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The general problem

I K : a number field

I Cl(K ) : its ideal class group

Basic fact: Cl(K ) is a finite abelian group.

Natural questions to ask:

1. What is its size?

2. What is its structure?

3. Does these questions have a quantitative answer, depending,
say, on the size of the discriminant of K?
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A classical result on the size

Assume K runs through imaginary quadratic fields. It was
conjectured by Gauss, and proved by Heilbronn (1934) that:

lim
Disc(K)→−∞

Cl(K ) = +∞.

where Disc(K ) denotes the discriminant of K .

On the other hand, it was also conjectured by Gauss that infinitely
many real quadratic fields have class number one. This problem
remains open.
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A question about the structure

If n > 1 is an integer and M is a finite abelian group, we denote by
rankn M the largest integer r such that M contains (Z/nZ)r as a
subgroup.

The following conjecture is widely believed to be true:

Conjecture (Folklore)

Let n > 1 be an integer. Then rankn Cl(K ) is unbounded when K
runs through all quadratic fields.

More generally, this conjecture is believed to hold for fields of
arbitrary (fixed) degree > 1.
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Table of values n and r for which it is known that there exist
infinitely many quadratic fields K with rankn Cl(K ) ≥ r .

Author(s) Year Type n r

Gauss 19th c. imaginary, real 2 ∞
Nagell 1922 imaginary > 1 1

Yamamoto 1970 imaginary > 1 2

Yamamoto, Weinberger 1970, 1973 real > 1 1

Craig 1973 imaginary 3 3
real 3 2

Craig 1977 imaginary 3 4
real 3 3

Diaz 1978 real 3 4

Mestre 1980 imaginary, real 5, 7 2

Mestre 1992 imaginary, real 5 3
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Class field theory approach

Let K be a number field, and let H be its Hilbert class field
(maximal everywhere unramified abelian extension of K ).

According to class field theory, we have a canonical isomorphism

Gal(H/K ) ' Cl(K ).

It follows from Galois theory that, given an abelian group Γ, an
everywhere unramified Galois extensions of K with group Γ
corresponds to a surjective morphism Cl(K )� Γ.
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Strategy for making rankn Cl(K ) large

If one is able to construct an everywhere unramified extension of K
with Galois group (Z/nZ)r , this implies that

rankn Cl(K ) ≥ r ,

because Cl(K ) has (Z/nZ)r as a quotient.
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Specialization of covers of curves

Consider the following setting:

I C is a smooth, geometrically irreducible, projective curve
defined over some number field k .

I D → C is an étale (unramified) geometrically irreducible
Galois cover of C with group (Z/nZ)r .

Basic idea: if P ∈ C (k) is a point, and if K is the field of
definition of P, then one can specialize (or pull-back) the cover
D → C into a Galois extension L/K .
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Advantages of this technique

I It is technically easier to construct unramified covers of curves
than everywhere unramified extensions of number fields.

I By varying the point P, one cover D → C allows to build
infinitely many field extensions L/K .

I Gives a theoretical framework for generalizing results by
Mestre in the n = 5 case!
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Problems which arise immediately

1. When specializing the cover D → C , the extension L/K
obtained has in general a smaller Galois group than D → C .

2. The extension L/K obtained is in general ramified.

Hints:

1. Hilbert’s irreducibility theorem ensures us that for infinitely
many points P, the extension L/K has the same Galois group
as the cover D → C .

2. According to the Chevalley-Weil theorem, the extension L/K
is unramified outside places of bad reduction of C , and places
dividing n.

...: ...



Problems which arise immediately

1. When specializing the cover D → C , the extension L/K
obtained has in general a smaller Galois group than D → C .

2. The extension L/K obtained is in general ramified.

Hints:

1. Hilbert’s irreducibility theorem ensures us that for infinitely
many points P, the extension L/K has the same Galois group
as the cover D → C .

2. According to the Chevalley-Weil theorem, the extension L/K
is unramified outside places of bad reduction of C , and places
dividing n.

...: ...



Problems which arise immediately

1. When specializing the cover D → C , the extension L/K
obtained has in general a smaller Galois group than D → C .

2. The extension L/K obtained is in general ramified.

Hints:

1. Hilbert’s irreducibility theorem ensures us that for infinitely
many points P, the extension L/K has the same Galois group
as the cover D → C .

2. According to the Chevalley-Weil theorem, the extension L/K
is unramified outside places of bad reduction of C , and places
dividing n.

...: ...



Problems which arise immediately

1. When specializing the cover D → C , the extension L/K
obtained has in general a smaller Galois group than D → C .

2. The extension L/K obtained is in general ramified.

Hints:

1. Hilbert’s irreducibility theorem ensures us that for infinitely
many points P, the extension L/K has the same Galois group
as the cover D → C .

2. According to the Chevalley-Weil theorem, the extension L/K
is unramified outside places of bad reduction of C , and places
dividing n.

...: ...



Hilbert’s irreducibility theorem

Consider a finite morphism t : C → P1 of degree d . By applying
Hilbert’s irreducibility theorem to the composite cover

D
φ−−−−→ C

t−−−−→ P1

one finds that there exist infinitely many α ∈ P1(k) whose inverse
image by t ◦ φ is irreducible.

For such α, the point P = t−1(α) is defined over a field K of
degree [K : k] = d , and φ−1(P) is defined over a Galois extension
L/K with Galois group (Z/nZ)r .
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Chevalley-Weil theorem

For each field K as above, the extension L/K is unramified outside
the finite set

S :={places of bad reduction of C} ∪ {places dividing n}
∪ {places at infinity}.

In order to avoid ramification, we shall impose local conditions at
each place in S .
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Geometric Krasner’s Lemma

Let:

I v be a place of k .

I P0 ∈ C (k) be a rational point of C .

I L0 be the field of definition of φ−1(P0).

Lemma (Geometric Krasner’s Lemma)

If P ∈ C (k) is v -adically close enough from P0, then the
factorization of places above v in the extension L/K is similar to
the factorization of v in the extension L0/k.
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Totally split primes

Special case of Geometric Krasner’s Lemma:
Assume that the inverse image of P0 by φ consists only of
k-rational points, so that L0 = k .

Then, if P is v -adically close enough from P0, places above v are
totally split in L/K , and in particular are unramified in this
extension.

There is no reason why this should happen, but...
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Twisting Galois covers

Consider a Galois cover φ : D → C with group Γ, and a rational
point P0 ∈ C (k).

It is possible to twist (by some Galois cocycle σ : Gal(k/k)→ Γ)
the cover φ in such a way that the inverse image of P0 by the
twisted cover φσ consists only of k-rational points.

If Γ is commutative, then φσ is again a Galois cover with group Γ.

So, if we choose some P0 ∈ C (k), we may now assume that our
cover φ : D → C has this property with respect to P0.
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Needed properties of t : C → P1

Reminder: the points P ∈ C (k) we consider are obtained as
Pα := t−1(α) for some α ∈ P1(k).

Question: how is it possible to ensure that Pα is v -adically close
enough from some fixed P0?

Idea: if t is totally ramified at P0, then when α is close enough
from t(P0), the point Pα is close enough from P0.

(This idea looks really stupid, but we don’t have a better one for
the moment.)
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Theorem (Bilu-G. 2016)

Consider:

I a smooth, projective, geometrically irreducible curve C defined
over a number field k ;

I a geometrically irreducible Galois cover D → C with Galois
group (Z/nZ)r .

Assume that C admits a finite morphism t : C → P1 of degree d ,
totally ramified at some k-rational point of C .

Then there exists infinitely many number fields K with [K : k] = d
such that

rankn Cl(K ) ≥ r + rankn Cl(k).
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Quantitative version

Let m be the (smallest) degree of a rational function x such that
k(C ) = k(t, x). We measure the size of Disc(K/k) by putting

D(K/k) :=
∣∣Nk/Q Disc(K/k)

∣∣1/[k:Q]
.

Using a quantitative version of Hilbert’s irreducibility theorem due
to Dvornicich and Zannier, we prove the following:

For all sufficiently large X > 0, the number of isomorphism classes
of fields K as above, and such that D(K/k) ≤ X , is at least

cX [k:Q]/2m(d−1)/ logX

where c > 0 is some constant depending on C , t, x and k .
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A cyclotomic example, via Fermat curves

Let p ≥ 3 be a prime, and let d be an integer such that
2 ≤ d ≤ p − 1.

Let C be the smooth projective curve defined by the affine equation

yp = xd−1(1− x)

(This is a quotient of the Fermat curve).

Because p and d are coprime, the curve C has a unique point at
infinity, and the coordinate map y : C → P1 is totally ramified at
this point, with degree d .
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Greenberg’s result

Let Q(ζp) be the p-th cyclotomic field.

Theorem (Greenberg, 1981)

Let J(C ) be the Jacobian of C . Then J(C )(Q(ζp)) contains a
subgroup isomorphic to (Z/pZ)3.

This subgroup allows us, via Kummer theory, to construct a Galois
cover of C with group (Z/pZ)3, defined over the field Q(ζp).
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A real life example!

Theorem
Let p ≥ 3 be a prime, and let d be an integer such that
2 ≤ d ≤ p − 1. Then there exist infinitely many extensions
K/Q(ζp) with [K : Q(ζp)] = d such that

rankp Cl(K ) ≥ 3 + rankp Cl(Q(ζp)).

More precisely, for sufficiently large positive X , the number of
such K with D(K/Q(ζp)) ≤ X is at least cX (p−1)/2p(d−1)/ logX ,
where c only depends on p.

Example: there exist infinitely many quadratic extensions
K/Q(ζ37) such that rank37 Cl(K ) ≥ 4.

...: ...



A real life example!

Theorem
Let p ≥ 3 be a prime, and let d be an integer such that
2 ≤ d ≤ p − 1. Then there exist infinitely many extensions
K/Q(ζp) with [K : Q(ζp)] = d such that

rankp Cl(K ) ≥ 3 + rankp Cl(Q(ζp)).

More precisely, for sufficiently large positive X , the number of
such K with D(K/Q(ζp)) ≤ X is at least cX (p−1)/2p(d−1)/ logX ,
where c only depends on p.

Example: there exist infinitely many quadratic extensions
K/Q(ζ37) such that rank37 Cl(K ) ≥ 4.

...: ...



Thank you for your attention!
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