METRIC REGULARITY AND CONDITIONING IN OPTIMIZATION

BORIS MORDUKHOVICH

Wayne State University (USA)

Talk given at the

International Workshop on Variational Analysis, Optimization and Applications tribute to Jean-Baptiste Hiriart-Urruty

Bayonne, France, October 2010

Based on joint work with Javier Peña (Carnegie Mellon) and Vera Roshchina (Évora)

MATRIX GAMES

Solve the matrix game equilibrium problem (MG):

$$\min_{x \in \Delta_m} \max_{y \in \Delta_n} x^{\mathsf{T}} A y = \max_{y \in \Delta_n} \min_{x \in \Delta_m} x^{\mathsf{T}} A y$$

where A is a given $m \times n$ matrix and where the m-simplex

$$\Delta_m := \left\{ x \in \mathbb{R}^m \middle| \sum_{i=1}^m x_i = 1, \ x \ge 0 \right\}$$

describes the set of mixed strategies for the x-player (Player 1); similarly for Player 2.

This problem is known as: to find a Nash equilibrium of a twoperson zero-sum matric game.

NONSMOOTH CONVEX OPTIMIZATION

Consider the cost function

$$F(x,y) := \max \left\{ x^{\mathsf{T}} A v - u^{\mathsf{T}} A y \middle| (u,v) \in \Delta_m \times \Delta_n \right\}$$

and the constrained optimization problem

minimize F(x,y) subject to $(x,y)\in \Delta_m imes \Delta_n$

equivalent to the initial matrix game (MG).

Then Nash equilibrium (\bar{x}, \bar{y}) for (MG) corresponds to $F(\bar{x}, \bar{y}) = 0$ and an ε -equilibrium to (MG) corresponds to

 $F(\bar{x},\bar{y})<arepsilon,\quadarepsilon>0$

CONDITION MEASURE OF A SMOOTHING ALGORITHM

It was shown by Peña et al. (2010) that an iterative version of Nesterov's first-order smoothing algorithm computes an ε -equilibrium point for (MG) in $\mathcal{O}(||A||\kappa(A)\ln(1/\varepsilon))$ iterations, where $\kappa(A)$ is a condition measure of (MG) defined by

 $\kappa(A) := \inf \left\{ \kappa \ge 0 \ \middle| \ \operatorname{dist} ((x, y); S) \le \kappa F(x, y) \ \text{ as } (x, y) \in \Delta_m \times \Delta_n \right\}$ with the solution set S to (MG) given by

$$S := \left\{ (\bar{x}, \bar{y}) \in \Delta_m \times \Delta_n \middle| F(\bar{x}, \bar{y}) = 0 \right\} = F^{-1}(0) \cap (\Delta_m \times \Delta_n)$$

Note that Peña's complexity bound is exponentially better than that of Nesterov $\mathcal{O}(1/\varepsilon)$ while no explicit formula or upper bound of the condition measure $\kappa(A)$ was given.

OUR MAIN GOALS AND RESULTS

• precisely relate the condition measure $\kappa(A)$ to the exact bound of metric regularity for an associated set-valued mapping

• express this exact regularity bound via the subdifferential of Fand the normal cone to $\Delta_m \times \Delta_n$ and then compute the latter constructions in terms of the initial data of (MG)

• derive an exact formula for evaluating $\kappa(A)$, which is a key step towards performing further complexity analysis of the algorithm

METRIC REGULARITY

DEFINITION. A set-valued mapping $G: \mathbb{R}^n \Rightarrow \mathbb{R}^m$ is metrically regular around $(\bar{x}, \bar{z}) \in \operatorname{gph} G$ with modulus $\mu \geq 0$ if there exist neighborhoods U of \bar{x} and V of \bar{z} such that

dist $(x; G^{-1}(z)) \le \mu$ dist (z; G(x)) for all $x \in U$ and $z \in V$.

The infimum of $\mu \ge 0$ over all (μ, U, V) for which the latter holds is called the exact regularity bound of G around (\bar{x}, \bar{z}) and is denoted by reg $G(\bar{x}, \bar{z})$.

NORMALS AND CODERIVATIVES

Given $\Omega \subset I\!\!R^n$, the Euclidean projector to Ω is

$$\Pi(x;\Omega) := \left\{ y \in \Omega \middle| \|y - x\| = \operatorname{dist}(x;\Omega) \right\}$$

The normal cone to Ω at $\bar{x} \in \Omega$ is

$$N(ar{x};\Omega) := \left\{ v \in I\!\!R^n \middle| \hspace{0.2cm} \exists \hspace{0.1cm} x_k o ar{x}, \hspace{0.1cm} y_k \in \Pi(x_k;\Omega), \hspace{0.1cm} \lambda_k \geq 0 \ \hspace{0.1cm} ext{such that} \hspace{0.1cm} \lambda_k(x_k-y_k) o v
ight\}$$

Given $G: \mathbb{R}^n \Rightarrow \mathbb{R}^m$, the coderivative of G at $(\bar{x}, \bar{y}) \in \operatorname{gph} G$ is

$$D^*G(\bar{x},\bar{y})(u) := \left\{ v \in I\!\!R^n \middle| (v,-u) \in N((\bar{x},\bar{y}); \operatorname{gph} G) \right\}$$

For smooth $G \colon I\!\!R^n \to I\!\!R^m$ we have

$$D^*G(\bar{x})(u) = \left\{ \nabla G(\bar{x})^T u \right\}, \quad u \in \mathbb{R}^m$$

6

CODERIVATIVE CHARACTERIZATION OF METRIC REGULARITY

THEOREM [Mor84]. Let a set-valued mapping $G: \mathbb{R}^n \Rightarrow \mathbb{R}^m$ be closed-graph around $(\bar{x}, \bar{y}) \in \text{gph}G$. Then G is metrically regular around (\bar{x}, \bar{y}) if and only if

 $\ker D^*G(\bar{x},\bar{y}) = \{0\}$

Furthermore, we compute the exact regularity bound

 $\operatorname{reg} G(\bar{x}, \bar{y}) = \|D^* G^{-1}(\bar{y}, \bar{x})\| = \|D^* G(\bar{x}, \bar{y})^{-1}\|$

where the norm of a positively homogeneous set-valued mapping $P: \mathbb{R}^n \Rightarrow \mathbb{R}^m$ is defined by

 $||P|| := \sup \{ ||y|| \mid y \in P(x), ||x|| \le 1 \}$

7

CONDITION MEASURE VIA EXACT REGULARITY BOUND

Define $\Phi: I\!\!R^{m+n} \Rightarrow I\!\!R$ by $\Phi(x,y) := \begin{cases} \begin{bmatrix} F(x,y), \infty \end{pmatrix} & \text{if } (x,y) \in \Delta_m \times \Delta_n, \\ \emptyset & \text{otherwise} \end{cases}$

THEOREM. Assume that $(\Delta_m \times \Delta_n) \setminus S \neq \emptyset$ for the solution set *S*. Then we have the precise relationship

$$\kappa(A) = \sup_{(x,y)\in(\Delta_m\times\Delta_n)\setminus S} \operatorname{reg} \Phi((x,y), F(x,y))$$

between the condition measure $\kappa(A)$ of the algorithm and the exact regularity bound of the mapping Φ

INDEX SETS

Let a_i as i = 1, ..., n and $-b_k^T$ as k = 1, ..., m stand for the columns and the rows of the matrix A. By e_j , j = 1, ..., m + n, denote the unit vectors in \mathbb{R}^{m+n} , i.e.,

$$(e_j)_l = 0$$
 for all $l \neq j$ and $(e_j)_j = 1$ as $j = 1, \dots, m+n$

For a positive integer p, let $\mathbf{1}_p := \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \in \mathbb{R}^p$. Finally a feasible point $(x, y) \in \Delta_m \times \Delta_n$, form the index sets by

$$\begin{cases} I(x) := \left\{ \bar{i} \in \{1, \dots, n\} \middle| a_{\bar{i}}^{\mathsf{T}} x = \max_{i \in \{1, \dots, n\}} a_{\bar{i}}^{\mathsf{T}} x \right\} \\ K(y) := \left\{ \bar{k} \in \{1, \dots, m\} \middle| b_{\bar{k}}^{\mathsf{T}} y = \max_{k \in \{1, \dots, m\}} b_{\bar{k}}^{\mathsf{T}} y \right\} \\ J(x, y) := \left\{ j \in \{1, \dots, m\} \middle| x_{j} = 0 \right\} \cup \left\{ j = m + p \middle| y_{p} = 0 \right\} \end{cases}$$

COMPUTING THE EXACT BOUND OF METRIC REGULARITY

THEOREM. For any $(x, y) \in (\Delta_m \times \Delta_n) \setminus S$ the exact regularity bound of Φ around ((x, y), F(x, y)) admits the representation

$$\operatorname{reg} \Phi((x,y), F(x,y)) = \frac{1}{\operatorname{dist} \left(0; \partial F(x,y) + N_{\Delta_m \times \Delta_n}(x,y)\right)}$$

Furthermore, we have the precise computing formulas

$$\partial F(x,y) = \operatorname{co}\left\{ (a_i, b_k) \in \mathbb{R}^m \times \mathbb{R}^n \middle| i \in I(x), k \in K(y) \right\}$$

 $N_{\Delta_m \times \Delta_n}(x,y) = \operatorname{span} \{\mathbf{1}_m\} \times \operatorname{span} \{\mathbf{1}_n\} - \operatorname{cone} \left[\operatorname{co} \left\{ e_j \middle| j \in J(x,y) \right\} \right]$

COMPUTING THE CONDITION MEASURE

THEOREM. Let $(\Delta_m \times \Delta_n) \setminus S \neq \emptyset$. Then the condition measure k(A) of the algorithm is computed by

$$\kappa(A) = \sup_{(x,y)\in(\Delta_m\times\Delta_n)\setminus S} \left[\operatorname{dist}\left(0; \operatorname{co}\left\{(a_i, b_k)\right| i \in I(x), k \in K(y)\right\} + \operatorname{span}\left\{\mathbf{1}_m\right\} \times \operatorname{span}\left\{\mathbf{1}_n\right\} - \operatorname{cone}\left[\operatorname{co}\left\{e_j\right| j \in J(x, y)\right\}\right]\right)^{-1}$$

SOME FUTURE RESEARCH

- average case analysis of $\kappa(A)$ algorithm
- singling out classes of well-conditioned problem
- preconditioning issues
- extensions to sequential games

 $\min_{x \in Q_1} \max_{y \in Q_2} x^{\mathsf{T}} A y = \max_{y \in Q_2} \min_{x \in Q_1} x^{\mathsf{T}} A y$

where Q_1 and Q_2 are treeplexes

REFERENCES

—A. GILPIN, J. PEÑA, T. SANDHOLM, First-order algorithm with $O(\lambda(1/\varepsilon))$ convergence for ε -equilibrium of two-person zero-sum games, to appear in Math. Program.

—B. S. MORDUKHOVICH, VARIATIONAL ANALYSIS AND GENERALIZED DIFFERENTIATION, I: BASIC THEORY, II: APPLICATIONS, Series on Fundamental Principles of Mathematical Sciences, Vol. 330, 331, Springer, 2006.

—B. S. MORDUKHOVICH, J. PEÑA, V. ROSHCHINA, Applying metric regularity to compute a condition measure of smoothing algorithms for matrix games, to appear in SIAM J. Optim.