Corrigé du TD n° 5

Exercice 1

1. Soit f_1 l'application :

$$f_1: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2$$

- (a) Nous avons: $f_1(0) = 0$, $f_1(1) = 1$, $f_1(-2) = 4$ et $f_1(\sqrt{2}) = 2$.
- (b) Étant donné un réel a, les antécédents de a par f_1 sont les $x \in \mathbb{R}$ tels que $x^2 = a$. D'où :
 - 0 admet un unique antécédent : lui-même.
 - Les antécédents de 1 sont -1 et 1,
 - -2 n'admet aucun antécédent par f_1 ,
 - Les antécédents de $\sqrt{2}$ sont $\sqrt[4]{2}$ et $-\sqrt[4]{2}$.
- 2. Soit f_2 l'application :

$$f_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (2x-3y, -4x+6y)$

- (a) Nous avons : $f_2(0,0) = (0,0)$, $f_2(-1,0) = (-2,4)$ et $f_2(1,-2) = (8,-16)$.
- (b) Étant donné $(a,b) \in \mathbb{R}^2$, l'ensemble des antécédents de (a,b) par f_2 se note $f_2^{-1}(\{(a,b)\})$.
 - Nous cherchons les antécédents de (0,0) par f_2 . Par définition :

$$f_2^{-1}(\{(0,0)\}) = \{(x,y) \in \mathbb{R}^2 \mid 2x - 3y = 0 \text{ et } -4x + 6y = 0\}$$
$$= \{(x,y) \in \mathbb{R}^2 \mid 2x - 3y = 0\}$$
$$= \{(x,y) \in \mathbb{R}^2 \mid y = \frac{2}{3}x\}$$

Autrement dit, $f_2^{-1}(\{(0,0)\})$ est la droite d'équation $y=\frac{2}{3}x$ dans le plan affine \mathbb{R}^2 .

• Nous cherchons les antécédents de (-1,0) par f_2 . Si (x,y) est un tel antécédent, alors :

$$2x - 3y = -1$$
 et $-4x + 6y = 0$.

Sachant que -4x+6y=-2(2x-3y), on trouve donc que 0=2, ce qui est faux. Ceci montre par l'absurde que (-1,0) n'admet aucun antécédent par f_2 .

- On vérifie que $f_2^{-1}(\{(1,-2)\})$ est la droite d'équation $y=\frac{2}{3}x-\frac{1}{3}$ dans le plan affine \mathbb{R}^2 .
- 3. Soit f_3 l'application :

$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto x^2 + y$

L'ensemble des antécédents de 0 par f_3 est

$$f_3^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 0\}$$
$$= \{(x, y) \in \mathbb{R}^2 \mid y = -x^2\}$$
$$= \{(x, -x^2) \mid x \in \mathbb{R}\}$$

De même, l'ensemble des antécédents de 1 est

$$f_3^{-1}(\{1\}) = \{(x, 1 - x^2) \mid x \in \mathbb{R}\}$$

4. Soit f_4 l'application :

$$f_4: \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (x^2, x+5)$

Soit x un antécédent de (0,0) par f_4 . Alors $x^2=0$ et x+5=0, donc x=0 et x+5=0, ce qui est impossible. Donc (0,0) n'admet pas d'antécédent par f_4 . De même, (-1,0) n'admet pas d'antécédent par f_3 car l'équation $x^2=-1$ n'a pas de solution dans \mathbb{R} . Enfin, l'ensemble des antécédents de (1,6) est

$$f_4^{-1}(\{(1,6)\}) = \{x \in \mathbb{R} \mid x^2 = 1 \text{ et } x + 5 = 6\}$$
$$= \{x \in \mathbb{R} \mid x^2 = 1 \text{ et } x = 1\}$$
$$= \{1\}$$

Exercice 2

On considère les applications f et g définies par

• Pour que $f \circ g$ ait un sens, il faut que l'ensemble d'arrivée de g soit égal à l'ensemble de départ de f, ce qui est bien le cas ici. L'application $f \circ g$ est donnée par

$$f \circ g : \mathbb{R}^* \longrightarrow \mathbb{R}^*$$

$$x \longmapsto e^{1/x}$$

• De même, l'application $g \circ f$ a bien un sens. Elle est donnée par

$$g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto 1/e^x$$

Exercice 3

On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par : f(x) = |x|.

1. Nous avons:

$$f(\{-1,2\}) = \{f(-1), f(2)\} = \{1,2\}$$
$$f([-3,-1]) = [1,3]$$
$$f([-3,1]) = [0,3]$$

2. Il vient:

$$f^{-1}(\{4\}) = \{-4, 4\}$$
$$f^{-1}(\{-1\}) = \emptyset$$
$$f^{-1}([-1, 4]) = [-4, 4]$$

Exercice 4

On considère l'application $g: \mathbb{R} \to \mathbb{R}$ définie par : $g(x) = \cos(\pi x)$. Nous avons :

$$\begin{split} g(\{0,1\}) &= \{\cos 0, \cos \pi\} = \{1,-1\} \\ g([0,1/2]) &= [0,1] \\ g(\mathbb{Z}) &= \{\cos(k\pi) \mid k \in \mathbb{Z}\} = \{1,-1\} \\ g(2\mathbb{Z}) &= \{\cos(2k\pi) \mid k \in \mathbb{Z}\} = \{1\} \end{split}$$

Exercice 5

Soit $f: E \to F$ une application. Soient A et A' deux parties de E.

1. Par définition de $f(A \cup A')$, il vient :

$$f(A \cup A') = \{ f(x) \mid x \in A \cup A' \}$$

$$= \{ f(x) \mid x \in A \text{ ou } x \in A' \}$$

$$= \{ f(x) \mid x \in A \} \cup \{ f(x) \mid x \in A' \}$$

$$= f(A) \cup f(A')$$

- 2. Montrons que $f(A \cap A') \subseteq f(A) \cap f(A')$. Soit $y \in f(A \cap A')$, alors il existe $x \in A \cap A'$ tel que y = f(x). Comme x appartient à A, y = f(x) appartient à f(A). De même, comme x appartient à A', Y appartient à f(A'). Au final, Y appartient à $f(A) \cap f(A')$, ce qu'on voulait.
- 3. Considérons l'application f_1 de l'exercice 1. Soient A = [-1, 0] et A' = [0, 1]. Nous avons d'une part :

$$f_1(A \cap A') = f_1([-1, 0] \cap [0, 1]) = f_1(\{0\}) = \{0\}$$

et, d'autre part :

$$f_1(A) \cap f_1(A') = [0,1] \cap [0,1] = [0,1]$$

Ceci montre qu'en général $f(A \cap A') \neq f(A) \cap f(A')$.

Exercice 6

Soit $f: E \to F$ une application.

- 1. Soit A une partie de E. Montrons que $A \subseteq f^{-1}(f(A))$. Soit $x \in A$, alors $f(x) \in f(A)$, donc x est l'antécédent d'un élément de f(A), c'est-à-dire que x appartient à $f^{-1}(f(A))$.
- 2. Considérons l'application f_1 de l'exercice 1. Soit A = [0, 2], alors

$$f_1^{-1}(f_1([0,2])) = f_1^{-1}([0,4]) = [-2,2]$$

ce qui illustre bien la différence entre A et $f^{-1}(f(A))$

- 3. Soit B une partie de F. Montrons que $f(f^{-1}(B)) \subseteq B$. Soit $y \in f(f^{-1}(B))$, alors il existe $x \in f^{-1}(B)$ tel que f(x) = y. Mais alors, par définition de $f^{-1}(B)$, f(x) appartient à B, c'est-à-dire que $y \in B$, ce qu'on voulait.
- 4. Considérons l'application f_1 de l'exercice 1. Soit B = [-1, 0], alors

$$f_1(f_1^{-1}([-1,0])) = f_1(\{0\}) = \{0\}$$

ce qui illustre bien la différence entre B et $f(f^{-1}(B))$.

Exercice 7

Soit E un ensemble. Si A est une partie de E on lui associe l'application $\mathbf{1}_A: E \to \{0,1\}$ définie par :

$$\mathbf{1}_A(x) = \left\{ \begin{array}{ll} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{array} \right.$$

L'application $\mathbf{1}_A$ est appelée fonction caractéristique de A.

1. Soient A et B deux parties de E. Il vient :

$$\begin{split} \mathbf{1}_{A\cap B} &= \mathbf{1}_A \cdot \mathbf{1}_B \\ \mathbf{1}_{\complement_E A} &= 1 - \mathbf{1}_A \\ \mathbf{1}_{A \setminus B} &= \mathbf{1}_{A\cap \complement_E B} = \mathbf{1}_A \cdot (1 - \mathbf{1}_B) = \mathbf{1}_A - \mathbf{1}_A \cdot \mathbf{1}_B \\ \mathbf{1}_{A\cup B} &= \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_{A\cap B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot \mathbf{1}_B \end{split}$$

2. Par définition

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

On vérifie facilement que :

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

et on en déduit que :

$$\mathbf{1}_{A\Delta B} = \mathbf{1}_A + \mathbf{1}_B - 2 \cdot \mathbf{1}_A \cdot \mathbf{1}_B$$

3. Nous allons montrer que :

$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

Pour cela, il suffit de montrer que ces deux ensembles ont même fonction caractéristique. On calcule d'une part que :

$$\begin{aligned} \mathbf{1}_{(A\Delta B)\Delta C} &= \mathbf{1}_{A\Delta B} + \mathbf{1}_C - 2 \cdot \mathbf{1}_{A\Delta B} \cdot \mathbf{1}_C \\ &= (\mathbf{1}_A + \mathbf{1}_B - 2 \cdot \mathbf{1}_A \cdot \mathbf{1}_B) + \mathbf{1}_C - 2 \cdot (\mathbf{1}_A + \mathbf{1}_B - 2 \cdot \mathbf{1}_A \cdot \mathbf{1}_B) \cdot \mathbf{1}_C \\ &= \mathbf{1}_A + \mathbf{1}_B + \mathbf{1}_C - 2(\mathbf{1}_A \cdot \mathbf{1}_B + \mathbf{1}_A \cdot \mathbf{1}_C + \mathbf{1}_B \cdot \mathbf{1}_C) + 4 \cdot \mathbf{1}_A \cdot \mathbf{1}_B \cdot \mathbf{1}_C \end{aligned}$$

et d'autre part :

$$\begin{split} \mathbf{1}_{A\Delta(B\Delta C)} &= \mathbf{1}_A + \mathbf{1}_{B\Delta C} - 2\cdot \mathbf{1}_A\cdot \mathbf{1}_{B\Delta C} \\ &= \mathbf{1}_A + \left(\mathbf{1}_B + \mathbf{1}_C - 2\cdot \mathbf{1}_B\cdot \mathbf{1}_C\right) - 2\cdot \mathbf{1}_A\cdot \left(\mathbf{1}_B + \mathbf{1}_C - 2\cdot \mathbf{1}_B\cdot \mathbf{1}_C\right) \\ &= \mathbf{1}_A + \mathbf{1}_B + \mathbf{1}_C - 2(\mathbf{1}_B\cdot \mathbf{1}_C + \mathbf{1}_A\cdot \mathbf{1}_B + \mathbf{1}_A\cdot \mathbf{1}_C) + 4\cdot \mathbf{1}_A\cdot \mathbf{1}_B\cdot \mathbf{1}_C \end{split}$$

Il en résulte que :

$$\mathbf{1}_{(A\Delta B)\Delta C} = \mathbf{1}_{A\Delta (B\Delta C)}$$

d'où le résultat.

4. Il est clair que $A\Delta A=\emptyset$, donc A'=A est solution du problème.