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Classical Galois module structure

I K a number field

I L/K a finite Galois extension of K , with group Γ

Theorem (Normal Basis)

L is a free K [Γ]-module of rank 1.

Replace K and L by their rings of integers OK and OL.

Theorem (Nœther’s criterion)

OL is a projective OK [Γ]-module if and only if L/K is tame.

...: ...



The tame case

Cl(Z[Γ]) := K0(Z[Γ])/{free modules} the locally free classgroup.

If M is a projective Z[Γ]-module, let (M) be its class in Cl(Z[Γ])

Fröhlich’s conjecture, proved by M. J. Taylor in 1981, states that
(OL) is 2-torsion, and can be expressed in terms of Artin constants
of irreducible and symplectics characters of Γ.

I What about the relative structure (OL as OK [Γ]-module) ?

I What happens in the wild case ?
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Scheme-theoretic setting

I S := Spec(OK ) the spectrum of the ring of integers of K

I G a finite flat commutative group scheme over S

G -torsors (for the fppf topology S) are ”Galois extensions of S
with group G”.

H1(S ,G ) := {isomorphism classes of G -torsors over S}

is an abelian group.

It is a subgroup of H1(K ,GK ) = H1(Gal(K/K ),GK ).

...: ...



Ramification of algebras underlying torsors
If G = ΓS is a constant group scheme, then

H1(S , ΓS) = {Spec(OL)→ S , where L/K is a K -Galois algebra

with group Γ, everywhere unramified}

In the general case, any G -torsor is an order in some finite
extension (or algebra) F/K . We know that :

The places of ramification of F ⊆ the places where G is not étale

⊆ the places dividing the order of G

This proves that H1(S ,G ) is finite.
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Extending torsors

The extension Q(
√

3)/Q is a Z/2-torsor over Q.
We try to extend this at the integral level : the map

Spec(Z[
√

3,
1

6
])→ Spec(Z[

1

6
])

is a Z/2-torsor, but it is not possible to do better, because the
extension is ramified at 2 and 3.

Another idea is to replace Z/2 by µ2, which has the same generic
fiber. The map

Spec(Z[
√

3,
1

3
])→ Spec(Z[

1

3
])

is a µ2-torsor, but this is the best we can do because µ2 is étale
above 3.
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What is ramification ?

General philosophy : it’s not the ramification of the underlying
extension that we want to measure, but the ramification of the
action.

Thus, a G -torsor is an unramified object : the ramification of the
extension is entirely governed by that of G .

In general, the ramification of an action should measure the
difference between the ramification of F and that of G .

Question 1 : what is a tame action of G on a scheme ?
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Approaches of tameness

I Grothendieck-Murre, 1971 (via étale topology)

I Childs-Hurley, 1986 (Hopf algebras)

I Chinburg-Erez-Pappas-Taylor, 1996 (schemes)

I Abramovich-Olsson-Vistoli 2008 (stacks)

Question 2 : Is it possible to get a notion of tameness (for G
finite flat) for which tame objects ”are” torsors in some topos ?

If G is étale, and if the ramification locus is a normal crossing
divisor, then Grothendieck-Murre’s answer is YES.
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Galois module structure of torsors

Let GD be the Cartier dual of G
(W. Waterhouse, 1971). we have a homomorphism

π : H1(S ,G )
∼−−−−→ Ext1(GD ,Gm) −−−−→ Pic(GD)

The first map is an isomorphism deduced from the local-global
spectral sequence for Extn, the second is the natural one.
One says that π measures the Galois structure of G -torsors.
In the case where G = ΓS , the morphism π is given by :

π : H1(S , ΓS) −→ Pic(ΓD
S ) ' Cl(OK [Γ])

(Spec(OL)→ S) 7−→ (OL)

(we recover the unramified case of the classical theory).

...: ...



Galois module structure of tame objects

Let H1
tame(K , Γ) ⊆ H1(K , Γ) be the subgroup of tame extensions.

Then, by Nœther’s criterion, we have a map (extending π)

cl : H1
tame(K , Γ) −→ Cl(OK [Γ])

which in general is not a morphism of groups. But the image has
been proved to be subgroup by McCulloh.

If Question 2 has a positive answer, we will get a morphism
measuring Galois structure in Waterhouse’s style, with values in
some new ”class group”.

...: ...



Log schemes

Fontaine, Illusie, Kato, ...

A log scheme is a scheme endowed with a log structure.

A log structure on a scheme X is a pair (MX , α) where MX is a
sheaf of (commutative !) monöıds on the étale site of X , and
α : MX → OX is a morphism of sheaves of monöıdes, OX being
endowed with multiplication law.

We also ask that α induces an isomorphism α−1(O∗X ) ' O∗X .

The trivial log structure on X is (O∗X , i) where i : O∗X ↪→ OX is the
canonical inclusion.

We have a fully faithful functor from the category of schemes into
the category of log schemes, sending a scheme to itself endowed
with the trivial log structure.

...: ...



The scheme X (logD)

I X a nœtherian regular scheme

I D a normal crossing divisor on X

I j : U ⊆ X the complement of D ⊆ X

The immersion j : U → X defines a log structure on X , given by

MX = OX ∩ j∗O∗U −→ OX

We denote by X (logD) the log scheme obtained.

Example

I X = S = Spec(OK ) as before

I S0 := S\{generic point} the set of finite places of K

I D ⊆ S0 is any finite set

...: ...



Log topologies
I Kummer log étale topology (két)
I Kummer log flat topology (kfl)

The Kummer log étale topology is generated by classical étale
covers, and so-called standard Kummer étale covers.

The standard Kummer étale covers are basically obtained by taking
Kummer extensions above the log structure, with exponent
coprime to the residue characteristic (this is Grothendieck-Murre’s
construction).

The standard Kummer flat covers don’t have any assumptions on
the residue characteristics.

If G is finite étale over X , then as one expects

H1
kfl(X (logD),G ) = H1

két(X (logD),G )

...: ...
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Examples of log torsors
(1) If X = S and G = ΓS is a constant group scheme, then

H1
két(S(logD), ΓS) = {Spec(OL)→ S , where L/K is a K -Galois

algebra with group Γ, unramified above U,

and tamely ramified above D}

(2) More surprising : if G = µn, then

H1
kfl(S(logD), µn) = H1

fppf(U, µn)

Therefore, we obtain a µ2-torsor for the log flat topology

Spec(Z[
√

3])(log
√

3)→ Spec(Z)(log 3)

extending the torsor Q(
√

3)/Q.
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Restriction of torsors

Let G be a finite flat group scheme over X . Then the restriction
map

j∗ : H1
kfl(X (logD),G ) −→ H1

fppf(U,GU)

is injective.

I What is the image of this map ?
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Linearly reductive group schemes

Theorem (J.G., 2011)

Assume G is a linearly reductive finite flat group scheme. Then the
restriction map

j∗ : H1
kfl(X (logD),G ) −→ H1

fppf(U,GU)

is bijective.

The proof uses the following result (Abramovich-Olsson-Vistoli) :
if G is a finite flat linearly reductive group scheme, then locally for
the étale topology on X , G sits into an exact sequence

1 −−−−→ ∆ −−−−→ G −−−−→ H −−−−→ 1

where ∆ is diagonalisable and H is constant of order coprime to
the residue characteristics of X .
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Link with previous notions of tameness

Theorem (J.G., 2008)

Let G be a commutative finite flat group scheme over X . Let
T → X (logD) be a G-torsor for the log flat topology. Then

(1) the action of G on the underlying scheme of T is CEPT-tame.

(2) if X is affine, the action is also CH-tame

This proves that the image of j∗ is contained in the set of algebras
that admit an order that is a CH-tame Galois object. One expects
that the two sets are in fact equal.

Also, this probably holds for non commutative G !

...: ...
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Galois structure of log flat torsors

Assume again G is commutative finite flat over X affine. Because
of CH-tameness, we have a map

cl : H1
kpl(X (logD),GD) −→ Pic(G )

called ”classical Galois structure”, which in general is not a
morphism.

On the other hand, without assuming X affine, Waterhouse’s
construction gives us a morphism

πlog : H1
kfl(X (logD),GD) −−−−→ H1

kfl(G ,Gm)

which measures the ”log Galois structure” of log flat torsors.

...: ...



Galois structure of µn-torsors (fppf case)

Using the well-known description :

H1
fppf(S , µn) = {z ∈ K ∗/(K ∗)n | ∀p ∈ S0, n|vp(z)}

Waterhouse’s Galois structure morphism is given by

π : H1
fppf(S , µn) −→ Cl(OK )

z 7−→
∑
p∈S0

vp(z)

n
[p] = [

1

n
div(z)]

...: ...



Galois structure of µn-torsors (log flat case)

For p ∈ S0, let
vp(z) = nqp + rp

be the Euclidian division of vp(z) by n. We have

H1
kfl(S(logD), µn) = {z ∈ K ∗/(K ∗)n | ∀p ∈ S0\D, n|vp(z)}

The classical Galois structure map is

cl : H1
kfl(S , µn) −→ Cl(OK )

z 7−→
∑
p∈S0

qp[p]

...: ...



On the other hand, one computes that

H1
kfl(S(logD),Gm) = (Div(U)⊕

⊕
p∈D

Q.[p])/DivPrinc(S)

(divisors with rational coefficients above D modulo usual principal
divisors)

The log flat Galois structure morphism is given by

πlog : H1
kfl(S , µn) −→ H1

kfl(S(logD),Gm)

z 7−→
∑
p∈S0

qp[p] + rp[
1

n
p] = [

1

n
div(z)]

...: ...



Building torsors from isogenies
I φK : AK → BK an isogeny between abelian varieties over K
I GK ⊆ AK the kernel of φK (a finite subgroup scheme of AK ).

We have an exact sequence

0 −−−−→ GK −−−−→ AK
φK−−−−→ BK −−−−→ 0

and a dual sequence

0 −−−−→ GD
K −−−−→ Bt

K

φtK−−−−→ At
K −−−−→ 0

The cobundary of this sequence is

δK : At
K (K ) −→ H1(K ,GD

K )

Let P ∈ At
K (K ) a point. Then δK (P) is the spectrum of some

K -algebra, and we would like to compute the Galois module
structure of its ring of integers.

...: ...



Good reduction case
I A, At , B, Bt the Néron models of AK , At

K , BK , Bt
K

I Let φ : A → B and φt : Bt → At be the morphisms extending
φK and φtK

I Assume AK has everywhere good reduction.

Then A is an S-abelian scheme, and G := ker(φ) is a finite flat
subgroup of A. Moreover, we have exact sequences

0 −−−−→ G −−−−→ A φ−−−−→ B −−−−→ 0

0 −−−−→ GD −−−−→ Bt φt−−−−→ At −−−−→ 0

By composing the cobundary of the last sequence with π we obtain
the class-invariant homomorphism (M. J. Taylor, 1988)

ψ : At
K (K ) = At(S)

δ−−−−→ H1(S ,GD)
π−−−−→ Pic(G )

So any P ∈ At
K (K ) gives rise to a GD-torsor.

...: ...



Geometric description of ψ

We have a commutative diagram

At(S)
∼−−−−→ Ext1(A,Gm) −−−−→ Pic(A)

δ

y y y
H1(S ,GD)

∼−−−−→ Ext1(G ,Gm) −−−−→ Pic(G )

The composition of the maps from At(S) to Pic(G ) is equal to ψ.

...: ...



Taylor’s conjecture

Which points give rise to a torsor with trivial Galois structure ?

Conjecture (M. J. Taylor, 1988)

If AK is an elliptic curve (with complex multiplication), torsion
points belong to the kernel of ψ.

This has been proved (Srivastav-Taylor, Agboola, Pappas) when
the order of G is coprime to 6 (and without the hypothesis of
complex multiplication).

There are examples where 2-torsion points are not in the kernel of
ψ (Bley-Klebel, Cassou-Noguès-Jehanne).

I What happens when AK has bad reduction ?

...: ...
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Bad reduction case

Assume AK has semi-stable reduction at places dividing the order
of GK .

Then G := ker(φ) is a quasi-finite flat subscheme of A, not finite
in general.

We now make the assumption that G is finite (this is the case, for
example, if GK is a constant group scheme over K ).

In order to construct ψ, we want to use the geometric description.
But what can be said about duality of Néron models ?

...: ...



Let At,◦ the connected component of At .

Theorem (Grothendieck)

There exists a unique biextension W of (A,At,◦) by Gm extending
Weil’s biextension.

This biextension W gives us a morphism

γ : At,◦(S) −−−−→ Ext1(A,Gm)

We now get a morphism ψ by composing maps in the diagram

At,◦(S)
γ−−−−→ Ext1(A,Gm) −−−−→ Pic(A)y y

Ext1(G ,Gm) −−−−→ Pic(G )

This is a generalisation of previous constructions.

...: ...



At,◦(S) is the subgroup of At
K (K ) of ”points with everywhere

good reduction”.

If P is such a point, we have proved that δK (P) can be extended
into a GD-torsor, even when A has bad reduction.

Taylor’s conjecture is still true in this context, at least if A is
semistable.

Theorem (J. G., 2004)

If AK is a semistable elliptic curve, and if the order of G is coprime
to 6, then torsion points in At,◦(S) belong to the kernel of ψ.

I What happens for a point P 6∈ At,◦(S) ?
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Lifting δK with log flat topology

If we want to define ψ in the log flat context, we only need une
more ingredient.

Let D be the set of places of bad reduction of A.

Theorem
There exists a unique biextension W log of (A,At) by Gm for the
log flat topology on S(logD), extending Weil’s biextension.

Thus, we get a map lifting δK

At(S) ' Ext1kfl(A,Gm) −→ Ext1kfl(G ,Gm) ' H1
kfl(S(logD),GD)

This means that, for all P ∈ At
K (K ), the torsor δK (P) extends into

a GD-torsor for the log flat topology on S(logD).

...: ...



Class invariant homomorphism and log flat topology

We have two maps extending ψ : the classical one

ψcl : At(S) −−−−→ Pic(G )

and the log one :

ψlog : At(S) −−−−→ H1
kfl(G ,Gm)

But none of them is expected to satisfy Taylor’s conjecture !

...: ...
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