TD n° 9 — Limites et continuité

Exercice 1

1. Montrer, à partir de la définition donnée en cours, que :

$$\lim_{x \to 0} x^2 = 0$$

2. Même question pour :

$$\lim_{x \to 1} \left(1 + \frac{1}{x} \right) = 2$$

Exercice 2

1. Traduire par une formule mathématique (avec quantificateurs) l'affirmation

$$\lim_{x \to 0} \ln(1+x) = 0$$

2. Déterminer un réel $\delta > 0$ tel que

$$|x| \le \delta \Longrightarrow |\ln(1+x)| \le 10^{-3}$$

Exercice 3

Déterminer les limites suivantes, lorsqu'elles existent :

$$a) \lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$$

$$b) \lim_{x \to +\infty} e^{x - \sin x}$$

c)
$$\lim_{x \to +\infty} x \left[\frac{1}{x} \right]$$

$$d) \lim_{x \to 0} \frac{\sin(x \ln x)}{x}$$

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } 1 \le x \le 4\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

1. Tracer l'allure du graphe de f.

2. La fonction f est-elle continue? Justifier.

Exercice 5

Les fonctions suivantes sont-elles continues sur \mathbb{R} ?

- 1. f(x) = x|x|
- 2. $g(x) = \lfloor x \rfloor \sin(\pi x)$

Exercice 6

On considère la fonction f définie sur \mathbb{R} par $f(x) = x \sin x$.

- 1. Trouver une suite (x_n) tendant vers $+\infty$ telle que $f(x_n)$ tende vers $+\infty$.
- 2. Trouver une suite (y_n) tendant vers $+\infty$ telle que $f(y_n)$ tende vers 0.
- 3. La fonction f admet-elle une limite quand x tend vers $+\infty$?

Exercice 7

Exercice 7 En utilisant des suites, montrer que la fonction $x \mapsto \cos\left(\frac{1}{x}\right)$ n'admet pas de limite en 0.

Exercice 8

1. Les fonctions suivantes sont-elles prolongeables par continuité en 0?

a)
$$f_1(x) = \sin\left(\frac{1}{x}\right)\sin x$$
; b) $f_2(x) = \frac{1}{x}\ln\frac{e^x + e^{-x}}{2}$;

2. La fonction $f_3: \mathbb{R}\setminus\{-1,1\} \to \mathbb{R}$ définie ci-dessous est-elle prolongeable par continuité sur \mathbb{R} tout entier?

$$f_3(x) = \frac{1}{1-x} - \frac{2}{1-x^2} \ .$$

Exercice 9

Soit

$$f(x) = \frac{\cos x}{1 + x^2}$$

- 1. Montrer que f est majorée et minorée sur $\mathbb R.$
- 2. Déterminer $\sup_{x \in \mathbb{R}} f(x)$.

Exercice 10

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période T > 0. On suppose que f admet une limite finie quand x tend vers $+\infty$. Montrer que f est une fonction constante.

Exercice 11

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que la fonction f(x) - x soit bornée sur $[x_0, +\infty[$. Déterminer la limite

$$\lim_{x \to +\infty} \frac{f(x)}{x} .$$

Exercice 12

1. On considère la fonction f donnée par

$$f(x) = \left\{ \begin{array}{ll} \sqrt{1-x^2} & \text{si } |x| < 1 \\ ax^2 + bx + c & \text{si } |x| \ge 1 \end{array} \right.$$

Exite-t-il des réels a, b, c pour lesquelles f est continue sur \mathbb{R} ?

2. Soit $n \in \mathbb{N}$. Peut-on prolonger par continuité en 0 la fonction f définie sur \mathbb{R}^* par

$$f(x) = \frac{((1+x)^n - 1)}{x}?$$

Exercice 13

Soit $f: D \to \mathbb{R}$ une fonction, et soit $x_0 \in D$. On suppose que f admet une limite finie en x_0 . Montrer que f est bornée dans un voisinage de x_0 .

Exercice 14

- 1. Montrer que dans tout intervalle ouvert non vide de \mathbb{R} il y a une infinité de nombres rationnels et une infinité de nombres irrationnels.
- 2. En déduire que la fonction δ définie sur $\mathbb R$ par

$$\delta(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

est discontinue en tout point de \mathbb{R} .