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Elliptic curves over Q

2

projective curve defined by an equation of the form
y

An elliptic curve E over a Q is a non-singular (or smooth)

=x34+ax+b

with a,b € Q
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This is called a Weierstrass equation.



Elliptic curves over Q

An elliptic curve E over a Q is a non-singular (or smooth)
projective curve defined by an equation of the form

v =x3+ax+b with a,b € QQ

This is called a Weierstrass equation.

One defines the discriminant of E as being the quantity

A= —16 - (43 + 27b°)

2/28



Elliptic curves over Q

An elliptic curve E over a Q is a non-singular (or smooth)
projective curve defined by an equation of the form

v =x3+ax+b with a,b € QQ

This is called a Weierstrass equation.

One defines the discriminant of E as being the quantity
A= —16 - (43 + 27b°)
Classical fact:
E is non-singular <= x3 + ax 4+ b has no double root

— A#0
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Why are elliptic curves important?

algebraic group

Short answer: they have a group law, which turns them into an
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Why are elliptic curves important?

Short answer: they have a group law, which turns them into an
algebraic group

Detailed answer: there are exactly three types of algebraic groups
of dimension one

» Al with addition: G,
» A\ {0} with multiplication: G,
» Elliptic curves

Remark: this classification is over an algebraically closed field.
Over an arbitrary field, one has also quadratic twists of G,
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Why are elliptic curves arithmetically important?
Mordell-Weil Theorem (Mordell, 1922): £(Q) is a finitely
generated abelian group:

E(Q) ~Z" & E(Q)tors

The integer r is called the rank of E(Q), denoted by rky E(Q)



Why are elliptic curves arithmetically important?

Mordell-Weil Theorem (Mordell, 1922): E(Q) is a finitely
generated abelian group:

E(Q) = Zr EB E(Q)tors

The integer r is called the rank of E(Q), denoted by rky E(Q)

Recent heuristics by Bhargava, Kane, Lenstra, Park, Poonen,
Rains, Voight, and Wood:

When E runs through all elliptic curves over Q, rkz E(Q) should
be bounded by 21, except for finitely many “exceptional” cases!
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Why are elliptic curves arithmetically important?

Mordell-Weil Theorem (Mordell, 1922): £(Q) is a finitely
generated abelian group:

E(Q) ~Z" & E(Q)tors

The integer r is called the rank of E(Q), denoted by rky E(Q)

Recent heuristics by Bhargava, Kane, Lenstra, Park, Poonen,
Rains, Voight, and Wood:

When E runs through all elliptic curves over Q, rkz E(Q) should
be bounded by 21, except for finitely many “exceptional” cases!

In particular, rkz E(Q) should be bounded...
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Reduction of elliptic curves

By change of variables, we may find a Weierstrass equation for E
whose coefficients are integers:

y2=x3+ax+b with a,b € Z

Given a prime number p, we say that E has good reduction at p
if one can find an integral Weierstrass equation such that

A#0 (mod p)

In other terms, the reduction modulo p of the equation is an
elliptic curve over [Fp,.
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Reduction of elliptic curves

By change of variables, we may find a Weierstrass equation for E
whose coefficients are integers:

v =x3+ax+b with a, b € Z

Given a prime number p, we say that E has good reduction at p
if one can find an integral Weierstrass equation such that

A#0 (mod p)

In other terms, the reduction modulo p of the equation is an
elliptic curve over [Fp,.

Remark: if p =2 or 3 one has to use a more general Weierstrass
equation. This explains the —16 in the definition of A.
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Basic facts on reduction

Bad primes are the divisors of A, so there are finitely many.
Fact: An elliptic curve over Q always has at least one bad place!

So, whenever one considers the arithmetic of elliptic curves over Q,
one has to handle bad places at some point.

7/28



Basic facts on reduction

Bad primes are the divisors of A, so there are finitely many.
Fact: An elliptic curve over Q always has at least one bad place!

So, whenever one considers the arithmetic of elliptic curves over Q,
one has to handle bad places at some point.

Related fact: there does not exist everywhere unramified
extensions of Q.
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Basic facts on reduction

Bad primes are the divisors of A, so there are finitely many.
Fact: An elliptic curve over Q always has at least one bad place!

So, whenever one considers the arithmetic of elliptic curves over Q,
one has to handle bad places at some point.

Related fact: there does not exist everywhere unramified
extensions of Q.

Remark: if one replaces Q by an arbitrary number field, then the
situation changes for both objects.
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Good reduction points

Given P € E(Q), say that P has everywhere good reduction if,

for all primes p, the reduction of P mod p is not a singular point
on the reduction of E mod p.

Denote by E%(Q) the set of points with everywhere good reduction.
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Good reduction points

Given P € E(Q), say that P has everywhere good reduction if,
for all primes p, the reduction of P mod p is not a singular point
on the reduction of E mod p.

Denote by E%(Q) the set of points with everywhere good reduction.
Theorem: E°(Q) is a subgroup of finite index in E(Q), hence

rkz, E%(Q) = rky, E(Q).

In practive, given a point P € E(Q), there exists some multiple of
P which belongs to E%(Q).
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From elliptic curves to class groups

Mazur-Tate’s class group pairing: let K be a number field.
Then we have a bilinear map of abelian groups

E%(Q) x E(K) — CI(K)
(P,Q) — (P, Q)

Barry Mazur and John Tate, Canonical height pairings via
biextensions, Arithmetic and geometry, Vol. |, Progr. Math.,
vol. 35, Birkhauser Boston, Boston, MA, 1983
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Definition of the class group pairing

A point P € E(Q) gives rise to a degree zero line bundle Lp on E.

If P belongs to E?, then Lp entends (uniquely) into a line bundle
Lp on the minimal regular model X — Spec(Z) of E.
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Definition of the class group pairing

A point P € E(Q) gives rise to a degree zero line bundle Lp on E.
If P belongs to E?, then Lp entends (uniquely) into a line bundle
Lp on the minimal regular model X — Spec(Z) of E.

On the other hand, a point Q € E(K) gives rise to an integral
section Q : Spec(Ok) — X, and we let

(P, Q) = Q"Lp

which belongs to Pic(Spec(Ok)) = CI(K).
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Relation with work of Buell

Mazur and Tate make the following remark: using the language of
Buell in 1977.

quadratic forms, a map E°(Q) — CI(K) has been constructed by
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Relation with work of Buell

Mazur and Tate make the following remark: using the language of
quadratic forms, a map E°(Q) — CI(K) has been constructed by
Buell in 1977.

This map should be (—, @) for some specific point @ € E(K).
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Relation with work of Buell

Mazur and Tate make the following remark: using the language of
quadratic forms, a map E°(Q) — CI(K) has been constructed by
Buell in 1977.

This map should be (—, Q) for some specific point @ € E(K).
This was proved later by Call in his PhD thesis (1986).
More recently, a new proof of this result appeared in

Duncan Buell and Gregory Call, Class pairings and isogenies on
elliptic curves, J. Number Theory 167 (2016).
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Which classes can be built from one given curve?
Given Q € E(K), the class group pairing induces a group morphism

(= Q) E%Q) — CI(K)

cl
|

Question: given a field K, is it possible to find a curve E and a
point Q € E(K) such that (—, Q)< is surjective?
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Which classes can be built from one given curve?

Given Q € E(K), the class group pairing induces a group morphism
(- Q)" E%Q) — CI(K)

Question: given a field K, is it possible to find a curve E and a
point @ € E(K) such that (—, Q) is surjective?

Remark: if E9(Q) — CI(K) is surjective, then

rkz, E(Q) > dimy CI(K)[2] — dimz E°(Q)xors
> dim, CI(K)[2] — 2.
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Question: given a field K, is it possible to find a curve E and a
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large. So the surjectivity implies the existence of elliptic curves
over Q whose rank is arbitrarily large.

12/28



Which classes can be built from one given curve?
Given Q € E(K), the class group pairing induces a group morphism
(= Q) E%Q) — CI(K)
Question: given a field K, is it possible to find a curve E and a
point @ € E(K) such that (—, Q) is surjective?
Remark: if E9(Q) — CI(K) is surjective, then

rkz, E(Q) > dimy CI(K)[2] — dimz E°(Q)xors
> dimy CI(K)[2] — 2.

There exist quadratic fields K for which dimy CI(K)[2] is arbitrarily
large. So the surjectivity implies the existence of elliptic curves
over Q whose rank is arbitrarily large. Not likely!
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Question: is the pairing non-degenerate?

Question: More precisely, given P € E°(Q), does there exist some
field K and some Q € E(K) such that

(P.Q)"#07
and Pappas in 2000.

This question was asked (in a more general setting) by Agboola
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Question: is the pairing non-degenerate?

Question: More precisely, given P € EO(Q), does there exist some
field K and some Q € E(K) such that

(P,Q)"#07

This question was asked (in a more general setting) by Agboola
and Pappas in 2000.

Theorem (G.—Levin, 2012): Yes if P is a torsion point.
More precisely, one can find infinitely many Q defined over
imaginary quadratic fields K such that the map (—, Q) is
injective on E°%(Q)tors
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In fact, our result holds for “imaginary” hyperelliptic curves over
Q, i.e. curves defined by equations of the form

y? = f(x)
where f € Q[x] is a monic square-free polynomial of odd degree.

Ingredients of our proof: Kummer theory and Hilbert's
irreducibility theorem.

For points of infinite order, we need another strategy!
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ICCGNFRT 2017

Debopam Chakraborty gave a talk in which he explicitely
constructs ideal classes of order 2 over biquadratic fields from
points on elliptic curves (joint work with Anupam Saikia).

Then he mentions a paper by Ragnar Soleng according to which
one can build from points of infinite order ideal classes whose order
is arbitrarily large!

| immediately looked for a copy of Soleng's paper.

Ragnar Soleng, Homomorphisms from the group of rational points
on elliptic curves to class groups of quadratic number fields, J.
Number Theory 46 (1994).
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Soleng's result

Without refering to previous constructions, Soleng defines a family
of maps E®(Q) — CI(K) using the language of quadratic forms.

His construction is the same than Buell's one, so according to Call
his maps are (—, Q)C' for some Q.

Theorem (Soleng, 1994): Let E be an elliptic curve over Q, and
let P € E9(Q) be a point of infinite order. Then there exists a
sequence (Qp)nen of points defined over quadratic imaginary fields
such that the order of (P, Q,) is unbounded when n — oo.

The proof is less than one page long!
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Soleng's setting

Consider an integral Weierstrass equation of £
y? = f(x)

f € Z[x], monic of degree 3.
Any rational point P € E(Q) \ {0} can be written as

A B
P=(20)
with A, B, e in Z such that

gcd(A, e) = ged(B,e) = 1.

Remark: If P belongs to E%(Q), then gcd(A,2B,e) = 1.

=] =)
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Soleng's definition of the map

Fix n € Z, and let Q, := (n,/f(n)). If f(n) is not a square, then
Qn is a quadratic point on E.

Soleng's construction

A B _ , k2B2 — f(n)
P— (?,;) ~ Fn = [(ne —A),2kB,W

where k is some integer such that ke> = 1 (mod ne? — A).
This binary quadratic form F,, has discriminant 4f(n).
The condition gcd(A, 2B, e) = 1 implies that F, is primitive, hence

defines a class cl(F,) in CI(Z[\/f(n)]).
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Soleng's proof

(P, @, is the image of cl(F,) by the natural map

CZ[Vf(n)]) — C(Q(v/f(n)))
has order < 3.

Assume f(n) is squarefree, and < —3. Then the kernel of this map
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Soleng's proof

(P, @, is the image of cl(F,) by the natural map

CIZ[VF(m]) — C(Q(vT(n)))

Assume f(n) is squarefree, and < —3. Then the kernel of this map
has order < 3.

Theorem (Hooley, 1967): there exist infinitely many values of n
such that f(n) is square-free.

So it suffices to prove the result for the map

E%(Q) — CI(Z[\/f(n)]); P — cl(Fn)
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Soleng’s proof, continued
identity form [1,0, —f(n)].

Lemma: When n — —o0, the form F, is not equivalent to the
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Soleng’s proof, continued

Lemma: When n — —o0, the form F, is not equivalent to the
identity form [1,0, —f(n)].

The proof is based on the following idea: if two binary quadratic
forms over Z have small coefficients in X2 compared to their
(negative) discriminant, then they are not equivalent.
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Soleng's proof, continued

Lemma: When n — —o0, the form F, is not equivalent to the
identity form [1,0, —f(n)].
The proof is based on the following idea: if two binary quadratic

forms over Z have small coefficients in X2 compared to their
(negative) discriminant, then they are not equivalent.

k2B2 — f(n)

. 2
Fo:= |(ne® = A),2kB, ——

When n — —o0, ne? — A (linear in n) is small compared to the
discriminant 4f(n) (cubic in n). O
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The hyperelliptic case

It is tempting to generalize Soleng’s proof when replacing f by a
monic, square-free polynomial of odd degree.

This means that we are considering the imaginary hyperelliptic
curve C defined by

y? =f(x)
The genus of C is g(C) := (deg(f) — 1)/2.

Hooley's result cannot be extended to arbitrary degrees, so we
make the following assumption:

Hypothesis: f is the product of polynomials of degree < 3.
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Line bundles on hyperelliptic curves

We replace the elliptic curve E by the Jacobian variety J of C,
which is an abelian variety over Q.

Points on J are degree zero divisor classes, or line bundles, on C.

We have a subgroup J°(Q) C J(Q) consisting of points with
everywhere good reduction, and a class group pairing

J2(Q) x C(K) — CI(K)

Question: is there an explicit description of J(Q)?
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Mumford’s representation

Every element in J(Q) = Pic’(C) can be uniquely represented by a
quadratic form [u,2v, w] over Q[x], with discriminant 4f, where:

(1) uis monic;
(2) degv < degu < g(C).

In this correspondence, the quadratic form F = [u,2v, w]
corresponds to the divisor

Dg :=div(u) Ndiv(y — v) = Z Pi—r-o0
i=1

where P; = (x;,y;), the x; are the roots of u, and v(x;) = y;.
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Mumford’s representation

Every element in J(Q) = Pic’(C) can be uniquely represented by a
quadratic form [u,2v, w] over Q[x], with discriminant 4f, where:

(1) uis monic;
(2) degv < degu < g(C).

In this correspondence, the quadratic form F = [u,2v, w]
corresponds to the divisor

Dg :=div(u) Ndiv(y — v) = Z Pi—r-o0
i=1
where P; = (x;,y;), the x; are the roots of u, and v(x;) = y;.

People doing cryptography with hyperelliptic curves over finite
fields use this all the time, refeering to Cantor's paper!
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Elliptic curve case

A point P € E(Q) is represented by a quadratic form over Q[x].
Which one?
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Elliptic curve case

A point P € E(Q) is represented by a quadratic form over Q[x]
Which one?

2
A B A _B (B) -f(x)
P= (?’?) ~ F = [X—?ngeXT
Compare this to Soleng's construction:

e2

P PONN Fn = |:(ne2 — A),2kB,

where k is the inverse of 3 modulo (

k2B2 — f(n)
ne2 — A
ne? — A).
=] = - )y
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Conclusion

By chasing denominators, q.f. over Q[x] ~~ q.f. over Z[x].

A natural generalization of Soleng's construction is to consider the
specialization map

{q.f. over Z[x] with disc. 4f} — {q.f. over Z with disc. 4f(n)}
[u,2v, w] ¥ [u(n), 2v(n), w(n)]

This map is just Lp — Q) Lp (specialisation on line bundles along

the section Q).

One recovers Mazur-Tate's definition of the class group pairing.

At the same time, one obtains a new proof of the fact that Soleng's
and Buell's constructions coincide with the class group pairing.
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Classical analogy

algebraic geometry

curve C/Q

number theory

number field K/Q
with ¢ : C — P! of degree 2
Jacobian J(C) := Pic%(C)

Class group CI(K)

[=] =) N ) -
s PP SPE
26/28



Classical analogy

algebraic geometry

curve C/Q

number theory

with ¢ : C — P! of degree 2
Jacobian J(C) := Pic%(C)

number field K/Q
quadratic form over P!

Class group CI(K)

quadratic form over Z
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Classical analogy

algebraic geometry

curve C/Q

number theory

with ¢ : C — P! of degree 2
Jacobian J(C) := Pic®(C)

number field K/Q
quadratic form over P!

with [K : Q] =2

Class group CI(K)

quadratic form over Z

schemes! This involves sheaves of quadratic forms.
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Melanie Wood, 2011: generalisation to arbitrary double covers of



Further directions
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Further directions

» Replace Q by an arbitrary number field K;

» Replace the hyperelliptic curve C by a trigonal curve
C - Pl

of degree 3

The work of Bhargava on higher composition laws allows to
represent divisor classes on C by binary cubic forms.
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Thank you for your attention!
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