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Elliptic curves over Q
An elliptic curve E over a Q is a non-singular (or smooth)
projective curve defined by an equation of the form

y2 = x3 + ax + b with a, b ∈ Q

This is called a Weierstrass equation.

One defines the discriminant of E as being the quantity

∆ := −16 · (4a3 + 27b2)

Classical fact:

E is non-singular⇐⇒ x3 + ax + b has no double root

⇐⇒ ∆ 6= 0
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Why are elliptic curves important?

Short answer: they have a group law, which turns them into an
algebraic group

Detailed answer: there are exactly three types of algebraic groups
of dimension one

I A1 with addition: Ga

I A1 \ {0} with multiplication: Gm

I Elliptic curves

Remark: this classification is over an algebraically closed field.
Over an arbitrary field, one has also quadratic twists of Gm
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Why are elliptic curves arithmetically important?

Mordell-Weil Theorem (Mordell, 1922): E (Q) is a finitely
generated abelian group:

E (Q) ' Zr ⊕ E (Q)tors

The integer r is called the rank of E (Q), denoted by rkZ E (Q)

Recent heuristics by Bhargava, Kane, Lenstra, Park, Poonen,
Rains, Voight, and Wood:

When E runs through all elliptic curves over Q, rkZ E (Q) should
be bounded by 21, except for finitely many “exceptional” cases!

In particular, rkZ E (Q) should be bounded...
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Reduction of elliptic curves

By change of variables, we may find a Weierstrass equation for E
whose coefficients are integers:

y2 = x3 + ax + b with a, b ∈ Z

Given a prime number p, we say that E has good reduction at p
if one can find an integral Weierstrass equation such that

∆ 6≡ 0 (mod p)

In other terms, the reduction modulo p of the equation is an
elliptic curve over Fp.

Remark: if p = 2 or 3 one has to use a more general Weierstrass
equation. This explains the −16 in the definition of ∆.
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Basic facts on reduction

Bad primes are the divisors of ∆, so there are finitely many.

Fact: An elliptic curve over Q always has at least one bad place!

So, whenever one considers the arithmetic of elliptic curves over Q,
one has to handle bad places at some point.

Related fact: there does not exist everywhere unramified
extensions of Q.

Remark: if one replaces Q by an arbitrary number field, then the
situation changes for both objects.
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Good reduction points

Given P ∈ E (Q), say that P has everywhere good reduction if,
for all primes p, the reduction of P mod p is not a singular point
on the reduction of E mod p.

Denote by E 0(Q) the set of points with everywhere good reduction.

Theorem: E 0(Q) is a subgroup of finite index in E (Q), hence

rkZ E
0(Q) = rkZ E (Q).

In practive, given a point P ∈ E (Q), there exists some multiple of
P which belongs to E 0(Q).
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From elliptic curves to class groups

Mazur-Tate’s class group pairing: let K be a number field.
Then we have a bilinear map of abelian groups

E 0(Q)× E (K ) −→ Cl(K )

(P,Q) 7−→ 〈P,Q〉cl

Barry Mazur and John Tate, Canonical height pairings via
biextensions, Arithmetic and geometry, Vol. I, Progr. Math.,
vol. 35, Birkhäuser Boston, Boston, MA, 1983
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Definition of the class group pairing

A point P ∈ E (Q) gives rise to a degree zero line bundle LP on E .
If P belongs to E 0, then LP entends (uniquely) into a line bundle
LP on the minimal regular model X → Spec(Z) of E .

On the other hand, a point Q ∈ E (K ) gives rise to an integral
section Q : Spec(OK )→ X , and we let

〈P,Q〉cl := Q∗LP

which belongs to Pic(Spec(OK )) = Cl(K ).
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Relation with work of Buell

Mazur and Tate make the following remark: using the language of
quadratic forms, a map E 0(Q)→ Cl(K ) has been constructed by
Buell in 1977.

This map should be 〈−,Q〉cl for some specific point Q ∈ E (K ).

This was proved later by Call in his PhD thesis (1986).

More recently, a new proof of this result appeared in

Duncan Buell and Gregory Call, Class pairings and isogenies on
elliptic curves, J. Number Theory 167 (2016).
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Which classes can be built from one given curve?

Given Q ∈ E (K ), the class group pairing induces a group morphism

〈−,Q〉cl : E 0(Q) −→ Cl(K )

Question: given a field K , is it possible to find a curve E and a
point Q ∈ E (K ) such that 〈−,Q〉cl is surjective?

Remark: if E 0(Q)→ Cl(K ) is surjective, then

rkZ E (Q) ≥ dim2 Cl(K )[2]− dim2 E
0(Q)tors

≥ dim2 Cl(K )[2]− 2.

There exist quadratic fields K for which dim2 Cl(K )[2] is arbitrarily
large. So the surjectivity implies the existence of elliptic curves
over Q whose rank is arbitrarily large. Not likely!
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Question: is the pairing non-degenerate?

Question: More precisely, given P ∈ E 0(Q), does there exist some
field K and some Q ∈ E (K ) such that

〈P,Q〉cl 6= 0 ?

This question was asked (in a more general setting) by Agboola
and Pappas in 2000.

Theorem (G.–Levin, 2012): Yes if P is a torsion point.
More precisely, one can find infinitely many Q defined over
imaginary quadratic fields K such that the map 〈−,Q〉cl is
injective on E 0(Q)tors
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In fact, our result holds for “imaginary” hyperelliptic curves over
Q, i.e. curves defined by equations of the form

y2 = f (x)

where f ∈ Q[x ] is a monic square-free polynomial of odd degree.

Ingredients of our proof: Kummer theory and Hilbert’s
irreducibility theorem.

For points of infinite order, we need another strategy!

...: ... 14 / 28



ICCGNFRT 2017

Debopam Chakraborty gave a talk in which he explicitely
constructs ideal classes of order 2 over biquadratic fields from
points on elliptic curves (joint work with Anupam Saikia).

Then he mentions a paper by Ragnar Soleng according to which
one can build from points of infinite order ideal classes whose order
is arbitrarily large!

I immediately looked for a copy of Soleng’s paper.

Ragnar Soleng, Homomorphisms from the group of rational points
on elliptic curves to class groups of quadratic number fields, J.
Number Theory 46 (1994).
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Soleng’s result

Without refering to previous constructions, Soleng defines a family
of maps E 0(Q)→ Cl(K ) using the language of quadratic forms.

His construction is the same than Buell’s one, so according to Call
his maps are 〈−,Q〉cl for some Q.

Theorem (Soleng, 1994): Let E be an elliptic curve over Q, and
let P ∈ E 0(Q) be a point of infinite order. Then there exists a
sequence (Qn)n∈N of points defined over quadratic imaginary fields
such that the order of 〈P,Qn〉cl is unbounded when n→∞.

The proof is less than one page long!
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Soleng’s setting

Consider an integral Weierstrass equation of E

y2 = f (x) f ∈ Z[x ], monic of degree 3.

Any rational point P ∈ E (Q) \ {0} can be written as

P =

(
A

e2
,
B

e3

)
with A, B, e in Z such that

gcd(A, e) = gcd(B, e) = 1.

Remark: If P belongs to E 0(Q), then gcd(A, 2B, e) = 1.

...: ... 17 / 28



Soleng’s definition of the map

Fix n ∈ Z, and let Qn := (n,
√
f (n)). If f (n) is not a square, then

Qn is a quadratic point on E .

Soleng’s construction

P =

(
A

e2
,
B

e3

)
 Fn :=

[
(ne2 − A), 2kB,

k2B2 − f (n)

ne2 − A

]
where k is some integer such that ke3 ≡ 1 (mod ne2 − A).

This binary quadratic form Fn has discriminant 4f (n).

The condition gcd(A, 2B, e) = 1 implies that Fn is primitive, hence
defines a class cl(Fn) in Cl(Z[

√
f (n)]).

...: ... 18 / 28



Soleng’s proof

〈P,Qn〉cl is the image of cl(Fn) by the natural map

Cl(Z[
√

f (n)]) −→ Cl(Q(
√
f (n)))

Assume f (n) is squarefree, and < −3. Then the kernel of this map
has order ≤ 3.

Theorem (Hooley, 1967): there exist infinitely many values of n
such that f (n) is square-free.

So it suffices to prove the result for the map

E 0(Q)→ Cl(Z[
√
f (n)]);P 7→ cl(Fn)
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Soleng’s proof, continued

Lemma: When n→ −∞, the form Fn is not equivalent to the
identity form [1, 0,−f (n)].

The proof is based on the following idea: if two binary quadratic
forms over Z have small coefficients in X 2 compared to their
(negative) discriminant, then they are not equivalent.

Fn :=

[
(ne2 − A), 2kB,

k2B2 − f (n)

ne2 − A

]
When n→ −∞, ne2 − A (linear in n) is small compared to the
discriminant 4f (n) (cubic in n). �
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The hyperelliptic case

It is tempting to generalize Soleng’s proof when replacing f by a
monic, square-free polynomial of odd degree.

This means that we are considering the imaginary hyperelliptic
curve C defined by

y2 = f (x)

The genus of C is g(C ) := (deg(f )− 1)/2.

Hooley’s result cannot be extended to arbitrary degrees, so we
make the following assumption:

Hypothesis: f is the product of polynomials of degree ≤ 3.
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Line bundles on hyperelliptic curves

We replace the elliptic curve E by the Jacobian variety J of C ,
which is an abelian variety over Q.

Points on J are degree zero divisor classes, or line bundles, on C .

We have a subgroup J0(Q) ⊂ J(Q) consisting of points with
everywhere good reduction, and a class group pairing

J0(Q)× C (K ) −→ Cl(K )

Question: is there an explicit description of J(Q)?

...: ... 22 / 28



Mumford’s representation
Every element in J(Q) = Pic0(C ) can be uniquely represented by a
quadratic form [u, 2v ,w ] over Q[x ], with discriminant 4f , where:

(1) u is monic;

(2) deg v < deg u ≤ g(C ).

In this correspondence, the quadratic form F = [u, 2v ,w ]
corresponds to the divisor

DF := div(u) ∩ div(y − v) =
r∑

i=1

Pi − r · ∞

where Pi = (xi , yi ), the xi are the roots of u, and v(xi ) = yi .

People doing cryptography with hyperelliptic curves over finite
fields use this all the time, refeering to Cantor’s paper!
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Elliptic curve case

A point P ∈ E (Q) is represented by a quadratic form over Q[x ].

Which one?

P =

(
A

e2
,
B

e3

)
 F :=

[
x − A

e2
, 2

B

e3
,

(
B
e3

)2 − f (x)

x − A
e2

]
Compare this to Soleng’s construction:

P  Fn :=

[
(ne2 − A), 2kB,

k2B2 − f (n)

ne2 − A

]
where k is the inverse of e3 modulo (ne2 − A).
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Conclusion

By chasing denominators, q.f. over Q[x ]  q.f. over Z[x ].

A natural generalization of Soleng’s construction is to consider the
specialization map

{q.f. over Z[x ] with disc. 4f } −→ {q.f. over Z with disc. 4f (n)}
[u, 2v ,w ] 7−→ [u(n), 2v(n),w(n)]

This map is just LP 7→ Q∗nLP (specialisation on line bundles along
the section Qn).

One recovers Mazur-Tate’s definition of the class group pairing.

At the same time, one obtains a new proof of the fact that Soleng’s
and Buell’s constructions coincide with the class group pairing.
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Classical analogy

algebraic geometry number theory

curve C/Q number field K/Q

with φ : C → P1 of degree 2 with [K : Q] = 2

Jacobian J(C ) := Pic0(C ) Class group Cl(K )

quadratic form over P1 quadratic form over Z

Melanie Wood, 2011: generalisation to arbitrary double covers of
schemes! This involves sheaves of quadratic forms.
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Further directions

I Replace Q by an arbitrary number field K ;

I Replace the hyperelliptic curve C by a trigonal curve

C → P1 of degree 3

The work of Bhargava on higher composition laws allows to
represent divisor classes on C by binary cubic forms.
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Thank you for your attention!
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