Arithmetic Class Invariants

and Semi-stable Elliptic Curves

Classical Kummer Theory

Suppose that :

- n > 1 is a natural integer.
- K is a number field containing the n-th roots of unity.

• x is an element of K^{\times} such that $x \notin (K^{\times})^d$ for all $d|n, d \neq 1$.

Then $F := K(\sqrt[n]{x})$ is an extension of K with Galois group $\Gamma := \mathbb{Z}/n\mathbb{Z}$. In 1962, A. Frohlich defined the "Kummer order" $\mathfrak{A}(x)$ to be the order generated over \mathcal{O}_K by the integral radical elements of F.

In 1980, Martin Taylor determined the Galois module structure of $\mathfrak{A}(x)$.

Theorem 1. — $\mathfrak{A}(x)$ and $\mathcal{M}(K[\Gamma])$ are isomorphic as $\mathcal{M}(\mathbb{Q}[\Gamma])$ -modules.

Here, $\mathcal{M}(C)$ denotes the (unique) maximal order in the algebra C.

Geometric Analogue of Kummer Theory

Let G_m denote the multiplicative group scheme over $S := Spec(\mathcal{O}_K)$. Then we have an exact sequence of fppf sheaves

 $0 \longrightarrow \mu_n \longrightarrow \mathbf{G}_{\mathsf{m}} \xrightarrow{[n]} \mathbf{G}_{\mathsf{m}} \longrightarrow 0.$

By applying the functor of sections on S, we get a coboundary map

$$\delta : \mathbf{G}_{\mathsf{m}}(S) = \mathcal{O}_{K}^{\times} \longrightarrow H^{1}(S, \mu_{n}).$$

The group $H^1(S, \mu_n)$ is the set of μ_n -torsors over S. These torsors are spectra of \mathcal{O}_K -orders in Galois K-algebras with group $\mathbb{Z}/n\mathbb{Z}$. If xis congruent to 1 modulo a sufficiently large power of n, then $\delta(x) = Spec(\mathfrak{A}(x))$.

We say that $\delta(x)$ is obtained by dividing x by [n] in the group scheme G_m .

The μ_n -torsors are spectra of Galois algebras. Now we want to study the Galois structure of these torsors.

Picard Invariants

This was done by W. Waterhouse in 1971.

Let G be a finite flat group scheme over S, and denote by G^D the Cartier dual of G. Then we have a homomorphism

 $\pi: H^1(S, G^D) \simeq \mathsf{Ext}^1(G, \mathbf{G}_{\mathsf{m}}) \longrightarrow \mathsf{Pic}(G).$

The isomorphism is given by the local-global spectral sequence for Ext^i , the other map is the natural one.

The group Pic(G) can be interpreted as the classgroup of the \mathcal{O}_K -order representing the affine scheme G. One can consider that π mesures the Galois structure of G^D -torsors. In the Kummer context, we have :

Theorem 2. — Suppose that $G^D = \mu_n$. Then Im δ is equal to ker π .

So, μ_n -torsors obtained by dividing points in G_m have a trivial structure in $Pic(\mathbb{Z}/n\mathbb{Z})$.

Abelian Varieties

We can replace the multiplicative group \mathbf{G}_m by other group schemes. Suppose that :

- A_K is an abelian variety defined over K.
- A_K^t is the dual abelian variety of A_K .
- \mathcal{A} and \mathcal{A}^t are the Néron models of A_K and A_K^t respectively.

Good Reduction Case

Moreover, suppose that A_K has everywhere good reduction. Then :

• \mathcal{A} and \mathcal{A}^t are abelian schemes, dual to each other.

• $\mathcal{A}[n]$ and $\mathcal{A}^t[n]$ are finite flat group schemes, Cartier dual to each other.

• we have an exact sequence of fppf sheaves

$$0 \ \longrightarrow \ \mathcal{A}^t[n] \ \longrightarrow \ \mathcal{A}^t \ \stackrel{[n]}{\longrightarrow} \ \mathcal{A}^t \ \longrightarrow \ 0 \, .$$

In 1988, M. Taylor defined a homomorphism ψ_n as the composition of the maps

$$\mathcal{A}^{t}(S) \longrightarrow H^{1}(S, \mathcal{A}^{t}[n]) \longrightarrow \mathsf{Pic}(\mathcal{A}[n]).$$

In other words ψ_n , the so-called *class invariant homomorphism*, mesures the Galois structure of torsors obtained by dividing points by [n] in the group scheme \mathcal{A}^t .

Taylor, Srivastav, Agboola and Pappas (1990– 1996) proved the following :

Theorem 3. — Suppose that A_K is an elliptic curve, and that n is coprime to 6. Then $\mathcal{A}^t(S)_{\mathsf{Tors}}$ is contained in ker ψ_n .

This result implies the existence of Galois generators for certain rings of integers of abelian extensions of K.

General Case

We do not suppose any more that A_K has everywhere good reduction. Let us denote by \mathcal{A}° the identity component of \mathcal{A} , so that \mathcal{A}° has connected fibers.

The group $\mathcal{A}^{\circ}[n]$ is no longer necessarily finite, so we have to replace it by another group scheme.

Suppose that :

- G is a finite flat subgroup scheme of \mathcal{A}° .
- \mathcal{B} is the quotient \mathcal{A}°/G .

Then we have an exact sequence of fppf sheaves

 $0 \longrightarrow G \longrightarrow \mathcal{A}^{\circ} \longrightarrow \mathcal{B} \longrightarrow 0.$

We want to dualize this sequence. So we have to generalise the duality of abelian schemes.

Remember that, for an abelian scheme \mathcal{Q} , one defines the dual abelian scheme

$$\mathcal{Q}^* := \underline{\mathsf{Ext}}^1(\mathcal{Q}, \mathbf{G}_{\mathsf{m}}).$$

The dual properties of Q and Q^* then follow from the fact that $\underline{Hom}(Q, \mathbf{G}_m) = 0$ in all the usual topologies.

Unfortunately, $\underline{\text{Hom}}(\mathcal{A}^{\circ}, \mathbf{G}_{m})$ is not zero in general (take any point \mathfrak{p} of S where \mathcal{A}° has multiplicative reduction, and look at the sections on $Spec(k_{\mathfrak{p}})$).

In order to correct this, we use the *small fppf* site on S to which $Spec(k_{\mathfrak{p}}) \to S$ does not belong, namely the site of all flat S-schemes for the fppf topology. Then $\underline{Hom}_{S}(\mathcal{A}^{\circ}, \mathbf{G}_{m}) = 0$.

Now working in the small fppf site on S, we apply the functor $\underline{Hom}_S(-, \mathbf{G_m})$ to the first sequence and get a long exact sequence

 $0 = \underline{\mathrm{Hom}}_{S}(\mathcal{A}^{\circ}, \mathrm{G}_{m}) \to \underline{\mathrm{Hom}}_{S}(G, \mathrm{G}_{m}) \to$ $\underline{\mathrm{Ext}}_{S}^{1}(\mathcal{B}, \mathrm{G}_{m}) \to \underline{\mathrm{Ext}}_{S}^{1}(\mathcal{A}^{\circ}, \mathrm{G}_{m}) \to \underline{\mathrm{Ext}}_{S}^{1}(G, \mathrm{G}_{m}) = 0$ The last term vanishes by a well-known result of Waterhouse.

Hence

Theorem 4. — We have an exact sequence $0 \to G^D \to \underline{\mathsf{Ext}}^1_S(\mathcal{B}, \mathbf{G}_m) \to \underline{\mathsf{Ext}}^1_S(\mathcal{A}^\circ, \mathbf{G}_m) \to 0.$

When we restrict all those sheaves to an open subscheme $U \subseteq S$ above which A_K has everywhere good reduction, we recover the usual duality for abelian schemes.

Now applying standard cohomology, we get a coboundary map

$$\delta : \mathsf{Ext}^1(\mathcal{A}^\circ, \mathbf{Gm}) \longrightarrow H^1(S, G^D).$$

On the other hand, Grothendieck's theory of biextensions allows us to define a map

$$\gamma: \mathcal{A}^t(S) \to \mathsf{Ext}^1(\mathcal{A}^\circ, \mathbf{G_m}).$$

We then obtain our ψ by composing the arrows $\mathcal{A}^t(S) \to \mathsf{Ext}(\mathcal{A}^\circ, \mathbf{G}_{\mathsf{m}}) \to H^1(S, G^D) \to \mathsf{Pic}(G)$. Thus we obtain a generalisation of Taylor's construction.

Moreover, one can give an alternative description of ψ : the so-called *geometric description*. Given $x \in \mathcal{A}^t(S)$, we denote by $\mathcal{L}(x)$ the line bundle on \mathcal{A}° associated to $\gamma(x)$. We show :

Lemma 5. — For all $x \in \mathcal{A}^t(S)$, the restriction of the line bundle $\mathcal{L}(x)$ to $G \subseteq \mathcal{A}^\circ$ is equal to $\psi(x)$ in the group Pic(G).

This generalises a similar result obtained by Agboola (1994) in the case of good reduction.

Using the theory of cubic torsors, and results of Moret-Bailly, one can show

Lemma 6. — Suppose that A_K is an elliptic curve. Then there is an isomorphism

 $\mathcal{A}(S) \xrightarrow{\sim} \mathsf{Pic}^{\mathsf{O}}_{r}(\mathcal{A}^{\circ}).$

This generalizes the self-duality of elliptic curves, which is an essential argument in Pappas's proof. Assuming semi-stability of A_K , we extend the other arguments and show

Theorem 7. — Suppose that A_K is a semistable elliptic curve, and that #G is coprime to 6. Then $\mathcal{A}^t(S)_{\mathsf{Tors}}$ is contained in ker ψ .

An Elliptic Example

Let E be the Néron model of the elliptic curve E_K defined over K by the equation

$$y^2 + y = x^3 - x^2.$$

The curve E_K is semi-stable and $E_K(K)$ contains an element of order 5, which generates a subgroup G of E isomorphic to $(\mathbb{Z}/5\mathbb{Z})_S$. The quotient E_K/G_K is the elliptic curve F_K with equation

$$y^2 + y = x^3 - x^2 - 10x - 20$$
.

Let p in $E(S)_{\text{Tors}}$. Our result states that $\psi(p)$ is a $\mu_{5/S}$ -torsor with trivial Galois structure.