Massey products and algebraic curves

Jean Gillibert (joint with Frauke Bleher and Ted Chinburg)

Journées Arithmétiques XXXIII, Luxembourg June 30, 2025

・ 同 ト ・ ヨ ト ・ ヨ ト

...: Massey products and algebraic curves

Double Massey products = cup-products

Γ: a profinite group

 $\blacktriangleright \ \mathbb{Z}/\ell$ with ℓ an odd prime number: $\Gamma\text{-module}$ with trivial action

• $H^1(\Gamma, \mathbb{Z}/\ell) = \text{Hom}(\Gamma, \mathbb{Z}/\ell)$: the first cohomology group

The cup-product is the bilinear alternating map defined by

$$egin{aligned} & H^1(\Gamma,\mathbb{Z}/\ell) imes H^1(\Gamma,\mathbb{Z}/\ell) o H^2(\Gamma,\mathbb{Z}/\ell)\ & (\chi_1,\chi_2)\mapsto ((g,h)\mapsto\chi_1(g)\chi_2(h)). \end{aligned}$$

This cup-product plays an important role in Galois cohomology as well as in étale cohomology (Tate duality, Poincaré duality).

Matrix version of cup-products

Let $U_3(\mathbb{Z}/\ell)$ be the group of 3×3 upper triangular unipotent matrices with coefficients in \mathbb{Z}/ℓ .

Lemma

 $\chi_1 \cup \chi_2 = 0$ iff there exists a map $\kappa : \Gamma \to \mathbb{Z}/\ell$ such that

$$egin{pmatrix} 1 & \chi_1 & \kappa \ 0 & 1 & \chi_2 \ 0 & 0 & 1 \end{pmatrix}: \mathsf{\Gamma} o U_3(\mathbb{Z}/\ell)$$

(本間) (本語) (本語) (

is a group homomorphism.

Triple Massey products

Let $U_4(\mathbb{Z}/\ell)$ be the group of 4×4 upper triangular unipotent matrices with coefficients in \mathbb{Z}/ℓ . Its center Z_4 is the set of matrices whose all entries above the diagonal are zero, except the upper right corner.

Let χ_1, χ_2, χ_3 in $H^1(\Gamma, \mathbb{Z}/\ell)$ such that $\chi_1 \cup \chi_2 = 0 = \chi_2 \cup \chi_3$. Then there exist maps $\kappa_{1,2}$ and $\kappa_{2,3} : \Gamma \to \mathbb{Z}/\ell$ such that

$$\bar{\rho} = \begin{pmatrix} 1 & \chi_1 & \kappa_{1,2} & \Box \\ 0 & 1 & \chi_2 & \kappa_{2,3} \\ 0 & 0 & 1 & \chi_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} : \Gamma \to U_4(\mathbb{Z}/\ell)/Z_4$$

is a group homomorphism. In this case, one says that the triple Massey product $\langle \chi_1, \chi_2, \chi_3 \rangle$ is not empty.

Triple Massey products

One says that **the triple Massey product** $\langle \chi_1, \chi_2, \chi_3 \rangle$ **contains zero (or vanishes)** if there exist a choice of $\kappa_{1,2}$ and $\kappa_{2,3}$ for which one can complete the upper right corner of $\bar{\rho}$ into a matrix homomorphism $\rho: \Gamma \to U_4(\mathbb{Z}/\ell)$.

Alternatively, the triple Massey product can be seen as the class in $H^2(\Gamma, \mathbb{Z}/\ell)$ of the 2-cocycle ν defined by

$$\nu(g,h) := \chi_1(g)\kappa_{2,3}(h) + \kappa_{1,2}(g)\chi_3(h).$$

Indeed, a lift of $\bar{\rho}$ exists iff ν is a 2-coboundary.

Adding an arbitrary element of $H^1(\Gamma, \mathbb{Z}/\ell)$ to $\kappa_{1,2}$ or $\kappa_{2,3}$ yields another $\bar{\rho}$. So ν is not uniquely determined by χ_1, χ_2, χ_3 . The triple Massey product is in fact **the set** of all possible ν .

▶ 《圖》 《圖》 《圖》

Vanishing of triple Massey products

- Ekedhal (1983): there exist a smooth projective surface X over C and a non-vanishing triple Massey product in the étale cohomology of X.
- Mináč and Tân (2016): if Γ = Gal(k/k) for some field k, then triple Massey products contain zero whenever they are not empty.
- Wittenberg and Harpaz (2022): if Γ = Gal(k/k) for some number field k, then triple and higher Massey products vanish.

Question: can one find non-vanishing triple Massey products for $\Gamma = \pi_1(X)$ where X is a smooth projective geometrically connected curve over some field k?

- 4 同 ト - 4 目 ト - 4 目 ト

The case of curves

Let k be a field (of characteristic $\neq \ell$) and X be curve over k. We let $\bar{X} := X \otimes_k \bar{k}$.

Lemma

Triple (and higher) Massey products for $\pi_1(\bar{X})$ vanish whenever they are not empty.

This is immediate: the $H^2(\bar{X}, \mathbb{Z}/\ell)$ is one-dimensional, so up to modifying the $\kappa_{i,j}$ a lift exists.

Consider the famous exact sequence (split by the choice of a point)

$$1 o \pi_1(ar{X}) o \pi_1(X) o {\sf Gal}(ar{k}/k) o 1$$

Triple Massey products vanish for the first and the last term. What happens in the middle? The action of $\text{Gal}(\bar{k}/k)$ on $\pi_1(\bar{X})$ by conjugation is the key to the answer.

Elliptic curves

Let E = X be an elliptic curve defined over k.

- If the ℓ-torsion points of E are rational over k and ℓ > 3, non-empty triple Massey products always vanish.
- If the ℓ-torsion points of E are not rational over k, then one can construct non-vanishing triple Massey products (for all values of ℓ > 3) over k = 𝔽_p for some large enough p.
- When ℓ = 3, we give a complete characterisation of when triple Massey products vanish, depending on the Galois action on 9-torsion points of *E*.

- 4 同 ト - 4 目 ト

Hyperelliptic curves

Theorem

Let $\ell > 3$ be a prime number, and let g > 1 be an integer. Then there exist infinitely many non-isomorphic pairs (F, X) consisting of a number field F and a smooth genus g hyperelliptic curve X over F having the following two properties:

- (i) The ℓ -torsion points of the Jacobian of X are rational over F.
- (ii) There is a triple Massey product for $\pi_1(X)$ with coefficients in \mathbb{Z}/ℓ that does not vanish.

The proof relies on topological properties of the moduli space of hyperelliptic curves of genus g, due to Mumford.

▲ □ ▶ ▲ □ ▶ ▲ □

Thank you for your attention!

・ 戸 ト ・ ヨ ト ・ ヨ ト

æ

...: Massey products and algebraic curves