TD n° 11 — Propriétés des fonctions continues

Exercice 1

Soient f et g deux fonctions continues $\mathbb{R} \to \mathbb{R}$. On suppose que :

$$\forall x \in \mathbb{Q}, \quad f(x) = g(x)$$

Montrer que f = g.

Exercice 2

1. Montrer que, pour tout couple $(a, b) \in \mathbb{R}^2$,

$$\max(a, b) = \frac{1}{2}(a + b + |a - b|).$$

2. Soient f et g deux fonctions continues $D \to \mathbb{R}$. Soit $\max(f,g)$ la fonction définie par

$$\max(f,g): D \longrightarrow \mathbb{R}$$

 $x \longmapsto \max(f(x),g(x))$

Montrer que cette fonction est continue sur D.

Exercice 3

- 1. Montrer que l'équation $x^5 = x^2 + 2$ a au moins une solution sur]0, 2[.
- 2. Montrer que le polynôme $x^3 + 2x 1$ a une unique racine qui appartient à l'intervalle]0,1[.
- 3. Montrer que l'équation $x^2(\cos x)^5 + x\sin x + 1 = 0$ admet au moins une solution réelle.

Exercice 4

Soient $n \in \mathbb{N}^*$ et $\alpha \in]0, +\infty[$. Démontrer, en utilisant le théorème de la bijection, que le polynôme $P(X) = X^n - \alpha$ admet une unique racine dans $]0, +\infty[$.

Exercice 5

Soit $P \in \mathbb{R}[X]$ un polynôme de degré impair. Montrer que P admet une racine réelle.

Exercice 6

Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand $x\to +\infty$.

- 1. Montrer que f est bornée et atteint sa borne supérieure.
- 2. Atteint-elle toujours sa borne inférieure?

Exercice 7

On considère la fonction $f:[0,+\infty[\to\mathbb{R}$ définie par

$$f(x) = \frac{x^2 + x}{x^2 + 1}.$$

- a) Montrer que $f(]0,1[) \subseteq]0,1[$ et que $f(]1,+\infty[) \subseteq]1,+\infty[$.
- b) On se donne un réel $x_0 \in]0,1[$. Montrer qu'on peut définir une suite (x_n) par la relation de récurrence $x_{n+1} = f(x_n)$.
- c) Montrer que (x_n) est croissante. En déduire qu'elle converge, et trouver sa limite.

Exercice 8

- 1. Soit $f:[a,b] \to [a,b]$ une fonction continue. Montrer qu'il existe $x_0 \in [a,b]$ tel que $f(x_0) = x_0$. On dit alors que x_0 est un point fixe de f.
- 2. Montrer que l'équation $\cos x = x$ admet une solution comprise entre 0 et 1.
- 3. Donner un exemple de fonction continue $g:]0,1[\rightarrow]0,1[$ qui n'admet pas de point fixe.

Exercice 9

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction continue. Les propositions suivantes sont elles vraies ou fausses?

- 1. Si I est ouvert alors f(I) est ouvert.
- 2. Si I est fermé alors f(I) est fermé.
- 3. Si I est borné, alors f(I) est borné.
- 4. Si I est fermé borné, alors f(I) est fermé borné.

Exercice 10

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \frac{1}{1+x^2}$$

- 1. Montrer que f réalise une bijection de $[0, +\infty[$ sur un intervalle I que l'on précisera.
- 2. Quelles sont les propriétés de $f^{-1}: I \to [0, +\infty[$?
- 3. Déterminer explicitement f^{-1} .

Exercice 11

1. Soit la fonction $f: [-1, +\infty[\to \mathbb{R}, \text{ définie par }$

$$f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}.$$

Montrer que f réalise une bijection entre $[-1, +\infty[$ et son image, que l'on déterminera. Expliciter la bijection réciproque.

2. Trouver le plus grand intervalle ouvert I de \mathbb{R} sur lequel la fonction

$$g(x) = \tan(x^3)$$

soit injective, et réalise donc une bijection entre I et g(I). Expliciter l'ensemble g(I) et la fonction réciproque g^{-1} .

Exercice 12

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 1 - x & \text{si } x \notin \mathbb{Q} \end{cases}$$

- 1. Déterminer l'application $f\circ f.$ En déduire que f est bijective.
- 2. Montrer que f n'est ni monotone, ni continue sur \mathbb{R} .

Exercice 13

Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que :

$$\forall x \in \mathbb{R}, \quad h(x) = h\left(\frac{x}{2}\right).$$

Montrer que h est constante.

Exercice 14

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue telle que f(0)=f(1), et soit $p\geq 1$ un entier fixé. Montrer qu'il existe un réel $x_p\in[0,1]$ tel que

$$f\left(x_p + \frac{1}{p}\right) = f(x_p).$$