lifting map" Z[G/H] — Z[G] corresponds to the
natural map CI(K") — CI(K).



Functors are helpful

Going back to the dihedral case, the image of our permutation
modules by the functor F are

Z[G] ® Z? — CI(K) @& CI(Q)?

Z[G/{o)] ® Z[G/(1)]? — CI(K°) & CI(KT)?



Functors are helpful

Going back to the dihedral case, the image of our permutation
modules by the functor F are

Z[G] ® Z? — CI(K) @& CI(Q)?
eIt ¢
Z[G/{o)] ® Z[G/(1)]? — CI(K°) & CI(KT)?

In the source category, we have maps ¢ and ¢’ whose composite in
both directions is multiplication by p.

u]
I
i
i



Functors are helpful

Going back to the dihedral case, the image of our permutation
modules by the functor F are

Z[G] ® Z° — CI(K) @ CI(Q)?
o It ¢’ F(e) 1t F(¢)
Z[G/{o)] ® Z[G/(1)]? — CI(K°) & CI(KT)?

In the source category, we have maps ¢ and ¢’ whose composite in
both directions is multiplication by p.

This yields maps F(¢) and F(¢') between (sums of) class groups
which, by functoriality, have the same property. Hence, the kernel
and cokernel of these maps are p-torsion groups.



Revisiting Walter's proof

Walter's proof does not relies on functors, but on the following
observation: for any subgroup H of G, we have

Hom¢(Z[G/H], CI(K)) = CI(K)H

and
(k)" ® Z[;p} = (kM) Z[;p]

The Brauer relation yields an isomorphism of Z[ﬁ, G]-modules,
hence the result.

Gain from the functorial approach: finer control on primes one
should invert (p is enough), and information about the kernel and
cokernel of the map (these are p-torsion).



The Kani-Rosen decomposition theorem

Let C be a smooth projective curve over a field k, and let C be the
Jacobian variety of C.

In 1989, Kani and Rosen proved that, if G is a finite group of
automorphisms of C, then certain Brauer relations in G gives rise
to a decomposition of the Jacobian J(C) as the product of
Jacobians of subcovers.

For example, if Dy, acts on C then we have
J(C) x J(C/Dap)? ~ J(C /(o)) x J(C/(T))?,

where ~ means the existence of an isogeny between these two
abelian varieties.



Revisiting the Kani-Rosen decomposition theorem

The assignement

F : {Z]|G]-Permutation modules} — {Abelian varieties}
Z[|G/H] — J(C/H)

is an additive functor.

In particular, any relation between permutations modules yields a
relation between Jacobians of subcovers of C.

One recovers the Kani-Rosen theorem, with a small refinement: in
the dihedral case described above, there exists an isogeny whose
kernel is p-torsion.



Another use of Brauer relations: BSD conjecture

Let E be an elliptic curve over Q, and let K/Q with group G.

Like the class group, the Selmer group and the Tate-Shafarevich
group of E behave nicely with respect to subfields of K. The
L-function behaves even better: its residue at s =1 is
multiplicative under Brauer relations. More precisely, the map

{Q[G]-Permutation modules} — (Q*, x)
Q[G/H] — ress—1 L(E/K", 5)

turns direct sums into products.

In 2009 and 2010, Tim and Vladimir Dokchitser used this to make
progress towards the Birch and Swinnerton-Dyer conjecture.



General strategy

Let K/Q be a Galois extensions with group G. In order to
establish “nice” relations between the class group of K and those
of its subfields, we need two ingredients:

» a Brauer relation in G

» an integral version of this Brauer relation
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General strategy

Let K/Q be a Galois extensions with group G. In order to
establish “nice” relations between the class group of K and those
of its subfields, we need two ingredients:

» a Brauer relation in G

» an integral version of this Brauer relation

What do we mean by “integral version”?
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Integral Brauer relations

A result of Maranda (1955): given a Q[G]-isomorphism

Dalc/H] ~ Palc/ki
iel

jed
one can find a Z[G]-morphism

v @PzIG/H] — PZ[G/K]
il jeJ

which becomes an isomorphism after tensoring by Z[

1
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Integral Brauer relations
A result of Maranda (1955): given a Q[G]-isomorphism

P QlG/H] ~ P Ql6/K]]

icl jeJ

one can find a Z[G]-morphism

v Pzic/H] — PrI6/K]]

icl jeJ

which becomes an isomorphism after tensoring by Z[ﬁ] Such a
map is injective (for obvious reasons) and has d-torsion cokernel

for some d whose prime factors divide |G|. So, we have a map ¢’
in the other direction satisfying ¢ o ¢’ = d and ¢/ o o = d. Thus,
if F is an additive functor, F(y) has d-torsion kernel and cokernel.



Facts about Brauer relations

What kind of Brauer relations can one find in general?

» cyclic groups don't have Brauer relations.
» non-cyclic groups always do.

» in 2015, Bartel and Dokchitser gave a classification of all

Brauer relations in all finite groups. These can be deduced
from some explicit list of primitive relations.



Symmetric groups

Let L/Q be an extension of degree n, whose Galois closure K/Q
has Galois group &,. Then L has n conjugates, corresponding to
the n stabilizers of one element in &,. It is tempting to relate the
class group of K with that of these subfields.

The case of G3(= Dg) has been seen previously.

For n > 4, there is no Brauer relation in &, which allows to do
this. This follows from the result of Bartel and Dokchitser.



Symmetric groups

Let L/Q be an extension of degree n, whose Galois closure K/Q
has Galois group &,. Then L has n conjugates, corresponding to
the n stabilizers of one element in &,. It is tempting to relate the
class group of K with that of these subfields.

The case of G3(= Dg) has been seen previously.

For n > 4, there is no Brauer relation in &, which allows to do
this. This follows from the result of Bartel and Dokchitser.

Question: does there exist a weaker relation that a Brauer one?



A map in the symmetric case

Theorem

Let n>1 and let G = &, be the symmetric group over the set

{0,....,n—1}. Weleto = (0...n—1) a cycle of length n, and
fori =0,...,n—1 we denote by H; the stabilizer of i.

Then the morphism of Z[G]-modules defined by

0:ZIG)®Z" ' — Z[G /(o @@Z[G/H]
i=1
( ( )) L (m(a) mH17 ) mHn—l)

(0, (m)7=) = (0, (miZgm )iy

has cokernel a n(n — 2)!-torsion group.




The map ¢’ in the other direction

In order to derive information from ¢, it would be nice to find a
map ¢ in the other direction such that p o ¢’ = n(n —2)\.

Unfortunately, the computations are intricate and it seems tricky
to construct such a map ¢'. In fact, it may not exist. Nevertheless,
we prove the following

Lemma

Let ¢ : M — N be a morphism of Z|G|-permutation modules,
whose cokernel is d-torsion. Then there exists a morphism
¢+ N — M such that po ¢’ = d|G].

This follows from the fact that short exact sequences of
Z|G]-modules split after multiplication by |G|.



The relation we were looking for

By the Lemma, there exist ¢’ such that ¢ o ¢’ = nln(n — 2)\.

It follows from the functorial machinery that, if L/Q is an
extension of degree n whose Galois closure K/Q has Galois group
G, then there exist a map

CI(K) — CI(K?) @ CI(L)"!

whose cokernel is nln(n — 2)!-torsion (here, o denotes any cycle of
length n). In particular, letting d := n!n(n — 2)! we have

rank,, CI(K) > rankgm, CI(K?) 4+ (n — 1) rankgp, CI(L).



A variant of Nakano's construction

Let g1,...,qq be pairwise distinct nonzero integers such that, for
all ke {1,...,d}, (g, 1+ (1) g/ = 1.

Let Ag be an integer such that all primes dividing one of the g;, or
9" —q" for some i # j also divide Ag. Let t € Z, and let x be an
algebraic number satisfying the equation

d
x(1+tAo)" + [[(x— g =0.
i=1

Then for i € {1,...,d} the numbers x — q/" are m-th powers of
ideal classes in Q(x).




We let

and Ay = H(q,’" -q")

'_{t,'t,q_l fori=1,...n—1
P =
i<j

th_1thaty fori=n

Then:

» the Galois extension of Q(to, t1,. .., t,) obtained by splitting
the polynomial in the variable x

n
x(1+ o)™ + H(X —q™)
i=1
has Galois group the symmetric group &,,.

» for any specialization of (t1,...,t,) in Z", the assumptions of
the previous slide are satisfied by the g; and A,.




Applying Hilbert's irreducibility theorem while controlling the
signature of Q(x) yields the existence of infinitely many values of
(to, t1,. .., ta) € Z"1 for which the class group of Q(x) has
m-rank at least | 7| + 1. Thus we obtain:

Theorem

Let m > 1 and n > 1 be two integers. Then there exists infinitely
many, pairwise linearly disjoint, Galois extensions K /Q with
Gal(K/Q) ~ &, such that

ranky CI(K) > (n — 1) x (EJ +1).

For n = 3 the lower bound is 4 (same as Nakano's), but using another
family we achived 5 in our previous paper.

In general the bound above is smaller than Nakano's one (L%‘J + 1), but
the fields obtained are Galois extensions of Q.



Thank you for your attention!

=] =1 = = = HA



