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Abstract

We introduce SSDB spaces, which include Hilbert spaces, negative Hilbert spaces and
spaces of the form E × E∗, where E is a reflexive real Banach space. We introduce
q–positive subsets of a SSDB space, which include monotone subsets of E×E∗, and BC–
functions on a SSDB spaces, which include Fitzpatrick functions of
monotone multifunctions. We show how convex analysis can be combined with SSDB
space theory to obtain and generalize various results on maximally
monotone multifunctions on a reflexive Banach space, such as the significant direction of
Rockafellar’s surjectivity theorem, sufficient conditions for the sum of maximally
monotone multifunctions to be maximally monotone, and an abstract Brezis–Browder
theorem.

Downloads

You can download files containing related materials from
<www.math.ucsb.edu/∼simons/NC.html>.
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— SSDB spaces and maximal monotonicity —

SSDB spaces

We will say that B
(
more precisely,

(
B, b·, ·c, q, ‖ · ‖, ι

))
is a symmetrically self–dual

Banach space (SSDB space) if B is a nonzero Banach space, b·, ·c:B × B 7→ R is a
symmetric bilinear form, the quadratic form q on B is defined by q(b) := 1

2bb, bc and ∃
a linear isometry ι from B onto B∗ such that, for all b, c ∈ B, 〈b, ι(c)〉 = bb, cc.
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SSDB spaces

We will say that B
(
more precisely,

(
B, b·, ·c, q, ‖ · ‖, ι

))
is a symmetrically self–dual

Banach space (SSDB space) if B is a nonzero Banach space, b·, ·c:B × B 7→ R is a
symmetric bilinear form, the quadratic form q on B is defined by q(b) := 1

2bb, bc and ∃
a linear isometry ι from B onto B∗ such that, for all b, c ∈ B, 〈b, ι(c)〉 = bb, cc.

The quadratic form q

We have the parallelogram law:
b, c ∈ B =⇒ 1

2q(b− c) + 1
2q(b+ c) = q(b) + q(c).

Examples

(a) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉 then B is a SSDB space
with bb, cc := 〈b, c〉, q(b) = 1

2‖b‖
2 and ι(c) := c.

(b) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉 then B is a SSDB space
with bb, cc := −〈b, c〉, q(b) = − 1

2‖b‖
2 and ι(c) := −c.

(c) R3 is a SSDB space with
⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2+b2c1+b3c3. Then

q(b1, b2, b3) = b1b2 + 1
2b

2
3 and ι(c1, c2, c3) := (c2, c1, c3).

(d) R3 is not a SSDB space with
⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2 + b2c3 + b3c1.

(The bilinear form b·, ·c is not symmetric.)
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SSDB spaces

We will say that B
(
more precisely,

(
B, b·, ·c, q, ‖ · ‖, ι

))
is a symmetrically self–dual

Banach space (SSDB space) if B is a nonzero Banach space, b·, ·c:B × B 7→ R is a
symmetric bilinear form, the quadratic form q on B is defined by q(b) := 1

2bb, bc and ∃
a linear isometry ι from B onto B∗ such that, for all b, c ∈ B, 〈b, ι(c)〉 = bb, cc.

Another example

(e) Let E be a nonzero reflexive Banach space and B := E × E∗ under the norm∥∥(x, x∗)
∥∥ :=

√
‖x‖2 + ‖x∗‖2.

Let
(
E × E∗, ‖ · ‖

)∗ = (E∗ × E, ‖ · ‖
)
, with

∥∥((y∗, y)
∥∥ :=

√
‖y∗‖2 + ‖y‖2 and〈

(x, x∗), (y∗, y)
〉

:= 〈x, y∗〉+ 〈y, x∗〉. ∀ (x, x∗), (y, y∗) ∈ B, let⌊
(x, x∗), (y, y∗)

⌋
:= 〈x, y∗〉+ 〈y, x∗〉.

Then B is a SSDB space,
q(b) = 〈x, x∗〉

and
ι(y, y∗) := (y∗, y).

Any finite dimensional SSDB space of this form must have even dimension. Thus odd
dimensional cases of the examples considered on the previous slide cannot be of this
form.
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∥∥ :=

√
‖x‖2 + ‖x∗‖2.

Let
(
E × E∗, ‖ · ‖

)∗ = (E∗ × E, ‖ · ‖
)
, with
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∥∥ :=

√
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:= 〈x, y∗〉+ 〈y, x∗〉. ∀ (x, x∗), (y, y∗) ∈ B, let⌊
(x, x∗), (y, y∗)

⌋
:= 〈x, y∗〉+ 〈y, x∗〉.

Then B is a SSDB space,
q(b) = 〈x, x∗〉

and
ι(y, y∗) := (y∗, y).

Any finite dimensional SSDB space of this form must have even dimension. Thus odd
dimensional cases of the examples considered on the previous slide cannot be of this
form.

• From now on, B =
(
B, b·, ·c, q, ‖ · ‖, ι

)
will always be a SSDB space.
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q–positive sets

Let A ⊂ B. We say that A is q–positive if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≥ 0.

Examples

(a) B is a Hilbert space with q(b) = 1
2‖b‖

2: every nonempty subset of B is q–positive.
(b) B is a Hilbert space with q(b) = − 1

2‖b‖
2: the q–positive subsets of B are the

singletons.
(e) E is a nonzero reflexive Banach space, B := E × E∗ and, ∀ (x, x∗) ∈ B,
q(x, x∗) = 〈x, x∗〉. Let ∅ 6= A ⊂ B. Then A is q–positive when

(x, x∗), (y, y∗) ∈ A =⇒ 〈x− y, x∗ − y∗〉 ≥ 0.
That is to say,

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.
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Let A ⊂ B. We say that A is q–positive if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≥ 0.

Examples

(a) B is a Hilbert space with q(b) = 1
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2: every nonempty subset of B is q–positive.
(b) B is a Hilbert space with q(b) = − 1

2‖b‖
2: the q–positive subsets of B are the

singletons.
(e) E is a nonzero reflexive Banach space, B := E × E∗ and, ∀ (x, x∗) ∈ B,
q(x, x∗) = 〈x, x∗〉. Let ∅ 6= A ⊂ B. Then A is q–positive when

(x, x∗), (y, y∗) ∈ A =⇒ 〈x− y, x∗ − y∗〉 ≥ 0.
That is to say,

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.

General notation
• Let X be a vector space and f : X 7→ ]−∞,∞ ]. Then dom f := {x ∈ X: f(x) ∈ R}.
• f is proper if dom f 6= ∅.
• PC(X) is the set of all proper convex functions f : X 7→ ]−∞,∞ ].
• If X is a Banach space, PCLSC(X) := {f ∈ PC(X): f is lower semicontinuous}.
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— SSDB spaces and maximal monotonicity —

The q–positive set given by a convex function

Let f ∈ PC(B) and f ≥ q on B. Let Pq(f) :=
{
b ∈ B: f(b) = q(b)

}
. If

Pq(f) 6= ∅ then Pq(f) is a q–positive subset of B.
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2 (b+ c)
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• If f ∈ PC(B), we write f@ for the conjugate of f with respect to the pairing b·, ·c.
That is to say, ∀ c ∈ B,

f@(c) := supB
[
b·, cc − f

]
= supB

[
〈·, ι(c)〉 − f

]
= f∗

(
ι(c)
)
.
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• Let f ∈ PC(B). f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

“BC” stands for “bigger conjugate”.

Surprise result

Let f ∈ PC(B) be a BC–function. Then Pq(f@) = Pq(f).

Proof. This proof uses a differentiability argument. Details can be found in the
material on the web. Go to:

<www.math.ucsb.edu/∼simons/NC.html>.
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• If f ∈ PC(B) and c ∈ B, we define fc := f(·+ c)−b·, cc− q(c). Clearly, fc ∈ PC(B).

Translation lemma

(a) (fc)@ = (f@)c. In view of this we write f@
c for both these function.

(b) Let b, d ∈ B. Then fc(b) + f@
c (d)− bb, dc = f(b+ c) + f@(d+ c)− bb+ c, d+ cc.

(c) Pq(fc) = Pq(f)− c and dom fc = dom f − c.
(d) If f ≥ q on B then fc ≥ q on B.
(e) Let f ∈ PC(B) be a BC–function and c ∈ B. Then fc is a BC–function.

Proof. This is routine. Details can be found in the material on the web. Go to
<www.math.ucsb.edu/∼simons/NC.html>.
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• Let f ∈ PC(B). Recall that f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

• Let g ∈ PC(B). g is a TBC–function if
b ∈ B =⇒ g@(−b) ≥ g(b) ≥ −q(b). ( )

“T” stands for “twisted”. In this case, we write Nq(g) :=
{
b ∈ B: g(b) = −q(b)

}
.
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• Let f ∈ PC(B). Recall that f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

• Let g ∈ PC(B). g is a TBC–function if
b ∈ B =⇒ g@(−b) ≥ g(b) ≥ −q(b). ( )

“T” stands for “twisted”. In this case, we write Nq(g) :=
{
b ∈ B: g(b) = −q(b)

}
.

Pos–neg theorem

Let f ∈ PC(B) be a BC–function and g:B 7→ R be a continuous TBC–function.

Then Pq(f)−Nq(g) = B.

Proof. Let c ∈ B. Since fc is a BC–function, it follows from ( ) and ( ) that
b ∈ B =⇒ fc(b) + g(b) ≥ q(b)− q(b) = 0.

Thus Rockafellar’s version of the Fenchel duality theorem gives a ∈ B such that
fc

@(a) + g@(−a) ≤ 0.
From ( ) and ( ) again,

fc(a) + g(a) ≤ 0 = q(a)− q(a).
From ( ) and ( ) for a third time, fc(a) = q(a) and g(a) = −q(a), that is to say,

a ∈ Pq(fc) = Pq(f)− c and a ∈ Nq(g).
But then

c = (c+ a)− a ∈ Pq(f)−Nq(g). �
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Pos–neg theorem

Let f ∈ PC(B) be a BC–function and g:B 7→ R be a continuous TBC–function.

Then Pq(f)−Nq(g) = B.

Theorem on BC–functions on B

Let f ∈ PC(B) be a BC–function and g0 := 1
2‖ · ‖

2 on B. Then

Pq(f)−Nq(g0) = B

and Pq(f) is maximally q–positive (in the obvious sense).

Proof. For all b ∈ B, g0@(−b) = 1
2‖ − b‖

2 = 1
2‖b‖

2 = g0(b) = 1
2‖b‖

2 ≥ − 1
2bb, bc =

−q(b), and so g0 is a TBC–function. The pos–neg theorem now gives
Pq(f)−Nq(g0) = B.

Now suppose that b ∈ B and Pq(f) ∪ {b} is q–positive. From the above,
∃ a ∈ Pq(f) such that a− b ∈ Nq(g0).

Thus
1
2‖a− b‖

2 = −q(a− b).
Since Pq(f)∪{b} is q–positive, q(a−b) ≥ 0, and so 1

2‖a−b‖
2 ≤ 0, from which

b = a ∈ Pq(f). �
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Theorem on BC–functions on B

Let f ∈ PC(B) be a BC–function and g0 := 1
2‖ · ‖

2 on B. Then

Pq(f)−Nq(g0) = B

and Pq(f) is maximally q–positive (in the obvious sense).

More on Example (e)

• From now on, E is a nonzero reflexive Banach space.
• Consider the SSDB space E×E∗, so that q(x, x∗) = 〈x, x∗〉. Let ∅ 6= A ⊂ E×E∗.
We know already that

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.
It follows that

A is maximally q–positive ⇐⇒ A is a maximally monotone subset of E × E∗.
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2‖ · ‖

2 on B. Then

Pq(f)−Nq(g0) = B
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• From now on, E is a nonzero reflexive Banach space.
• Consider the SSDB space E×E∗, so that q(x, x∗) = 〈x, x∗〉. Let ∅ 6= A ⊂ E×E∗.
We know already that

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.
It follows that

A is maximally q–positive ⇐⇒ A is a maximally monotone subset of E × E∗.

• If g0 := 1
2‖ · ‖

2 on E × E∗ then
(x, x∗) ∈ Nq(g0) ⇐⇒ 1

2‖x‖
2 + 1

2‖x
∗‖2 = −〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(−J),

where J :E ⇒ E∗ is the duality map.
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Theorem on BC–functions on B

Let f ∈ PC(B) be a BC–function and g0 := 1
2‖ · ‖

2 on B. Then

Pq(f)−Nq(g0) = B

and Pq(f) is maximally q–positive (in the obvious sense).

More on Example (e)

• From now on, E is a nonzero reflexive Banach space.
• Consider the SSDB space E×E∗, so that q(x, x∗) = 〈x, x∗〉. Let ∅ 6= A ⊂ E×E∗.
We know already that

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.
It follows that

A is maximally q–positive ⇐⇒ A is a maximally monotone subset of E × E∗.

• If g0 := 1
2‖ · ‖

2 on E × E∗ then
(x, x∗) ∈ Nq(g0) ⇐⇒ 1

2‖x‖
2 + 1

2‖x
∗‖2 = −〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(−J),

where J :E ⇒ E∗ is the duality map.

Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.
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Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.

A nice example

Let h ∈ PCLSC(E). Define f ∈ PCLSC(E × E∗) by f(x, x∗) := h(x) + h∗(x∗). It is
easily seen that f@ = f . Furthermore, from the Fenchel–Young inequality,

f(x, x∗) = h(x) + h∗(x∗) ≥ 〈x, x∗〉 = q(x, x∗).
Thus f is a BC–function. It now follows from the theorem on BC–functions on E×E∗
that Pq(f) is maximally monotone. But

(x, x∗) ∈ Pq(f) ⇐⇒ f(x, x∗) = 〈x, x∗〉
⇐⇒ h(x) + h∗(x∗) = 〈x, x∗〉
⇐⇒ x∗ ∈ ∂h(x).

So we have proved that

if h ∈ PCLSC(E) then ∂h is maximally monotone.
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Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.

A nice example

Let h ∈ PCLSC(E). Define f ∈ PCLSC(E × E∗) by f(x, x∗) := h(x) + h∗(x∗). It is
easily seen that f@ = f . Furthermore, from the Fenchel–Young inequality,

f(x, x∗) = h(x) + h∗(x∗) ≥ 〈x, x∗〉 = q(x, x∗).
Thus f is a BC–function. It now follows from the theorem on BC–functions on E×E∗
that Pq(f) is maximally monotone. But

(x, x∗) ∈ Pq(f) ⇐⇒ f(x, x∗) = 〈x, x∗〉
⇐⇒ h(x) + h∗(x∗) = 〈x, x∗〉
⇐⇒ x∗ ∈ ∂h(x).

So we have proved that

if h ∈ PCLSC(E) then ∂h is maximally monotone.

• Remember that we are assuming that E is reflexive.
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The vanilla Attouch–Brezis theorem.

Let f, g ∈ PCLSC(E), f + g ≥ 0 on E and
⋃
λ>0 λ

[
dom f − dom g

]
= E. Then

∃ z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0.

12



— SSDB spaces and maximal monotonicity —

The vanilla Attouch–Brezis theorem.

Let f, g ∈ PCLSC(E), f + g ≥ 0 on E and
⋃
λ>0 λ

[
dom f − dom g

]
= E. Then

∃ z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0.

• If X and Y are nonempty sets, define π1: X × Y 7→ X by π1(x, y) := x.

The bivariate Attouch–Brezis theorem

Let f, g ∈ PCLSC(E × E∗),⋃
λ>0

λ
[
π1 dom f − π1 dom g

]
= E

and, ∀ (x, x∗) ∈ E × E∗,
h(x, x∗) := inf

{
f(x, s∗) + g(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
> −∞.

Then, ∀ (x, x∗) ∈ E × E∗,
h@(x, x∗) = min

{
f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

12



— SSDB spaces and maximal monotonicity —

The vanilla Attouch–Brezis theorem.

Let f, g ∈ PCLSC(E), f + g ≥ 0 on E and
⋃
λ>0 λ

[
dom f − dom g

]
= E. Then

∃ z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0.

• If X and Y are nonempty sets, define π1: X × Y 7→ X by π1(x, y) := x.

The bivariate Attouch–Brezis theorem

Let f, g ∈ PCLSC(E × E∗),⋃
λ>0

λ
[
π1 dom f − π1 dom g

]
= E

and, ∀ (x, x∗) ∈ E × E∗,
h(x, x∗) := inf

{
f(x, s∗) + g(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
> −∞.

Then, ∀ (x, x∗) ∈ E × E∗,
h@(x, x∗) = min

{
f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

• The hypothesis is that h(x, ·) is the inf–convolution of f(x, ·) and g(x, ·), and the
conclusion is that h@(x, ·) is the exact inf–convolution of f@(x, ·) and g@(x, ·).
• The results on this slide are true even if E is not reflexive.
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The partial episum theorem for BC–functions

Let f, g ∈ PCLSC(E × E∗) be BC–functions,
⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
= E

and, ∀ (x, x∗) ∈ E × E∗,
h(x, x∗) := inf

{
f(x, s∗) + g(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

Then, ∀ (x, x∗) ∈ E × E∗,
h@(x, x∗) = min

{
f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
,

and
h is a BC–function.
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{
f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
,

and
h is a BC–function.

Proof. This follows from the bivariate Attouch–Brezis theorem. Details can be found
in the material on the web. Go to

<www.math.ucsb.edu/∼simons/NC.html>.
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Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.
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.
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{
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,

and
h is a BC–function.

Combination lemma

Under the conditions above,

Pq(h@) is maximally monotone.
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Combination lemma

Let f, g ∈ PCLSC(E × E∗) be BC–functions,
⋃
λ>0 λ
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and
Pq(h@) is maximally monotone.
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h@(x, x∗) = min

{
f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
,

and
Pq(h@) is maximally monotone.

Note from the form of h@ above and the surprise result that
(x,x∗) ∈ Pq(h@)

⇐⇒ ∃ s∗, t∗ ∈ E∗ such that (x, s∗) ∈ Pq(f@), (x, t∗) ∈ Pq(g@) and s∗ + t∗ = x∗

⇐⇒ ∃ s∗, t∗ ∈ E∗ such that (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g) and s∗ + t∗ = x∗.
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⇐⇒ ∃ s∗, t∗ ∈ E∗ such that (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g) and s∗ + t∗ = x∗.

Combination theorem

Let f, g ∈ PCLSC(E ×E∗) be BC–functions, and
⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
= E.

Then
{

(x, s∗+t∗): (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g)
}

is a maximally monotone subset
of E × E∗.
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The convex function given by a q–positive set

Let A be a q–positive subset of B. We define ΦA: B 7→ ]−∞,∞ ] by
ΦA(b) := supA

[
bb, ·c − q

]
= q(b)− inf q(A− b).

• ΦA = q on A and ΦA ∈ PC(B).

• Let c ∈ B. Then
ΦA@(c) = supB

[
b·, cc − ΦA

]
≥ supA

[
bc, ·c − ΦA

]
= supA

[
bc, ·c − q

]
= ΦA(c).

• We have:
A maximally q–positive =⇒ ΦA ≥ q on B and Pq(ΦA) = A.
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]
≥ supA

[
bc, ·c − ΦA

]
= supA

[
bc, ·c − q

]
= ΦA(c).

• We have:
A maximally q–positive =⇒ ΦA ≥ q on B and Pq(ΦA) = A.

The convex function given by a maximally q–positive set

Let A be a maximally q–positive subset of B. Then ΦA is a BC–function, and so

Pq(ΦA@) = Pq(ΦA) = A.
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The convex function given by a maximally q–positive set

Let A be a maximally q–positive subset of B. Then ΦA is a BC–function, and so

Pq(ΦA@) = Pq(ΦA) = A.

The Fitzpatrick function

Let S: E ⇒ E∗ be maximally monotone. Let G(S) be the maximally monotone set{
(x, x∗) ∈ E ×E∗: x∗ ∈ Sx

}
. We define the Fitzpatrick function ϕS associated with

S by
ϕS(x, x∗) := ΦG(S)(x, x∗) = sup(s,s∗)∈G(S)

[
〈x, s∗〉+ 〈s, x∗〉 − 〈s, s∗〉

]
.

Combining this with the result above, we obtain:
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]
.

Combining this with the result above, we obtain:

Theorem on the Fitzpatrick function

Let S: E ⇒ E∗ be maximally monotone. Then

ϕS is a BC–function and Pq(ϕS@) = Pq(ϕS) = G(S). ( )
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.

Combining this with the result above, we obtain:

Theorem on the Fitzpatrick function

Let S: E ⇒ E∗ be maximally monotone. Then

ϕS is a BC–function and Pq(ϕS@) = Pq(ϕS) = G(S). ( )

Lemma on D and π1

Let S: E ⇒ E∗ be maximally monotone and D(S) := {x ∈ E: Sx 6= ∅}. Then

D(S) ⊂ π1domϕS .

Proof. From ( ), G(S) = Pq(ϕS) ⊂ domϕS , thus D(S) = π1G(S) ⊂ π1domϕS . �
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Theorem on the Fitzpatrick function

Let S: E ⇒ E∗ be maximally monotone. Then

ϕS is a BC–function and Pq(ϕS@) = Pq(ϕS) = G(S). ( )

Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.

• If S, T : E ⇒ E∗ then, ∀x ∈ E, (S + T )x :=
{
x∗ + y∗: x∗ ∈ Sx, y∗ ∈ Tx

}
.
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Theorem on BC–functions on E × E∗

Let f ∈ PC(E × E∗) be a BC–function. Then Pq(f) is maximally monotone.
Further, Pq(f@) = Pq(f) and Pq(f)−G(−J) = E × E∗.

• If S, T : E ⇒ E∗ then, ∀x ∈ E, (S + T )x :=
{
x∗ + y∗: x∗ ∈ Sx, y∗ ∈ Tx

}
.

Rockafellar’s surjectivity theorem

Let S: E ⇒ E∗ be maximally monotone. Then (S + J)(E) = E∗.

Proof. Let y∗ be an arbitrary element of E∗. From the theorem on the Fitzpatrick
function,

ϕS is a BC–function and Pq(ϕS@) = Pq(ϕS) = G(S). ( )
Thus, taking f = ϕS in the theorem on BC–functions on E × E∗, ∃ (s, s∗) ∈ G(S)
and (x, x∗) ∈ G(J) such that (0, y∗) = (s, s∗) − (x,−x∗). But then x = s and so
y∗ = s∗ + x∗ ∈ (S + J)s. �
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Theorem on the Fitzpatrick function

Let S: E ⇒ E∗ be maximally monotone. Then

ϕS is a BC–function and Pq(ϕS@) = Pq(ϕS) = G(S). ( )

Combination theorem

Let f, g ∈ PCLSC(E ×E∗) be BC–functions, and
⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
= E.

Then
{

(x, s∗+t∗): (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g)
}

is a maximally monotone subset
of E × E∗.
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⋃
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[
π1 dom f − π1 dom g

]
= E.

Then
{

(x, s∗+t∗): (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g)
}

is a maximally monotone subset
of E × E∗.

We now prove:

The sum theorem

Let S, T : E ⇒ E∗ be maximally monotone and⋃
λ>0

λ
[
π1 domϕS − π1 domϕT

]
= E.

Then S + T is maximally monotone.

Proof. We have: ϕS and ϕT are BC–functions, Pq(ϕS) = G(S) and Pq(ϕT ) = G(T ).
From the combination theorem,

{
(x, s∗ + t∗): (x, s∗) ∈ G(S), (x, t∗) ∈ G(T )

}
is a

maximally monotone subset of E × E∗, that is to say,

G(S + T ) is a maximally monotone subset of E × E∗. �
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The sum theorem

Let S, T : E ⇒ E∗ be maximally monotone and⋃
λ>0

λ
[
π1 domϕS − π1 domϕT

]
= E.

Then S + T is maximally monotone.

Lemma on D and π1

Let S: E ⇒ E∗ be maximally monotone and D(S) := {x ∈ E: Sx 6= ∅}. Then

D(S) ⊂ π1domϕS .
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The sum theorem

Let S, T : E ⇒ E∗ be maximally monotone and⋃
λ>0

λ
[
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]
= E.

Then S + T is maximally monotone.

Lemma on D and π1

Let S: E ⇒ E∗ be maximally monotone and D(S) := {x ∈ E: Sx 6= ∅}. Then

D(S) ⊂ π1domϕS .

Thus:

The sum corollary

Let S, T : E ⇒ E∗ be maximally monotone and
⋃
λ>0 λ

[
D(S)−D(T )

]
= E. Then

S + T is maximally monotone.
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Let S, T : E ⇒ E∗ be maximally monotone and⋃
λ>0
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Let S: E ⇒ E∗ be maximally monotone and D(S) := {x ∈ E: Sx 6= ∅}. Then

D(S) ⊂ π1domϕS .

Thus:

The sum corollary

Let S, T : E ⇒ E∗ be maximally monotone and
⋃
λ>0 λ

[
D(S)−D(T )

]
= E. Then

S + T is maximally monotone.

In particular,

Rockafellar’s sum theorem

Let S, T : E ⇒ E∗ be maximally monotone and D(S) ∩ intD(T ) 6= ∅. Then

S + T is maximally monotone.
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Dom–neg theorem

Let f ∈ PCLSC(B) and, whenever b, d ∈ B,

f(b) + f@(d) = bb, dc =⇒ q(b) + q(d) ≤ f(b) + f@(d).

Then dom f −Nq(g0) = B.
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Dom–neg theorem

Let f ∈ PCLSC(B) and, whenever b, d ∈ B,

f(b) + f@(d) = bb, dc =⇒ q(b) + q(d) ≤ f(b) + f@(d).

Then dom f −Nq(g0) = B.

Proof. Let c ∈ B. Since fc + g0 is coercive and w(B,B∗)–lower semicontinuous, and
B is reflexive, ∃ b ∈ B such that

(fc + g0)(b) = minB
[
fc + g0

]
.

Since g0 is continuous, Rockafellar’s sum formula implies that
∂fc(b) + ∂g0(b) 3 0.

One can show that
c ∈ dom f − b and b ∈ Nq(g0).

Consequently,
c ∈ dom f −Nq(g0).

More details can be found in the material on the web. Go to:
<www.math.ucsb.edu/∼simons/NC.html>.

�
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SSDB spaces

We will say that B
(
more precisely,

(
B, b·, ·c, q, ‖ · ‖, ι

))
is a symmetrically self–dual

Banach space (SSDB space) if B is a nonzero Banach space, b·, ·c:B × B 7→ R is a
symmetric bilinear form, the quadratic form q on B is defined by q(b) := 1

2bb, bc and ∃
a linear isometry ι from B onto B∗ such that, for all b, c ∈ B, 〈b, ι(c)〉 = bb, cc.
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2bb, bc and ∃
a linear isometry ι from B onto B∗ such that, for all b, c ∈ B, 〈b, ι(c)〉 = bb, cc.

• If
(
B, b·, ·c, q, ‖ · ‖, ι

)
is a SSDB space then so also is

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
. If “B”

represents
(
B, b·, ·c, q, ‖ · ‖, ι

)
, then “B−” represents

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
.
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)
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)
.

q–positive sets

Let A ⊂ B. We say that A is q–positive if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≥ 0.
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)
, then “B−” represents

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
.

q–positive sets

Let A ⊂ B. We say that A is q–positive if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≥ 0.

q–negative sets

Let A ⊂ B. We say that A is q–negative if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≤ 0.

Obviously, A is q–negative exactly when A is (−q)–positive.
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B,−b·, ·c,−q, ‖ · ‖,−ι

)
. If “B”

represents
(
B, b·, ·c, q, ‖ · ‖, ι

)
, then “B−” represents

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
.

q–positive sets

Let A ⊂ B. We say that A is q–positive if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≥ 0.

q–negative sets

Let A ⊂ B. We say that A is q–negative if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≤ 0.

Obviously, A is q–negative exactly when A is (−q)–positive.

Polar subspace

Let A be a linear subspace of a SSDB space B. Then A0 is the linear subspace{
b ∈ B: bA, bc = {0}

}
of B.
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— SSDB spaces and maximal monotonicity —

• Let A be a maximally q–positive subset of a SSDB space B. Then
b ∈ B =⇒ inf q(A− b) ≤ 0. ( )

(This is equivalent to the statement that ΦA ≥ q on B.)

23



— SSDB spaces and maximal monotonicity —

• Let A be a maximally q–positive subset of a SSDB space B. Then
b ∈ B =⇒ inf q(A− b) ≤ 0. ( )

(This is equivalent to the statement that ΦA ≥ q on B.)

Initial result on polarity

Let A be a maximally q–positive linear subspace of a SSDB space B. Then A0 is
q–negative.

Proof. If p ∈ A0 then inf q(A − p) = inf q(A) + q(p) = q(p), and so ( ) gives
q(p) ≤ 0. If now b, c ∈ A0 then b− c ∈ A0 and so q(b− c) ≤ 0. Thus A0 is q–negative.�

23



— SSDB spaces and maximal monotonicity —

• Let A be a maximally q–positive subset of a SSDB space B. Then
b ∈ B =⇒ inf q(A− b) ≤ 0. ( )

(This is equivalent to the statement that ΦA ≥ q on B.)

Initial result on polarity

Let A be a maximally q–positive linear subspace of a SSDB space B. Then A0 is
q–negative.

Proof. If p ∈ A0 then inf q(A − p) = inf q(A) + q(p) = q(p), and so ( ) gives
q(p) ≤ 0. If now b, c ∈ A0 then b− c ∈ A0 and so q(b− c) ≤ 0. Thus A0 is q–negative.�

We will prove the following

Converse result

Let A be a closed q–positive linear subspace of a SSDB space B and A0 be q–negative.
Then A is maximally q–positive.
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• Let A be a maximally q–positive subset of a SSDB space B. Then
b ∈ B =⇒ inf q(A− b) ≤ 0. ( )

(This is equivalent to the statement that ΦA ≥ q on B.)

Initial result on polarity

Let A be a maximally q–positive linear subspace of a SSDB space B. Then A0 is
q–negative.

Proof. If p ∈ A0 then inf q(A − p) = inf q(A) + q(p) = q(p), and so ( ) gives
q(p) ≤ 0. If now b, c ∈ A0 then b− c ∈ A0 and so q(b− c) ≤ 0. Thus A0 is q–negative.�

We will prove the following

Converse result

Let A be a closed q–positive linear subspace of a SSDB space B and A0 be q–negative.
Then A is maximally q–positive.

Our proof of the converse result depends on the function qA, which we now introduce.

23



— SSDB spaces and maximal monotonicity —

The function qA

Let A be a closed q–positive linear subspace of a SSDB space B. Define qA: B →
]−∞,∞ ] by qA := q on A and qA := ∞ on B \ A. Then qA ∈ PCLSC(B), and

qA(b) + qA
@(d) = bb, dc =⇒ b− d ∈ A0.

Proof. These results follow easily from the definitions. The third assertion uses a
differentiability argument. �
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— SSDB spaces and maximal monotonicity —

Dom–neg theorem

Let f ∈ PCLSC(B) and, whenever b, d ∈ B,

f(b) + f@(d) = bb, dc =⇒ q(b) + q(d) ≤ f(b) + f@(d).

Then dom f −Nq(g0) = B.

The function qA

Let A be a closed q–positive linear subspace of a SSDB space B. Define qA: B →
]−∞,∞ ] by qA := q on A and qA := ∞ on B \ A. Then qA ∈ PCLSC(B), and

qA(b) + qA
@(d) = bb, dc =⇒ b− d ∈ A0.

Converse result

Let A be a closed q–positive linear subspace of a SSDB space B and A0 be q–negative.
Then A is maximally q–positive.
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Dom–neg theorem

Let f ∈ PCLSC(B) and, whenever b, d ∈ B,

f(b) + f@(d) = bb, dc =⇒ q(b) + q(d) ≤ f(b) + f@(d).

Then dom f −Nq(g0) = B.

The function qA

Let A be a closed q–positive linear subspace of a SSDB space B. Define qA: B →
]−∞,∞ ] by qA := q on A and qA := ∞ on B \ A. Then qA ∈ PCLSC(B), and

qA(b) + qA
@(d) = bb, dc =⇒ b− d ∈ A0.

Converse result

Let A be a closed q–positive linear subspace of a SSDB space B and A0 be q–negative.
Then A is maximally q–positive.

Proof. It is clear that
qA(b) + qA

@(d) = bb, dc =⇒ q(b− d) ≤ 0 =⇒ q(b) + q(d) ≤ bb, dc = qA(b) + qA
@(d).

It now follows easily from the Dom–neg theorem with f = qA that
A−Nq(g0) = B. ( )

Now suppose that c ∈ B and A ∪ {c} is q–positive. From ( ), ∃ a ∈ A such that
a − c ∈ Nq(g0). Thus 1

2‖a − c‖2 = −q(a − c). Since A ∪ {c} is q–positive,
q(a− c) ≥ 0, and so 1

2‖a− c‖
2 ≤ 0, from which c = a ∈ A. �
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• If
(
B, b·, ·c, q, ‖ · ‖, ι

)
is a SSDB space then so also is

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
. If “B”

represents
(
B, b·, ·c, q, ‖ · ‖, ι

)
, then “B−” represents

(
B,−b·, ·c,−q, ‖ · ‖,−ι

)
.

q–negative sets

Let A ⊂ B. We say that A is q–negative if A 6= ∅ and
b, c ∈ A =⇒ q(b− c) ≤ 0.

Obviously, A is q–negative exactly when A is (−q)–positive.

Main theorem on polar subspaces

Let A be a norm–closed q–positive linear subspace of a SSDB space B. Then:

(a) A is maximally q–positive ⇐⇒ A0 is q–negative.

(b) A is maximally q–positive ⇐⇒ A0 is maximally q–negative.

Proof. (a) is immediate from the “initial result” and the “converse result”.
(⇐=) in (b) is immediate from the “converse result”.
We now prove (=⇒) in (b). Let A be maximally q–positive. From the “initial result”,
A0 is q–negative, and it only remains to prove the maximality.
So A0 is (−q)–positive and A is (maximally) (−q)–negative. Since A is norm–closed,
A = (A0)0. Thus (A0)0 is (−q)–negative. From the “converse result” with B replaced
by B−, q replaced by −q and A replaced by A0, A0 is maximally (−q)–positive, that
is to say, maximally q–negative, which completes the proof of (b). �
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— SSDB spaces and maximal monotonicity —

• Let E be a nonzero reflexive Banach space and A be a monotone linear subspace of
E × E∗. Then the linear subspace A∗ of E × E∗ is defined by:

(x, x∗) ∈ A∗ ⇐⇒ for all (a, a∗) ∈ A, 〈x, a∗〉 = 〈a, x∗〉.
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• Let E be a nonzero reflexive Banach space and A be a monotone linear subspace of
E × E∗. Then the linear subspace A∗ of E × E∗ is defined by:

(x, x∗) ∈ A∗ ⇐⇒ for all (a, a∗) ∈ A, 〈x, a∗〉 = 〈a, x∗〉.
• Our final result is immediate from the “main theorem” on the previous slide. (a)
was proved by Brezis–Browder and (b) by Yao.

Results of Brezis–Browder and Yao

Let E be a nonzero reflexive Banach space with topological dual E∗ and A be a norm–
closed monotone linear subspace of E × E∗. Then:

(a) A is maximally monotone if, and only if, A∗ is monotone

(b) A is maximally monotone if, and only if, A∗ is maximally monotone.
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Abstract

We introduce SSDB spaces, which include Hilbert spaces, negative Hilbert spaces and
spaces of the form E × E∗, where E is a reflexive real Banach space. We introduce
q–positive subsets of a SSDB space, which include monotone subsets of E×E∗, and BC–
functions on a SSDB spaces, which include Fitzpatrick functions of
monotone multifunctions. We show how convex analysis can be combined with SSDB
space theory to obtain and generalize various results on maximally
monotone multifunctions on a reflexive Banach space, such as the significant direction of
Rockafellar’s surjectivity theorem, sufficient conditions for the sum of maximally
monotone multifunctions to be maximally monotone, and an abstract Brezis–Browder
theorem.
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