Computer-Aided Convex Analysis CA2

Recent development in computational convex analysis

Yves Lucet

October 25, 2010

Outline

Computer-Aided Convex Analysis CA2

- 1 Computer-Aided Convex Analysis CA²
- **GPH Algorithms**

Convex Transforms

Computer-Aided Convex Analysis CA2

$$f^{*}(s) = \sup_{x} \langle s, x \rangle - f(x)$$

$$M_{\lambda}f(x) = \inf_{y} [f(y) + \frac{\|x - y\|^{2}}{2\lambda}]$$

$$h_{\mu,\lambda}f(x) = -M_{\mu}(-M_{\lambda}f(x))$$

$$\mathcal{P}_{\lambda}(f_{0}, f_{1}) = [(1 - \lambda)M_{1}(f_{0}^{*}) + \lambda M_{1}(f_{1}^{*})]^{*} - \frac{1}{2}\|\cdot\|^{2}$$

$$p_{\mu}(f_{0}, f_{1}; \lambda) = -M_{\mu+\lambda(1-\lambda)}(-[(1 - \lambda)M_{\mu}f_{0} + \lambda M_{\mu}f_{1}])$$

$$P_{\lambda}(f_{1}, f_{2})(x) = \inf_{(1-\lambda_{0})y_{0}+\lambda y_{1}=x} [(1 - \lambda)f_{0} + \lambda f_{1} + \lambda(1 - \lambda)g(y_{0} - y_{1})]$$

$$(f \oplus g)(x) = \inf_{y} [f(y) + g(x - y)]$$

Nonconvex calculus

Convex Operators

Core

- Addition, scalar multiplication
- Fenchel Conjugate or Moreau envelope

Composite

- Lasry-Lions double envelope
- Proximal Average

Specialized

- Fitzpatrick Functions
- Convex Envelope

0000000000

Computer-Aided Convex Analysis CA2

Computational Convex Analysis

Convex Calculus

- addition, scalar multiplication
- Convex envelope cof
- Conjugate f*
- Moreau envelope $M_{\lambda}(f)$
- Proximal average, nonconvex proximal average, Lasry-Lions double envelope, (convex) inf-convolution, etc.

Specialized transforms

- Fitzpatrick functions
- Nonconvex inf-convolution
- Kernel average

Computational Convex Analysis

Nonconvex Extensions

Computer-Aided Convex Analysis CA2

Symbolic Computation

Solve $\nabla f(x) = s$ for x symbolically.

Symbolic Packages

- Symbolic Computation of Multidimensional Fenchel Conjugates, Borwein & Hamilton, 2006. SCAT (Symbolic Convex Analysis Toolkit) package in Maple.
- Symbolic Computation of Fenchel Conjugates, Bauschke & Mohrenschildt, 2006

Properties

- $\sqrt{}$ Great to study examples and avoid computation errors.
- X No close form exists for some functions e.g. polynomial of degree greater or equal to 6.

Fast Algorithms

Computer-Aided Convex Analysis CA2

Discretize:
$$f^*(s_j) = \max_{x_i} [s_j x_i - f(x_i)]$$

Fast Algorithms

- Linear-time Legendre Transf. LLT (Lucet 96)
- Parabolic Envelope PE (Felzenszwalb & Huttenlocher 04)
- NonExpansive Prox NEP (Lucet 06)
- Parametric Legendre Transf. PLT (Hiriart-Urruty & Lucet 06)

Properties

- √ Linear-time
- √ Scale linearly
- X Domain modeling and approximating quadratic functions

PLQ vs. Fast Algorithms: Prox. Avg of x and -x

Proximal average

Computer-Aided Convex Analysis CA2

$$\mathcal{P}_{\lambda}(f_0, f_1)(x) = (1 - \lambda)(-x) + \lambda x - 2\lambda(1 - \lambda)$$

Nonconvex calculus

PLQ vs. Fast Algorithms: Prox. Avg of x and -x

Fast Algorithms

Computer-Aided Convex Analysis CA2

$$\begin{cases} \infty & \text{if } |x| > b, \\ (1-\lambda)(-x) + \lambda x - 2\lambda(1-\lambda) & \text{if } 2(1-\lambda) - b \le x \le b - 2\lambda, \\ \frac{\lambda}{2(1-\lambda)}x^2 + \frac{\lambda + \lambda b - 1}{1-\lambda}x - \frac{\lambda b(4\lambda + b - 4)}{2(1-\lambda)} & \text{if } -b \le x \le 2(1-\lambda) - b, \\ \frac{1-\lambda}{2\lambda}x^2 + \frac{\lambda - b + \lambda b}{\lambda}x + \frac{b(4\lambda^2 + b - \lambda b - 4\lambda)}{2\lambda} & \text{if } b - 2\lambda \le x \le b \end{cases}$$

PLQ

$$\mathcal{P}(f_0, \lambda, f_1) = (1 - \lambda)(-x) + \lambda x - 2\lambda(1 - \lambda)$$

Piecewise Linear-Quadratic Functions

Approximate function with quadratic spline

Definition

Computer-Aided Convex Analysis CA2

- Domain is the intersection of linear functions.
- On each piece, the function is quadratic
- Restrict to continuous functions on ri domf.

Properties

- √ Closed class under convex operator
- Infinite domains can be modeled.
- Hybrid symbolic numerical algorithms running in Linear-time.
- X Restricted to univariate functions (for now).

Fast vs. PLQ

Computer-Aided Convex Analysis CA2

Fast

- Linear spline approximates PLQ functions
- Linear time algorithms, very fast
- Can model nonconvex PLQ functions
- scale to dimension

PLQ

- Quadratic spline models PLQ functions
- Linear time algorithms
- Can model nonconvex PLQ functions

Computer-Aided Convex Analysis CA2

- Computer-Aided Convex Analysis CA²
- 2 GPH Algorithms

Nonconvex calculus

Goebel's Graph-Matrix Calculus

Conjugate

Computer-Aided Convex Analysis CA²

$$s \in \partial f(x) \iff x \in \partial f^*(s)$$

 $(x, s) \in \operatorname{gph} \partial f \iff (s, x) \in \operatorname{gph} \partial f^*$
 $\operatorname{gph} \partial (f^*) = \begin{bmatrix} 0 & \operatorname{Id} \\ \operatorname{Id} & 0 \end{bmatrix} \operatorname{gph} \partial f$

Moreau envelope

$$gph \, \partial M_{\lambda}(f) = \begin{bmatrix} \operatorname{Id} & \lambda \operatorname{Id} \\ 0 & \operatorname{Id} \end{bmatrix} gph \, \partial f$$

Binary operators

Computer-Aided Convex Analysis CA²

$$(x,s) \in \operatorname{gph} \partial(f_1 + f_2) \Leftrightarrow \exists (x_i,s_i) \in \operatorname{gph} \partial f_i \text{ such that } \begin{cases} x = x_1 = x_2, \\ s = s_1 + s_2. \end{cases}$$

$$(x_1 + x_2,s) \in \operatorname{gph} \partial(f_1 \square f_2) \Leftrightarrow (x_i,s) \in \operatorname{gph} \partial f_i.$$

$$(x,s) \in \operatorname{gph} \partial \mathcal{P}_{\lambda}(f_1,f_2) \Leftrightarrow \begin{cases} x = (1-\lambda)x_1 + \lambda x_2, \\ s = x_1 + s_1 - x = x_2 + s_2 - x. \end{cases}$$

GPH algorithms

Data structure

Computer-Aided Convex Analysis CA2

GPH matrix

$$\begin{bmatrix} \bar{x}_0 & x_1 & \cdots & x_n & \bar{x}_{n+1} \\ \bar{s}_0 & s_1 & \cdots & s_n & \bar{s}_{n+1} \\ \bar{y}_0 & y_1 & \cdots & y_n & \bar{y}_{n+1} \end{bmatrix}.$$

Example

Computer-Aided Convex Analysis CA2

Subdifferential of the function f(x) = -x for $x \le 0$, f(x) = 0when $0 \le x \le 1$, and f(x) = x - 1 if $x \ge 1$.

Graph Calculus

Computer-Aided Convex Analysis CA2

Conjugate

Given G = [x; s; y] GPH matrix representing f, f^* has GPH matrix

$$\begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} x \\ s \end{bmatrix} \\ s. * x - y \end{bmatrix} = \begin{bmatrix} s \\ x \\ s. * x - y \end{bmatrix}$$

Moreau envelope

 $M_{\lambda}(f)$ has GPH matrix

$$\begin{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ s \end{bmatrix} \\ y + \frac{\lambda}{2}s. * s \end{bmatrix} = \begin{bmatrix} x + \lambda s \\ s \\ y + \frac{\lambda}{2}s. * s \end{bmatrix}$$

Computer-Aided Convex Analysis CA²

GPH for Proximal Average

 f_1 , f_2 convex PLQ functions with GPH matrix $G_1 = [x_1; s_1; y_1]$ and $G_2 = [x_2; s_2; y_2]$. Set $\lambda_1 = 1 - \lambda$, $\lambda_2 = \lambda$ then $\mathcal{P}_{\lambda}(f_1, f_2)$ admits the GPH matrix G = [x; s; y] where $x = \lambda_1 x_1 + \lambda_2 P x_1$, $s = x_1 + s_1 - x$,

$$y = \lambda_1(y_1 + \frac{1}{2}x_1 \cdot * x_1) + \lambda_2(y_{Px_1} + \frac{1}{2}Px_1 \cdot * Px_1) - \frac{1}{2}x \cdot * x_1$$

with

$$P = (\mathrm{Id} + \partial f_2)^{-1} (\mathrm{Id} + \partial f_1),$$

and $y_{Px_1} = f_2(Px_1)$.

Nonconvex calculus

GPH vs. PLQ

Computer-Aided Convex Analysis CA2

Piecewise quadratic function vs. piecewise linear subdifferential

PLQ

- Model PLQ functions as piecewise quadratic polynomial
- Linear time algorithms
- Can model nonconvex PLQ functions

GPH

- Model convex PLQ functions
- Store the graph of the subdifferential as a finite set of points
- Linear time algorithms reducing to matrix multiplications
- Same advantages as PLQ algorithms with computation time of Fast algorithms.

GPH vs. PLQ

PLQ vs. GPH

Computer-Aided Convex Analysis CA2

Outline

Computer-Aided Convex Analysis CA2

- Computer-Aided Convex Analysis CA²
- **GPH Algorithms**
- Nonconvex calculus

Convex envelope

$$M_{\lambda}f(x) = \frac{\|x\|^2}{2\lambda} - \frac{1}{\lambda} \left(\frac{\|\cdot\|^2}{2} + \lambda f\right)^*(x),$$

$$f^*(s) = \frac{\|s\|^2}{2} - \lambda M_{\lambda} \left(\frac{1}{\lambda}f - \frac{\|\cdot\|^2}{2\lambda}\right)(s),$$

Key idea

- compute the convex envelope
- apply convex operators

For Fast algorithms (linear spline), use Beneath-Beyond algorithm. For GPH algorithms, convert to PLQ format.

Nonconvex calculus

•00000000000000

Computer-Aided Convex Analysis CA²

Convex envelope of the maximum

Decompose
$$f = \min f_i$$
 where $f_i(x) = f(x) + I_{[x_i, x_{i+1}]}$ to get
$$\operatorname{co} f = \operatorname{co} \min_i f_i = \operatorname{co} \min_i \operatorname{co} f_i = [\max_i (\operatorname{co} f_i)^*]^*.$$

- \bigcirc Split f into f_i
- 2 Compute $co f_i$ for each i = 0, ..., n by replacing any f_i with $a_i < 0$ with the line going through $(x_i, f_i(x_i))$ and $(x_{i+1}, f_i(x_{i+1}))$; any f_i with $a_i \ge 0$ is convex so $co f_i = f_i$
- **3** Compute $f_i^* = (\cos f_i)^*$ using the PLQ conjugate algorithm for convex functions
- Compute max f_i^* directly (it is a convex function)
- **5** Compute the conjugate of max f_i^* to obtain $\cos f$

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope by extending the Beneath-Beyond algorithm

Nonconvex calculus

Computer-Aided Convex Analysis CA2

Convex envelope of 2 quadratic functions

- L-L case
- Q-L
- L-Q
- Q-Q

Computer-Aided Convex Analysis CA2

Q-Q case

Computer-Aided Convex Analysis CA²

L-Q case

Computer-Aided Convex Analysis CA2

L-L case

Computer-Aided Convex Analysis CA2

Q-L-Q case

Performance

Computer-Aided Convex Analysis CA2

Complexity

- plg_coSplit has quadratic complexity
- plq_coDirect has linear complexity

But with linear spline, plq_coSplit shows linear complexity experimentally.

Nonconvex calculus 000000000000000

Computer-Aided Convex Analysis CA2

Example

Outline

Computer-Aided Convex Analysis CA2

- Computer-Aided Convex Analysis CA²
- **GPH Algorithms**
- Conclusion

Nonconvex calculus

Conclusion

Computer-Aided Convex Analysis CA2

Current status

- CCA toolbox fairly complete for univariate functions
- Missing algorithms: nonconvex inf-convolution, kernel average
- Bivariate functions coming soon

Conclusion

Computer-Aided Convex Analysis CA2

Summary

- Y. LUCET, What Shape is your Conjugate? A Survey of CCA and its Applications, SIAM OPT 2009
- B. GARDINER & Y. LUCET, Graph-Matrix Calculus for Computational Convex Analysis, Special Issue on Fixed-Points operators, 2010
- B. GARDINER & Y. LUCET, Convex Hull Algorithms for Piecewise Linear-Quadratic Functions in Computational Convex Analysis, Set-Valued and Variational Analysis, 2010, 1 - 16
- CA²: CCA numerical library (GPL) http://people.ok.ubc.ca/~ylucet/CCA/

UBC Okanagan Campus

Computer-Aided Convex Analysis CA2

- Home to OCANA Optimization Group: H. Bauschke, W. Hare, Y. Lucet, S. Wang Mathematics, Computer Science, Engineering
- Three Optimization Research Laboratories!
- Located in beautiful Kelowna (Beaches, Wineries, Skiing, ...)!
- Graduate Funding Available!

