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Abstract. We first introduce the ideas of Hopf-Galois theory as
an attempt to taming wild extensions with Hopf algebras, in con-
nection with the problems of Galois module structure in arithmetic.
Then, as in the works of M. Taylor and others, we explain how one
obtains, from an elliptic curve having everywhere good reduction,
a family of algebras with trivial Galois module structure.

Let K/Q be a finite Galois extension, G the Galois group of K/Q,
and OK the ring of integers of K. It is well known that OK is a free
Z-module of rank [K : Q] = #G. We can ask the following :

Question : Does there exists α ∈ OK such that {σ(α) | σ ∈ G} is
a Z-basis of OK ?

In more algebraic terms, we are trying to understand the structure
of OK as Z[G]-module. It is a fundamental problem of number theory
to classify this structure.

The Noether criterion states that OK is a locally free rank-one Z[G]-
module if and only if K/Q is tamely ramified. This condition is equiv-
alent to the surjectivity of the trace map OK → Z.

In the wild case, this is no longer true. So we need to introduce
another Galois structure, for which we want OK to be locally free. The
Hopf structure is an answer.

1. The Galois Theory Revisited

We will need some basic definitions. All our rings and algebras will
be commutative with a unit element. We fix once for all a ring R.
Unadorned tensors are over R. We say an R-algebra is finite if it is
finitely generated and projective as an R-module.

If M is an R-module, we denote by M∗ = HomR(M, R) the linear
dual of M . Recall that the functorD : M 7→ M∗ defines a contravariant
auto-equivalence of the category of finitely generated and projective R-
modules. Moreover, D preserves the tensor product : if M and N are
finitely generated and projective R-modules, then there is a canonical
isomorphism between (M ⊗N)∗ and M∗ ⊗N∗. This isomorphism will
allow us an identification.
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We now introduce the notion of Hopf algebra, a very rich algebraic
structure which has strong links with algebraic geometry. We will use
a Hopf algebra in place of the deficient Z[G].

1.1. Hopf algebras. An R-Hopf algebra is an R-algebra H together
with R-algebra maps ∆ : H → H ⊗ H, ε : H → R and λ : H → H,
satisfying the following conditions :

(i) Coassociativity : the diagram

H
∆−−−→ H ⊗H

∆

y
y∆⊗idH

H ⊗H −−−−→
idH⊗∆

H ⊗H ⊗H

is commutative.
(ii) Counitary : the diagram

H ⊗H
∆←−−− H

∆−−−→ H ⊗H

idH⊗ε

y
∥∥∥

yε⊗idH

H ⊗R −−−→ H ←−−− R⊗H
is commutative.

(iii) Antipode property : the diagram

H ⊗H
∆←−−− H

∆−−−→ H ⊗H

idH⊗λ

y ι◦ε
y

yλ⊗idH

H ⊗H
µ−−−→ H

µ←−−− H ⊗H

is commutative, where µ : H ⊗H → H and ι : R → H are the
multiplication and unit maps, respectively, of the algebra H.

The maps ∆, ε and λ are called comultiplication, counit and antipode,
respectively, of the Hopf algebra H.

Example. The integral group ring Z[G] is a Z-Hopf algebra, where ∆
and ε are defined, for all σ ∈ G, by ∆(σ) = σ ⊗ σ and ε(σ) = 1.

1.2. Cartier duality. If H is a finite R-Hopf algebra, then we can
apply the functor D, which gives us a structure of R-Hopf algebra on
H∗. The comultiplication of H∗ is tµ, the counit of H∗ is tι, etc. We
say that H and H∗ are Cartier dual to each other. For example, the
Cartier dual of the integral group ring Z[G] is the algebra Map(G,R).
If we denote by (fg)g∈G the canonical basis of Map(G,R), then the
comultiplication is given by ∆(fg) =

∑
h∈G fgh−1 ⊗ fh, the counit is

given by ε(fg) = δ1,g.
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1.3. Comodules. A left H-comodule is an R-module C together with
an R-linear map ρ : C → H ⊗ C such that the diagrams

C
ρ−−−→ H ⊗ C

ρ

y
y∆⊗idC

H ⊗ C −−−−→
idH⊗ρ

H ⊗H ⊗ C

and
C

ρ−−−→ H ⊗ C∥∥∥
yε⊗idC

C ←−−− R⊗ C
are commutative. The map ρ is called the coaction associated to C.

Moreover, if C is endowed with the structure of an R-algebra, such
that ρ is in addition an R-algebras morphism, then we say that C is
an H-comodule algebra.

We denote by CcoH the set {m ∈ C | ρ(m) = 1H ⊗m}. In the case
when H = Map(G, R), then C is a right G-module, and CcoH = CG.

1.4. Galois objects. A left H-Galois object is a finite H-comodule
algebra C, satisfying CcoH = R, and such that the map

γC : C ⊗ C −−−→ H ⊗ C

x⊗ y −−−→ ρ(x)(1H ⊗ y)

is a R-algebras isomorphism, where ρ denotes the coaction on C, the
product being computed in the algebra H ⊗ C.

Example. Let C be a finite R-algebra, with a right action of the finite
group G on C. Following Chase and Harrison, C is a Galois extension
of R with group G if R = CG and the map

r : C ⊗ C −−−→ Map(G,C)

given by r(x⊗ y) =
∑

σ∈G xyσfσ is an isomorphism of left C-modules,
where we let C act on C ⊗ C via the first factor. This is the same to
say that C is a Map(G,R)-Galois object.

Example. Let n > 0 be an integer. We denote by ζ a 2n+1-th root
of unity. Then K = Q[ζ] is an abelian Galois extension of Q, with
group (Z/2n+1Z)×. The ring OK is equal to Z[ζ], but K/Q is wild
(because 2n+1 is not square-free !). So we introduce a group G, cyclic
of order 2n with generator σ, the algebra H = Z[G], and the coaction
ρ : Z[ζ] → Z[G] ⊗ Z[ζ] defined by ρ(ζ i) = σi ⊗ ζ i. Then the map γ
satisfies γ(ζ i ⊗ ζj) = σi ⊗ ζ i+j, so γ is an isomorphism (it changes a
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basis of Z[ζ]⊗Z[ζ] into a basis of Z[G]⊗Z[ζ]), and OK is an H-Galois
object. But G is not the Galois group of K/Q.

If H and C are both finitely generated and projective R-modules,
then the following data are equivalent :

(1) a structure of left H-comodule on C.
(2) a structure of left H∗-module on C∗.
(3) a structure of right H∗-module on C.

Let C be an H-Galois object. We say that C has a normal basis if C
is isomorphic to H as an H∗-module, or, equivalently, if C∗ is a free
rank-one H∗-module.

We now introduce a kind of dual version of the tensor product. Let
C1 be a right H-comodule, and C2 a left H-comodule. Let ρ1 and ρ2

denote the corresponding coactions. We define the cotensor product of
C1 and C2 to be the kernel of the map

ρ1 ⊗ idC2 − idC1 ⊗ ρ2 : C1 ⊗ C2 −−−→ C1 ⊗H ⊗ C2

we denote by C1¤HC2 this cotensor product. Of course, when H is
cocommutative, there is no difference to make between left and right
H-comodules, and the cotensor product of two H-comodules (provided
that they are flat as R-modules) is again an H-comodule.

If H is finite and cocommutative, then the set of isomorphism classes
of H-Galois objects is a group, the composition law being given by the
cotensor product. The inverse of the H-comodule algebra C is the same
algebra C with coaction (λ ⊗ idC) ◦ ρ, where ρ denotes the coaction
associated to C. We will denote this group by Gal(H).

On the other hand, if A is any (commutative) ring, the Picard group
of A is the set of isomorphism classes of invertible A-modules, the law
being given by the tensor product over A. Recall that an A-module M
is said invertible iff there exists an A-module N such that M⊗AN ' A.
In this case, N is isomorphic to HomA(M,A).

Using the functor D, the cotensor product C1¤HC2 of H-comodules
C1 and C2 is changed into the tensor product C∗

1 ⊗H∗ C∗
2 . Moreover,

the map sending the class of the H-Galois object C to the class of the
H∗-module C∗ is a group homomorphism

π : Gal(H) −−−→ Pic(H∗)

which is known as the Picard-invariant map. The kernel of this map
is the set of H-Galois objects having a normal basis. The image is the
set of realizable classes.

Remark. The ring H∗ being commutative, an invertible H∗-module is
the same than a locally free rank-one H∗-module. So we could replace
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the group Pic(H∗) by the class-group Cl(H∗), which is the kernel of
the rank map rk : K0(H

∗) → Z. Here, the composition law is induced
by the direct sum.

2. Geometry and Torsors

The algebraic geometry associates to any (commutative) ring R a
geometric space, namely the spectrum of R, which we will denote by
Spec(R). Our algebraic structures can then be interpreted geometri-
cally as follows :

(1) H is an R-Hopf algebra⇐⇒ Spec(H) is a Spec(R)-group scheme.
(2) C is an H-comodule algebra ⇐⇒ the group scheme Spec(H)

acts on the scheme Spec(C).
(3) C is an H-Galois object ⇐⇒ Spec(C) is a Spec(H)-torsor (or

Spec(H)-principal homogeneous space).

Let S = Spec(R), and G = Spec(H). If H is cocommutative, then
G is a commutative S-group scheme. We can then introduce the con-
tracted product. If Y1 and Y2 are two G-torsors (over S), then G acts
on Y1×S Y2 by g.(y1, y2) = (g.y1, g

−1.y2). We define Y1 ∧G Y2 to be the
quotient of Y1 ×S Y2 by this action (also called the scheme of orbits of
Y1 ×S Y2 under the action of G). This operation turns the set of iso-
morphism classes of G-torsors into an abelian group, which we denote
by H1(S, G). Moreover, if C1 and C2 are two H-Galois objects, then
Spec(C1) ∧G Spec(C2) is isomorphic to Spec(C1¤HC2). This shows
that Gal(H) is isomorphic to the first cohomology group H1(S,G).

2.1. Class-invariant homomorphism. Let K be a number field, E
an elliptic curve defined over K, having everywhere good reduction, and
E the Néron model of E. Remember that E is an abelian scheme over
S = Spec(OK). Moreover, for every integer n > 1, the group scheme
E [n] is finite and locally free on S, so there exists a finite OK-Hopf
algebra H such that E [n] = Spec(H), and we have an exact sequence

0 −−−→ E [n] −−−→ E [n]−−−→ E −−−→ 0

so [n] : E → E is an E [n]-torsor. By pullback, we can associate to every
point p ∈ E(S) an E [n]-torsor over S, which we denote by [n]−1p. We
obtain a map

δn : E(S) −→ H1(S, E [n])

which is a group homomorphism. Now we can compose δn with π, we
obtain a homomorphism :

E(K) = E(S)
δn−−−→ H1(S, E [n])

π−−−→ Pic(H∗)
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denoted by ψn, which is Taylor’s class-invariant homomorphism [T].

2.2. Geometric description. In geometric language, an invertible A-
module is a line bundle on Spec(A). Remember the duality of elliptic
curves : points of E are in one-to-one correspondance with line bundles
on the dual elliptic curve E∗. The hypothesis of good reduction allow
us to do the same with the abelian scheme E . We can resume the
situation by the following diagram

E(S) −−−→ Pic0
r(E∗) res−−−→ Pic(E∗[n])∥∥∥

∥∥∥
E(K)

δn−−−→ H1(S, E [n])
π−−−→ Pic(H∗)

Then, arguments given by Agboola in [A1] show that this diagram
commutes. This gives us a geometric description of ψn.

The main interest of ψn is to build H-Galois objects which have a
normal basis. We have the following :

Theorem 2.1. Suppose n is coprime to 6, and let p ∈ E(K) be a
torsion point. Then p ∈ ker ψn.

This theorem was established first by Srivastav and Taylor in [S-T]
(when E is a CM elliptic curve, and n is a power of some prime l > 3),
then (without the CM hypothesis) by Agboola in [A2]. The general
proof was given by Pappas in [P1].
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