Optimization for Feedback Control

Dominikus Noll

Université Paul Sabatier

Image: A math the second se

Thanks to

Pierre Apkarian (ONERA) Bassem Fares (IMT) J.-B. Thevenet (IMT+ONERA) Vincent Bompart (IMT+ONERA) Aude Rondepierre (IMT) Laleh Hosseini-Ravanbod (IMT) Daniel Alazard (ISAE+ONERA) Paolo Pellanda (ONERA) Alberto Simões (ONERA) Olivier Prot (IMT+XLIM) Vasile Sima (IMT+ICI) Marion Gabarrou (IMT+ISAE)

Guidage

Survol

Solving challenging problems ...

Controvert

Technicom

Robust Crymath

 $\label{eq:u} \begin{array}{ll} u = \mathrm{known} \mbox{ ispat} & f = \mathrm{fault} & v = \mathrm{white noise} \\ w = \mathrm{perturbation} & y = \mathrm{measured output} \\ \widehat{y} = \mathrm{model estimated output} & K = \mathrm{filter gain} \\ r = \mathrm{model symmetric} & \hfill \mbox{ detection filter} \end{array}$

feedback control

$$K: \begin{cases} \dot{x}_K = A_K x_K + B_K y\\ u = C_K x_K + D_K y \end{cases}$$

▲口▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - 釣�?

$$P: \begin{cases} \dot{x} = Ax + B_1w + B_2u \\ z = C_1x + D_{11}w + D_{12}u \\ y = C_2x + D_{21}w + D_{22}u \end{cases}$$

$$K:\begin{cases} \dot{x}_K = A_K x_K + B_K y\\ u = C_K x_K + D_K y \end{cases}$$

◆□ → ◆□ → ▲目 → ▲目 → ▲□ →

$$P = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

$$K = \left[\frac{A_K B_K}{C_K D_K}\right]$$

◆□ → ◆□ → ▲目 → ▲目 → ▲□ →

$$T_{w \to z}(P, K) = \begin{bmatrix} A + B_2 D_K C_2 & B_2 C_K & B_1 + B_2 D_K D_{21} \\ B_K C_2 & A_K & B_K D_{21} \\ \hline C_1 + D_{12} D_K C_2 & D_{12} C_K & D_{11} + D_{12} D_K D_{21} \end{bmatrix}$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● のへで

$$P = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix}$$

$$K = \left[\frac{A_K B_K}{C_K D_K}\right]$$

$$T_{w \to z}(P, K) = \left[\begin{array}{c|c} A(K) & B(K) \\ \hline C(K) & D(K) \end{array} \right]$$

◆□ → ◆□ → ▲目 → ▲目 → ▲□ →

- K should :
 - guarantee stability in closed loop
 - assure good performance in closed-loop
 - be robust with respect to model uncertainty
 - be easy to embed

Stability

When is plant P stabilizable?

◆ロ → ◆□ → ◆ 三 → ◆ 三 → ● < ● <

When is plant P stabilizable by a practically useful controller K?

◆ロ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

When is plant P stabilizable by a practically useful controller K?

$$P = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}, \quad K = \begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix}, \quad A(K) \text{ stable}$$

• Can be decided by linear algebra if $size(A) = size(A_K)$ and A_K, B_K, C_K, D_K all free (Kalman 1960)

• Decision is NP-complete if *K* static, reduced-order, PID, decentralized

(V. Blondel, J. Tsitsiklis, 1997)

・ロト ・母 ト ・母 ト ・ 母 ・ りゃぐ

What is a controller structure?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $n_K \leq n_x \implies N := n_x^2 + n_x m_2 + n_x p_2 + m_2 p_2$ degrees of freedom

Structure means:

 $\dim(\theta) \ll N, \qquad \qquad A_K(\theta), \dots \text{ depend smoothly on } \theta$ $A_K(\theta), \dots \text{ as sparse as possible}$

Stability in closed loop :

- Hard to decide for practically useful controller structures.
- Can be decided for full-order or observer-based controllers. Both of little use in practice.
- Stroke of luck : Technical systems are made to be stabilized. So often works.
- Practical method (Burke, Overton 2001) :

 $\min_{\mathcal{K}} \alpha \left(\mathcal{A}(\mathcal{K}) \right) := \max\{ \operatorname{Re}(\lambda) : \lambda \text{ eigenvalue of } \mathcal{A}(\mathcal{K}) \}$

- What is hard is to stabilize and guarantee good performance.
- What about controllability, observability, detectability?

Controller structure

イロト イヨト イヨト イヨト

æ

Longitudinal Motion of an Aircraft

pitch	tangage	Nickwinkel	buruzka-angelu
roll	roulis	Rollwinkel	balantza-angelu
yaw	lacet	Gierwinkel	keinada

elevator	gouvernail de profondeur	Höhenruder	sakonerako jokaldi
aileron	aileron	Querruder	aleroi
rudder	gouvernail	(Seiten)ruder	lema

Flight Control Loop

$$N_{zc}
ightarrow dN_z = N_{zc} - N_z$$
 (tracking error)
 $n_q
ightarrow dm$ (avoid fatigue of elevator due to sensor noise)

Flight Control: High Angle of Attack Mode Determine Kp, Ki, Kv, a, b

One can have it as non-linear function of $\theta = (a, b, k_p, k_i, k_v)$:

$$\mathcal{K}(\theta): \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \hline dm \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -a & -b & a & ak_p & -ak_v \\ 0 & 0 & -0.001 & k_i & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \hline dN_z \\ q \end{bmatrix}$$

or affine :

$$\mathcal{K}(\theta): \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \hline dm \\ e \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -a & -b & 0 & a & 0 & 0 \\ 0 & 0 & -0.001 & 0 & k_{i} & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & k_{p} & -k_{v} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \hline e \\ dN_{z} \\ q \end{bmatrix}$$

$$P: \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

$$\widetilde{P}: \begin{bmatrix} A & B_1 & 0 & B_2 \\ \hline C_1 & D_{11} & 0 & D_{12} \\ 0 & 0 & I & 0 \\ C_2 & D_{21} & 0 & D_{22} \end{bmatrix}$$

M. Gabarrou, D. Alazard, D. Noll. *Structured flight control law design using non-smooth optimization.* 18th IFAC ACA, 2010.

Flight control. (Mach = 0.7, Altitude = 5000 ft). 2 performance criteria, 5 variables.

Flight control + Autopilot. 6 performance criteria + 2 robustness criteria, 18 states, 11 variables. Combination of P,PI,PID and filters.

D. Alazard, P. Apkarian, A. Simões, D. Noll. *Lateral flight control design for a highly flexible aircraft using nonsmooth optimization.* Aerospace Science and Technology. 2010.

Performance

◆□→ ◆□→ ◆注→ ◆注→ □注

r = reference input $n_p =$ process noise $n_s =$ sensor noise d = disturbance

- u =actuator signal
- e = tracking error
- y = sensor signal

H_{∞} -Loopshaping

Good tracking :

 $T_{r \to e} = (I + GK)^{-1}$ $\implies \text{ want } G(j\omega)K(j\omega) \text{ large in low frequency } \omega.$

Fatigue of actuator due to measurement noise : $T_{n_s \rightarrow u} = -(I + KG)^{-1}K$ \implies want $K(j\omega)$ small in high frequency ω .

Influence of process noise on tracking :

 $T_{n_p \to e} = -(I + GK)^{-1}G$ $\implies \text{ want } GK \text{ large where } G \text{ is large and in high frequency.}$

(日) (日) (日) (日) (日) (日) (日)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

$$||G||_{\mathcal{H}_2 \to \mathcal{H}_2} = \sup_{\substack{||w||_2 \le 1 \\ \omega \in [0,\infty]}} ||Gw||_2 =: ||G||_{\infty} = H_{\infty}\text{-norm}$$

Analogy with matrix norm $||A||_{2,2} = \sup_{||x||_2 \le 1} ||Ax||_2 = \overline{\sigma}(A)$

minimize $||T_{w \to z}(P, K)||_{\infty}$ subject to $K = \left[\frac{A_K |B_K}{C_K |D_K}\right]$ stabilizing

J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis. State-space solutions to standard H_2 and H_{∞} control problems. IEEE Trans. Autom. Control vol. 34, no. 8, 1989, pp. 831 - 847

 \implies 2 algebraic Riccati equations (decoupled)

minimize $||T_{w \to z}(P, K(\theta))||_{\infty}$ subject to $K(\theta) = \left[\frac{A_K(\theta)|B_K(\theta)}{C_K(\theta)|D_K(\theta)}\right]$ stabilizing

P. Apkarian, D. Noll. Nonsmooth H_{∞} -synthesis. IEEE Transactions on Automatic Control, vol. 51, no. 1, 2006, 71 - 86

minimize $||T_{w \to z}(P, K(\theta))||_{\infty}$ subject to $K(\theta) = \left[\frac{A_K(\theta)|B_K(\theta)}{C_K(\theta)|D_K(\theta)}\right]$ stabilizing

P. Apkarian, D. Noll. Nonsmooth H_{∞} -synthesis. IEEE Transactions on Automatic Control, vol. 51, no. 1, 2006, 71 - 86

 \Rightarrow hinfstruct – P. Apkarian, D. Noll, P. Gahinet (MathWorks).

Products & Servic	es	Solutions Academia			
2010b Documentation \rightarrow Robust Control T	oolbox				
ew documentation for other releases	*- devi	1			
Contents	Index	1			
Getting Started					
User's Guide		hinfstruct			
Blocks		H tuning of fixed-structure controllers			
Functions		Suntay			
Uncertain Elements Uncertain Matrices and Systems		C = hinfstruct(Pdes,C0) [C,gamma,info] = hinfstruct(Pdes,C0) [] = hinfstruct(Pdes,C0,options)			
Manipulation of Lincertain Models					
Interconnection of Uncertain Models					
Model Order Reduction		Description			
 Robustness and Worst-Case Analysis 		Description			
Robustness Analysis for Parameter-Depende	ent Systems (P-Systems)	C = hinfstruct(Pdes,CO) tunes the parametric controller blocks model that includes the fixed elements of the control architecture. To parametric form.CO can be a single parametric model or a cell array of [C.gamma.info] = hinfstruct(Pdes,CO) provides gamma (the n [] = hinfstruct(Pdes,CO,options) allows you to specify ad Time			
 Controller Synthesis 					
augw					
h2hinfsyn					
h2syn					
hinfstruct					
hintsyn					
ltrsyn		 ninistruct optimizes the Form The following diagra 	 hinfstruct optimizes the free parameters of the tunable element Form. The following diagram illustrates Standard Form. 		
mixsyn					
mkfilter					
ncfsyn		W			
 µ-Synthesis 			D		
 Sampled-Data Systems 			1 des		

・ロト ・日・・日・・日・ ・日・

Some facts on hinfstruct

- Problems are non-convex. Local minima are computed.
- Problems are non-smooth. Non-convex bundle method used.
- Best suited to design small controllers for large systems.
- Problem dimension depends on free parameters in $\mathcal{K}(\theta)$.
- Function evaluation is iterative and depends on size(P)+size(K).
- Avoids use of Lyapunov variables in optimization.
- Replaces AREs or LMIs.
- Problems can be set-up directly from simulink.

	$n_x/n_K/vbl$	сри		$n_x/n_K/vbl$	сри
AC10	55/10/144	288	JE1	30/8/143	110
AC13	28/7/110	28	JE2	21/8/121	87
AC14	40/10/182	8	JE3	24/8/154	24
HE6	20/8/168	79	IH	21/0/110	57
HE7	20/8/168	85	IH	21/2/156	71
CM2	60/11/156	78	IH	21/8/342	157
CM3	120/14/240	306	CSE1	20/8/180	6
CM4	240/17/342	2272	CSE2	60/10/480	48
TL	256/2/16	3601	NN11	16/6/99	34
CRY1	250/2/16	691	CRY2	250/2/9	411

Synthesis of reduced-order controllers using hinfstruct

vbl= $n_K^2 + n_K$ (inputs + outputs) + inputs · outputs n_x = order of plant, n_K = order of K Power oscillation damping controller for Brazilian North and South power subsystem interconnection (Apkarian, Simões, Noll 2008)

```
90 states (already reduced)

3 performance interconnections.

dim(y) = 1, dim(u) = 1

Controller order 8.

dim(K) = 81

If solved as a BMI (bilinear matrix inequality) :

Have to add 3 \cdot \frac{90 \cdot 91}{2} = 12285 for Lyapunov function.
```

12366 variables :

P. Apkarian, D. Noll, O. Prot. *A trust region spectral bundle method for nonconvex eigenvalue optimization*. SIAM Journal on Optimization, 19, no. 1, 2008, pp. 281 – 306.

▶ ★圖▶ ★필▶ ★필▶

 LQG-control : 2 algebraic Riccati equations (decoupled). (1 of them analogue of Hamilton-Jacobi equation for state-feedback for infinite horizon)

(Kalman 1960)

- H₂-optimal control : 2 algebraic Riccati equations (decoupled).
- H_∞-control : 2 algebraic Riccati equations (decoupled) (Doyle, Glover, Khargonekar, Francis 1989)

 LQG-control : 2 algebraic Riccati equations (decoupled). (1 of them analogue of Hamilton-Jacobi equation for state-feedback for infinite horizon)

(Kalman 1960)

- H₂-optimal control : 2 algebraic Riccati equations (decoupled).
- *H*_∞-control : 2 algebraic Riccati equations (decoupled) (Doyle, Glover, Khargonekar, Francis 1989)

• Disclaimer : Even for reduced-order K =

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & A_K & B_K \\ \hline 0 & C_K & D_K \end{bmatrix}$$

 \implies 4 coupled algebraic Riccati equations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Some observations :

- Practical problems lead to structure. Theory prefers unstructured.
- The vicious circle : Practical controllers have to be "small". AREs and LMIs only give "large". Leads to overly reduced systems in practice.
- Approaches based on AREs of little use. LQG as stand-alone obsolete.
- In practical problems always one or several criteria to optimize.
- Non-linear system not available as a rule; only (A, B, C, D).

Robustness

A robust baby.

With a house full of boys you have to have robust furniture.

The robust flavor of fresh brewed coffee.

How can a refined girl like her be drawn to such a robust man?

Control of roll-axis of geostationary flexible satellite (solar pannels) 1 rigid mode, 3 flexible modes. (Gauvrit, Alazard 1999)

$$\begin{split} I\ddot{\phi} + \sum_{i=1}^{3} (\lambda_i^2 - 1)\,\ddot{\eta}_i &= u\\ \ddot{\eta}_i + 2\lambda_i\zeta_c\dot{\eta}_i + \omega_i^2\eta_i, \quad i = 1, 2, 3 \end{split}$$

 $\phi =$ intertial angular position of satellite, $\eta = (\eta_1, \eta_2, \eta_3) =$ free mode state vector, u = control torque, I = inertia, $\omega_i =$ free pulsations, $\lambda_i \zeta_c =$ free damping coefficients, $\lambda_i = \omega_i / \omega_{c_i}$ free cantilever pulsation ratios, $\zeta_c =$ cantilever damping, $\omega_{c_i} =$ cantilever pulsations.

Output = ϕ , control = u, 8 states + 2 states from filter.

6 uncertain parameters due to cantilever arm; 3 severe

$$\delta I = \frac{I - I^{\text{nom}}}{I^{\text{nom}}} \qquad \delta \omega_{c_1} = \frac{\omega_{c_1} - \omega_{c_1}^{\text{nom}}}{\omega_{c_1}^{\text{nom}}} \qquad \delta \lambda_1^2 = \frac{\lambda_1^2 - \lambda_1^{2,\text{nom}}}{\lambda_1^{2,\text{nom}}}$$

 $Q_0 = \{\delta = (\delta I, \delta \omega_{c_1}, \delta \lambda_1^2) : -1 \le \delta_i \le 1\}, \qquad Q = qQ_0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Poles of A(K) = closed-loop matrix

8 open-loop poles, 6 poles from K, 2 filter = 16 poles. Only 6 visible.

Movie : Poles of $A(K, \delta)$ as $\delta \in qQ_0$. Watch in time q.

A(K) = closed-loop system matrix when $K = K(\theta)$

 $A(K, \delta) = \text{closed-loop system matrix when } K = K(\theta) \text{ and}$ uncertain parameter is $\delta = (\delta_1, \delta_2, \delta_3) \in Q$.

How robust? Structured stability radius :

 $r_{\text{struct}}\left(\mathcal{A}(\mathcal{K})\right) = \inf\{\|\delta\|_{\infty} : \delta = (\delta_1, \delta_2, \delta_3) \text{ and } \mathcal{A}(\mathcal{K}, \delta) \text{ unstable } \}$

Compare to well-known stability radius :

$$r(A(K)) = \inf\{||E|| : A(K) + E \text{ unstable}\}$$

=
$$\inf\{\sigma_{\max}(E) : A(K) + E \text{ unstable}\}$$

$$A(K,\delta) = A(K) + \overbrace{B(K)\Delta(I - D(K)\Delta)^{-1}C(K)}^{E = E(K,\delta)}$$

 $r_{\text{struct}}(A(K)) = \inf\{\sigma_{\max}(\Delta) : A(K, \delta) \text{ unstable }\}$ Checking robust stability of A(K) over $Q = qQ_0$ means checking

 $r_{\mathrm{struct}}(A(K)) \stackrel{?}{>} q$

$$A(K,\delta) = A(K) + \overbrace{B(K)\Delta(I - D(K)\Delta)^{-1}C(K)}^{E = E(K,\delta)}$$

 $r_{\text{struct}}(A(K)) = \inf\{\sigma_{\max}(\Delta) : A(K, \delta) \text{ unstable }\}$ Checking robust stability of A(K) over $Q = qQ_0$ means checking

$$r_{
m struct}\left({\it A}({\it K})
ight) \stackrel{?}{>} q$$

Disclaimer. Computing r_{struct} NP-complete (Poljak, Rohn '93, Demmel '92). Solving robustness problem therefore NP^{NP}-complete.

True robust spectrum :

 $\Lambda_{\text{struct}} = \{\lambda : \lambda \text{ eigenvalue of } A(K, \delta) \text{ for some } \delta \in qQ_0\}$

Pseudo-spectrum :

 $\Lambda_{\text{unstruct}} = \{\lambda : \lambda \text{ eigenvalue of } A(K) + E \text{ for some } \|E\| \le \rho\}$

Semi-structured spectrum $\Lambda_{\text{semi-struct}} = \{\lambda : \lambda \text{ eigenvalue of } A(K) + B(K)F(I - D(K)F)^{-1}C(K) \text{ for } ||F|| \le q\}$

Want *K* such that $\Lambda_{\text{struct}} \subset \mathbb{C}^-$.

 $\begin{array}{l} \text{Why not force ?} \\ \Lambda_{\mathrm{struct}} \subset \Lambda_{\mathrm{unstruct}} \stackrel{!}{\subset} \mathbb{C}^{-} \\ \Lambda_{\mathrm{struct}} \subset \Lambda_{\mathrm{semi-struct}} \stackrel{!}{\subset} \mathbb{C}^{-} \end{array}$

イロト イポト イヨト イヨト

Pseudo-spectra (Trefethen 1999)

Optimize matrix stability (Burke, Lewis, Overton 2002)

Semi-structured stability radius (Hinrichsen, Pritchard 1989) Semi-structured distance to instability (Fan, Tits, Doyle 1991) **(**) Solve nominal structured H_{∞} problem

minimize
$$\operatorname{Perf}(K) = ||T_{w \to z}(K)||_{\infty}$$

subject to $K = K(\theta)$

Optimal value $p_{nom} = Perf(K(\theta^*)) = nominal performance.$ 2 If $K(\theta^*)$ is not robustly stable, then solve

$$\begin{array}{ll} \text{maximize} & r_{\text{semi-struct}}\left(\mathcal{A}(\mathcal{K}),\mathcal{B}(\mathcal{K}),\mathcal{C}(\mathcal{K}),\mathcal{D}(\mathcal{K})\right) \\ \text{subject to} & \operatorname{Perf}(\mathcal{K}) \leq (1+\alpha)p_{\text{nom}} \\ & \mathcal{K} = \mathcal{K}(\theta) \end{array}$$

Accept α % loss of performance to buy some robustness

Semi-structured stability radius is a H_{∞} -norm

$$r_{
m semi-struct}(A, B, C, D)^{-1} = \|C(sI - A)^{-1}B + D\|_{\infty}$$

Hinrichsen, Pritchard 1989 Qiu, Bernhardsson, Rantzer, Davidson, Young, Doyle 1995

$$\begin{array}{ll} \text{minimize} & \operatorname{Rob}(K) = r_{\text{semi-struct}} \left(A(K), B(K), C(K), D(K) \right)^{-1} \\ \text{subject to} & \operatorname{Perf}(K) \leq (1 + \alpha) p_{\text{nom}} \\ & K = K(\theta) \end{array}$$

therefore : constrained H_{∞}/H_{∞} -program (\implies hinfstruct) Apkarian, Hosseini-Ravanbod, Noll 2010

・ロト ・日・・日・・日・ ・日・