Examen Final, MHT204, 5 mai 2008

Exercice 1

Trouver le polynôme de Taylor à l'ordre 4 au voisinage de 0 pour chacune des fonctions ci-dessous.

- (a) $f(x) = \cos(x)$
- (b) $g(x) = \ln(1+x)$
- (c) $h(x) = \cos(x^2)$
- (d) $k(x) = \cos(x^2) \ln(1+x)$

Exercice 2

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction dérivable telle que $f'(x) = \ln(x^5)$ pour tout $x \in \mathbb{R}^+$.

- (a) La fonction f est-elle continue?
- (b) Étudier les variations de f sur l'intervalle $\left[\frac{1}{e}, e\right]$.
- (c) Supposons que $f(\frac{1}{e}) = 0$. Donner des bornes pour les valeurs de f sur l'intervalle $[\frac{1}{e}, e]$.

Exercice 3

Calculer les expressions suivantes

- (a) $\int_0^{\frac{\pi}{2}} 3(\cos(t))^{2008} \sin(t) dt$ en utilisant le changement de variable $u = \cos(t)$.
- (b) $\frac{d}{dx} \left(\int_{-1}^{x} \sin(t^{2009}) dt \right)$

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction

$$f(x) = \exp(x^2)$$

et soit Δ la subdivision de [0,5] définie par

$$\Delta = \{0, 1, 4, 5\}.$$

Calculer la petite et la grande somme de Darboux pour la fonction f sur l'intervalle [0, 5] avec la subdivision Δ . Utilisez votre résultat pour trouver M_1 et M_2 tels que

$$M_1 \le \int_0^5 \exp(x^2) \, dx \le M_2.$$

Justifiez votre réponse.