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Elliptic curves and Weierstrass equations

Let K be a field

Definition: An elliptic curve over K is a non-singular projective
K-curve of genus 1, together with a K-rational point.

Suppose now that char(K) 6= 2, 3

Let E be an elliptic curve over K. Then E can be defined in the
projective plane P2

K by an equation in Weierstrass form

y2 = x3 + ax + b

One defines the discriminant of E as being the quantity

∆ = 4a3 + 27b2

The fact that E is non-singular is equivalent to the fact that ∆ is a
non-zero element of K.
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Elliptic curves as algebraic groups

let E an elliptic curve, and O its canonical rational point. Then
one proves that the map

E(K) −→ Pic0(E)

P 7−→ (P )− (O)

is an isomorphism. This remains true after any base change. From
this one deduces the following

Corollary: An elliptic curve has a canonical structure of
(commutative) algebraic group.

In fact, E is isomorphic to its Jacobian variety Pic0
E .
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The fundamental scheme of arithmetic

Suppose K is a number field. Let OK be its ring of integers.

Let S = Spec(OK) be the spectrum of OK .

S is a scheme of dimension 1 (that is, S is a curve).

Points of S are prime ideals of OK , including the zero ideal, which
is called the generic point.

The generic point is dense in S. Other points are closed in S.

The residue field of a closed point p ∈ S is the quotient OK/p.

The residue field of the generic point is the field K itself.

We denote by k(s) the residue field of a point s ∈ S.
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Integral models

An S-scheme is a scheme X together with a morphism of schemes
f : X → S, called the structural morphism of X .

Let s ∈ S be a point of S.

The fiber of X at s, denoted by Xk(s), is by definition the fiber
product X ×S k(s).

Xk(s) is a variety over the field k(s), which, as a topological space,
can be identified with the set f−1({s}).
An S-scheme can be seen as a nice (i.e. continuous) family of
varieties over the residue fields of the points of S.

An S-model of E is an S-scheme X whose generic fiber XK is
isomorphic to E.
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Chasing denominators

Let us start from a Weierstrass equation of E

y2 = x3 + ax + b

where a and b are in K.

Let us write a = α/d4 and b = β/d6 where α, β and d are elements
of OK . The equation above can be rewritten

d6y2 = d6x3 + αd2x + β

which, after change of variables Y = d3y, X = d2x, becomes

Y2 = X3 + αX + β

This equation defines a closed subvariety X of the projective plane
P2

S over S, which is an S-model of E.
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The fibers of X
Let p ∈ S be a closed point of S

The fiber Xk(p)of X at p is obtained by reducing modulo p the
equation

Y2 = X3 + αX + β

If p does not divides 4α3 + 27β2, then Xk(p) is an elliptic curve over
k(p); one says that E has good reduction at p.

If p divides 4α3 + 27β2, then E has bad reduction at p.

In this case, Xk(p) is a singular cubic curve over k(p). Let us denote
by X ns

k(p) the set of its non-singular points. Then X ns
k(p) has again an

algebraic group structure.
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Bad reduction

In this case X ns
k(p) is an algebraic group of dimension 1 over k(p),

which is not an elliptic curve.

One proves in fact that there are only three types of algebraic
groups of dimension 1 over a field :

– elliptic curves

– the multiplicative group Gm and its quadratic twists

– the additive group Ga

In the second case, we say that E has multiplicative reduction at p

In the third case, we say that E has additive reduction at p
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Lack of points ?

Let X sm be the smooth locus of X ; for any closed point p ∈ S, the
fiber (X sm)k(p) is the set X ns

k(p) of non-singular points of Xk(p).

One proves that the group law of E extends to X sm.

X sm(S) can be identified with the elements of X (S) = E(K)
having everywhere non-singular reduction. In general, this is a
strict subset of E(K).

We should find a way to recover all the points in our nice model –
while still keeping the smoothness and the group law.
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Reduction to the strictly local case

If we consider the restriction XU of X to the open subset U ⊆ S

where E has good reduction, then XU (U) = E(K).

We say that XU is an elliptic curve over U .

Now, let p ∈ S − U be a point of bad reduction (there is a finite
number of such points).

Let OK,p be the localization of OK at p, and let Sp = Spec(OK,p).

Let Osh
K,p be the strict henselization of OK,p. This is a henselian

discrete valuation ring, whose residue field is the algebraic closure
of the field k(p). Let Ksh

p be the fraction field of Osh
K,p.

Let Ssh
p = Spec(Osh

K,p). The morphism Ssh
p → Sp is faithfully flat ;

we may work over Ssh
p and then deduce results over Sp by descent.

10



End of construction

Let us fix a set x1, . . . , xr of representatives of E(Ksh
p ) = X sh

p (Ssh
p )

modulo (X sm)sh
p (Ssh

p ).

Let X 1
p , . . . ,X r

p be r copies of (X sm)sh
p , then the map

∐r
i=1 X i

p(Ssh
p ) −−−−→ E(Ksh

p )

which sends y ∈ X i
p(Ssh

p ) to y + xi, is bijective.

Gluing the X i
p along the generic fiber, we obtain an Ssh

p -model Esh
p

of E which is a smooth group scheme over Ssh
p , and such that

Esh
p (Ssh

p ) = E(Ksh
p ).

By descent from Ssh
p to Sp, one gets an Sp-model Ep of E satisfying

the same properties.

Furthermore, X sm
p is the identity component of Ep.
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The Néron model

Let E be the S-model obtained by gluing XU and the Ep over S.

Theorem: E is a finite type smooth group scheme over S.
Moreover, for all Y → S smooth, the ”restriction to the generic
fiber” map

HomS(Y, E) −−−−→ HomK(YK , E)

is bijective.

Definition: Such a model is called the Néron model of E, it is
unique (up to isomorphism).

Remarks: – Smoothness of E generalizes non-singularity of E.

– We have an isomorphism E(S) ' E(K).

– More generally, for any unramified extension L/K, we have an
isomorphism E(Spec(OL)) ' E(L)
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Duality over a field

All sheaves considered here are for the étale topology.

We have a canonical isomorphism between E and its Jacobian

E
∼−−−−→ Pic0

E

In fact, according to André Weil, we have isomorphisms

E
∼−−−−→ Ext1(E,Gm) ∼−−−−→ Pic0

E

This means that any zero-degree line bundle L on E can be
endowed with a structure of extension of E by Gm, i.e. we have a
group structure on L together with an exact sequence

0 −−−−→ Gm −−−−→ L −−−−→ E −−−−→ 0
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Consequences: the dual isogeny

Let φ : E → F be an isogeny, that is, a finite surjective morphism
of algebraic groups. Then F is an elliptic curve, and the kernel G

of φ is a finite flat algebraic group over K.

If we apply the functor Hom(−,Gm) to the exact sequence

0 −−−−→ G −−−−→ E
φ−−−−→ F −−−−→ 0

we get a (long) exact sequence of cohomology

· · · → 0 = Hom(E,Gm) → Hom(G,Gm) → Ext1(F,Gm)

→ Ext1(E,Gm) → Ext1(G,Gm) = 0 → · · ·
from which one can extract a short exact sequence !
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Cartier duality, Weil pairing

We know that Ext1(E,Gm) ' E and Ext1(F,Gm) ' F

Moreover, Hom(G,Gm) is the Cartier dual GD of G

The exact sequence above can be rewritten as

0 −−−−→ GD −−−−→ F
φ∗−−−−→ E −−−−→ 0

One says that φ∗ is the dual isogeny of φ.

In the case when φ = [n] is given by the multiplication by an
integer n on E, the dual isogeny is [n] itself. We therefore obtain a
canonical isomorphism E[n] ' E[n]D, together with a pairing

E[n]×K E[n] −−−−→ Gm

This is the so-called Weil pairing (in fact, it has values in µn).

15



Néron models and the smooth site

Let us consider the category of smooth schemes over S, endowed
with the étale topology, which we call the smooth site over S.

Let j : η → S be the inclusion of the generic point of S. The
universal property of the Néron model can be expressed is the
language of sheaves in the following way

E = j∗E

that is, E is the direct image of E on the smooth site.
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Duality for the Néron model ?

Let us start from the isomorphism

E ' Ext1(E,Gm)

It is natural to apply the functor j∗ on both sides.

Using the fact that Hom(E ,Gm) = 0 and R1j∗Gm = 0, we obtain
an isomorphism

E ' j∗Ext1(E,Gm) ' Ext1(E , j∗Gm)

Now, we want to compare the sheaves Ext1(E , j∗Gm) and
Ext1(E ,Gm).
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Some more sheaves

Let E0 be the identity component of E , and let Φ be the quotient
sheaf E/E0. This is a skyscraper étale sheaf over S, with stalk zero
at places of good reduction, and finite stalks otherwise.

In fact, we get a commutative diagram with exact lines

0 → E0 −−−−→ E −−−−→ Φy
∥∥∥

y
0 →Ext1(E ,Gm) −−−−→ Ext1(E , j∗Gm) −−−−→ Hom(Φ,Q/Z)

The existence of left and right vertical arrows follow from the fact
that

Hom(E0, Hom(Φ,Q/Z)) = 0
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Grothendieck’s pairing

The map Φ → Hom(Φ,Q/Z) induces a pairing (first defined by
Grothendieck in [SGA 7])

Φ×S Φ → Q/Z

Which is proved to be non-degenerate in our case.

Thus, we have an isomorphism

E0 ' Ext1(E ,Gm)

More generally, if Γ and Γ′ are subgroups of Φ which are
orthogonal under the pairing, then we get an isomorphism

EΓ ' Ext1(EΓ′ ,Gm)
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Néron models and the flat site

Problems: – if G is a finite flat subgroup of E , the quotient E/G

for the étale topology needs not to be representable by a smooth
group scheme, unless G is étale over S.

– if G is a finite flat group scheme over S, the sheaf Ext1(G,Gm)
needs not to be 0 in the smooth site, even if G is étale over S.

A solution is to replace the smooth site by the flat site, that is the
category of flat schemes over S, endowed with the fppf topology.

If G is a finite flat subgroup of E , and if E has semi-stable
reduction, the quotient E/G for the fppf topology is an open
subgroup FΛ of the Néron model F of F := E/GK .
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Another dual exact sequence

from the sequence

0 −−−−→ G −−−−→ E φ−−−−→ FΛ −−−−→ 0

one deduces a sequence

0 −−−−→ GD −−−−→ Ext1(FΛ,Gm)
φ∗−−−−→ Ext1(E ,Gm) −−−−→ 0

Moreover, the group schemes involved here being smooth, one has,
by comparison between étale and fppf topology

Ext1(FΛ,Gm) = FΛ′(S)

Ext1(E ,Gm) = E0(S)

like in the smooth site.
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