Corrigé du devoir maison nº 1

Exercice 1

Soit $\alpha > 0$ un réel. On note I_{α} l'intégrale généralisée suivante :

$$I_{\alpha} = \int_0^{+\infty} \frac{1}{(1+t^2)^{\alpha}} dt$$

1. Pour quelles valeurs de α l'intégrale I_{α} est-elle convergente?

La fonction $t\mapsto \frac{1}{(1+t^2)^{\alpha}}$ est continue sur $[0,+\infty[$, il suffit donc de regarder son comportement en $+\infty$. Nous avons l'équivalent

$$\frac{1}{(1+t^2)^{\alpha}} \sim_{+\infty} \frac{1}{t^{2\alpha}}$$

entre fonctions positives. Donc I_{α} converge si et seulement si l'intégrale $\int_{1}^{+\infty} \frac{1}{t^{2\alpha}} dt$ converge, c'est-à-dire si et seulement si $\alpha > 1/2$ d'après Riemann.

2. Calculer la valeur de I_1 .

$$I_1 = \int_0^{+\infty} \frac{1}{1+t^2} dt = [\arctan t]_0^{+\infty} = \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

3. En intégrant par parties, montrer que $I_1 = 2(I_1 - I_2)$. En déduire la valeur de I_2 . On intègre 1 et on dérive $\frac{1}{1+t^2}$. Après passage à la limite, cela donne :

$$I_1 = \int_0^{+\infty} \frac{1}{1+t^2} dt = \left[\frac{t}{1+t^2} \right]_0^{+\infty} + \int_0^{+\infty} \frac{2t^2}{(1+t^2)^2} dt$$

et cette égalité a bien un sens puisque la quantité entre crochets converge (vers une limite nulle). Il vient alors

$$I_1 = 2 \int_0^{+\infty} \frac{t^2}{(1+t^2)^2} dt = 2 \int_0^{+\infty} \frac{t^2+1-1}{(1+t^2)^2} dt = 2 \int_0^{+\infty} \frac{1}{1+t^2} - \frac{1}{(1+t^2)^2} dt$$

d'où l'égalité $I_1=2(I_1-I_2).$ On en déduit que $I_2=\pi/4.$

4. Utiliser le changement de variable $t = \tan x$ pour calculer la valeur de $I_{3/2}$. Soit y > 0 fixé. Nous allons effectuer le changement de variable $t = \tan x$ dans l'intégrale $\int_0^y \frac{1}{(1+t^2)^{3/2}} dt$. Tout d'abord, il vient $dt = \frac{1}{\cos^2 x} dx$, puis on vérifie que l'intervalle d'intégration [0, y] se transforme en l'intervalle $[0, \arctan y]$. Enfin, on se souvient de (ou on redémontre!) la formule

$$\cos(\arctan t) = \frac{1}{\sqrt{1+t^2}}$$

Il ne reste plus qu'à remplacer chaque item par sa valeur pour obtenir l'égalité

$$\int_0^y \frac{1}{(1+t^2)^{3/2}} dt = \int_0^{\arctan y} \cos^3 x \, \frac{1}{\cos^2 x} \, dx = \int_0^{\arctan y} \cos x \, dx = \sin(\arctan y)$$

On en déduit que

$$I_{3/2} = \lim_{y \to +\infty} \sin(\arctan y) = \sin(\frac{\pi}{2}) = 1.$$

Exercice 2

On se propose d'étudier l'intégrale généralisée

$$J = \int_0^{+\infty} \frac{1}{(1+x)^2 |\sin x|^{2/3}} \, dx$$

On notera que l'intégrande admet une infinité de pôles sur l'intervalle d'intégration.

1. Montrer que l'intégrale généralisée

$$K = \int_0^{\pi} \frac{1}{|\sin x|^{2/3}} \ dx$$

converge.

La fonction $x\mapsto \frac{1}{|\sin x|^{2/3}}$ tend vers $+\infty$ en 0 et en π . En 0, $\sin x$ est équivalent à x, donc

$$\frac{1}{|\sin x|^{2/3}} \sim_0 \frac{1}{x^{2/3}}$$

et ces fonctions sont positives sur l'intervalle considéré. D'après Riemann, on en déduit que l'intégrale $\int_0^{\pi/2} \frac{1}{|\sin x|^{2/3}} \, dx$ converge. Il reste à montrer que l'autre morceau converge. En effectuant le changement de variable $t=\pi-x$, on trouve

$$\int_{\pi/2}^{\pi} \frac{1}{|\sin x|^{2/3}} dx = \int_{\pi/2}^{0} \frac{1}{|\sin(\pi - t)|^{2/3}} (-dt) = \int_{0}^{\pi/2} \frac{1}{|\sin t|^{2/3}} dt$$

autrement dit, les deux morceaux sont égaux et convergents. Donc K converge.

2. Montrer que l'on a, pour tout entier $n \geq 0$, la majoration

$$\int_{n\pi}^{(n+1)\pi} \frac{1}{(1+x)^2 |\sin x|^{2/3}} \ dx \le \frac{K}{(1+n\pi)^2}$$

En déduire que l'intégrale de gauche converge.

Pour tout $x \in [n\pi, (n+1)\pi]$, on a l'encadrement

$$0 \le \frac{1}{(1+x)^2 |\sin x|^{2/3}} \le \frac{1}{(1+n\pi)^2 |\sin x|^{2/3}}$$

D'autre part, en effectuant le changement de variable $t = x - n\pi$, on trouve

$$\int_{n\pi}^{(n+1)\pi} \frac{1}{|\sin x|^{2/3}} \ dx = \int_0^{\pi} \frac{1}{|\sin t|^{2/3}} \ dt = K$$

qui converge d'après la question précédente. Par conséquent, en vertu du critère de comparaison appliqué à l'encadrement ci-dessus, l'intégrale

$$\int_{n\pi}^{(n+1)\pi} \frac{1}{(1+x)^2 |\sin x|^{2/3}} \, dx$$

converge, et on a la majoration souhaitée.

3. Montrer que la quantité

$$\int_0^X \frac{1}{(1+x)^2 |\sin x|^{2/3}} \, dx$$

tend vers une limite finie quand X tend vers $+\infty$. Considérons la série de terme général u_n défini par

$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{1}{(1+x)^2 |\sin x|^{2/3}} dx$$

d'après la question précédente, on a l'encadrement $0 \le u_n \le \frac{K}{(1+n\pi)^2}$. Comme la série $\sum \frac{1}{(1+n\pi)^2}$ converge (son terme général est équivalent à $\frac{1}{n^2\pi^2}$ et on applique

Riemann), on en déduit que la série $\sum_{n=0}^{+\infty} u_n$ converge.

Soit X>0 un réel, et soit N la partie entière de X/π . Nous avons l'encadrement

$$\int_0^{N\pi} \frac{1}{(1+x)^2 |\sin x|^{2/3}} \ dx \le \int_0^X \frac{1}{(1+x)^2 |\sin x|^{2/3}} \ dx \le \int_0^{(N+1)\pi} \frac{1}{(1+x)^2 |\sin x|^{2/3}} \ dx$$

c'est-à-dire

$$\sum_{n=0}^{N-1} u_n \le \int_0^X \frac{1}{(1+x)^2 |\sin x|^{2/3}} \, dx \le \sum_{n=0}^N u_n$$

Si l'on fait tendre X vers $+\infty$, alors N tend vers $+\infty$, et les deux sommes partielles tendent vers la même limite (finie), à savoir $\sum_{n=0}^{+\infty} u_n$. On en déduit que la quantité du milieu tend vers cette même limite finie.