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MATRIX GAMES

Solve the matrix game equilibrium problem (MG):
min max ZCTAy: max min a:TAy
reEAm yYeAy yelAp xelAy,
where A is a given m X n matrix and where the m-simplex

m
Zazizl,xZO}

i=1
describes the set of mixed strategies for the x-player (Player 1);
similarly for Player 2.

This problem is known as: to find a Nash equilibrium of a two-
person zero-sum matric game.



NONSMOOTH CONVEX OPTIMIZATION

Consider the cost function
F(xz,y) ;= max {a:'TAfU — uTAy’ (u,v) € Am X An}
and the constrained optimization problem
minimize F(x,y) subject to (z,y) € Ay X Ap
equivalent to the initial matrix game (MQG).

Then Nash equilibrium (z,y) for (MG) corresponds to F'(z,y) = 0
and an e-equilibrium to (MG) corresponds to

F(z,y)<e, >0



CONDITION MEASURE OF A SMOOTHING ALGORITHM

It was shown by Pena et al. (2010) that an iterative ver-
sion of Nesterov's first-order smoothing algorithm computes an
e-equilibrium point for (MG) in O(||A||k(A)In(1/e)) iterations,
where xk(A) is a condition measure of (MG) defined by

k(A) = iﬂf{lﬁ} > O| dist ((:U,y); S) < kF(z,y) as (x,y) € Ay X An}
with the solution set S to (MG) given by

S:={(z,7) € Am x An| F(Z,7) =0} = F~1(0) N (Am x Ap)

Note that Pena’s complexity bound is exponentially better than
that of Nesterov O(1/¢) while no explicit formula or upper bound
of the condition measure x(A) was given.



OUR MAIN GOALS AND RESULTS

e precisely relate the condition measure k(A) to the exact bound
of metric regularity for an associated set-valued mapping

e e&xpress this exact regularity bound via the subdifferential of F
and the normal cone to A,, X A, and then compute the latter
constructions in terms of the initial data of (MQG)

e derive an exact formula for evaluating «(A), which is a key step
towards performing further complexity analysis of the algorithm



METRIC REGULARITY

DEFINITION. A set-valued mapping GG: IR™ = IR™ is metrically
regular around (Z,z) € gph G with modulus p > 0 if there exist
neighborhoods U of x and V of z such that

dist (q;; G_l(z)) < pdist (z; G’(a:')) forall z €U and ze V.

The infimum of u > 0 over all (u, U, V') for which the latter holds
is called the exact regularity bound of G around (z,z) and is
denoted by reg G(z, z).



NORMALS AND CODERIVATIVES

Given 2 C IR", the Euclidean projector to €2 is
N(z; Q) :={y € Q| lly — | = dist (z; )}
The normal cone to Q2 at x € Q2 is

N(z;Q2) := {v e IR"

dxp, — x, yr € M(xg; 2), A\, >0

such that A\ (zp —yr) — v}

Given G: IR" = IR™, the coderivative of G at (z,y) € gph G is
D*G(Z,7)(u) := {v € R"| (v,—u) € N((z,7); 9ph G))

For smooth G: IR" — IR we have

D*G(%)(u) = {va(f)T u} u € R™



CODERIVATIVE CHARACTERIZATION OF METRIC REGULARITY

THEOREM [Mor84]. Let a set-valued mapping G: IR" = IR™
be closed-graph around (x,y) € gphG. Then G is metrically
regular around (z,y) if and only if

ker D*G(z,y) = {0}
Furthermore, we compute the exact regularity bound
reg G(z, %) = ||D*G~1(5,2)|| = | D*G(&,9) 1|

where the norm of a positively homogeneous set-valued mapping
P: IR" = IR™ is defined by

|PIl = sup {llyll | y € P(x), |l=]| <1}



CONDITION MEASURE VIA EXACT REGULARITY BOUND

Define ®: IR™T" = IR by

[ [F(2,9),00)  if (2,y) € Am x A,
P(x,y) ;=

0 otherwise

\

THEOREM. Assume that (A, x Ap) \ S # 0 for the solution
set S. Then we have the precise relationship

k(A) = sup reg ®((z,y), F(z,y))
(z,y)E(AmxAn)\S

between the condition measure k(A) of the algorithm and the
exact regularity bound of the mapping &



INDEX SETS

Let a; as + = 1,...,n and —b;_ as k = 1,...,m stand for the
columns and the rows of the matrix A. By ej, ] = 1,....m +n,
denote the unit vectors in R™T™", j.e.

(ej);=0 forall I#j and (e;);=1 as j=1,....m+n

For a positive integer p, let 1, = [1 1] € IRP. Finally a
feasible point (z,y) € Am X Ay, form the index sets by
I(x) := {EE {1,...,n} a%rwz max a;ra:}
ie{1,...,n}
\ K ::{Ee 1,...,m‘bj_ = max bT}
(v) { S by ke{l,...,m} kY
Jay) o= {i € (Lo} a; = 0}U i = m + | yp = 0




COMPUTING THE EXACT BOUND OF METRIC REGULARITY

THEOREM. For any (x,y) € (Am x Ap)\S the exact regularity
bound of ® around ((z,y), F'(x,y)) admits the representation

1
dist (0; OF (z,) + Na,xa,(@,1))
Furthermore, we have the precise computing formulas

reg ®((z,y), F(z,y)) =

OF (z,y) = co{(as, by) € R™ x R"|i € I(z), k € K(y)}

Na, <A, (x,y) =span {1y} x span {1,} — cone [co {ej| j e J(a:,y)H
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COMPUTING THE CONDITION MEASURE

THEOREM. Let (Ap, X Ap)\ S # 0. Then the condition mea-
sure k(A) of the algorithm is computed by

k(A) = sup [ dist (O;co{(ai,bk)(iel(x), kEK(y)}
(z,y)E(AmXAn)\S

+span{1lm,} x span{1,}

—1

—cone [CO {€j| J € J(%y)}D]
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SOME FUTURE RESEARCH

e average case analysis of k(A) algorithm
e sSingling out classes of well-conditioned problem
e preconditioning issues

e extensions to sequential games

min max :UTAy = max min :z:TAy
rel1yel)2 yeQR2 relR

where Q1 and Q> are treeplexes
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