Test nº 1

Exercice 1. Soit $f: E \to F$ une application. Soient A et B deux parties de E.

- 1. Montrer que $f(A \cap B) \subseteq f(A) \cap f(B)$.
- 2. On suppose que f est injective. Montrer que $f(A \cap B) = f(A) \cap f(B)$.
- 3. Donner un exemple pour lequel $f(A \cap B) \neq f(A) \cap f(B)$.

Exercice 2. Soit $g : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ l'application définie par $g(x) = \frac{x+1}{x-1}$. Montrer que g est injective.

Exercice 3. Soient X et Y deux ensembles finis. Déterminer, en fonction de Card(X) et de Card(Y), le cardinal de l'ensemble $\mathfrak{P}(X \times Y)$ des parties de $X \times Y$. Faire de même avec l'ensemble $\mathfrak{P}(X)^Y$. Que remarque-t-on?

- **Corrigé 1.** 1. Soit $y \in f(A \cap B)$, alors il existe $x \in A \cap B$ tel que f(x) = y. Comme x appartient à A, on peut dire que y appartient à f(A). De même, y appartient à f(B). Au final, y appartient à $f(A) \cap f(B)$, ce qu'on voulait.
 - 2. Supposons f injective. Soit y appartenant à $f(A) \cap f(B)$. Alors il existe $x \in A$ tel que f(x) = y et il existe $x' \in B$ tel que f(x') = y. Comme f est injective, on en déduit que x = x'. Mais alors, x appartient à $A \cap B$, et par conséquent y appartient à $f(A \cap B)$. Ceci montre que $f(A) \cap f(B) \subseteq f(A \cap B)$, et d'après la question précédente l'autre inclusion est vraie, donc ces ensembles sont égaux.
 - 3. Soit $f: \{1,2\} \to \{3\}$ l'unique application. Soit $A = \{1\}$ et $B = \{2\}$. Alors $A \cap B = \emptyset$ mais $f(A) \cap f(B) = \{3\} \neq \emptyset$.

Corrigé 2. Soient x et y deux réels tels que g(x) = g(y). Alors

$$\frac{x+1}{x-1} = \frac{y+1}{y-1}$$

donc

$$(x+1)(y-1) = (x-1)(y+1)$$

d'où

$$xy - x + y - 1 = xy + x - y - 1$$

et après simplification 2y = 2x. Ainsi x = y, ce qui montre que g est injective.

Corrigé 3. D'après le cours, nous avons :

$$\operatorname{Card}(\mathfrak{P}(X\times Y))=2^{\operatorname{Card}(X\times Y)}=2^{\operatorname{Card}(X)\operatorname{Card}(Y)}$$

De même

$$\operatorname{Card}(\mathfrak{P}(X)^Y) = \operatorname{Card}(\mathfrak{P}(X))^{\operatorname{Card}(Y)} = (2^{\operatorname{Card}(X)})^{\operatorname{Card}(Y)} = 2^{\operatorname{Card}(X)\operatorname{Card}(Y)}$$

Ces deux nombres sont égaux, donc les ensembles $\mathfrak{P}(X \times Y)$ et $\mathfrak{P}(X)^Y$ sont en bijection.