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Before getting started

. . .

some Basque history













Now

. . .

some French history



The 72 names on the Eiffel Tower
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Lagrange, Laplace and Gauss
“The great masters of modern analysis are Lagrange, Laplace, and
Gauss, who were contemporaries. It is interesting to note the
marked contrast in their styles. Lagrange is perfect both in form
and matter, he is careful to explain his procedure, and though his
arguments are general they are easy to follow. Laplace on the other
hand explains nothing, is indifferent to style, and, if satisfied that
his results are correct, is content to leave them either with no proof
or with a faulty one. Gauss is as exact and elegant as Lagrange,
but even more difficult to follow than Laplace, for he removes every
trace of the analysis by which he reached his results, and studies to
give a proof which while rigorous shall be as concise and synthetical
as possible.” W.W.R. Ball, History of Mathematics (3rd Ed., 1901), p. 68



Joseph-Louis Lagrange (1736-1813)

I regard as quite useless the reading of large treatises of pure
analysis: too large a number of methods pass at once before
the eyes. It is in the works of application that one must study
them; one judges their utility there and appraises the manner

of making use of them.
Je considère comme complètement inutile la lecture de gros
traités d’analyse pure: un trop grand nombre de méthodes
passent en même temps devant les yeux. C’est dans les

travaux d’application qu’on doit les étudier; c’est lá qu’on
juge leurs capacités et qu’on apprend la manière de les

utiliser.



Joseph-Louis Lagrange (1736-1813)

I regard as quite useless the reading of large treatises of pure
analysis: too large a number of methods pass at once before
the eyes. It is in the works of application that one must study
them; one judges their utility there and appraises the manner

of making use of them.

Before we take to sea we walk on land. Before we create we
must understand.



Now

. . .

modern times



Back to business: general context

Real-life optimization problems

– complex in nature
modeling issues

– evolve in time
dynamic relations ⇒ coupling decisions

– large scale
solvability issues

Trade-off between accuracy and speed



Back to business: general context

Real-life optimization problems

– complex in nature
modeling issues, today’s talk: high accuracy required

– evolve in time
dynamic relations ⇒ coupling decisions

– large scale
solvability issues

Trade-off between accuracy and speed



Our motivation: Energy problems
For a large hydrothermal power system
Optimal management of the resources given

– Limited availability of hydro-power
– High hydrological uncertainty

Optimal management of an asset of unknown value:
the water

How to price (the lack of) water?



The problem of pricing water

Decision Consequences
today tomorrow

•Minimize immediate cost, by
emptying reservoirs

 It rains
Drought

Right decision
Rationing (deficit)

or

•Keep water, by
thermal generation

 It rains
Drought

Too much water
Right decision



The problem of pricing water

• Water price is given by the value function of a
stochastic linear program

• Depends on reservoirs volumes

• Depends on how stochastic process is represented

• Depends on how stochastic program is solved

Used by electrical agents in Brazil (> 400) for financial
strategies, Government actions, etc



A typical problem: (SLPT)

v(x0) =



min
(xt,yt)

∑T
t=1 c

>
t yt

xt = Axt−1 +Byt + Ctξt + dt (WB)
Ext +Fyt ≥ Gtξt + ht (DEM)

(xt, yt) ∈ Xt × Yt (BND)

If 3 hydrological conditions: {normal, wet, dry}:

33



Brazil’s SLPTsizes:

– T = 120 time steps
– 20 hydrological conditions for each month and each
subsystem (20 different ξi

t)
Tree has 20119 scenarios in IR4!



Proposal for 2-stage problems

SLP2


min

(x,y)≥0
c>x+ q>y

Ax = b

Tx+Wy = h



Proposal for 2-stage problems
(joint work with W. de Oliveira, S. Scheinberg)

SLP2


min

(x,y)≥0
c>x+ q>y

Ax = b

Tx+Wy = h

Inexact bundle method

≈

L-shaped method+
regularization

inexactness



Handling large SLP2

min
(x,y)≥0

c>x+ q>y

Ax = b

Tx+Wy = h

 ≡



min
x≥0

c>x+ E[Q(x; ξ)]

Ax = b

for Q(x; ξ) =

 min
y≥0

q>y

Wy = h− Tx

Assumptions: fixed recourse W , uncertainty ξ = (q, T, h) with finite
variance, relatively complete recourse, nonempty X =⇒ the
expected recourse function

Q(x) = E[Q(x; ξ)]

is well defined, proper, lsc, and convex.



Handling large SLP2

min
(x,y)≥0

c>x+ q>y

Ax = b

Tx+Wy = h

 ≡



min
x≥0

c>x + E[Q(x; ξ)]

Ax = b

for Q(x; ξ) =

 min
y≥0

q>y

Wy = h− Tx

First-stage problem ≡ min over a polyhedron

the nonsmooth function f(x) = c>x+Q(x)



The first-stage objective function f(x) = c>x+Q(x)

Q(x) = E[Q(x; ξ)] =

∫
ξ

Q(x; ξ)dp(ξ) SAA:

≈
N∑
i=1

piQ(x; ξi) want to be large

=
N∑
i=1

piQi(x) for ξi = (qi, hi, Ti)

=
N∑
i=1

pi

 min
y≥0

q>
i y

Wy = hi − Tix

=
N∑
i=1

pi

 max
u

u>(hi − Tix)

W>u ≤ qi

A dual solution ui satisfies −T>
i ui ∈ ∂Qi(x)



The first-stage objective function f(x) = c>x+Q(x)

Q(x) = E[Q(x; ξ)] =

∫
ξ

Q(x; ξ)dp(ξ) SAA:

≈
N∑
i=1

piQ(x; ξi) want N to be large

=
N∑
i=1

piQi(x)

=
N∑
i=1

pi

 min
y≥0

q>
i y

Wy = hi − Tix

=
N∑
i=1

pi

 max
u

u>(hi − Tix)

W>u ≤ qi

A dual solution ui satisfies −T>
i ui ∈ ∂Qi(x)



Consequences of large N

when N is large, LP is not solvable

(not even decomposing, as in L-Shaped≡ cutting-planes)



Consequences of large N



Static approach

Use scenario selection methods a to define a reduced
SAA problem, solvable by some decomposition method
aEichhorn, Heitsch, Hochreiter, Küchler, Pflüg, Römisch, et al



Our approach
Recall that first-stage problem is nonsmooth and apply a
NSO method capable of handling inaccuracy:

There is an oracle giving a function estimate fx ∈ [f(x) − εf , f(x) + εg]

a subgradient estimate gx ∈ ∂εf+εgf(x) ,

for errors εf , εg ≥ 0 unknown, but bounded.



Our approach
Recall that first-stage problem is nonsmooth and apply a
NSO method capable of handling inaccuracy:

There is an oracle giving a function estimate fx ∈ [f(x) − εf , f(x) + εg]

fx is the sum of c>x and a few Qi(x) = Q(x; ξi)



Our approach is dynamic
Recall that first-stage problem is nonsmooth and apply a
NSO method capable of handling inaccuracy:

There is an oracle giving a function estimate fx ∈ [f(x) − εf , f(x) + εg]

fx is the sum of c>x and a few Qi(x) = Q(x; ξi)

the choice of {ξi}i composing fx varies with x



First inexact oracle: exploiting structure

Qi(x) =

min
y≥0

q>
i y

Wy = hi − Tix
=

max
u

u>(hi − Tix)

W>u ≤ qi
= u>

i (hi − Tix)

If second-stage cost is deterministic then qi = q for all i, and



First inexact oracle: exploiting structure

Qi(x) =

min
y≥0

q>
i y

Wy = hi − Tix
=

max
u

u>(hi − Tix)

W>u ≤ qi = q
= u>

i (hi − Tix)

If second-stage cost is deterministic then qi = q for all i, and
Qj(x) ≈ Qi(x) ⇐⇒ hj − Tjx ≈ hi − Tix



Collinearity strategy (cos)

cos approximation:

f(x) = c>x+
Nred∑
`=1

p`u
>
` (h` − T`x) +

Nred∑
j∈I` ,`=1

pj uj︸︷︷︸>(hj − Tjx)

fx = c>x+
Nred∑
`=1

piu
>
` (h` − T`x) +

Nred∑
j∈Ii ,`=1

pj
︷︸︸︷
u`

>(hj − Tjx)



How NSO method

can handle

inaccurate oracles?



Exact cutting-planes model



In exact cutting-planes model



The exact bundle method



The inexact bundle method



Numerical Results

Proximity between scenarios measured with pseudonorm

dλ(ξi, ξj) := λπ‖ξi − ξj‖ + (1 − λ)|Qi − Qj | λ ∈ [0, 1]

Benchmark of 5 solvers:

2 Static

 dλ − ECP L-shaped on reduced SAA
dλ − EBM Exact Bundle on reduced SAA

3 Dynamic


IBM − cos Inexact Bundle method with cos
IBM − d1 IBM with scenario selection [DKR03]
IBM − dλ IBM with pseudonorm

on 10 families of problems (dim ξ ∈ [2, 200]), and

N = {100, 200, 300, 500, 800, 1000, 1200, 1500, 1800, 2000, 2500}
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