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The Lang-Néron theorem for elliptic curves over k(t)

Let k be a field of characteristic 6= 2 or 3.

An elliptic curve E over k(t) can be defined by an equation of the form

y 2 = x3 + a(t)x + b(t)

where a(t) and b(t) belong to k[t], and ∆(t) := 4a(t)3 + 27b(t)2 6= 0.

We say that E is constant if it admits an equation as above where a(t)
and b(t) belong to k, i.e. are constant polynomials.

Theorem (Lang-Néron)
If E is a non-constant elliptic curve over k(t), then E (k(t)) is a finitely
generated abelian group.
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The geometric rank bound

The rank of E over k(t) is by definition the integer r such that

E (k(t)) ' E (k(t))tors ⊕ Zr .

We denote it by rk E (k(t)).

Theorem (Geometric, or Igusa’s, rank bound)

rk E (k̄(t)) ≤ deg(fE )− 4

where fE denotes the conductor of E , a divisor on P1 that we shall now
describe.
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Let E be the (minimal) smooth projective surface over k defined by

y 2 = x3 + a(t)x + b(t).

This surface is a fibration E → P1 in elliptic curves, via the t-coordinate
map. The fiber of E at some t0 ∈ P1(k̄) is just the curve over k̄ obtained
by letting t = t0.

The fiber of E → P1 at some root t0 of ∆(t) is singular, so it is not an
elliptic curve anymore. There are two cases:

I multiplicative type: x3 + a(t0)x + b(t0) has a double root;
I additive type: x3 + a(t0)x + b(t0) has a triple root.

The conductor of E is the divisor fE ⊂ P1 defined by

fE :=
∑

multiplicative t0

t0 +
∑

additive t0

2 · t0
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Geometric rank bound: a toy example

Let β ∈ Q∗ and let E be the elliptic curve over Q(t) defined by

y 2 = x3 + t2(t2 + β).

This curve has additive fibers at t = 0, at t2 + β = 0, and at t =∞.

Its conductor is

fE = 2 · ({0}+ {t2 + β = 0}+ {∞})

which has degree 8.

The geometric rank bound yields

rk E (Q̄(t)) ≤ deg(fE )− 4 = 4.
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A question by Ulmer

In 2004, Ulmer asks the following question:

Does there exists a refinement of the geometric rank bound for elliptic
curves over k(t), where k is a non-algebraically closed field?

In our toy example, can we find a better bound for rk E (Q(t)), depending
on the arithmetic of the curve E?

Under mild hypotheses, we shall give a (quite elementary) answer to this
question, by adapting to the function field case classical 2-descent
arguments, which have been extensively used for bounding the rank of
elliptic curves over number fields.
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Arithmetic rank bound via 2-descent
The 2-torsion multisection E [2] of the elliptic surface E with equation
y 2 = x3 + a(t)x + b(t) can be described as

E [2] = P1 ∪ C

where P1 is the zero section of E , and C is the smooth projective curve
over k defined by the affine equation

x3 + a(t)x + b(t) = 0.
Theorem (Levin-G, 2018)
Assume that E (k̄(t))[2] = 0. Then C is geometrically integral and

rk E (k(t)) ≤ dimF2 Pic(C)[2] + #{v ∈ P1, 2 | cv}
+ #{v ∈ P1, the fiber type of E at v is I∗

2n for some n ≥ 0},

where cv denotes the Tamagawa number at some bad place v , i.e. the
number of irreducible components of multiplicity 1 in the fiber of E at v .
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Let g(C) be the genus of C ; then dimF2 Pic(C ⊗ k̄)[2] = 2g(C), hence
over k̄ our bound is the following

rk E (k̄(S)) ≤ 2g(C) + #{v ∈ P1(k̄), 2 | cv}
+ #{v ∈ P1(k̄), the fiber type of E at v is I∗

2n for some n ≥ 0}.

The ramification points of t : C → P1 are in the support of fE .

The ramification type at v depends on the fiber type at v , and on the
parity of the Tamagawa number cv .

When computing g(C) by the Riemann-Hurwitz formula, we find that
the quantity above is equal to

deg(fE )− 4

hence we recover the geometric rank bound over k̄.
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Toy example: arithmetic rank bound
Let β ∈ Q∗ and let E be the elliptic curve over Q(t) defined by

y 2 = x3 + t2(t2 + β)

The singular fibers of this curve are additive of the following type

t = 0 t2 + β = 0 t =∞
fiber type IV II IV

Tamagawa number 3 1 3

The Tamagawa numbers being odd, none of the bad fibers contributes to
our bound; therefore

rk E (Q(t)) ≤ dimF2 Pic(C)[2].

We shall now compute the right-hand side.
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One checks that the curve C defined by the equation

x3 + t2(t2 + β) = 0

is a hyperelliptic curve of genus 2, with equation

Y 2 = X 6 − 4β.

Let s be the number of irreducible factors of X 6 − 4β over Q; then

dimF2 Pic(C)[2] ≤
{

s − 1 if all factors of X 6 − 4β have even degree
s − 2 otherwise

Here are some examples:
β 1 2 16

factorization type of X 6 − 4β [3, 3] [2, 4] [1, 1, 2, 2]
rank bound over Q(t) 0 1 2
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Sketch of proof

The arguments mimic classical 2-descent: étale Kummer theory over the
Néron (group scheme) model E yields an injective map

E2Φ(P1)/2E(P1) ↪→ H1(P1, E [2])

where E2Φ(P1)/2E(P1) is a subgroup of E (k(t))/2E (k(t)) of finite index;
the F2-dimension of the cokernel is bounded above by

#{v ∈ P1, 2 | cv}+#{v ∈ P1, the fiber type of E at v is I∗
2n for some n ≥ 0}.

On the other hand, using the fact that C is geometrically integral, one
proves that H1(P1, E [2]), which is a kind of geometric Selmer group, is a
subgroup of Pic(C)[2].
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Another family of arithmetic bounds

Let p ≥ 3 be a prime number, p 6= char(k). By performing p-descent we
obtain the following:

Theorem
Assume that the action of Gal(k(t)/k̄(t)) on E [p] is irreducible, and let
Cp be the complement of the zero section in E [p]. Then:

rk E (k(t)) ≤ dimFp Pic(Cp)[p] + #{v ∈ P1, p | cv}.

If k is algebraically closed, all these bounds are weaker than the
geometric rank bound. But in general, it may (and does) happen that
one of these bounds improves on the geometric one.

We also obtain similar statements for elliptic curves over general function
fields, i.e. we can replace P1 by any smooth projective geometrically
integral curve.
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A conjecture by Silverman
In 2004, Silverman conjectured that, if k is a number field, there exists a
constant ck such that, for non-isotrivial elliptic curves E/k(t),

rk E (k(t)) ≤ ck
deg(fE )

log deg(fE ) .

In fact, Brumer proved in 1992 that this holds when k is a finite field.

We now ask the following: does there exist a constant cp,d,k such that,
for curves C/k of genus g admitting a morphism of degree d to P1,

dimFp Pic(C)[p] ≤ cp,d,k
g

log g .

If this question has a positive answer for one prime p, then, provided one
can control the Tamagawa numbers, one could prove Silverman’s
conjecture for a large family of elliptic curves.
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Thank you for your attention!
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