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and Semi-stable Elliptic Curves
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Classical Kummer Theory

Suppose that :
• n > 1 is a natural integer.
• K is a number field containing the n-th
roots of unity.
• x is an element of K× such that x 6∈ (K×)d

for all d|n, d 6= 1.

Then F := K( n
√

x) is an extension of K with
Galois group Γ := Z/nZ. In 1962, A. Frohlich
defined the ”Kummer order” A(x) to be the
order generated over OK by the integral radical
elements of F .

In 1980, Martin Taylor determined the Galois
module structure of A(x).

Theorem 1. — A(x) and M(K[Γ]) are iso-
morphic as M(Q[Γ])-modules.

Here, M(C) denotes the (unique) maximal or-
der in the algebra C.
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Geometric Analogue of Kummer Theory

Let Gm denote the multiplicative group scheme
over S := Spec(OK). Then we have an exact
sequence of fppf sheaves

0 −→ µn −→ Gm
[n]−−→ Gm −→ 0 .

By applying the functor of sections on S, we
get a coboundary map

δ : Gm(S) = O×K −→ H1(S, µn) .

The group H1(S, µn) is the set of µn-torsors
over S. These torsors are spectra of OK-orders
in Galois K-algebras with group Z/nZ. If x

is congruent to 1 modulo a sufficiently large
power of n, then δ(x) = Spec(A(x)).

We say that δ(x) is obtained by dividing x by
[n] in the group scheme Gm.

The µn-torsors are spectra of Galois algebras.
Now we want to study the Galois structure of
these torsors.
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Picard Invariants

This was done by W. Waterhouse in 1971.

Let G be a finite flat group scheme over S, and
denote by GD the Cartier dual of G. Then we
have a homomorphism

π : H1(S, GD) ' Ext1(G,Gm) −→ Pic(G) .

The isomorphism is given by the local-global
spectral sequence for Exti, the other map is
the natural one.

The group Pic(G) can be interpreted as the
classgroup of the OK-order representing the
affine scheme G. One can consider that π
mesures the Galois structure of GD-torsors. In
the Kummer context, we have :

Theorem 2. — Suppose that GD = µn. Then
Im δ is equal to ker π.

So, µn-torsors obtained by dividing points in
Gm have a trivial structure in Pic(Z/nZ).
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Abelian Varieties

We can replace the multiplicative group Gm by
other group schemes. Suppose that :
• AK is an abelian variety defined over K.
• At

K is the dual abelian variety of AK.
• A and At are the Néron models of AK and
At

K respectively.

Good Reduction Case

Moreover, suppose that AK has everywhere
good reduction. Then :
• A and At are abelian schemes, dual to each
other.
• A[n] and At[n] are finite flat group schemes,
Cartier dual to each other.
• we have an exact sequence of fppf sheaves

0 −→ At[n] −→ At [n]−−→ At −→ 0 .

In 1988, M. Taylor defined a homomorphism
ψn as the composition of the maps

At(S) −→ H1(S,At[n]) −→ Pic(A[n]) .
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In other words ψn, the so-called class invariant

homomorphism, mesures the Galois structure

of torsors obtained by dividing points by [n] in

the group scheme At.

Taylor, Srivastav, Agboola and Pappas (1990–

1996) proved the following :

Theorem 3. — Suppose that AK is an ellip-

tic curve, and that n is coprime to 6. Then

At(S)Tors is contained in ker ψn.

This result implies the existence of Galois gen-

erators for certain rings of integers of abelian

extensions of K.
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General Case

We do not suppose any more that AK has ev-
erywhere good reduction. Let us denote by A◦
the identity component of A, so that A◦ has
connected fibers.
The group A◦[n] is no longer necessarily fi-
nite, so we have to replace it by another group
scheme.

Suppose that :
• G is a finite flat subgroup scheme of A◦.
• B is the quotient A◦/G.
Then we have an exact sequence of fppf sheaves

0 −→ G −→ A◦ −→ B −→ 0 .

We want to dualize this sequence. So we have
to generalise the duality of abelian schemes.

Remember that, for an abelian scheme Q, one
defines the dual abelian scheme

Q∗ := Ext1(Q,Gm) .

7



The dual properties of Q and Q∗ then follow
from the fact that Hom(Q,Gm) = 0 in all the
usual topologies.

Unfortunately, Hom(A◦,Gm) is not zero in gen-
eral (take any point p of S where A◦ has mul-
tiplicative reduction, and look at the sections
on Spec(kp)).

In order to correct this, we use the small fppf
site on S to which Spec(kp) → S does not be-
long, namely the site of all flat S-schemes for
the fppf topology. Then HomS(A◦,Gm) = 0.

Now working in the small fppf site on S, we
apply the functor HomS(−,Gm) to the first se-
quence and get a long exact sequence

0 = HomS(A◦,Gm) → HomS(G,Gm) →

Ext1S(B,Gm) → Ext1S(A◦,Gm) → Ext1S(G,Gm) = 0

The last term vanishes by a well-known result
of Waterhouse.
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Hence

Theorem 4. — We have an exact sequence

0 → GD → Ext1S(B,Gm) → Ext1S(A◦,Gm) → 0 .

When we restrict all those sheaves to an open

subscheme U ⊆ S above which AK has every-

where good reduction, we recover the usual

duality for abelian schemes.

Now applying standard cohomology, we get a

coboundary map

δ : Ext1(A◦,Gm) −→ H1(S, GD) .

On the other hand, Grothendieck’s theory of

biextensions allows us to define a map

γ : At(S) → Ext1(A◦,Gm) .
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We then obtain our ψ by composing the arrows

At(S) → Ext(A◦,Gm) → H1(S, GD) → Pic(G) .

Thus we obtain a generalisation of Taylor’s

construction.

Moreover, one can give an alternative descrip-

tion of ψ : the so-called geometric description.

Given x ∈ At(S), we denote by L(x) the line

bundle on A◦ associated to γ(x). We show :

Lemma 5. — For all x ∈ At(S), the restriction

of the line bundle L(x) to G ⊆ A◦ is equal to

ψ(x) in the group Pic(G).

This generalises a similar result obtained by

Agboola (1994) in the case of good reduction.
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Using the theory of cubic torsors, and results

of Moret-Bailly, one can show

Lemma 6. — Suppose that AK is an elliptic

curve. Then there is an isomorphism

A(S)
∼−→ Pic0

r (A◦) .

This generalizes the self-duality of elliptic curves,

which is an essential argument in Pappas’s proof.

Assuming semi-stability of AK, we extend the

other arguments and show

Theorem 7. — Suppose that AK is a semi-

stable elliptic curve, and that #G is coprime

to 6. Then At(S)Tors is contained in ker ψ.

11



An Elliptic Example

Let E be the Néron model of the elliptic curve

EK defined over K by the equation

y2 + y = x3 − x2 .

The curve EK is semi-stable and EK(K) con-

tains an element of order 5, which generates a

subgroup G of E isomorphic to (Z/5Z)S. The

quotient EK/GK is the elliptic curve FK with

equation

y2 + y = x3 − x2 − 10x− 20 .

Let p in E(S)Tors. Our result states that ψ(p)

is a µ5/S-torsor with trivial Galois structure.
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