From covers of curves to large class groups

Jean Gillibert (joint with Yuri Bilu)

International Conference on Class Groups of Number Fields and Related Topics, HRI, Allahabad September 4, 2017

- ► K : a number field
- ► Cl(K) : its ideal class group

- K : a number field
- Cl(K) : its ideal class group

Basic fact: Cl(K) is a finite abelian group.

- K : a number field
- CI(K) : its ideal class group

Basic fact: Cl(K) is a finite abelian group.

Natural questions to ask:

- 1. What is its size?
- 2. What is its structure?

- K : a number field
- CI(K) : its ideal class group

Basic fact: Cl(K) is a finite abelian group.

Natural questions to ask:

- 1. What is its size?
- 2. What is its structure?
- 3. Does these questions have a quantitative answer, depending, say, on the size of the discriminant of *K*?

A classical result on the size

Assume K runs through **imaginary quadratic fields**. It was conjectured by Gauss, and proved by Heilbronn (1934) that:

$$\lim_{\mathsf{Disc}(\mathcal{K})\to -\infty}\mathsf{Cl}(\mathcal{K})=+\infty.$$

where Disc(K) denotes the discriminant of K.

A classical result on the size

Assume K runs through **imaginary quadratic fields**. It was conjectured by Gauss, and proved by Heilbronn (1934) that:

$$\lim_{\text{Disc}(K)\to -\infty} \text{Cl}(K) = +\infty.$$

where Disc(K) denotes the discriminant of K.

On the other hand, it was also conjectured by Gauss that infinitely many **real quadratic fields** have class number one. This problem remains open.

伺下 イヨト イヨト

A question about the structure

If n > 1 is an integer and M is a finite abelian group, we denote by rank_n M the largest integer r such that M contains $(\mathbb{Z}/n\mathbb{Z})^r$ as a subgroup.

A question about the structure

If n > 1 is an integer and M is a finite abelian group, we denote by rank_n M the largest integer r such that M contains $(\mathbb{Z}/n\mathbb{Z})^r$ as a subgroup.

The following conjecture is widely believed to be true:

Conjecture (Folklore)

Let n > 1 be an integer. Then rank_n Cl(K) is unbounded when K runs through all quadratic fields.

A question about the structure

If n > 1 is an integer and M is a finite abelian group, we denote by rank_n M the largest integer r such that M contains $(\mathbb{Z}/n\mathbb{Z})^r$ as a subgroup.

The following conjecture is widely believed to be true:

Conjecture (Folklore)

Let n > 1 be an integer. Then rank_n Cl(K) is unbounded when K runs through all quadratic fields.

周 ト イヨ ト イヨ

More generally, this conjecture is believed to hold for fields of arbitrary (fixed) degree > 1.

Table of values *n* and *r* for which it is known that there exist infinitely many quadratic fields *K* with rank_n $Cl(K) \ge r$.

Author(s)	Year	Туре	n	r
Gauss	19th c.	imaginary, real	2	∞
Nagell	1922	imaginary	>1	1
Yamamoto	1970	imaginary	>1	2
Yamamoto, Weinberger	1970, 1973	real	>1	1
Craig	1973	imaginary	3	3
		real	3	2
Craig	1977	imaginary	3	4
		real	3	3
Diaz	1978	real	3	4
Mestre	1980	imaginary, real	5,7	2
Mestre	1992	imaginary, real	5	3

Class field theory approach

Let K be a number field, and let H be its Hilbert class field (maximal everywhere unramified abelian extension of K).

According to class field theory, we have a canonical isomorphism

 $\operatorname{Gal}(H/K) \simeq \operatorname{Cl}(K).$

Class field theory approach

Let K be a number field, and let H be its Hilbert class field (maximal everywhere unramified abelian extension of K).

According to class field theory, we have a canonical isomorphism

$$\operatorname{Gal}(H/K) \simeq \operatorname{Cl}(K).$$

It follows from Galois theory that, given an abelian group Γ , an everywhere unramified Galois extensions of K with group Γ corresponds to a surjective morphism $Cl(K) \rightarrow \Gamma$.

Strategy for making $\operatorname{rank}_n \operatorname{Cl}(K)$ large

If one is able to construct an everywhere unramified extension of K with Galois group $(\mathbb{Z}/n\mathbb{Z})^r$, this implies that

 $\operatorname{rank}_{n} \operatorname{Cl}(K) \geq r$,

because Cl(K) has $(\mathbb{Z}/n\mathbb{Z})^r$ as a quotient.

Specialization of covers of curves

Consider the following setting:

- C is a smooth, geometrically irreducible, projective curve defined over some number field k.
- D → C is an étale (unramified) geometrically irreducible Galois cover of C with group (Z/nZ)^r.

Specialization of covers of curves

Consider the following setting:

- C is a smooth, geometrically irreducible, projective curve defined over some number field k.
- D → C is an étale (unramified) geometrically irreducible Galois cover of C with group (Z/nZ)^r.

Basic idea: if $P \in C(\overline{k})$ is a point, and if K is the field of definition of P, then one can specialize (or pull-back) the cover $D \rightarrow C$ into a Galois extension L/K.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○日 ● のへの

It is technically easier to construct unramified covers of curves than everywhere unramified extensions of number fields.

4 E b

- It is technically easier to construct unramified covers of curves than everywhere unramified extensions of number fields.
- By varying the point P, one cover D → C allows to build infinitely many field extensions L/K.

- It is technically easier to construct unramified covers of curves than everywhere unramified extensions of number fields.
- By varying the point P, one cover D → C allows to build infinitely many field extensions L/K.
- Gives a theoretical framework for generalizing results by Mestre in the n = 5 case!

▲ロ ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

1. When specializing the cover $D \rightarrow C$, the extension L/K obtained has in general a smaller Galois group than $D \rightarrow C$.

- 1. When specializing the cover $D \rightarrow C$, the extension L/K obtained has in general a smaller Galois group than $D \rightarrow C$.
- 2. The extension L/K obtained is in general ramified.

- 1. When specializing the cover $D \rightarrow C$, the extension L/K obtained has in general a smaller Galois group than $D \rightarrow C$.
- 2. The extension L/K obtained is in general ramified.

Hints:

- 1. Hilbert's irreducibility theorem ensures us that for infinitely many points P, the extension L/K has the same Galois group as the cover $D \rightarrow C$.
- 2. According to the Chevalley-Weil theorem, the extension L/K is unramified outside places of bad reduction of C, and places dividing n.

Hilbert's irreducibility theorem

Consider a finite morphism $t : C \to \mathbb{P}^1$ of degree d. By applying Hilbert's irreducibility theorem to the composite cover

$$D \xrightarrow{\phi} C \xrightarrow{t} \mathbb{P}^1$$

one finds that there exist infinitely many $\alpha \in \mathbb{P}^1(k)$ whose inverse image by $t \circ \phi$ is irreducible.

Hilbert's irreducibility theorem

Consider a finite morphism $t : C \to \mathbb{P}^1$ of degree d. By applying Hilbert's irreducibility theorem to the composite cover

$$D \xrightarrow{\phi} C \xrightarrow{t} \mathbb{P}^1$$

one finds that there exist infinitely many $\alpha \in \mathbb{P}^1(k)$ whose inverse image by $t \circ \phi$ is irreducible.

For such α , the point $P = t^{-1}(\alpha)$ is defined over a field K of degree [K : k] = d, and $\phi^{-1}(P)$ is defined over a Galois extension L/K with Galois group $(\mathbb{Z}/n\mathbb{Z})^r$.

Chevalley-Weil theorem

For each field K as above, the extension L/K is unramified outside the finite set

 $S := \{ \text{places of bad reduction of } C \} \cup \{ \text{places dividing } n \}$ $\cup \{ \text{places at infinity} \}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Chevalley-Weil theorem

For each field K as above, the extension L/K is unramified outside the finite set

 $S := \{ \text{places of bad reduction of } C \} \cup \{ \text{places dividing } n \}$ $\cup \{ \text{places at infinity} \}.$

In order to avoid ramification, we shall impose local conditions at each place in S.

Geometric Krasner's Lemma

Let:

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

.....

Geometric Krasner's Lemma

Let:

- ▶ v be a place of k.
- $P_0 \in C(k)$ be a rational point of C.
- L_0 be the field of definition of $\phi^{-1}(P_0)$.

Geometric Krasner's Lemma

Let:

- v be a place of k.
- $P_0 \in C(k)$ be a rational point of C.
- L_0 be the field of definition of $\phi^{-1}(P_0)$.

Lemma (Geometric Krasner's Lemma)

If $P \in C(\overline{k})$ is v-adically close enough from P_0 , then the factorization of places above v in the extension L/K is similar to the factorization of v in the extension L_0/k .

Totally split primes

Special case of Geometric Krasner's Lemma:

Assume that the inverse image of P_0 by ϕ consists only of k-rational points, so that $L_0 = k$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Totally split primes

Special case of Geometric Krasner's Lemma: Assume that the inverse image of P_0 by ϕ consists only of k-rational points, so that $L_0 = k$.

Then, if *P* is *v*-adically close enough from P_0 , places above *v* are totally split in L/K, and in particular are **unramified** in this extension.

.

Totally split primes

Special case of Geometric Krasner's Lemma: Assume that the inverse image of P_0 by ϕ consists only of k-rational points, so that $L_0 = k$.

Then, if *P* is *v*-adically close enough from P_0 , places above *v* are totally split in L/K, and in particular are **unramified** in this extension.

There is no reason why this should happen, but...

Twisting Galois covers

Consider a Galois cover $\phi : D \to C$ with group Γ , and a rational point $P_0 \in C(k)$.

It is possible to twist (by some Galois cocycle σ : Gal $(\overline{k}/k) \rightarrow \Gamma$) the cover ϕ in such a way that the inverse image of P_0 by the twisted cover ϕ^{σ} consists only of k-rational points.

If Γ is commutative, then ϕ^σ is again a Galois cover with group $\Gamma.$

So, if we choose some $P_0 \in C(k)$, we may now assume that our cover $\phi : D \to C$ has this property with respect to P_0 .

Needed properties of $t : C \to \mathbb{P}^1$

Reminder: the points $P \in C(\overline{k})$ we consider are obtained as $P_{\alpha} := t^{-1}(\alpha)$ for some $\alpha \in \mathbb{P}^{1}(k)$.

Needed properties of $t : C \to \mathbb{P}^1$

Reminder: the points $P \in C(\overline{k})$ we consider are obtained as $P_{\alpha} := t^{-1}(\alpha)$ for some $\alpha \in \mathbb{P}^{1}(k)$.

Question: how is it possible to ensure that P_{α} is *v*-adically close enough from some fixed P_0 ?

Needed properties of $t : C \to \mathbb{P}^1$

Reminder: the points $P \in C(\overline{k})$ we consider are obtained as $P_{\alpha} := t^{-1}(\alpha)$ for some $\alpha \in \mathbb{P}^{1}(k)$.

Question: how is it possible to ensure that P_{α} is *v*-adically close enough from some fixed P_0 ?

Idea: if t is totally ramified at P_0 , then when α is close enough from $t(P_0)$, the point P_{α} is close enough from P_0 .

Needed properties of $t : C \to \mathbb{P}^1$

Reminder: the points $P \in C(\overline{k})$ we consider are obtained as $P_{\alpha} := t^{-1}(\alpha)$ for some $\alpha \in \mathbb{P}^{1}(k)$.

Question: how is it possible to ensure that P_{α} is *v*-adically close enough from some fixed P_0 ?

Idea: if t is totally ramified at P_0 , then when α is close enough from $t(P_0)$, the point P_{α} is close enough from P_0 .

(This idea looks really stupid, but we don't have a better one for the moment.)

- 4 同 ト 4 回 ト

Theorem (Bilu-G. 2016)

Consider:

 a smooth, projective, geometrically irreducible curve C defined over a number field k;

э.

 a geometrically irreducible Galois cover D → C with Galois group (Z/nZ)^r.

Theorem (Bilu-G. 2016)

Consider:

- a smooth, projective, geometrically irreducible curve C defined over a number field k;
- a geometrically irreducible Galois cover D → C with Galois group (Z/nZ)^r.

Assume that C admits a finite morphism $t : C \to \mathbb{P}^1$ of degree d, totally ramified at some k-rational point of C.

Theorem (Bilu-G. 2016)

Consider:

- a smooth, projective, geometrically irreducible curve C defined over a number field k;
- a geometrically irreducible Galois cover D → C with Galois group (Z/nZ)^r.

Assume that C admits a finite morphism $t : C \to \mathbb{P}^1$ of degree d, totally ramified at some k-rational point of C.

Then there exists infinitely many number fields K with [K : k] = d such that

 $\operatorname{rank}_n \operatorname{Cl}(K) \ge r + \operatorname{rank}_n \operatorname{Cl}(k).$

Quantitative version

Let *m* be the (smallest) degree of a rational function *x* such that k(C) = k(t, x). We measure the size of Disc(K/k) by putting

$$\mathcal{D}(K/k) := \left| \mathcal{N}_{k/\mathbb{Q}} \operatorname{\mathsf{Disc}}(K/k) \right|^{1/[k:\mathbb{Q}]}$$

Quantitative version

Let *m* be the (smallest) degree of a rational function *x* such that k(C) = k(t, x). We measure the size of Disc(K/k) by putting

$$\mathcal{D}(K/k) := \left| \mathcal{N}_{k/\mathbb{Q}} \operatorname{Disc}(K/k) \right|^{1/[k:\mathbb{Q}]}$$

Using a quantitative version of Hilbert's irreducibility theorem due to Dvornicich and Zannier, we prove the following:

Quantitative version

Let *m* be the (smallest) degree of a rational function *x* such that k(C) = k(t, x). We measure the size of Disc(K/k) by putting

$$\mathcal{D}(K/k) := \left| \mathcal{N}_{k/\mathbb{Q}} \operatorname{Disc}(K/k) \right|^{1/[k:\mathbb{Q}]}$$

Using a quantitative version of Hilbert's irreducibility theorem due to Dvornicich and Zannier, we prove the following:

For all sufficiently large X > 0, the number of isomorphism classes of fields K as above, and such that $\mathcal{D}(K/k) \leq X$, is at least

$$cX^{[k:\mathbb{Q}]/2m(d-1)}/\log X$$

where c > 0 is some constant depending on C, t, x and k.

A cyclotomic example, via Fermat curves

Let $p \ge 3$ be a prime, and let d be an integer such that $2 \le d \le p - 1$.

Let C be the smooth projective curve defined by the affine equation

$$y^p = x^{d-1}(1-x)$$

- 4 同 ト - 4 同 ト -

(This is a quotient of the Fermat curve).

A cyclotomic example, via Fermat curves

Let $p \ge 3$ be a prime, and let d be an integer such that $2 \le d \le p - 1$.

Let C be the smooth projective curve defined by the affine equation

$$y^p = x^{d-1}(1-x)$$

(This is a quotient of the Fermat curve).

Because p and d are coprime, the curve C has a unique point at infinity, and the coordinate map $y : C \to \mathbb{P}^1$ is totally ramified at this point, with degree d.

Greenberg's result

Let $\mathbb{Q}(\zeta_p)$ be the *p*-th cyclotomic field.

Greenberg's result

Let $\mathbb{Q}(\zeta_p)$ be the *p*-th cyclotomic field.

Theorem (Greenberg, 1981) Let J(C) be the Jacobian of C. Then $J(C)(\mathbb{Q}(\zeta_p))$ contains a subgroup isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$.

Greenberg's result

Let $\mathbb{Q}(\zeta_p)$ be the *p*-th cyclotomic field.

Theorem (Greenberg, 1981) Let J(C) be the Jacobian of C. Then $J(C)(\mathbb{Q}(\zeta_p))$ contains a subgroup isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$.

This subgroup allows us, via Kummer theory, to construct a Galois cover of C with group $(\mathbb{Z}/p\mathbb{Z})^3$, defined over the field $\mathbb{Q}(\zeta_p)$.

A real life example!

Theorem

Let $p \ge 3$ be a prime, and let d be an integer such that $2 \le d \le p - 1$. Then there exist infinitely many extensions $K/\mathbb{Q}(\zeta_p)$ with $[K : \mathbb{Q}(\zeta_p)] = d$ such that

 $\operatorname{rank}_{p} \operatorname{Cl}(K) \geq 3 + \operatorname{rank}_{p} \operatorname{Cl}(\mathbb{Q}(\zeta_{p})).$

More precisely, for sufficiently large positive X, the number of such K with $\mathcal{D}(K/\mathbb{Q}(\zeta_p)) \leq X$ is at least $cX^{(p-1)/2p(d-1)}/\log X$, where c only depends on p.

A real life example!

Theorem

Let $p \ge 3$ be a prime, and let d be an integer such that $2 \le d \le p - 1$. Then there exist infinitely many extensions $K/\mathbb{Q}(\zeta_p)$ with $[K : \mathbb{Q}(\zeta_p)] = d$ such that

 $\operatorname{rank}_{p} \operatorname{Cl}(K) \geq 3 + \operatorname{rank}_{p} \operatorname{Cl}(\mathbb{Q}(\zeta_{p})).$

More precisely, for sufficiently large positive X, the number of such K with $\mathcal{D}(K/\mathbb{Q}(\zeta_p)) \leq X$ is at least $cX^{(p-1)/2p(d-1)}/\log X$, where c only depends on p.

・ロト ・四ト ・ヨト ・ヨト

Example: there exist infinitely many quadratic extensions $K/\mathbb{Q}(\zeta_{37})$ such that rank₃₇ Cl(K) \geq 4.

Thank you for your attention!