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MATRIX GAMES

Solve the matrix game equilibrium problem (MG):

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy

where A is a given m× n matrix and where the m-simplex

∆m :=
{
x ∈ IRm

∣∣∣∣ m∑
i=1

xi = 1, x ≥ 0
}

describes the set of mixed strategies for the x-player (Player 1);

similarly for Player 2.

This problem is known as: to find a Nash equilibrium of a two-

person zero-sum matric game.
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NONSMOOTH CONVEX OPTIMIZATION

Consider the cost function

F (x, y) := max
{
xTAv − uTAy

∣∣∣ (u, v) ∈ ∆m ×∆n

}
and the constrained optimization problem

minimize F (x, y) subject to (x, y) ∈ ∆m ×∆n

equivalent to the initial matrix game (MG).

Then Nash equilibrium (x̄, ȳ) for (MG) corresponds to F (x̄, ȳ) = 0

and an ε-equilibrium to (MG) corresponds to

F (x̄, ȳ) < ε, ε > 0
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CONDITION MEASURE OF A SMOOTHING ALGORITHM

It was shown by Peña et al. (2010) that an iterative ver-

sion of Nesterov’s first-order smoothing algorithm computes an

ε-equilibrium point for (MG) in O(‖A‖κ(A) ln(1/ε)) iterations,

where κ(A) is a condition measure of (MG) defined by

κ(A) := inf
{
κ ≥ 0

∣∣∣ dist
(
(x, y);S

)
≤ κF (x, y) as (x, y) ∈ ∆m ×∆n

}
with the solution set S to (MG) given by

S :=
{
(x̄, ȳ) ∈ ∆m ×∆n

∣∣∣ F (x̄, ȳ) = 0
}

= F−1(0) ∩ (∆m ×∆n)

Note that Peña’s complexity bound is exponentially better than

that of Nesterov O(1/ε) while no explicit formula or upper bound

of the condition measure κ(A) was given.
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OUR MAIN GOALS AND RESULTS

• precisely relate the condition measure κ(A) to the exact bound

of metric regularity for an associated set-valued mapping

• express this exact regularity bound via the subdifferential of F

and the normal cone to ∆m ×∆n and then compute the latter

constructions in terms of the initial data of (MG)

• derive an exact formula for evaluating κ(A), which is a key step

towards performing further complexity analysis of the algorithm
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METRIC REGULARITY

DEFINITION. A set-valued mapping G : IRn ⇒ IRm is metrically

regular around (x̄, z̄) ∈ gphG with modulus µ ≥ 0 if there exist

neighborhoods U of x̄ and V of z̄ such that

dist
(
x;G−1(z)

)
≤ µdist

(
z;G(x)

)
for all x ∈ U and z ∈ V.

The infimum of µ ≥ 0 over all (µ, U, V ) for which the latter holds

is called the exact regularity bound of G around (x̄, z̄) and is

denoted by regG(x̄, z̄).
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NORMALS AND CODERIVATIVES

Given Ω ⊂ IRn, the Euclidean projector to Ω is

Π(x;Ω) :=
{
y ∈ Ω

∣∣∣ ‖y − x‖ = dist (x;Ω)
}

The normal cone to Ω at x̄ ∈ Ω is

N(x̄;Ω) :=
{
v ∈ IRn

∣∣∣∣ ∃xk → x̄, yk ∈ Π(xk;Ω), λk ≥ 0

such that λk(xk − yk) → v

}
Given G : IRn ⇒ IRm, the coderivative of G at (x̄, ȳ) ∈ gphG is

D∗G(x̄, ȳ)(u) :=
{
v ∈ IRn

∣∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphG

)}
For smooth G : IRn → IRm we have

D∗G(x̄)(u) =
{
∇G(x̄)Tu

}
, u ∈ IRm
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CODERIVATIVE CHARACTERIZATION OF METRIC REGULARITY

THEOREM [Mor84]. Let a set-valued mapping G : IRn ⇒ IRm

be closed-graph around (x̄, ȳ) ∈ gphG. Then G is metrically

regular around (x̄, ȳ) if and only if

kerD∗G(x̄, ȳ) = {0}

Furthermore, we compute the exact regularity bound

regG(x̄, ȳ) = ‖D∗G−1(ȳ, x̄)‖ = ‖D∗G(x̄, ȳ)−1‖

where the norm of a positively homogeneous set-valued mapping

P : IRn ⇒ IRm is defined by

‖P‖ := sup
{
‖y‖

∣∣∣ y ∈ P (x), ‖x‖ ≤ 1
}

7



CONDITION MEASURE VIA EXACT REGULARITY BOUND

Define Φ: IRm+n ⇒ IR by

Φ(x, y) :=


[
F (x, y),∞) if (x, y) ∈ ∆m ×∆n,

∅ otherwise

THEOREM. Assume that (∆m ×∆n) \ S 6= ∅ for the solution

set S. Then we have the precise relationship

κ(A) = sup
(x,y)∈(∆m×∆n)\S

regΦ
(
(x, y), F (x, y)

)
between the condition measure κ(A) of the algorithm and the

exact regularity bound of the mapping Φ
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INDEX SETS

Let ai as i = 1, . . . , n and −bTk as k = 1, . . . , m stand for the

columns and the rows of the matrix A. By ej, j = 1, . . . , m + n,

denote the unit vectors in IRm+n, i.e.,

(ej)l = 0 for all l 6= j and (ej)j = 1 as j = 1, . . . , m + n

For a positive integer p, let 1p :=
[
1 . . . 1

]
∈ IRp. Finally a

feasible point (x, y) ∈ ∆m ×∆n, form the index sets by

I(x) :=
{̄
ı ∈ {1, . . . , n}

∣∣∣∣ aT
ı̄ x = max

i∈{1,...,n}
aT

i x

}
K(y) :=

{
k̄ ∈ {1, . . . , m}

∣∣∣∣ bT
k̄

y = max
k∈{1,...,m}

bTk y

}
J(x, y) :=

{
j ∈ {1, . . . , m}

∣∣∣ xj = 0
} ⋃ {

j = m + p
∣∣∣ yp = 0

}
9



COMPUTING THE EXACT BOUND OF METRIC REGULARITY

THEOREM. For any (x, y) ∈ (∆m ×∆n)\S the exact regularity

bound of Φ around ((x, y), F (x, y)) admits the representation

regΦ
(
(x, y), F (x, y)

)
=

1

dist
(
0; ∂F (x, y) + N∆m×∆n(x, y)

)
Furthermore, we have the precise computing formulas

∂F (x, y) = co
{
(ai, bk) ∈ IRm × IRn

∣∣∣ i ∈ I(x), k ∈ K(y)
}

N∆m×∆n(x, y) = span {1m} × span {1n} − cone
[
co

{
ej

∣∣∣ j ∈ J(x, y)
}]
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COMPUTING THE CONDITION MEASURE

THEOREM. Let (∆m ×∆n) \ S 6= ∅. Then the condition mea-

sure k(A) of the algorithm is computed by

κ(A) = sup
(x,y)∈(∆m×∆n)\S

[
dist

(
0; co

{
(ai, bk)

∣∣∣ i ∈ I(x), k ∈ K(y)
}

+span {1m} × span {1n}

−cone
[
co

{
ej

∣∣∣ j ∈ J(x, y)
}])]−1
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SOME FUTURE RESEARCH

• average case analysis of κ(A) algorithm

• singling out classes of well-conditioned problem

• preconditioning issues

• extensions to sequential games

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy

where Q1 and Q2 are treeplexes
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