Test nº 2

Exercice 1. Soit (u_n) une suite convergente. Montrer que la suite (v_n) définie par

$$v_n = (u_{n^{11}+2012} - u_{7n+42}) \left(\sin \left(\frac{e^n + \ln 17}{n^n + 1} \right) + \cos(\arctan(\sqrt{n^3 + n + 1})) \right)$$

est convergente, et déterminer sa limite.

Exercice 2. Déterminer le domaine de dérivabilité et calculer la dérivée de la fonction

$$g(x) = \sqrt{1 + (x\sin x)^2}.$$

Corrigé 1. Les suites $(u_{n^{11}+2012})$ et (u_{7n+42}) sont des suites extraites de (u_n) . Comme cette dernière converge, on en déduit qu'elles convergent également toutes les deux et ont même limite. Leur différence converge donc vers 0.

D'autre part, sachant que $|\sin(x)| \le 1$ et $|\cos(x)| \le 1$ pour tout réel x, on en déduit (via l'inégalité triangulaire) que, pour tout entier $n \in \mathbb{N}^*$,

$$|\sin\left(\frac{e^n + \ln 17}{n^{\pi} + 1}\right) + \cos(\arctan(\sqrt{n^3 + n + 1}))| \le 2$$

Au final, la suite (v_n) est produit d'une suite convergeant vers 0 par une suite bornée. Elle converge donc vers 0.

Corrigé 2. La fonction $x \mapsto 1 + (x \sin x)^2$ est dérivable sur \mathbb{R} , à valeurs dans $[1, +\infty[$, et la fonction $y \mapsto \sqrt{y}$ est dérivable sur $[1, +\infty[$. On en déduit que la fonction g est dérivable sur \mathbb{R} . Un bref calcul montre que

$$g'(x) = \frac{x \sin^2 x + x^2 \sin x \cos x}{\sqrt{1 + (x \sin x)^2}}.$$