Arithmetic Class Invariants

and Semi-stable Elliptic Curves



Classical Kummer Theory

Suppose that :

e n >1is a natural integer.

e K is a number field containing the n-th
roots of unity.

e <z is an element of KX such that z ¢ (K*)¢
for all d|n, d # 1.

Then F := K({/x) is an extension of K with
Galois group I := Z/nZ. In 1962, A. Frohlich
defined the "Kummer order” A(xz) to be the
order generated over Oy by the integral radical
elements of F.

In 1980, Martin Taylor determined the Galois
module structure of 2A(x).

Theorem 1. — A(x) and M(KI[I']) are iso-
morphic as M(Q[I'])-modules.

Here, M(C) denotes the (unique) maximal or-
der in the algebra C.



Geometric Analogue of Kummer Theory

Let Gm denote the multiplicative group scheme
over S := Spec(Ok). Then we have an exact
sequence of fppf sheaves

[n]

O — up — Gm — Gm — O.
By applying the functor of sections on S, we
get a coboundary map

§:Gm(S) = OF — H(S, un).

The group H(S,un) is the set of u,-torsors
over S. These torsors are spectra of Og-orders
in Galois K-algebras with group Z/nZ. If x
iIs congruent to 1 modulo a sufficiently large
power of n, then §(x) = Spec(UA(x)).

We say that 6(x) is obtained by dividing x by
[n] in the group scheme Gm.

The up-torsors are spectra of Galois algebras.
Now we want to study the Galois structure of
these torsors.



Picard Invariants
T his was done by W. Waterhouse in 1971.

Let G be a finite flat group scheme over S, and
denote by GP the Cartier dual of G. Then we
have a homomorphism

r: HY(S,GP) ~ ExtI (G, Gm) — Pic(G).

The isomorphism is given_by the local-global
spectral sequence for Ext*, the other map is
the natural one.

The group Pic(G) can be interpreted as the
classgroup of the Og-order representing the
affine scheme <. One can consider that =«
mesures the Galois structure of GP-torsors. In
the Kummer context, we have :

Theorem 2. — Suppose that GP = u,. Then
Imd is equal to ker .

So, up-torsors obtained by dividing points in
Gm have a trivial structure in Pic(Z/nZ).
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Abelian Varieties

We can replace the multiplicative group Gm by
other group schemes. Suppose that :

e Ay is an abelian variety defined over K.

e Al is the dual abelian variety of Ag.

e A and A! are the Néron models of Ax and
AL, respectively.

Good Reduction Case

Moreover, suppose that Ay has everywhere
good reduction. Then :

e A and A! are abelian schemes, dual to each
other.

e A[n] and Al[n] are finite flat group schemes,
Cartier dual to each other.

e We have an exact sequence of fppf sheaves

O—>At[n]—>Atﬂ>At—>O.

In 1988, M. Taylor defined a homomorphism
Yn as the composition of the maps
AL(S) — HI(S, At[n]) — Pic(A[n]) .
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In other words v, the so-called class invariant
homomorphism, mesures the Galois structure
of torsors obtained by dividing points by [n] in
the group scheme A'.

Taylor, Srivastav, Agboola and Pappas (1990—
1996) proved the following :

Theorem 3. — Suppose that Ag is an ellip-
tic curve, and that n is coprime to 6. Then
At (S)Tors is contained in ker .

This result implies the existence of Galois gen-
erators for certain rings of integers of abelian
extensions of K.



General Case

We do not suppose any more that Ax has ev-
erywhere good reduction. Let us denote by A°
the identity component of A, so that A° has
connected fibers.

The group A°[n] is no longer necessarily fi-
nite, so we have to replace it by another group
scheme.

Suppose that :

e ( is a finite flat subgroup scheme of A°.

e B is the quotient A°/G.

Then we have an exact sequence of fppf sheaves

O — G — A° — B — 0.

We want to dualize this sequence. So we have
to generalise the duality of abelian schemes.

Remember that, for an abelian scheme Q, one
defines the dual abelian scheme

Q* 1= @%Q, Gm) .



The dual properties of Q@ and O* then follow
from the fact that Hom(9,Gm) = 0 in all the
usual topologies.

Unfortunately, Hom(A°, Gm) is not zero in gen-
eral (take any point p of S where A° has mul-
tiplicative reduction, and look at the sections
on Spec(ky)).

In order to correct this, we use the small fppf
site on S to which Spec(kp) — S does not be-
long, namely the site of all flat S-schemes for
the fppf topology. Then Homg(A°, Gm) = 0.

Now working in the small fppf site on S, we
apply the functor Homg(—, Gm) to the first se-
quence and get a long exact sequence

0 = Homg(A°, Gm) — Homg(G,Gm) —

Extg(B,Gm) — Ext§(A°%, Gm) — Ext§(G,Gm) =0

The last term vanishes by a well-known result
of Waterhouse.



Hence

Theorem 4. — We have an exact sequence

0—-GP - M%(B, Gm) — m}g(/\o, Gm) — 0.

When we restrict all those sheaves to an open
subscheme U C S above which Ax has every-
where good reduction, we recover the usual
duality for abelian schemes.

Now applying standard cohomology, we get a
coboundary map

§: Extl(A4° Gm) — HI(S,GP).

On the other hand, Grothendieck’'s theory of
biextensions allows us to define a map

v ANS) — Ext1(A4°, Gm).



We then obtain our ¥ by composing the arrows

AL(S) — Ext(A°,Gm) — HI(S,GP) = Pic(G).

Thus we obtain a generalisation of Taylor's
construction.

Moreover, one can give an alternative descrip-
tion of ¢ . the so-called geometric description.
Given z € A!(S), we denote by L(z) the line
bundle on A° associated to v(x). We show :

Lemma 5. — For all x € AY(S), the restriction
of the line bundle L(x) to G C A° is equal to
Ww(x) in the group Pic(G).

This generalises a similar result obtained by
Agboola (1994) in the case of good reduction.
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Using the theory of cubic torsors, and results
of Moret-Bailly, one can show

Lemma 6. — Suppose that Ay is an elliptic
curve. Then there is an isomorphism

A(S) =5 Pic9(A4°).

T his generalizes the self-duality of elliptic curves,
which is an essential argument in Pappas’s proof.
Assuming semi-stability of Ay, we extend the
other arguments and show

Theorem 7. — Suppose that A is a semi-
stable elliptic curve, and that #G is coprime
to 6. Then A'(S)Tors is contained in kerap.
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An Elliptic Example

Let £ be the Néron model of the elliptic curve
E - defined over K by the equation

24y =23 — 22,

The curve Ey is semi-stable and Ex(K) con-
tains an element of order 5, which generates a
subgroup G of E isomorphic to (Z/5%Z)g. The
quotient Fi /Gy is the elliptic curve Fy with
equation

y2—|—y=:1:3—:1:2—1051:—20.

Let p in E(S)Tors. Our result states that 4 (p)
s a pg/g-torsor with trivial Galois structure.
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