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Convex Transforms
Convex Transforms

f*(s) = sup(s, x) — f(x)

i Ix = yI®
MAF(x) = inflf(y) + 20
uaf () = — M (M F(x))
Palio ) = [(1 = M) + AM(R — 5 IP

Pulfo, f1i N) = =My xan) (= [(1 = Mo + AM, f])

P\(f1, ) (x) = inf (1= Mo+ A+ A1 —N)g(vo — )
(T=Xo)yo+Ay1=x

(F & £)(x) = inflF(y) + (x — y)]
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Computational Convex Analysis

Convex Operators

@ Addition, scalar multiplication

@ Fenchel Conjugate or Moreau envelope

@ Lasry-Lions double envelope

@ Proximal Average

Specialized

o Fitzpatrick Functions

@ Convex Envelope
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Computational Convex Analysis

Computational Convex Analysis

Convex Calculus

addition, scalar multiplication

Convex envelope cof

o
o
o Conjugate *
@ Moreau envelope My (f)
°

Proximal average, nonconvex proximal average, Lasry-Lions
double envelope, (convex) inf-convolution, etc.

Specialized transforms

@ Fitzpatrick functions

@ Nonconvex inf-convolution

@ Kernel average
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Computational Convex Analysis

Nonconvex Extensions
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Symbolic Computation

Symbolic Computation

Solve Vf(x) = s for x symbolically. J

Symbolic Packages

@ Symbolic Computation of Multidimensional Fenchel
Conjugates, Borwein & Hamilton, 2006. SCAT (Symbolic
Convex Analysis Toolkit) package in Maple.

@ Symbolic Computation of Fenchel Conjugates, Bauschke &
Mohrenschildt, 2006

/ Great to study examples and avoid computation errors.

X No close form exists for some functions e.g. polynomial of
degree greater or equal to 6.

N
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Fast Algorithms

Fast Algorithms

Discretize: f*(s;) = max[s;x; — f(xi)] J

Fast Algorithms

@ Linear-time Legendre Transf. LLT (Lucet 96)

@ Parabolic Envelope PE (Felzenszwalb & Huttenlocher 04)

@ NonExpansive Prox NEP (Lucet 06)

@ Parametric Legendre Transf. PLT (Hiriart-Urruty & Lucet 06)

/ Linear-time

\/ Scale linearly

X Domain modeling and approximating quadratic functions

A
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Fast Algorithms

PLQ vs. Fast Algorithms: Prox. Avg of x and —x

Proximal average

Pa(fo, 1)(x) = (1 — A)(—x) + Ax — 2A(1 — A)
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Fast Algorithms

PLQ vs. Fast Algorithms: Prox. Avg of x and —x

Fast Algorithms

o0 if [x| > b,

(1= N)(=x) +Ax —2X(1 - )) if2(1—A)— b<x<b—2)\,
A2 | AFAb-l Ab(4A\+b—4) ,

mnX T X 20-X) if —b<x<2(1-X)-b,

L2 | Asbiby b(4A +l;;)\b74)\) b2\ <x<b

Pfo, A i) = (1 — A)(—x) + Ax — 2A(1 — A)




Computer-Aided Convex Analysis CA?
®0

PLQ Algorithms

Piecewise Linear-Quadratic Functions

Approximate function with quadratic spline

@ Domain is the intersection of linear functions

-

@ On each piece, the function is quadratic

@ Restrict to continuous functions on ri domf.

/ Closed class under convex operator

\/ Infinite domains can be modeled.
v/ Hybrid symbolic numerical algorithms running in Linear-time.

X Restricted to univariate functions (for now).

N,
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PLQ Algorithms

Fast vs. PLQ

@ Linear spline approximates PLQ functions
@ Linear time algorithms, very fast

@ Can model nonconvex PLQ functions

°

scale to dimension

\

PLQ

@ Quadratic spline models PLQ functions

@ Linear time algorithms

@ Can model nonconvex PLQ functions

A
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GPH Algorithms
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Graph-Matrix Calculus

Goebel’s Graph-Matrix Calculus

s € Of(x) <= x € Of*(s)
(x,s) € gph Of <= (s, x) € gph Of*

. 0 Id
gpho(f*) = [Id 0] gph Of

Moreau envelope

Id M1d

gph OM,\(f) = [0 1d } gph Of
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Graph-Matrix Calculus

Binary operators

X =X1 = X2

(x,s) € gph0(A+1h) < I(xi,s;) € gph Of; such that {
s =51+ 5.

(x1 + x2,5) € gph d(A0hH) < (x;,s) € gph Of;.

x=(1—=X)x1 + Ax,

(X,S) € gph('373>\(f1, f2) = {
S=X]1+S —X=X2+ S — X.
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GPH algorithms

Data structure
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GPH algorithms

Example

Subdifferential of the function f(x) = —x for x <0, f(x) =0
when 0 < x <1, and f(x) =x—1if x > 1.
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GPH algorithms

Graph Calculus

Given G = [x;s;y] GPH matrix representing f, f* has GPH matrix

R K I

S.kX—Yy S.kX—Yy

Moreau envelope

M (f) has GPH matrix

1)\*x X+ As
0 1 s|| — s

)/+%s.*s y~|—%s.*s
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GPH vs. PLQ

GPH for Proximal Average

fi, f» convex PLQ functions with GPH matrix Gi = [x1; s1; y1] and
Gy, = [X2; 52;y2]. Set \{ =1— X\, Ay = A then ’P,\(ﬂ, f2) admits the
GPH matrix G = [x; s; y] where x = A1x1 + A\2oPx1, s = x1 + 51 — X,

1 1 1
y =M1+ Exl' % x1) + Aa(yps, + §Px1. * Pxq) — EX' % X

with
P = (I1d +0f) ' (1d +0f),

and ypy, = fo(Px1).
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GPH vs. PLQ

Piecewise quadratic function vs. piecewise linear

subdifferential

@ Model PLQ functions as piecewise quadratic polynomial
@ Linear time algorithms

@ Can model nonconvex PLQ functions

@ Model convex PLQ functions
@ Store the graph of the subdifferential as a finite set of points
@ Linear time algorithms reducing to matrix multiplications

@ Same advantages as PLQ algorithms with computation time
of Fast algorithms.
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GPH vs. PLQ

PLQ vs. GPH
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Convex operators for nonconvex functions

Convex envelope

2 1 112 *
My f(x) = ”;l -3 <” 2” +)\f> (x),

F(s) = 150 C\f - U) (s),

Key idea

© compute the convex envelope

© apply convex operators

For Fast algorithms (linear spline), use Beneath-Beyond algorithm.
For GPH algorithms, convert to PLQ format.
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Algorithm 1: plg-coSplit

Convex envelope of the maximum

Decompose f = min f; where fi(x) = f(x) + I, x,] to get

cof = comin f; = cominco f; = [max(co ;)*]*.
1 1 1

Q Split f into f;

@ Compute co f; for each i = 0,..., n by replacing any f; with
a; < 0 with the line going through (x;, fi(x;)) and
(Xit1, fi(xi+1)); any f; with a; > 0 is convex so co f; = f;

© Compute f* = (co f;)* using the PLQ conjugate algorithm for
convex functions

© Compute max f* directly (it is a convex function)

© Compute the conjugate of max f* to obtain co f
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope by extending the Beneath-Beyond
algorithm
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Algorithm 2: plg-coDirect

Convex envelope of 2 quadratic functions

@ L-L case
e Q-L
o L-Q
° Q-Q
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Algorithm 2: plg-coDirect

Q-Q case

N4
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Algorithm 2: plg-coDirect

L-Q case
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Algorithm 2: plg-coDirect

L-L case
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Algorithm 2: plg-coDirect

Q-L-Q case

Nonconvex calculus
0000000000800

N4
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Algorithm 2: plg-coDirect

Performance

@ plg_coSplit has quadratic complexity
@ plg_coDirect has linear complexity

But with linear spline, plq_coSplit shows linear complexity
experimentally.




Algorithm 2: plg-coDirect

Example

Nonconvex calculus
0000000000008
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Conclusion

Conclusion

@ CCA toolbox fairly complete for univariate functions

@ Missing algorithms: nonconvex inf-convolution, kernel average

@ Bivariate functions coming soon




Conclusion
o] Yo}

Conclusion

Conclusion

@ Y. LuceT, What Shape is your Conjugate? A Survey of CCA
and its Applications, SIAM OPT 2009

o B. GARDINER & Y. LUCET, Graph-Matrix Calculus for
Computational Convex Analysis, Special Issue on Fixed-Points
operators, 2010

@ B. GARDINER & Y. LUCET, Convex Hull Algorithms for
Piecewise Linear-Quadratic Functions in Computational
Convex Analysis, Set-Valued and Variational Analysis, 2010,
1-16

@ CA2: CCA numerical library (GPL)
http://people.ok.ubc.ca/“ylucet/CCA/
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Conclusion

UBC Okanagan Campus

Home to OCANA Optimization Group:
H. Bauschke, W. Hare, Y. Lucet, S. Wang

Mathematics, Computer Science, Engineering

Three Optimization Research Laboratories!

Located in beautiful Kelowna (Beaches, Wineries, Skiing, ...)!

@ Graduate Funding Available!




